Pool Canvas

Add, modify, and remove questions. Select a question type from the Add Question drop-down list and click Go to add questions. Use Creation Settings to establish which default options, such as feedback and images, are available for question creation.
Add Multiple Choice GO
Creation Settings
Name TestBanks Chapter 02: Appendix: Graphs in Economics
Description Question pool for TestBanks Chapter 02: Appendix: Graphs in EconomicsInstructions
Question 1 Multiple Choice

Question

Answer \quad| slope. |
| :--- |
| origin. |
| |
| |
| graph. |
| |
| |
| |
| |0 points

Modify

The point at which the axes of a graph intersect is called the:

Add Question Here

Question 2 Multiple Choice

0 points

Question

The \qquad of a curve shows the point at which the curve intersects an axis.
Answer
steepness
\checkmark intercept
origin

Question
If two variables are positively related, on a graph they will always be represented by:
Answer
a line or curve that slopes downward.
a straight line.
a horizontal line.
\checkmark a line or curve that slopes upward.

Question
If two variables are negatively related, they will always be represented by:

Answer $\quad \checkmark$ a line or curve that slopes downward.
 a straight line.
 a horizontal line.
 a line or curve that slopes upward.

		4 Add Question Here
Question 5	Multiple Choice 0 points	Modity
	Question If two variables are negatively related:	
	Answer as one goes up in value, the other must go up in value, too.	
	as one goes up in value, the other must go down in value. there can never be a trade-off between the two. one variable is always the reciprocal of the other.	
		\Add Question Here
Question 6	Multiple Choice 0 points	Modity
	Question If two variables are positively related:	
	Answer \checkmark as one goes up in value, the other must go up in value, too. as one goes up in value, the other must go down in value. there is always a trade-off between the two. one variable is always the reciprocal of the other.	

Add Question Here
Question 7 Multiple Choice
0 points

Question

The relation between two variables that move in the same direction is said to be:

Answer
 independent.
 neutral.
 \checkmark positive
 indirect.

Add Question Here
Question 8
Multiple Choice
0 points

Question

The relationship between two variables that move in opposite directions is said to be:

Answer

independent.
positive.
direct.
\checkmark negative.

Question

On a graph representing two variables:
Answer a positive slope of a curve means the variables are negatively related.
a negative slope of a curve means the two variables are positively related.
\checkmark a line that is horizontal has a zero slope.
a line that is vertical has a zero slope.
Add Question Here

Question 10 Multiple Choice

0 points
Question
Figure: Cold Drinks Sold and Temperature

Reference: Ref 2-1
(Figure: Cold Drinks Sold and Temperature) Look at the figure Cold Drinks Sold and Temperature. If we move from point C to point E in the figure, the outside temperature has
\qquad and the number of cold drinks sold has \qquad .

Answer

> decreased by 30 degrees; decreased by 30 drinks
> increased by 20 degrees; increased by 20 drinks
> increased by 30 degrees; increased by 30 drinks
> \checkmark increased by 40 degrees; increased by 40 drinks

Question
 Figure: Cold Drinks Sold and Temperature

Reference: Ref 2-1
(Figure: Cold Drinks Sold and Temperature) Look at the figure Cold Drinks Sold and Temperature. If we move from point B to point C in the figure, the outside temperature has
\qquad and the number of cold drinks sold has \qquad .
Answer
decreased by 30 degrees; decreased by 30 drinks increased by 20 degrees; increased by 20 drinks
\checkmark increased by 30 degrees; increased by 30 drinks increased by 40 degrees; increased by 40 drinks

Add Question Here
Question 12 Multiple Choice
0 points

Question
Figure: Cold Drinks Sold and Temperature

Reference: Ref 2-1
(Figure: Cold Drinks Sold and Temperature) Look at the figure Cold Drinks Sold and Temperature. If we move from point C to point D in the figure, the outside temperature has
\qquad and the number of cold drinks sold has \qquad .

