CHAPTER 2 EXERCISES

2.1. Consider the following production function, known in the literature as the transcendental production function (TPF).

$$
Q_{i}=B_{1} L_{i}^{B_{2}} K_{i}^{B_{3}} e^{B_{4} L_{i}+B_{5} K_{i}}
$$

where Q, L and K represent output, labor and capital, respectively.

(a) How would you linearize this function? (Hint: logarithms.)

Taking the natural log of both sides, the transcendental production function above can be written in linear form as:

$$
\ln Q_{i}=\ln B_{1}+B_{2} \ln L_{i}+B_{3} \ln K_{i}+B_{4} L_{i}+B_{5} K_{i}+u_{i}
$$

(b) What is the interpretation of the various coefficients in the TPF?

The coefficients may be interpreted as follows:
$\ln B_{1}$ is the y-intercept, which may not have any viable economic interpretation, although B_{1} may be interpreted as a technology constant in the Cobb-Douglas production function.
The elasticity of output with respect to labor may be interpreted as $\left(\mathrm{B}_{2}+\mathrm{B}_{4} * \mathrm{~L}\right)$. This is because $\frac{\partial \ln Q_{i}}{\partial \ln L_{i}}=B_{2}+\frac{B_{4}}{1 / L}=B_{2}+B_{4} L$. Recall that $\frac{\partial \ln Q_{i}}{\partial \ln L_{i}}=\frac{\partial \ln Q_{i}}{(1 / L) \partial L_{i}}$.

Similarly, the elasticity of output with respect to capital can be expressed as $\left(\mathrm{B}_{3}+\mathrm{B}_{5} * \mathrm{~K}\right)$.
(c) Given the data in Table 2.1, estimate the parameters of the TPF.

The parameters of the transcendental production function are given in the following Stata output:

$$
\begin{aligned}
& B_{1}=\mathrm{e}^{3.949841}=51.9271 . \\
& B_{2}=0.5208141 \\
& B_{3}=0.4717828 \\
& B_{4}=-2.52 \mathrm{e}-07
\end{aligned}
$$

$B_{5}=3.55 \mathrm{e}-08$
Evaluated at the mean value of labor $(373,914.5)$, the elasticity of output with respect to labor is 0.4266 .
Evaluated at the mean value of capital $(2,516,181)$, the elasticity of output with respect to capital is 0.5612 .
(d) Suppose you want to test the hypothesis that $B_{4}=B_{5}=0$. How would you test these hypotheses? Show the necessary calculations. (Hint: restricted least squares.)

I would conduct an F test for the coefficients on labor and capital. The output in Stata for this test gives the following:

```
. test labor capital
( 1) labor = 0
(2) capital = 0
F( 2, 46) = 0.23
Prob > F = 0.7992
```

This shows that the null hypothesis of $B_{4}=B_{5}=0$ cannot be rejected in favor of the alternative hypothesis of $B_{4} \neq B_{5} \neq 0$. We may thus question the choice of using a transcendental production function over a standard Cobb-Douglas production function.
We can also use restricted least squares and perform this calculation "by hand" by conducting an F test as follows:

$$
F=\frac{\left(R S S_{R}-R S S_{U R}\right) /(n-k+2-n+k)}{R S S_{U R} /(n-k)} \sim F_{2,46}
$$

The restricted regression is:

$$
\ln Q_{i}=\ln B_{1}+B_{2} \ln L_{i}+B_{3} \ln K_{i}+u_{i}
$$

which gives the following Stata output:

The unrestricted regression is the original one shown in 2(c). This gives the following:

$$
F=\frac{(3.4155177-3.382401) /(51-5+2-51+5)}{3.382401 /(51-5)}=0.22519 \sim F_{2,46}
$$

Since 0.225 is less than the critical F value of 3.23 for 2 degrees of freedom in the numerator and 40 degrees in the denominator (rounded using statistical tables), we cannot reject the null hypothesis of $B_{4}=B_{5}=0$ at the 5% level.
(e) How would you compute the output-labor and output capital elasticities for this model? Are they constant or variable?
See answers to 2(b) and 2(c) above. Since the values of L and K are used in computing the elasticities, they are variable.
2.2. How would you compute the output-labor and output-capital elasticities for the linear production function given in Table 2.3?

