CHAPTER 2 SOLUTIONS

Problem 2.1

From Ohm's law, the current I_1 through R_1 is given by

$$I_1 = \frac{V}{R_1} = \frac{6V}{3k\Omega} = \frac{6V}{3000\Omega} = 0.002A = 2mA$$

Notice that $1 \text{ V}/1 \text{ k}\Omega = 1 \text{ mA}$. From Ohm's law, the current I₂ through R₂ is given by

$$I_2 = \frac{V}{R_2} = \frac{6V}{6k\Omega} = \frac{6V}{6000\Omega} = 0.001A = 1mA$$

Problem 2.2

From Ohm's law, the current I₁ through R₁ is given by

$$I_1 = \frac{V_1}{R_1} = \frac{2.4V}{800\Omega} = 0.003A = 3\,mA$$

From Ohm's law, the current I₂ through R₂ is given by

$$I_2 = \frac{V_2}{R_2} = \frac{3.6V}{2\,k\Omega} = 1.8\,mA$$

From Ohm's law, the current I₃ through R₃ is given by

$$I_3 = \frac{V_2}{R_3} = \frac{3.6V}{3k\Omega} = 1.2 \, mA$$

Problem 2.3

From Ohm's law, the current I₁ through R₁ is given by

$$I_1 = \frac{V_1}{R_1} = \frac{2.4V}{4k\Omega} = 0.6 \, mA = 600 \, \mu A$$

From Ohm's law, the current I₂ through R₂ is given by

$$I_2 = \frac{V_1}{R_2} = \frac{2.4V}{6k\Omega} = 0.4 \, mA = 400 \, \mu A$$

© 2018 Cengage Learning®. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Visit TestBankDeal.com to get complete for all chapters

From Ohm's law, the current I₃ through R₃ is given by

$$I_3 = \frac{V_2}{R_2} = \frac{1.2V}{1.8k\Omega} = \frac{2}{3}mA = 0.6667\,mA = 666.5557\,\mu A$$

From Ohm's law, the current I4 through R4 is given by

$$I_4 = \frac{V_2}{R_4} = \frac{1.2V}{6k\Omega} = 0.2 \, mA = 200 \, \mu A$$

From Ohm's law, the current I5 through R5 is given by

$$I_5 = \frac{V_2}{R_5} = \frac{1.2V}{9k\Omega} = \frac{2}{15}mA = 0.1333mA = 133.3333\,\mu A$$

Problem 2.4

From Ohm's law, the voltage across R₂ is given by

$$V_0 = R_2 I_2 = 6 \text{ k}\Omega \times 1.2 \text{ mA} = 6000 \times 0.0012 = 7.2 \text{ V}$$

Notice that $1 \text{ k}\Omega \times 1 \text{ mA} = 1 \text{ V}$. From Ohm's law, the current I₁ through R₁ is given by

$$I_1 = \frac{V_1}{R_1} = \frac{2.8V}{1.4k\Omega} = 2\,mA$$

From Ohm's law, the voltage across R₂ is given by

$$V_0 = R_2 I_2 = 6 \text{ k}\Omega \times 1.2 \text{ mA} = 6000 \times 0.0012 = 7.2 \text{ V}$$

From Ohm's law, the current I₃ through R₃ is given by

$$I_3 = \frac{V_o}{R_3} = \frac{7.2V}{9\,k\Omega} = 0.8\,mA = 800\,\mu A$$

Problem 2.5

From Ohm's law, the voltage across R4 is given by

$$V_o = R_4 I_4 = 18 \text{ k}\Omega \times 0.2 \text{ mA} = 18000 \times 0.0002 = 3.6 \text{ V}$$

From Ohm's law, the current I₃ through R₃ is given by

$$I_3 = \frac{V_o}{R_3} = \frac{3.6V}{6k\Omega} = 0.6 \, mA = 600 \, \mu A$$

From Ohm's law, the voltage across R₄ is given by

 $V_o = R_4 I_4 = 8 \ k\Omega \times 0.4 \ mA = 8000 \times 0.0004 = 3.2 \ V$

From Ohm's law, the current I₂ through R₂ is given by

$$I_2 = \frac{V_o}{R_2} = \frac{3.2V}{3k\Omega} = \frac{16}{15}mA = 1.06667\,mA$$

From Ohm's law, the current I₃ through R₃ is given by

$$I_3 = \frac{V_o}{R_3} = \frac{3.2V}{6k\Omega} = \frac{16}{30}mA = 0.53333mA = 533.3333\mu A$$

Problem 2.7

From Ohm's law, the voltage across R₃ is given by

$$V_0 = R_3 I_3 = 42 \text{ k}\Omega \times (1/12) \text{ mA} = 42/12 \text{ V} = 3.5 \text{ V}$$

From Ohm's law, the resistance value R₂ is given by

$$R_2 = \frac{V_o}{I_2} = \frac{3.5V}{\frac{7}{60}mA} = 30k\Omega$$

 $1 \text{ V}/1 \text{ mA} = 1 \text{ k}\Omega$

Problem 2.8

The power on R_1 is

$$P_{R_1} = I^2 R_1 = (2 \times 10^{-3})^2 \times 2000 = 4 \times 10^{-6} \times 2 \times 10^3 = 8 \times 10^{-3} W = 8 \, mW \text{ (absorbed)}$$

The power on R_2 is

$$P_{R_2} = I^2 R_1 = (2 \times 10^{-3})^2 \times 3000 = 4 \times 10^{-6} \times 3 \times 10^3 = 12 \times 10^{-3} W = 12 \, mW \text{ (absorbed)}$$

The power on V_s is

 $P_{V_s} = -IV_s = -2 \times 10^{-3} \times 10 = -20 \times 10^{-3} W = -20 \, mW$ (released)

Total power absorbed = 20 mW = total power released

Problem 2.9

The power on R1 is

$$P_{R_1} = \frac{V_o^2}{R_1} = \frac{4.8^2}{8000} = 2.88 \times 10^{-3} W = 2.88 \, mW$$
 (absorbed)

The power on R₂ is

$$P_{R_2} = \frac{V_o^2}{R_2} = \frac{4.8^2}{12000} = 1.92 \times 10^{-3} W = 1.92 \, mW$$
 (absorbed)

The power on Vs is

$$P_{I_s} = -I_s V_o = -1 \times 10^{-3} \times 4.8 = -4.8 \times 10^{-3} W = -4.8 \, mW$$
 (released)