Answer

decreased by 30 degrees; decreased by 30 drinks
\checkmark increased by 20 degrees; increased by 20 drinks increased by 30 degrees; increased by 30 drinks increased by 40 degrees; increased by 40 drinks

4 Add Question Here

Question 13 Multiple Choice

Question
Figure: Hot Drinks Sold and Temperature

Reference: Ref 2-2
(Figure: Hot Drinks Sold and Temperature) Look at the figure Hot Drinks Sold and Temperature. If we move from point K to point L in the figure, the outside temperature has \qquad and the number of hot drinks sold has \qquad .

Answer

decreased by 30 degrees; increased by 30 drinks
\checkmark increased by 20 degrees; decreased by 20 drinks increased by 30 degrees; decreased by 30 drinks increased by 40 degrees; decreased by 40 drinks

Question
Figure: Hot Drinks Sold and Temperature

Reference: Ref 2-2
(Figure: Hot Drinks Sold and Temperature) Look at the figure Hot Drinks Sold and Temperature. If we move from point J to point L in the figure, the outside temperature has \qquad and the number of hot drinks sold has \qquad _.

Answer
decreased by 30 degrees; increased by 30 drinks
increased by 20 degrees; decreased by 20 drinks
increased by 30 degrees; decreased by 30 drinks
\checkmark increased by 40 degrees; decreased by 40 drinks

0 points

Question
Figure: Hot Drinks Sold and Temperature

Reference: Ref 2-2
(Figure: Hot Drinks Sold and Temperature) Look at the figure Hot Drinks Sold and Temperature. If we move from point L to point M in the figure, the outside temperature has \qquad and the number of hot drinks sold has \qquad _.

Answer | decreased by 30 degrees; increased by 30 drinks |
| ---: |
| increased by 20 degrees; decreased by 20 drinks |
| $\boldsymbol{J i n c r e a s e d ~ b y ~} 30$ degrees; decreased by 30 drinks |
| increased by 40 degrees; decreased by 40 drinks |

Question 16
 Multiple Choice

0 points

Question
Figure: Good X and Good Y

Reference: Ref 2-3
(Figure: Good X and Good Y) Look at the figure Good X and Good Y. If we move from point B to point C in the figure, the x-variable has \qquad and the y-variable has \qquad _.
Answer
decreased by 2 units; increased by 15 units
\checkmark increased by 2 units; decreased by 15 units
decreased by 15 units; increased by 2 units increased by 15 units; decreased by 2 units

Question

Figure: Good X and Good Y

Reference: Ref 2-3
(Figure: Good X and Good Y) Look at the figure Good X and Good Y. If we move from point C to point B in the figure, the x-variable has \qquad and the y-variable has \qquad -.
Answer $\quad \checkmark$ decreased by 2 units; increased by 15 units increased by 2 units; decreased by 15 units decreased by 15 units; increased by 2 units increased by 15 units; decreased by 2 units

Question 18 Multiple Choice

0 points

Question

When graphing a curve, the vertical intercept is:
Answer \checkmark the value of the y-variable when the value of the x-variable is equal to zero. the change in the y-variable between two points divided by the change in the x-variable between those same two points. the value of the y-variable when the value of the slope is equal to zero. the value of the x-variable when the value of the y-variable is equal to zero.

Add Question Here

0 points

Question

Table: Hours Studied and Quiz Score

Hours Studied for Economics Quiz	Score on the Economics Quiz (maximum 10 points)
0	2
1	4
2	6
3	8
4	10

Reference: Ref 2-4
(Table: Hours Studied and Quiz Score) Look at the table Hours Studied and Quiz Score. The
table shows data for students in an economics class. If we were to graph these data and draw a line through the points, we would choose \qquad to be the independent variable; the vertical intercept of our line would be \qquad ; and the slope of our line would be \qquad .

Answer

Quiz score; $y=2 ;-2$
Quiz score; $x=0 ;-2$
Hours studied; $y=0 ;+2$
\checkmark Hours studied; $y=2 ;+2$

0 points

Question
Figure: Demand and Supply of Shirts

Reference: Ref 2-5
(Figure: Demand and Supply of Shirts) Look at the figure Demand and Supply of Shirts. In the graph, if the line labeled D is a demand curve for shirts showing how many shirts per week will be demanded at various prices, then it is clear that as the price of shirts falls:

> Answer fewer shirts will be demanded.
> \checkmark more shirts will be demanded.
> the same quantity of shirts will be demanded.
> it is unclear what will happen to the demand for shirts.