The Stata output for the linear production function given in Table 2.3 is:

The elasticity of output with respect to labor is: $\frac{\partial Q_{i} / Q_{i}}{\partial L_{i} / L_{i}}=B_{2} \frac{L}{Q}$.
It is often useful to compute this value at the mean. Therefore, evaluated at the mean values of labor and output, the output-labor elasticity is: $B_{2} \frac{\bar{L}}{\bar{Q}}=47.98736 \frac{373914.5}{4.32 \mathrm{e}+07}=0.41535$.

Similarly, the elasticity of output with respect to capital is: $\frac{\partial Q_{i} / Q_{i}}{\partial K_{i} / K_{i}}=B_{3} \frac{K}{Q}$.
Evaluated at the mean, the output-capital elasticity is: $B_{3} \frac{\bar{K}}{\bar{Q}}=9.951891 \frac{2516181}{4.32 \mathrm{e}+07}=0.57965$.

2.3. For the food expenditure data given in Table 2.8, see if the following model fits the data

 well:$$
\text { SFDHO }_{i}=B_{1}+B_{2} \text { Expend }_{i}+B_{3} \text { Expend }_{i}^{2}
$$

and compare your results with those discussed in the text.
The Stata output for this model gives the following:

Source \|	SS	$d f$	MS	Number of obs $=$	869
				$\mathrm{F}(2,886)=$	204.68
Model	2.02638253	2	1.01319127	Prob > F $=$	0.0000

Similarly to the results in the text (shown in Tables 2.9 and 2.10), these results show a strong nonlinear relationship between share of food expenditure and total expenditure. Both total expenditure and its square are highly significant. The negative sign on the coefficient on "expend" combined with the positive sign on the coefficient on "expend2" implies that the share of food expenditure in total expenditure is decreasing at an increasing rate, which is precisely what the plotted data in Figure 2.3 show.

The R^{2} value of 0.3210 is only slightly lower than the R^{2} values of 0.3509 and 0.3332 for the lin\log and reciprocal models, respectively. (As noted in the text, we are able to compare R^{2} values across these models since the dependent variable is the same.)
2.4 Would it make sense to standardize variables in the log-linear Cobb-Douglas production function and estimate the regression using standardized variables? Why or why not? Show the necessary calculations.
This would mean standardizing the natural logs of Y, K, and L. Since the coefficients in a loglinear (or double-log) production function already represent unit-free changes, this may not be necessary. Moreover, it is easier to interpret a coefficient in a \log linear model as an elasticity. If we were to standardize, the coefficients would represent percentage changes in the standard deviation units. Standardizing would reveal, however, whether capital or labor contributes more to output.

2.5. Show that the coefficient of determination, $R^{\mathbf{2}}$, can also be obtained as

 the squared correlation between actual \boldsymbol{Y} values and the \boldsymbol{Y} values estimated from the regression model $\left(=\hat{Y}_{i}\right)$, where \boldsymbol{Y} is the dependent variable. Note that the coefficient of correlation between variables Y and X is defined as:$$
r=\frac{\sum y_{i} x_{i}}{\sqrt{\sum x_{i}^{2} \sum y_{i}^{2}}}
$$

where $y_{i}=Y_{i}-\bar{Y} ; x_{i}=X_{i}-\bar{X}$. Also note that the mean values of $\boldsymbol{Y}_{\mathbf{i}}$ and \hat{Y} are the same, namely, \bar{Y}.
The estimated Y values from the regression can be rewritten as: $\hat{Y}_{i}=B_{1}+B_{2} X_{i}$.
Taking deviations from the mean, we have: $\hat{y}_{i}=B_{2} x_{i}$.
Therefore, the squared correlation between actual Y values and the Y values estimated from the regression model is represented by:

$$
r=\frac{\sum y_{i} \hat{y}_{i}}{\sqrt{\sum y_{i}^{2} \sum \hat{y}_{i}^{2}}}=\frac{\sum y_{i}\left(B_{2} x_{i}\right)}{\sqrt{\sum y_{i}^{2} \sum\left(B_{2} x_{i}\right)^{2}}}=\frac{B_{2} \sum y_{i} x_{i}}{B_{2} \sqrt{\sum y_{i}^{2} \sum x_{i}^{2}}}=\frac{\sum y_{i} x_{i}}{\sqrt{\sum y_{i}^{2} \sum x_{i}^{2}}},
$$

which is the coefficient of correlation. If this is squared, we obtain the coefficient of determination, or R^{2}.