Problem 2.10

From Ohm's law, current I₁ is given by

$$I_1 = \frac{20V - 15V}{R_1} = \frac{5V}{0.5k\Omega} = 10 \, mA$$

From Ohm's law, current I₂ is given by

$$I_2 = \frac{20V - 10V}{R_2} = \frac{10V}{2\,k\Omega} = 5\,mA$$

From Ohm's law, current I₃ is given by

$$I_3 = \frac{10V - 0V}{R_3} = \frac{10V}{1k\Omega} = 10 \, mA$$

From Ohm's law, current I4 is given by

$$I_4 = \frac{10V - 15V}{R_4} = \frac{-5V}{1k\Omega} = -5\,mA$$

From Ohm's law, current *i* is given by

$$i = \frac{10V - 8V}{R_3} = \frac{2V}{2k\Omega} = 1mA$$

From Ohm's law, current I₁ is given by

$$I_1 = \frac{12V - 10V}{R_1} = \frac{2V}{1k\Omega} = 2mA$$

From Ohm's law, current I₂ is given by

$$I_2 = \frac{10V - 5V}{R_2} = \frac{5V}{5k\Omega} = 1mA$$

From Ohm's law, current I₃ is given by

$$I_3 = \frac{12V - 8V}{R_4} = \frac{4V}{2k\Omega} = 2mA$$

From Ohm's law, current I₄ is given by

$$I_4 = \frac{8V - 5V}{R_5} = \frac{3V}{3k\Omega} = 1\,mA$$

From Ohm's law, current I₅ is given by

$$I_5 = \frac{8V}{R_6} = \frac{8V}{4k\Omega} = 2\,mA$$

Problem 2.12

Application of Ohm's law results in

$$I_1 = \frac{34V - 24V}{R_1} = \frac{10V}{2\,k\Omega} = 5\,mA$$

$$I_{2} = \frac{24V - 10V}{R_{2}} = \frac{14V}{2k\Omega} = 7 mA$$

$$I_{3} = \frac{24V - 28V}{R_{3}} = \frac{-4V}{2k\Omega} = -2 mA$$

$$I_{4} = \frac{34V - 28V}{R_{4}} = \frac{6V}{0.6k\Omega} = 10 mA$$

$$I_{5} = \frac{28V - 10V}{R_{5}} = \frac{18V}{6k\Omega} = 3 mA$$

$$I_{6} = \frac{28V}{R_{6}} = \frac{28V}{5.6k\Omega} = 5 mA$$

$$I_{7} = \frac{10V}{R_{7}} = \frac{10V}{1k\Omega} = 10 mA$$

The total voltage from the four voltage sources is

$$V = V_{s1} + V_{s2} + V_{s3} + V_{s4} = 9 V + 2 V - 3 V + 2 V = 10V$$

The total resistance from the five resistors is

$$R = R_1 + R_2 + R_3 + R_4 + R_5 = 3 k\Omega + 5 k\Omega + 4 k\Omega + 2 k\Omega + 4 k\Omega = 18 k\Omega$$

The current through the mesh is

$$I = \frac{V}{R} = \frac{10V}{18000\,\Omega} = \frac{5}{9}\,mA = 0.5556\,mA$$

From Ohm's law, the voltages across the five resistors are given respectively

$$V_1 = R_1 I = 3 \times 5/9 V = 15/9 V = 5/3 V = 1.6667 V$$
$$V_2 = R_2 I = 5 \times 5/9 V = 25/9 V = 2.7778 V$$
$$V_3 = R_3 I = 4 \times 5/9 V = 20/9 V = 2.2222 V$$
$$V_4 = R_4 I = 2 \times 5/9 V = 10/9 V = 1.1111 V$$

$$V_5 = R_5 I = 4 \times 5/9 V = 20/9 V = 2.2222 V$$

Radius is r = d/2 = 0.2025 mm = 0.2025 \times 10 3 m A = πr^2 = 1.28825 $\times 10^{-7}$ m^2

(a)

$$R = \frac{\ell}{\sigma A} = \frac{20}{5.69 \times 10^7 \times \pi \times (0.2025 \times 10^{-3})^2} = 2.7285\Omega$$
(b)

$$R = \frac{\ell}{\sigma A} = \frac{200}{5.69 \times 10^7 \times \pi \times (0.2025 \times 10^{-3})^2} = 27.2846\Omega$$
(c)

$$R = \frac{\ell}{\sigma A} = \frac{2000}{5.69 \times 10^7 \times \pi \times (0.2025 \times 10^{-3})^2} = 272.8461\Omega$$
(d)

$$R = \frac{\ell}{\sigma A} = \frac{20000}{5.69 \times 10^7 \times \pi \times (0.2025 \times 10^{-3})^2} = 2728.4613\Omega$$

Problem 2.15

From Ohm's law, the voltage across R₂ is given by

$$V_2 = I_2 R_2 = 3 \text{ mA} \times 2 \text{ k}\Omega = 6 \text{ V}$$

From Ohm's law, the current through R₃ is given by

$$I_{3} = \frac{V_{2}}{R_{3}} = \frac{6V}{3k\Omega} = 2\,mA$$

According to KCL, current I_1 is the sum of I_2 and I_3 . Thus, we have

 $I_1 = I_2 + I_3 = 3 \text{ mA} + 2 \text{ mA} = 5 \text{ mA}$

The voltage across R_1 is given by

 $V_1 = R_1 I_1 = 1 \ k\Omega \times 5 \ mA = 5 \ V$

Problem 2.16

From Ohm's law, the currents I₂, I₃, and I₄ are given respectively by

$$I_2 = \frac{V_2}{R_2} = \frac{6V}{2k\Omega} = 3mA$$
$$I_3 = \frac{V_2}{R_3} = \frac{6V}{3k\Omega} = 2mA$$
$$I_4 = \frac{V_2}{R_4} = \frac{6V}{6k\Omega} = 1mA$$

From KCL, current I_1 is the sum of I_2 , I_3 , and I_4 . Thus, we have

$$I_1 = I_2 + I_3 + I_4 = 3 \text{ mA} + 2 \text{ mA} + 1 \text{ mA} = 6 \text{ mA}$$

The voltage across R1 is given by

 $V_1 = R_1 I_1 = 1 \ k\Omega \times 6 \ mA = 6 \ V$

Problem 2.17

From Ohm's law, we have

 $V_2 = R_4 I_4 = 1 \ mA \times 6 \ k\Omega = 6 \ V$

From Ohm's law, the current through R₃ is given by

$$I_3 = \frac{V_2}{R_3} = \frac{6V}{3\,k\Omega} = 2\,mA$$

From KCL, I₂ is the sum of I₃ and I₄. Thus,

$$I_2 = I_3 + I_4 = 3 \text{ mA}$$

From KCL, I_1 is given by

$$I_1 = I_s - I_2 = 2 \text{ mA}$$

From Ohm's law, the voltage across R1 is

$$V_1 = R_1 I_1 = 4.5 \text{ k}\Omega \times 2 \text{ mA} = 9 \text{ V}$$

Problem 2.18

From Ohm's law, we have

$$I_{3} = \frac{V_{o}}{R_{3}} = \frac{8V}{2k\Omega} = 4mA$$

$$I_{4} = \frac{V_{o}}{R_{4}} = \frac{8V}{4k\Omega} = 2mA$$

$$I_{1} = \frac{V_{s} - V_{o}}{R_{1}} = \frac{12V - 8V}{1k\Omega} = \frac{4V}{1k\Omega} = 4mA$$

$$I_{2} = \frac{V_{s} - V_{o}}{R_{2}} = \frac{12V - 8V}{2k\Omega} = \frac{4V}{2k\Omega} = 2mA$$