Add Question Here

Question
Figure: Demand and Supply of Shirts

Reference: Ref 2-5
(Figure: Demand and Supply of Shirts) Look at the figure Demand and Supply of Shirts. If the line labeled S is the supply curve for shirts that shows how many shirts per week will be offered for sale at various prices, then it is clear that for supply, quantity and price are:

Answer
the same.
\checkmark positively related.
negatively related.
not related.
4 Add Question Here
Multiple Choice
0 points

Question
Table: Wages and Hours Willing to Work

Point	Wage	Hours Worked
A	6	0
B	8	5
C	12	20
D	20	40
E	30	45

Reference: Ref 2-6
(Table: Wages and Hours Willing to Work) Look at the table Wages and Hours Willing to Work, which shows data on wage per hour and the number of hours someone is willing to work. Which variable would economists put on the vertical axis?
Answer
Either variable
\checkmark the wage, because even though it is the independent variable, it is a price
hours willing to work, because it is the dependent variable neither variable

Question

Table: Wages and Hours Willing to Work

Point	Wage	Hours Worked
A	6	0
B	8	5
C	12	20
D	20	40
E	30	45

Reference: Ref 2-6
(Table: Wages and Hours Willing to Work) Look at the table Wages and Hours Willing to Work.
If graphed, the relationship between wage per hour and hours willing to work is:

Answer

linear.
coordinated.
\checkmark nonlinear.
negatively sloped.
Question 24 Multiple Choice $\quad 0$ points

Question
Figure: Illustrating Slope

Reference: Ref 2-7
(Figure: Illustrating Slope) Look at the figure Illustrating Slope. In the graph, line 1 depicts X and Y to be:

Answer
positively related.
nonlinearly related.
unrelated.
\checkmark negatively related.
4 Add Question Here

Question

Figure: Illustrating Slope

Reference: Ref 2-7
(Figure: Illustrating Slope) Look at the figure Illustrating Slope. In the graph, line 3 depicts X and Y to be:
Answer
\checkmark positively related. unrelated.
negatively related.
both constants.

Question
Figure: Demand and Supply

Reference: Ref 2-8
(Figure: Demand and Supply) Look at the figure Demand and Supply. The curve labeled D indicates that a price of $\$ 2$ is related to a quantity of:

Answer

Question 27 Multiple Choice
Question
Figure: Demand and Supply

Reference: Ref 2-8
(Figure: Demand and Supply) Look at the figure Demand and Supply. The curve labeled S indicates that a price of $\$ 2$ is related to a quantity of:
Answer
0.
$\checkmark 1$.
2.
3.

Add Question Here
Question 28 Multiple Choice
Question
Figure: Slope

Reference: Ref 2-9
(Figure: Slope) Look at the figure Slope. This graph depicts \qquad relation between X and Y.
Answer
a positive
\checkmark a negative
an independent
a lack of any
Add Question Here

Question
Table: Wages and Hours Worked

Point	Wage	Hours Worked
A	6	0
B	8	5
C	12	20
D	20	40
E	30	45

Reference: Ref 2-10
(Table: Wages and Hours Worked) Look at the table Wages and Hours Worked. Graphing the relation with wages on the vertical axis and hours worked on the horizontal axis, the slope between point D and point E is:

Answer
0.5 .
5.
45.
$\checkmark 2$
Add Question Here

Question

Table: Wages and Hours Worked

Point	Wage	Hours Worked
A	6	0
B	8	5
C	12	20
D	20	40
E	30	45

Reference: Ref 2-10
(Table: Wages and Hours Worked) Look at the table Wages and Hours Worked. Graphing the relation with wages on the vertical axis and hours worked on the horizontal axis, the slope between point A and point B is:

Answer

2.5.
5.
2.
\checkmark 2/5.
Add Question Here
Question 31 Multiple Choice
Question
Two points on a nonlinear curve have coordinates given by $(5,15)$ and $(17,13)$. The average slope of the curve between these points is:
Answer
$\checkmark-1 / 6$.
-6.
1/4.
2.5.