2.6. Table 2.18 gives cross-country data for 83 countries on per worker GDP and Corruption

 Index for 1998.(a) Plot the index of corruption against per worker GDP.

(b) Based on this plot what might be an appropriate model relating corruption index to per worker GDP?

A slightly nonlinear relationship may be appropriate, as it looks as though corruption may increase at a decreasing rate with increasing GDP per capita.
(c) Present the results of your analysis.

Results are as follows:

(d) If you find a positive relationship between corruption and per capita GDP, how would you rationalize this outcome?

We find a perhaps unexpected positive relationship because of the way corruption is defined. As the Transparency International website states, "Since 1995 Transparency International has published each year the CPI, ranking countries on a scale from 0 (perceived to be highly corrupt) to 10 (perceived to have low levels of corruption)." This means that higher values for the corruption index indicate less corruption. Therefore, countries with higher GDP per capita have lower levels of corruption.
2.7 Table 2.19 gives fertility and other related data for 64 countries. Develop suitable model(s) to explain child mortality, considering the various function forms and the measures of goodness of fit discussed in the chapter.

The following is a linear model explaining child mortality as a function of the female literacy rate, per capita GNP, and the total fertility rate:

The results suggest that higher rates of female literacy and per capita GNP reduce child mortality, which one would expect. Moreover, as the fertility rate goes up, one might expect child mortality to go up, which we see. All results are statistically significant at the 1% level, and the value of r squared is quite high at 0.7474 .
2.8: Verify Equations (2.35), (2.36) and (2.37). Hint: Minimize:

$$
\begin{gather*}
\sum u_{i}^{2}=\sum\left(Y_{i}-B_{2} X\right)^{2} \\
R_{i}-r_{f}=\beta_{i}\left(R_{m}-r_{f}\right)+u_{i} \tag{2.35}\\
Y_{i}=B_{2} X_{i}+u_{i} \tag{2.36}\\
b_{2}=\frac{\sum_{i=1}^{n} X_{i} Y_{i}}{\sum_{i=1}^{n} X_{i}^{2}} \tag{2.37}
\end{gather*}
$$

$$
\begin{align*}
& \operatorname{var}\left(\boldsymbol{b}_{2}\right)=\frac{\sigma^{2}}{\sum_{i=1}^{n} X_{i}^{2}} \tag{2.38}\\
& \hat{\sigma^{2}}=\frac{\sum e_{i}^{2}}{n-1} \tag{2.39}
\end{align*}
$$

We move from equation 2.35 to 2.36 by definition. (We have definied Y as $R-r_{f}$ and X as $R_{m}-r_{f}$.) There is no intercept in this model. Because of that, we can see that, in minimizing the sum of $u_{i}{ }^{2}$ with respect to B_{2} and setting the equation equal to zero, we obtain equation 2.37: (In this case, there is only one equation and one unknown.)

$$
\begin{aligned}
& \frac{d \sum u_{i}^{2}}{d B_{2}}=-\sum X\left(Y_{i}-B_{2} X\right)=0 \\
& \sum X Y-B_{2} \sum X^{2}=0 \\
& \sum X Y=B_{2} \sum X^{2} \\
& B_{2}=\frac{\sum X Y}{\sum X^{2}}
\end{aligned}
$$

2.9: Consider the following model without any regressors.
 $$
Y_{i}=B_{1}+u_{i}
$$

How would you obtain an estimate of B_{1} ? What is the meaning of the estimated value? Does it make any sense?

If you have a model without regressors, B_{1} simply gives you the average value of Y . We can see this by using the data in Table 2.19 (from Exercise 2.7) and running a regression of with only a "dependent" variable, child mortality:

This is clearly not very useful and does not make much sense. B_{1}, the intercept, gives you the mean value of child mortality. Summarizing this variable would give us the same value:

Variable	Obs	Mean	Std. Dev.	Min	Max
cm	64	141.5	75.97807	12	31