As a check, $I_1 + I_2 = I_3 + I_4 = 6 \text{ mA}$

Problem 2.19

From Ohm's law, we have

$$I_{3} = \frac{V_{4}}{R_{4}} = \frac{5V}{2.5k\Omega} = 2 mA$$

V₃ = R₃I₃ = 2 kΩ × 2 mA = 4 V
V₂ = V₃ + V₄ = 4 V + 5 V = 9 V
$$I_{2} = \frac{V_{2}}{R_{2}} = 3\frac{9V}{4k\Omega} = 3 mA$$

From KCL, we have

 $I_1 = I_2 + I_3 = 5 \text{ mA}$

From Ohm's law, we get

 $V_1 = R_1 I_1 = 1 \ k\Omega \times 5 \ mA = 5 \ V$

Problem 2.20

Application of KCL at node *a* yields

$$I_s = I_1 + I_2 + I_3$$

Solving for I₂, we obtain

 $I_2 = I_s - I_1 - I_3 = 10 \text{ mA} - 5 \text{ mA} - 2 \text{ mA} = 3 \text{ mA}$

Application of KCL at node *b* yields

 $I_1 + I_2 = I_4 + I_5$

Solving for I₅, we obtain

 $I_5 = I_1 + I_2 - I_4 = 5 \text{ mA} + 3 \text{ mA} - 2 \text{ mA} = 6 \text{ mA}$

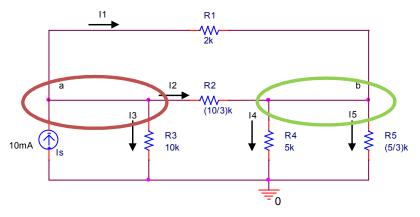


Figure S2.20

Problem 2.21

Application of KCL at node *b* yields

 $I_s = I_2 + I_3$

Solving for I₂, we obtain

 $I_2 = I_s - I_3 = 15 \text{ mA} - 10 \text{ mA} = 5 \text{ mA}$

Application of KCL at node *a* yields

 $I_4 = I_2 - I_1 = 5 \text{ mA} - 2 \text{ mA} = 3 \text{ mA}$

Application of KCL at node c yields

 $I_5 = I_1 + I_3 = 2 \text{ mA} + 10 \text{ mA} = 12 \text{ mA}$

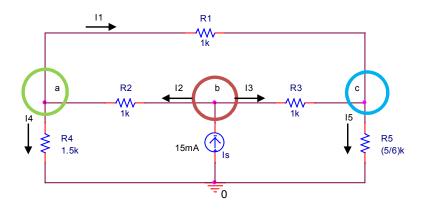


Figure S2.21

Problem 2.22

Application of KCL at node *b* yields

 $I_1 = I_s - I_4 = 20 \text{ mA} - 10 \text{ mA} = 10 \text{ mA}$

Application of KCL at node *a* yields

 $I_2 = I_1 - I_3 = 10 \text{ mA} - 5 \text{ mA} = 5 \text{ mA}$

Application of KCL at node *c* yields

 $I_6 = I_3 + I_4 - I_5 = 5 \text{ mA} + 10 \text{ mA} - 5 \text{ mA} = 10 \text{ mA}$

Application of KCL at node *d* yields

 $I_7 = I_2 + I_5 = 5 \text{ mA} + 5 \text{ mA} = 10 \text{ mA}$

Problem 2.23

Application of KCL at node *d* yields

 $I_2 = 13 - 10 = 3 A$

Application of KCL at node *a* yields

 $I_1 = I_2 - 2 = 3 - 2 = 1 A$

Application of KCL at node *b* yields

 $I_3 = -I_1 - 5 = -1 - 5 = -6 A$

Application of KCL at node c yields

 $I_5 = -2 - 10 = -12 A$

Application of KCL at node e yields

 $I_4 = -I_3 - 13 = -(-6) - 13 = -7 A$

Problem 2.24

Summing the voltage drops around mesh 1 in the circuit shown in Figure S2.24 in the clockwise direction, we obtain

 $-V_1 + V_{R1} + V_{R3} = 0$

Since $V_1 = 30V$ and $V_{R1} = 10V$, this equation becomes

 $-30 + 10 + V_{R3} = 0$

Thus,

 $V_{R3} = 30-10 = 20V.$

Summing the voltage drops around mesh 2 in the circuit shown in Figure S2.11 in the clockwise direction, we obtain

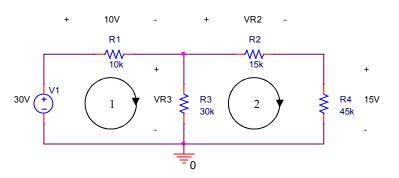
 $-V_{R3} + V_{R2} + V_{R4} = 0$

Since $V_{R3} = 20V$ and $V_{R4} = 15V$, this equation becomes

$$-20 + V_{R2} + 15 = 0$$

Thus,

$$V_{R2} = 20-15 = 5V$$



20

Consider the loop consisting of V_1 , R_1 and R_5 , shown in the circuit shown in Figure S2.25. Summing the voltage drops around this loop in the clockwise direction, we obtain

 $-V_1 + V_{R1} + V_{R5} = 0$

Since $V_1 = 20V$ and $V_{R1} = 10V$, this equation becomes

 $-20 + 10 + V_{R5} = 0$

Thus,

 $V_{R5} = 20 - 10 = 10V.$

In the mesh consisting of R₄, R₃ and R₅, shown in the circuit shown in Figure S2.25, summing the voltage drops around this mesh in the clockwise direction, we obtain

 $-V_{R4} + V_{R3} + V_{R5} = 0$

Since $V_{R3} = 5V$ and $V_{R5} = 10V$, this equation becomes

$$-V_{R4} + 5 + 10 = 0$$

Thus,

 $V_{R4} = 5 + 10 = 15V.$

In the mesh consisting of V_1 , R_2 and R_4 , shown in the circuit shown in Figure S2.25, summing the voltage drops around this mesh in the clockwise direction, we obtain