Add Question Here

Question
Which of the following statements about a graph drawn with X on the horizontal axis and Y on the vertical axis is correct?

Answer If two points on the graph are (0,8) and (12,15), X is 0 when Y is 12 .
\checkmark If two points on the graph are $(0,8)$ and $(12,15), X$ and Y have a positive relation.
If two points on the graph are $(0,8)$ and $(12,15)$, the horizontal intercept is given by the point $(0,8)$.
If two points on the graph are $(0,8)$ and $(12,15)$, the slope of a line connecting the two points is negative.

Add Question Here

Question
Figure: Illustrating Slope

Reference: Ref 2-11
(Figure: Illustrating Slope) Look at the figure Illustrating Slope. In the graph, line 2 has a slope of:

Answer

$$
\begin{aligned}
& +1 . \\
& 0 . \\
& -1 . \\
& \text { infinity. }
\end{aligned}
$$

Question
Figure: Demand and Supply

Reference: Ref 2-12
(Figure: Demand and Supply) Look at the figure Demand and Supply. The slope of the curve labeled D is:

Answer

$\checkmark-1$.
0.
1.
3.

Question
Figure: Demand and Supply

Reference: Ref 2-12
(Figure: Demand and Supply) Look at the figure Demand and Supply. The slope of the curve labeled S is:

Answer
 -1 .

0.

$\checkmark 1$.
3.

Question
The slope of a straight line is the ratio of the:
Answer \checkmark vertical change to the horizontal change. horizontal change to the vertical change. run over the rise.
vertical change to the horizontal change, and it must be positive.

Question
Figure: Slope

Reference: Ref 2-13
(Figure: Slope) Look at the figure Slope. In the graph, the slope of the line between points A and B is:
Answer

$$
\begin{array}{r}
+8 . \\
-8 . \\
-2 . \\
+2 .
\end{array}
$$

Question

Figure: Slope

Reference: Ref 2-13
(Figure: Slope) Look at the figure Slope. The slope of the line in the graph can be calculated by taking the:
Answer horizontal change and dividing it by the vertical change.
\checkmark vertical change and dividing it by the horizontal change. sum of the Y values subtracted from the sum of the X values. sum of the X values added to the sum of the Y values.

Question
The ratio of the change in the variable on the vertical axis to the change in the variable on the horizontal axis, measured between two points on the curve, is the:
Answer
axis.
\checkmark slope.
dependent variable.
independent variable.

Question

Table: Price, Quantity Demanded, and Quantity Supplied

Price	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
Quantity demanded	16	8	4	2	1
Quantity supplied	3	5	7	9	11

(Table: Price, Quantity Demanded, and Quantity Supplied) Look at the table Price, Quantity Demanded, and Quantity Supplied. A straight line represents the relation between:
Answer price and quantity demanded.
\checkmark price and quantity supplied.
price and quantity demanded minus quantity supplied.
quantity demanded and quantity supplied.

Question

Table: Price, Quantity Demanded, and Quantity Supplied

Price	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
Quantity demanded	16	8	4	2	1
Quantity supplied	3	5	7	9	11

Reference: Ref 2-14
(Table: Price, Quantity Demanded, and Quantity Supplied) Look at the table Price, Quantity Demanded, and Quantity Supplied. The data in the figure suggest a nonlinear relation between:
Answer
\checkmark price and quantity demanded.
price and quantity supplied.
quantity demanded and quantity supplied.
A nonlinear relationship does not exist.