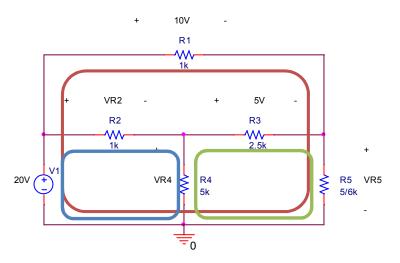
 $-V_1 + V_{R2} + V_{R4} = 0$

Since $V_1 = 20V$ and $V_{R4} = 15V$, this equation becomes

 $-20+V_{R2}+15=0$

Thus,

 $V_{R2} = 20 - 15 = 5V.$



In the mesh consisting of R_1 , R_3 and R_4 , upper left in the circuit shown in Figure S2.26, summing the voltage drops around this mesh in the clockwise direction, we obtain

 $V_{R1} + V_{R3} - V_{R4} = 0$

Since $V_{R1} = 5V$ and $V_{R3} = 5V$, this equation becomes

 $5 + 5 - V_{R4} = 0$

Thus,

 $V_{R4} = 5 + 5 = 10V.$

In the mesh consisting of V_1 , R_4 and R_6 , lower left in the circuit shown in Figure S2.26, summing the voltage drops around this mesh in the clockwise direction, we obtain

 $-V_1 + V_{R4} + V_{R6} = 0$

Since $V_1 = 20V$ and $V_{R4} = 10V$, this equation becomes

 $-20+10+V_{R6}=0$

Thus,

 $V_{R6} = 20-10 = 10V.$

In the mesh consisting of R_3 , R_2 and R_5 , upper right in the circuit shown in Figure S2.26, summing the voltage drops around this mesh in the clockwise direction, we obtain

 $-V_{R3} + V_{R2} - V_{R5} = 0$

Since $V_{R3} = 5V$ and $V_{R5} = 5V$, this equation becomes

$$-5 + V_{R2} - 5 = 0$$

Thus,

 $V_{R2} = 5 + 5 = 10V.$

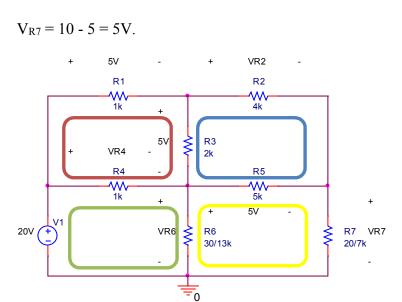
In the mesh consisting of R_6 , R_5 and R_7 , lower right in the circuit shown in Figure S2.26, summing the voltage drops around this mesh in the clockwise direction, we obtain

 $-V_{R6} + V_{R5} + V_{R7} = 0$

Since $V_{R6} = 10V$ and $V_{R5} = 5V$, this equation becomes

 $-10 + 5 + V_{R7} = 0$

Thus,



Problem 2.27

From Ohm's law, the current I₅ is given by

$$I_{5} = \frac{V_{5}}{R_{5}} = \frac{6V}{1k\Omega} = 6\,mA$$

From Ohm's law, the current I1 is given by

$$I_1 = \frac{V_s - V_5}{R_1} = \frac{16V - 6V}{5k\Omega} = \frac{10V}{5k\Omega} = 2mA$$

From KCL, we have

 $I_3 = I_5 - I_1 = 6 \text{ mA} - 2 \text{ mA} = 4 \text{ mA}$

The voltage across R₃ is

 $V_3 = R_3I_3 = 1 k\Omega \times 4 mA = 4 V$

From KVL, the voltage across R4 is given by

$$V_4 = V_3 + V_5 = 4 V + 6 V = 10 V$$

The current through R₄ is given by

$$I_4 = \frac{V_4}{R_4} = \frac{10V}{5\,k\Omega} = 2\,mA$$

From KCL, current I₂ is given by

 $I_2 = I_3 + I_4 = 4 \text{ mA} + 2 \text{ mA} = 6 \text{ mA}$

Problem 2.28

The voltage across R₃ is given by

 $V_2 = R_3 I_3 = 4 k\Omega \times 2 mA = 8 V$

From Ohm's law, current I₄ is given by

$$I_4 = \frac{V_2}{R_4} = \frac{8V}{2\,k\Omega} = 4\,mA$$

From KCL, the current through R₂ is given by

 $I_2 = I_3 + I_4 = 2 mA + 4 mA = 6 mA$

From KCL, the current through R₁ is given by

 $I_1 = I_s - I_2 = 8 \text{ mA} - 6 \text{ mA} = 2 \text{ mA}$

The voltage across R_1 is given by

 $V_1 = R_1 I_1 = 7 \text{ k}\Omega \times 2 \text{ mA} = 14 \text{ V}$

Problem 2.29

The voltage across R₁ is given by

 $V_1 = R_1 I_1 = 5 \text{ k}\Omega \times 1 \text{ mA} = 5 \text{ V}$

From KCL, the current through R₂ is given by

 $I_2 = I_s - I_1 = 5 \text{ mA} - 1 \text{ mA} = 4 \text{ mA}$

From KVL, V₂ is given by

$$V_2 = V_1 - R_2 I_2 = 5 V - 0.5 k\Omega \times 4 mA = 5 V - 2 V = 3 V$$

From Ohm's law, current I₃ is given by

$$I_3 = \frac{V_2}{R_3} = \frac{3V}{1k\Omega} = 3\,mA$$

From Ohm's law, current I4 is given by

$$I_4 = \frac{V_2}{R_4} = \frac{3V}{3k\Omega} = 1\,mA$$

Problem 2.30

Application of KVL around the outer loop yields

$$-2 - V_1 - 3 = 0$$

Solving for V₁, we obtain

$$V_1 = -5 V$$

Application of KVL around the top mesh yields

$$-V_1 - 4 + V_2 = 0$$

Solving for V₂, we obtain

$$V_2 = V_1 + 4 = -1 V$$

Application of KVL around the center left mesh yields

$$-V_2 + 5 - V_3 = 0$$

Solving for V₃, we obtain

$$V_3 = -V_2 + 5 = 6 V$$

Application of KVL around the center right mesh yields

$$-5+4+V_4=0$$

Solving for V₄, we obtain

$$V_4 = 5 - 4 = 1 V$$

Application of KVL around the bottom left mesh yields

$$-2 + V_3 - V_5 = 0$$

Solving for V5, we obtain

$$V_5 = -2 + 6 = 4 V$$

Problem 2.31

Application of KVL around the outer loop yields

 $-3 - V_1 = 0$

Solving for V₁, we obtain

$$V_1 = -3 V$$

Application of KVL around the lower left mesh yields

$$-3 + V_2 - 1 = 0$$

Solving for V₂, we obtain

 $V_2 = 3 + 1 = 4 V$

Application of KVL around the lower right mesh yields

 $1 - V_5 = 0$

Solving for V₅, we obtain

$$V_5 = 1 V$$

Application of KCL at node *a* yields

$$I_1 = 2 + 2 = 4A$$

Application of KCL at node b yields

$$I_4 = 2 + 3 = 5A$$

Problem 2.32

Resistor R_1 is in series to the parallel combination of R_2 and R_3 . Thus, the equivalent resistance R_{eq} is given by

$$R_{eq} = R_1 + (R_2 || R_3) = R_1 + \frac{R_2 R_3}{R_2 + R_3} = 2000 + \frac{4000 \times 12000}{4000 + 12000}$$
$$= 2000 + \frac{48,000,000}{16,000} = 2000 + 3000 = 5000\Omega = 5k\Omega$$

Instead of ohms (Ω), we can use kilo ohms ($k\Omega$) to simplify the algebra:

$$R_{eq} = R_1 + \left(R_2 \parallel R_3\right) = R_1 + \frac{R_2 R_3}{R_2 + R_3} = 2k + \frac{4k \times 12k}{4k + 12k} = 2k + \frac{48k^2}{16k} = 2k + 3k = 5k\Omega$$

If all the resistance values are in $k\Omega$, k can be removed during calculations, and represent the answer in $k\Omega$ as shown below.

$$R_{eq} = R_1 + \left(R_2 \parallel R_3\right) = R_1 + \frac{R_2 R_3}{R_2 + R_3} = 2 + \frac{4 \times 12}{4 + 12} = 2 + \frac{48}{16} = 2 + 3 = 5k\Omega$$

Problem 2.33

Resistors R_1 and R_2 are in parallel, and resistors R_3 and R_4 are in parallel. The equivalent resistance is the sum of $R_1 \parallel R_2$ and $R_3 \parallel R_4$.

$$R_{eq} = \left(R_1 \parallel R_2\right) + \left(R_3 \parallel R_4\right) = \frac{R_1 R_2}{R_1 + R_2} + \frac{R_3 R_4}{R_3 + R_4} = \frac{10 \times 40}{10 + 40} + \frac{8 \times 56}{8 + 56} = \frac{400}{50} + \frac{448}{64} = 8 + 7 = 15 \,k\Omega$$

The equivalent resistance is the sum of R₁ and the parallel combination of R₂, R₃, and R₄.

$$\begin{aligned} R_{eq} &= R_1 + \left(R_2 \parallel R_3 \parallel R_4\right) = R_1 + \frac{1}{\frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4}} = 5 + \frac{1}{\frac{1}{30} + \frac{1}{60} + \frac{1}{5}} = 5 + \frac{1}{\frac{2}{60} + \frac{1}{60} + \frac{12}{60}} \\ &= 5 + \frac{60}{15} = 5 + 4 = 9k\Omega \end{aligned}$$

Problem 2.35

The equivalent resistance of the parallel combination of R_4 and a short circuit (0Ω) is given by

$$R_4 \parallel 0 = \frac{20 \times 0}{20 + 0} = \frac{0}{20} = 0 \ \Omega$$

The equivalent resistance is the sum of R_1 and the parallel combination of R_2 and R_3 .

$$R_{eq} = R_1 + \left(R_2 \parallel R_3\right) = R_1 + \frac{R_2 R_3}{R_2 + R_3} = 12 + \frac{99 \times 22}{99 + 22} = 12 + \frac{2178}{121} = 12 + 18 = 30 \,k\Omega$$

Problem 2.36

The equivalent resistance R_a of the series connection of three resistors R₄, R₅, and R₆ is

 $R_a = R_4 + R_5 + R_6 = 25 + 20 + 33 = 78 \text{ k}\Omega$

The equivalent resistance Rb of the parallel connection of R3 and Ra is

$$R_b = R_3 || R_a = \frac{R_3 R_a}{R_3 + R_a} = \frac{39 \times 78}{39 + 78} = \frac{3042}{117} = 26 k\Omega$$

The equivalent resistance R_{eq} of the circuit shown in Figure P2.5 is the sum of R₁, R_b, and R₂:

 $R_{eq} = R_1 + R_b + R_2 = 10 + 26 + 14 = 50 \text{ k}\Omega$

Problem 2.37

The resistors R_1 and R_2 are connected in parallel. Let R_a be $R_1 \parallel R_2$. Then, we have

$$R_a = R_1 \parallel R_2 = \frac{R_1 R_2}{R_1 + R_2} = \frac{50 \times 75}{50 + 75} = \frac{50 \times 75}{125} = \frac{50 \times 3}{5} = 10 \times 3 = 30 \, k\Omega$$

The resistors R_3 and R_4 are connected in parallel. Let R_b be $R_3 \parallel R_4$. Then, we have

$$R_b = R_3 || R_4 = \frac{R_3 R_4}{R_3 + R_4} = \frac{55 \times 66}{55 + 66} = \frac{5 \times 66}{5 + 6} = \frac{5 \times 66}{11} = 5 \times 6 = 30 \, k\Omega$$

The equivalent resistance R_{eq} of the circuit shown in Figure P2.6 is given by the sum of R_a and R_b :

 $R_{eq} = R_a + R_b = 30 \text{ k}\Omega + 30 \text{ k}\Omega = 60 \text{ k}\Omega$

MATLAB

Problem 2.38

The equivalent resistance R_{eq} can be found by combining resistances from the right side of the circuit and moving toward the left. Since R_7 , R_8 , and R_9 are connected in series, we have

 $R_a = R_7 + R_8 + R_9 = 15 + 19 + 20 = 54 \text{ k}\Omega$

Let R_b be the equivalent resistance of the parallel connection of R₆ and R_a. Then we have

$$R_{b} = R_{6} \parallel R_{a} = \frac{R_{6} \times R_{a}}{R_{6} + R_{a}} = \frac{27 \times 54}{27 + 54} = \frac{1 \times 54}{1 + 2} = \frac{54}{3} = 18 \, k\Omega$$

Let R_c be the sum of R_4 , R_b , and R_5 . Then, we have

 $R_c = R_4 + R_b + R_5 = 6 + 18 + 4 = 28 \text{ k}\Omega.$

Let R_d be the equivalent resistance of the parallel connection of R₃ and R_c. Then, we have

$$R_d = R_3 \parallel R_c = \frac{R_3 \times R_c}{R_3 + R_c} = \frac{21 \times 28}{21 + 28} = \frac{3 \times 28}{3 + 4} = \frac{3 \times 28}{7} = 12 \,k\Omega$$

The equivalent resistance R_{eq} is the sum of R_1 , R_d , and R_2 . Thus, we have

 $R_{eq} = R_1 + R_d + R_2 = 3 + 12 + 5 = 20 \text{ k}\Omega$

MATLAB

```
clear all;
R1=3000;R2=5000;R3=21000;R4=6000;R5=4000;R6=27000;R7=15000;R8=19000;R9=20000;
Req=R1+R2+P([R3,R4+R5+P([R6,R7+R8+R9])])
Answer:
Req =
20000
```