Question
Table: Price, Quantity Demanded, and Quantity Supplied

Price	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
Quantity demanded	16	8	4	2	1
Quantity supplied	3	5	7	9	11

Reference: Ref 2-14
(Table: Price, Quantity Demanded, and Quantity Supplied) Look at the table Price, Quantity Demanded, and Quantity Supplied. The slope of the line representing the relation between price on the vertical axis and quantity supplied on the horizontal axis is:
Answer
\checkmark equal to $1 / 2$.
equal to 1 .
equal to 2 .
different at different points on the line.
4 Add Question Here
Question 43 Multiple Choice

0 points

Question

Table: Price, Quantity Demanded, and Quantity Supplied

Price	$\mathbf{1}$	$\mathbf{2}$	$\mathbf{3}$	$\mathbf{4}$	$\mathbf{5}$
Quantity demanded	16	8	4	2	1
Quantity supplied	3	5	7	9	11

Reference: Ref 2-14
(Table: Price, Quantity Demanded, and Quantity Supplied) Look at the table Price, Quantity Demanded, and Quantity Supplied. The slope of the line representing the relationship between price on the vertical axis and quantity demanded on the horizontal axis is:
Answer
equal to $1 / 2$.
equal to 1 .
equal to 2 .
\checkmark different at different points on the line.

0 points

Question
Figure: $Y=f(X)$

Reference: Ref 2-15
(Figure: $Y=f(X)$ Look at the figure $Y=f(X)$. In the figure, what best describes the slope of the relation between x and y ?
Answer A positive and constant slope.
A negative slope that is getting steeper.
\checkmark A positive slope that is getting steeper.
A positive slope that is getting flatter.
4 Add Question Here
Question 45 Multiple Choice
0 points

Question

Figure: Seasonally Adjusted Unemployment Rate

Source: Bureau of Labor Statistics, 2008.

Reference: Ref 2-16
(Figure: Seasonally Adjusted Unemployment Rate) Look at the figure Seasonally Adjusted Unemployment Rate. The distance between each labeled point on the horizontal axis is one year. What is the approximate slope of the graph between $1 / 2004$ and $1 / 2006$?
Answer

$$
\begin{gathered}
1 / 2 \\
1 \\
-1 / 2
\end{gathered}
$$

Question 46
 Multiple Choice

0 points

Question

Figure: Seasonally Adjusted Unemployment Rate

Source: Bureau of Labor Statistics, 2008.
Reference: Ref 2-16
(Figure: Seasonally Adjusted Unemployment Rate) Look again at the figure Seasonally Adjusted Unemployment Rate. The distance between each labeled point on the horizontal axis is one year. What is the approximate slope of the graph between $1 / 2001$ and $1 / 2003$?
Answer

$$
\begin{array}{r}
2 \\
\mathscr{1} \\
-1 \\
-2
\end{array}
$$

Multiple Choice

 0 pointsAdd Question Here

Question

Figure: Seasonally Adjusted Unemployment Rate

Source: Bureau of Labor Statistics, 2008.

Reference: Ref 2-16
(Figure: Seasonally Adjusted Unemployment Rate) Look again at the figure Seasonally Adjusted Unemployment Rate. The distance between each labeled point on the horizontal axis is one year. Unemployment was \qquad between 2001-2002 and \qquad between 1999-2000.

Answer
\checkmark increasing; decreasing increasing; increasing decreasing; increasing decreasing; decreasing

Add Question Here

Question 48 Multiple Choice

0 points

Question

Figure: Seasonally Adjusted Unemployment Rate

Source: Bureau of Labor Statistics, 2008.

Reference: Ref 2-16
(Figure: Seasonally Adjusted Unemployment Rate) Look again at the figure Seasonally Adjusted Unemployment Rate. The distance between each labeled point on the horizontal axis is one year. Unemployment was \qquad between 2001-2003 and \qquad between 2007-2008.
Answer
increasing; decreasing
\checkmark increasing; increasing decreasing; increasing decreasing; decreasing

Add Question Here

Question

Figure: Seasonally Adjusted Unemployment Rate

Source: Bureau of Labor Statistics, 2008.
Reference: Ref 2-16
(Figure: Seasonally Adjusted Unemployment Rate) Look again at the figure Seasonally Adjusted Unemployment Rate. The distance between each labeled point on the horizontal axis is one year. Using this graph, the unemployment rate was at a minimum in \qquad and a maximum in \qquad .
Answer

$$
\begin{array}{r}
2003 ; 2000 \\
2007 ; 2001 \\
2003 ; 1999 \\
-2000 ; 2003
\end{array}
$$

Question
Figure: Labor Force Participation Rate

Reference: Ref 2-17
(Figure: Labor Force Participation Rate) Look at the figure Labor Force Participation Rate. Using the figure, the labor force participation rate for women was \qquad during 1970-1985 and \qquad during 1998-2006.

Question
Figure: Labor Force Participation Rate

Reference: Ref 2-17
(Figure: Labor Force Participation Rate) Look at the figure Labor Force Participation Rate. During 1970-1985, the labor force participation rate was \qquad for women and \qquad for men.
Answer \quad increasing; decreasing increasing; increasing decreasing; increasing decreasing; decreasing

Question
If a supply curve is represented by the equation $Q=10+2 P$, what is its slope?
Answer

$$
\begin{gathered}
\checkmark 1 / 2 \\
1 \\
2 \\
5
\end{gathered}
$$

Question

Your boss asks you to graph company profits for the past 10 years. The best way to show this information is with:

Answer

a scatter diagram.
a pie chart.
\checkmark a time-series graph. an independent graph.

Add Question Here

Question 54 Multiple Choice

0 points

Remove

Question

The owner of the Dismal Philosopher, one of five bookstores on College Road, asks you to make a graph showing each bookstore's share of all book purchases on College Road. The best way to show this information is with:
Answer
a scatter diagram.
\checkmark a pie chart.
a time-series graph.
an independent graph.
4 Add Question Here
Multiple Choice
0 points

Question

Professor Macro wants to use a numerical graph to show the percentage of government spending accounted for by its various components. Which of the following graphs is most suitable for this purpose?
Answer

$$
\begin{aligned}
& \text { bar graph } \\
& \Omega \text { pie chart } \\
& \text { time-series graph } \\
& \text { scatter diagram }
\end{aligned}
$$

0 points

Modify
Remove

Question

A positive relationship between swimsuits purchased and ice cream purchased could be the result of:
Answer reverse causality.
a magnified scale on the swimsuit axis.
a truncation of the ice cream axis.
\checkmark an omitted variable, such as the external temperature.
Add Question Here

Question

Taylor sees a bar graph showing the average weight of adult males over the past 200 years and concludes that men get more obese over time. Taylor's conclusion may be wrong, since she did not consider:

Question

Figure: Unemployment Rate over Time

Source: Bureau of Labor Statistics.

Reference: Ref 2-18
(Figure: Unemployment Rate over Time) Look at the figure Unemployment Rate over Time. In the time-series graph, as we move from the beginning of 2001 to the beginning of 2003, we see that the unemployment rate has:
Answer
decreased from approximately 5% to approximately 4%. increased from approximately 5.3% to approximately 7.3%.
decreased from approximately 7.7% to approximately 5.5%.
\checkmark increased from approximately 4% to approximately 6%.

Question
Figure: Unemployment Rate over Time

Source: Bureau of Labor Statistics.

Reference: Ref 2-18
(Figure: Unemployment Rate over Time) Look again at the figure Unemployment Rate over Time. In the time-series graph, as we move from 1993 to 1995, we see that the unemployment rate has:
Answer decreased from approximately 5% to approximately 4%. increased from approximately 5.3% to approximately 7.3%.
\checkmark decreased from approximately 7% to approximately 5.5%.
increased from approximately 4% to approximately 6.3%.

0 points

Question
Figure: Unemployment Rate over Time

Source: Bureau of Labor Statistics.

Reference: Ref 2-18
(Figure: Unemployment Rate over Time) Look again at the figure Unemployment Rate over Time. In the time-series graph, as we move from 1991 to 1993, we see that the unemployment rate has:
decreased from approximately 5% to approximately 4%.
\checkmark increased from approximately 5.5% to approximately 7%.
decreased from approximately 7.8% to approximately 5%. increased from approximately 4% to approximately 6.3%.

Add Question Here

Question 61 Multiple Choice

0 points
Question
Figure: Unemployment Rate over Time

Source: Bureau of Labor Statistics.

Reference: Ref 2-18
(Figure: Unemployment Rate over Time) Look again at the figure Unemployment Rate over Time. In the time-series graph, as we move from 1997 to 2001, we see that the unemployment rate has:
Answer $\quad \checkmark$ decreased from approximately 5% to approximately 4%. increased from approximately 5.3% to approximately 7.3%. decreased from approximately 7.8% to approximately 5.5%. increased from approximately 4% to approximately 6.3%.