Problem 2.39

Let R_a be the equivalent resistance of the parallel connection of R₅ and R₆. Then, we have

$$R_a = R_5 \parallel R_6 = \frac{R_5 \times R_6}{R_5 + R_6} = \frac{20 \times 20}{20 + 20} = \frac{1 \times 20}{1 + 1} = \frac{20}{2} = 10 \, k\Omega$$

Let R_b be the equivalent resistance of the series connection of R₄ and R_a. Then, we have

 $R_b = R_4 + R_a = 10 + 10 = 20 \text{ k}\Omega.$

Let R_c be the equivalent resistance of the parallel connection of R₃ and R_b. Then, we have

$$R_{c} = R_{3} || R_{b} = \frac{R_{3} \times R_{b}}{R_{3} + R_{b}} = \frac{20 \times 20}{20 + 20} = \frac{1 \times 20}{1 + 1} = \frac{20}{2} = 10 \, k\Omega$$

Let R_d be the equivalent resistance of the series connection of R₂ and R_c. Then, we have

$$R_d = R_2 + R_c = 10 + 10 = 20 \text{ k}\Omega.$$

The equivalent resistance R_{eq} of the circuit shown in Figure P3.8 is the parallel connection of R_1 and R_d . Thus, we get

$$R_{eq} = R_1 || R_d = \frac{R_1 \times R_d}{R_1 + R_d} = \frac{20 \times 20}{20 + 20} = \frac{1 \times 20}{1 + 1} = \frac{20}{2} = 10 \,k\Omega$$

MATLAB

```
clear all;
R1=20000;R2=10000;R3=20000;R4=10000;R5=20000;R6=20000;
Req=P([R1,R2+P([R3,R4+P([R5,R6])])])
Answer:
```

Req = 10000

$$R_{eq} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4}} = \frac{1}{\frac{1}{2000} + \frac{1}{5000} + \frac{1}{4000} + \frac{1}{3000}} = \frac{60000}{30 + 12 + 15 + 20}$$
$$= \frac{60000}{77} = 779.2208\Omega$$

>> Rt=2000;R2=5000;R3=4000;R4=3000; >> Req=P([R1,R2,R3,R4]) Req = 7.792207792207792e+02

Problem 2.41

Let $R_9 = R_2 || R_3 || R_4$, $R_{10} = R_6 || R_7 || R_8$, and $R_{11} = R_9 + R_5 + R_{10}$. Then, $R_{eq} = R_1 || R_{11}$.

$$R_9 = \frac{1}{\frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_4}} = \frac{1}{\frac{1}{1000} + \frac{1}{2700} + \frac{1}{2000}} = 534.6535\Omega$$

$$R_{10} = \frac{1}{\frac{1}{R_6} + \frac{1}{R_7} + \frac{1}{R_8}} = \frac{1}{\frac{1}{2000} + \frac{1}{1500} + \frac{1}{6000}} = 750\,\Omega$$

$$R_{11} = R_9 + R_5 + R_{10} = 3.7837 \text{ k}\Omega$$

$$R_{eq} = \frac{R_1 R_{11}}{R_1 + R_{11}} = 2.877215 \, k\Omega$$

```
clear all;
R1=12000;R2=1000;R3=2700;R4=2000;R5=2500;R6=2000;R7=1500;R8=6000;
R9=P([R2,R3,R4])
R10=P([R6,R7,R8])
R11=R9+R5+R10
Req=P([R1,R11])
Answer:
Req =
```

2.877214991375255e+03

Problem 2.42

Let $R_6 = R_1 ||R_2, R_7 = R_3 ||R_4$. Then we have

$$R_6 = \frac{R_1 R_2}{R_1 + R_2} = 571.4286 \ \Omega$$

$$R_7 = \frac{R_3 R_4}{R_3 + R_4} = 1.666667 \text{ k}\Omega$$

 $R_{eq} = R_6 + R_7 + R_5 = 2.7381 \text{ k}\Omega$

clear all; R1=600;R2=12000;R3=2000;R4=10000;R5=500; R6=P([R1,R2]) R7=P([R3,R4]) Req=R6+R7+R5 Answer: Req = 2.738095238095238e+03

Problem 2.43

Let $R_9 = R_3 ||R_4, R_{10} = R_5 ||R_6, R_{11} = R_7 ||R_8, R_{12} = R_2 + R_9, R_{13} = R_{10} + R_{11}$. Then, $R_{eq} = R_1 + (R_{12} ||R_{13})$.

$$R_9 = \frac{R_3 \times R_4}{R_3 + R_4} = \frac{60k \times 20k}{60k + 20k} = \frac{1200k}{80} = 15k\Omega$$

$$R_{10} = \frac{R_5 \times R_6}{R_5 + R_6} = \frac{10k \times 15k}{10k + 15k} = \frac{150k}{25} = 6k\Omega$$

$$R_{11} = \frac{R_7 \times R_8}{R_7 + R_8} = \frac{20k \times 30k}{20k + 30k} = \frac{600k}{50} = 12k\Omega$$

 $R_{12} = R_2 + R_9 = 3k\Omega + 15k\Omega = 18k\Omega$

 $R_{13} = R_{10} + R_{11} = 6k\Omega + 12k\Omega = 18k\Omega$

 $R_{eq} = R_1 + (R_{12} \| R_{13}) = 6k\Omega + (18k\Omega \| 18k\Omega) = 6k\Omega + 9k\Omega = 15k\Omega$

```
clear all;
R1=6000;R2=3000;R3=60000;R4=20000;R5=10000;R6=15000;R7=20000;R8=30000;
R9=P([R3,R4])
R10=P([R5,R6])
R11=P([R7,R8])
R12=R2+R9
R13=R10+R11
Req=R1+P([R12,R13])
Req =
```

15000

Problem 2.44

Let $R_6 = R_4 ||R_5, R_7 = R_3 + R_6, R_8 = R_2 ||R_7$. Then, $R_{eq} = R_1 + R_8$.

$$R_{6} = \frac{R_{4} \times R_{5}}{R_{4} + R_{5}} = \frac{2k \times 3k}{2k + 3k} = \frac{6k}{5} = 1.2k\Omega$$

$$R_{7} = R_{3} + R_{6} = 1.8k\Omega + 1.2k\Omega = 3k\Omega$$

$$R_{8} = \frac{R_{2} \times R_{7}}{R_{2} + R_{7}} = \frac{7k \times 3k}{7k + 3k} = \frac{21k}{10} = 2.1k\Omega$$

$$R_{eq} = R_{1} + R_{8} = 0.9k\Omega + 2.1k\Omega = 3k\Omega$$

clear all; R1=900;R2=7000;R3=1800;R4=2000;R5=3000; Req=R1+P([R2,R3+P([R4,R5])])