Add Question Here

Question

A \qquad graph shows how the value of one or more variables have changed over some period.
Answer
linear
\checkmark time-series
nonlinear
periodic table

Question

The scaling of the axes of a time-series graph:
Answer is not a critical element in presenting the intended information.
\checkmark may change the interpretation of the data presented. generally places the time period on the vertical axis. generally puts values of a variable, such as the unemployment rate, on the vertical axis.

Add Question Here

Question 64 Multiple Choice

0 points

Question

In a time-series graph, large changes can be made to appear trivial by:
Answer $\quad \checkmark$ changing the scale of the axes.
labeling more intervals.
defining the dependent variable.
defining the independent variable.
Add Question Here
Question 65 Multiple Choice
0 points

Question

A scatter diagram shows:
Answer how far apart dependent variables are.
\checkmark individual points of data showing both variable values.
the slope of a line.
the intercept of a curve.
Add Question Here

Question

The fact that two variables always move together over time:
Answer \checkmark does not prove that one of the variables is dependent on the other. proves that one of the variables is dependent on the other. proves that changes in one variable cause changes in the other. is often illustrated or depicted using either a pie chart or a bar chart.

4 Add Question Here
Question 67 Multiple Choice

0 points

Question

A pie chart is used to depict information about:
Answer \checkmark the relative shares of categories of data.
the changes of a particular variable over time. positive, not negative, relationships among variables. the changes of a particular variable over time and positive relationships.

Add Question Here

Question
A bar graph:
Answer shows the relative amounts attributable to different categories.
may be shown by vertical bars to illustrate the comparative sizes of different observations.
may be shown by horizontal bars to illustrate the comparative sizes of different observations.
$\checkmark \mathrm{A}, \mathrm{B}$, and C .
Add Question Here

Question

In looking at a chart of the positive relationship between police officers and crime, the mayor remarks that more police officers create more crime. The mayor may be wrong because she did not consider:

Answer \quad| the features of construction. |
| :---: |
| omitted variables. |
| \checkmark reverse causality. |
| tangent lines. |

0 points

Question

Figure: Consumption of Pizza and Tacos

Reference: Ref 2-19
(Figure: Consumption of Pizza and Tacos) Look at the figure Consumption of Pizza \& Tacos. The figure shows the number of tacos and pizza slices Matt can eat in a day. The relation is nonlinear, and there is a negative relation between the number of tacos and pizza slices that Matt can eat in a day.
Answer

```
\True
    False
```

Question
Figure: Consumption of Pizza and Tacos

Reference: Ref 2-19
(Figure: Consumption of Pizza and Tacos) Look again at the figure Consumption of Pizza \& Tacos. The figure shows the number of tacos and pizza slices Matt can eat in a day. The best estimate of the slope between point A and point B is -4 .
Answer

> True
> \sim False

Question 72 True/False

0 points
\Add Question Here

Question
A linear curve has the same slope between every pair of points.
Answer
\checkmark True
False

Question

The owner of the Dismal Philosopher, one of the five bookstores on College Road, asks you to make a graph showing each bookstore's share of all book purchases on College Road. A good way to show this information is with a pie chart.

Answer

$$
\begin{aligned}
& \checkmark \text { True } \\
& \text { False }
\end{aligned}
$$

Add Question Here

Question
A town hires more police officers and then has an increase in arrests. One can conclude that the larger police force caused more crime.
Answer
True
\checkmark False

Question

An economist wishes to build a model to explain the relationship between the number of diamonds purchased every year and the average income of consumers in that year. Which variable should be the dependent variable and which should be the independent variable? All else equal, do you expect this relationship to be positive or negative? Explain.
Answer The number of diamonds purchased should be the dependent variable and the average income should be the independent variable. It is much more reasonable to believe that income causes diamond purchases than the other way around. One would expect a positive relationship. As average income rises, all else equal, diamonds become more affordable to more people, and so more diamonds will be purchased.