Answer: Req = 3000

Problem 2.45

Let $R_8 = R_6 ||R_7, R_9 = R_4 + R_5 + R_8$. Then, $R_{eq} = R_1 ||R_2||R_3||R_9$.

$$R_8 = \frac{R_6 \times R_7}{R_6 + R_7} = \frac{20k \times 80k}{20k + 80k} = \frac{1600k}{100} = 16k\Omega$$

$$R_9 = R_4 + R_5 + R_8 = 10k\Omega + 4k\Omega + 16k\Omega = 30k\Omega$$

$$R_{eq} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3} + \frac{1}{R_9}} = \frac{1}{\frac{1}{4000} + \frac{1}{10000} + \frac{1}{30000} + \frac{1}{30000}} = 2.4k\Omega$$

clear all; R1=4000;R2=10000;R3=30000;R4=10000;R5=4000;R6=20000;R7=80000; Req=P([R1,R2,R3,R4+R5+P([R6,R7])])

Req = 2400

Problem 2.46

Let $R_8 = R_3 ||R_4, R_9 = R_6 ||R_7, R_{10} = R_8 + R_5 + R_9$. Then, $R_{eq} = R_1 ||R_2||R_{10}$.

$$R_{8} = \frac{R_{3} \times R_{4}}{R_{3} + R_{4}} = \frac{10k \times 10k}{10k + 10k} = \frac{100k}{20} = 5k\Omega$$
$$R_{9} = \frac{R_{6} \times R_{7}}{R_{6} + R_{7}} = \frac{10k \times 15k}{10k + 15k} = \frac{150k}{25} = 6k\Omega$$

© 2018 Cengage Learning®. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

 $R_{10}=R_8+R_5+R_9=5k\Omega+4k\Omega+6k\Omega=15k\Omega$

$$\begin{split} R_{eq} &= \frac{1}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_{10}}} = \frac{1}{\frac{1}{3000} + \frac{1}{10000} + \frac{1}{15000}} = \frac{30000}{\frac{30000}{3000} + \frac{30000}{10000} + \frac{30000}{15000}} = \frac{30000}{15} = 2k\Omega \end{split}$$
clear all;
R1=3000;R2=10000;R3=10000;R4=10000;R5=4000;R6=10000;R7=15000;
Req=P([R1,R2,P([R3,R4])+R5+P([R6,R7])])
Req = 2000

Problem 2.47

The voltage from the voltage source is divided into V_1 and V_2 in proportion to the resistance values. Thus, we have

$$V_{1} = \frac{R_{1}}{R_{1} + R_{2}} V_{s} = \frac{2.5}{2.5 + 7.5} 20 \ V = \frac{1}{4} 20 \ V = 5 \ V$$
$$V_{2} = \frac{R_{2}}{R_{1} + R_{2}} V_{s} = \frac{7.5}{2.5 + 7.5} 20 \ V = \frac{3}{4} 20 \ V = 15 \ V$$

Notice that V_2 can also be obtained from $V_2 = V_S - V_1 = 20 - 5 = 15$ V.

Problem 2.48

The equivalent resistance of the parallel connection of R₂ and R₃ is given by

$$R_4 = R_2 \parallel R_3 = \frac{R_2 R_3}{R_2 + R_3} = \frac{38k \times 57k}{38k + 57k} = \frac{2166}{95}k = 22.8 \ k\Omega$$

The voltage V_1 across R_1 is given by

$$V_1 = \frac{R_1}{R_1 + R_4} V_s = \frac{27.2}{27.2 + 22.8} 25 \ V = \frac{27.2}{50} 25 \ V = \frac{27.2}{2} \ V = 13.6 \ V$$

The voltage V_2 across R_2 and R_3 is given by

$$V_2 = \frac{R_4}{R_1 + R_4} V_s = \frac{22.8}{27.2 + 22.8} 25 V = \frac{22.8}{50} 25 V = \frac{22.8}{2} V = 11.4 V$$

Notice that V_2 can also be obtained from $V_2 = V_S - V_1 = 25 - 13.6 = 11.4$ V.

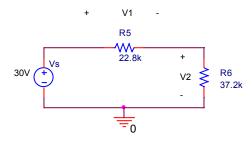
Let R₅ be the equivalent resistance of the parallel connection of R₁ and R₂. Then, we have

$$R_5 = \frac{R_1 R_2}{R_1 + R_2} = \frac{30k \times 95k}{30k + 95k} = \frac{2850}{125}k = 22.8 \ k\Omega$$

Let R₆ be the equivalent resistance of the parallel connection of R₃ and R₄. Then, we have

$$R_6 = \frac{R_3 R_4}{R_3 + R_4} = \frac{62k \times 93k}{62k + 93k} = \frac{5766}{155}k = 37.2 \ k\Omega$$

The circuit reduces to



The voltage V1 across R5 is given by

$$V_1 = \frac{R_5}{R_5 + R_6} V_s = \frac{22.8}{22.8 + 37.2} \times 30 \ V = \frac{22.8}{60} \times 30 \ V = \frac{22.8}{2} \ V = 11.4 \ V$$

The voltage V₂ across R₆ is given by

$$V_2 = \frac{R_6}{R_5 + R_6} V_s = \frac{37.2}{22.8 + 37.2} \times 30 \ V = \frac{37.2}{60} \times 30 \ V = \frac{37.2}{2} \ V = 18.6 \ V$$

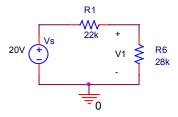
Notice that V_2 can also be obtained from $V_2 = V_S - V_1 = 30 - 11.4 = 18.6$ V.

Problem 2.50

Let R₅ be the combined resistance of the series connection of R₃ and R₄. Then, we have

$$R_5 = R_3 + R_4 = 24 \ k\Omega + 60 \ k\Omega = 84 \ k\Omega.$$

Let R₆ be the equivalent resistance of the parallel connection of R₂ and R₅. Then, R₆ is given by $R_6 = R_2 \parallel R_5 = \frac{R_2 R_5}{R_2 + R_5} = \frac{42k \times 84k}{42k + 84k} = \frac{3528}{126}k = 28 \ k\Omega$ The circuit reduces to



The voltage V₁ across R₆ is given by

$$V_1 = \frac{R_6}{R_1 + R_6} V_s = \frac{28}{22 + 28} \times 20 \ V = \frac{28}{50} \times 20 \ V = \frac{56}{5} \ V = 11.2 \ V$$

The voltage V_1 is split between R_3 and R_4 in proportion to the resistance values. Applying the voltage divider rule, we have

$$V_2 = \frac{R_4}{R_3 + R_4} V_1 = \frac{60}{24 + 60} \times 11.2 \ V = \frac{60}{84} \times 11.2 \ V = 8 \ V_2$$

Problem 2.51

Let R₆ be the equivalent resistance of the parallel connection of R₄ and R₅. Then, we have

$$R_6 = \frac{R_4 R_5}{R_4 + R_5} = \frac{22k \times 99k}{22k + 99k} = \frac{2178}{121}k = 18 \ k\Omega$$

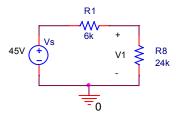
Let R7 be the equivalent resistance of the series connection of R3 and R6. Then, we have

$$R_7 = R_3 + R_6 = 70 \ k\Omega + 18 \ k\Omega = 88 \ k\Omega.$$

Let R₈ be the equivalent resistance of the parallel connection of R₂ and R₇. Then, we have

$$R_8 = \frac{R_2 R_7}{R_2 + R_7} = \frac{33k \times 88k}{33k + 88k} = \frac{2904}{121}k = 24 \ k\Omega$$

The circuit reduces to



The voltage V₁ across R₈ is given by

$$V_1 = \frac{R_8}{R_1 + R_8} V_s = \frac{24}{6 + 24} \times 45 \ V = \frac{24}{30} \times 45 \ V = \frac{72}{2} \ V = 36 \ V$$

The voltage across R₁ is given by

$$V_{R1} = \frac{R_1}{R_1 + R_8} V_s = \frac{6}{6 + 24} \times 45 \ V = \frac{6}{30} \times 45 \ V = \frac{18}{2} \ V = 9 \ V$$

The voltage V_1 is split between R_3 and R_6 in proportion to the resistance values. Applying the voltage divider rule, we obtain

$$V_2 = \frac{R_6}{R_3 + R_6} V_1 = \frac{18}{70 + 18} \times 36 \ V = \frac{18}{88} \times 36 \ V = \frac{81}{11} \ V = 7.3636 \ V$$

The voltage across R₃ is given by

$$V_{R3} = \frac{R_3}{R_3 + R_6} V_1 = \frac{70}{70 + 18} \times 36 \ V = \frac{70}{88} \times 36 \ V = \frac{315}{11} \ V = 28.6364 \ V$$

Problem 2.52

Let R₈ be the equivalent resistance of the parallel connection of R₆ and R₇. Then, we have

$$R_8 = \frac{R_6 R_7}{R_6 + R_7} = \frac{6 \times 12}{6 + 12} k = \frac{72}{18} k = 4 k\Omega$$

Let R₉ be the equivalent resistance of the series connection of R₅ and R₈. Then, we have

$$R_9 = R_5 + R_8 = 5 k\Omega + 4 k\Omega = 9 k\Omega.$$

Let R₁₀ be the equivalent resistance of the parallel connection of R₄ and R₉. Then, we have

$$R_{10} = \frac{R_4 R_9}{R_4 + R_9} = \frac{18 \times 9}{18 + 9} k = \frac{162}{27} k = 6 k\Omega$$

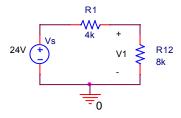
Let R_{11} be the equivalent resistance of the series connection of R_3 and R_{10} . Then, we have

$$R_{11} = R_3 + R_{10} = 4 \ k\Omega + 6 \ k\Omega = 10 \ k\Omega.$$

Let R_{12} be the equivalent resistance of the parallel connection of R_2 and R_{11} . Then, we have

$$R_{12} = \frac{R_2 R_{11}}{R_2 + R_{11}} = \frac{40 \times 10}{40 + 10} k = \frac{400}{50} k = 8 k\Omega$$

The circuit reduces to



The voltage V_1 across R_{12} is given by

$$V_1 = \frac{R_{12}}{R_1 + R_{12}} V_s = \frac{8}{4 + 8} \times 24 \ V = \frac{8}{12} \times 24 \ V = 16 \ V$$

The voltage across R₁ is given by

$$V_{R1} = \frac{R_1}{R_1 + R_{12}} V_s = \frac{4}{4+8} \times 24 \ V = \frac{4}{12} \times 24 \ V = 8 \ V$$

The voltage V_1 is split between R_3 and R_{10} in proportion to the resistance values. Applying the voltage divider rule, we obtain

$$V_2 = \frac{R_{10}}{R_3 + R_{10}} V_1 = \frac{6}{4 + 6} \times 16 \ V = \frac{6}{10} \times 16 \ V = \frac{48}{5} \ V = 9.6 \ V$$

The voltage across R₃ is given by

$$V_{R3} = \frac{R_3}{R_3 + R_{10}} V_1 = \frac{4}{4+6} \times 16 \ V = \frac{4}{10} \times 16 \ V = \frac{32}{5} \ V = 6.4 \ V$$

The voltage V_2 is split between R_5 and R_8 in proportion to the resistance values. Applying the voltage divider rule, we obtain

$$V_3 = \frac{R_8}{R_5 + R_8} V_2 = \frac{4}{5+4} \times 9.6 \ V = \frac{4}{9} \times 9.6 \ V = \frac{12.8}{3} \ V = 4.2667 \ V$$

The voltage across R₅ is given by

$$V_{R5} = \frac{R_5}{R_5 + R_8} V_2 = \frac{5}{5+4} \times 9.6 \ V = \frac{5}{9} \times 9.6 \ V = \frac{16}{3} \ V = 5.3333 \ V$$

Let R₇ be the equivalent resistance of the parallel connection of R₄, R₅ and R₆. Then, we have

$$R_7 = \frac{1}{\frac{1}{R_4} + \frac{1}{R_5} + \frac{1}{R_6}} = \frac{1}{\frac{1}{30} + \frac{1}{36} + \frac{1}{45}} k = 12 \ k\Omega$$

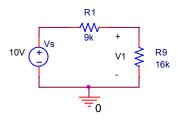
Let R₈ be the equivalent resistance of the series connection of R₃ and R₇. Then, we have

$$R_8 = R_3 + R_7 = 8 k\Omega + 12 k\Omega = 20 k\Omega.$$

Let R₉ be the equivalent resistance of the parallel connection of R₂ and R₈. Then, we have

$$R_9 = \frac{R_2 R_8}{R_2 + R_8} = \frac{80 \times 20}{80 + 20} k = \frac{1600}{100} k = 16 k\Omega$$

The circuit reduces to



The voltage V₁ across R₉ is given by

$$V_1 = \frac{R_9}{R_1 + R_9} V_s = \frac{16}{9 + 16} \times 10 \ V = \frac{16}{25} \times 10 \ V = \frac{32}{5} \ V = 6.4 \ V$$

The voltage across R₁ is given by

$$V_{R1} = \frac{R_1}{R_1 + R_9} V_s = \frac{9}{9 + 16} \times 10 \ V = \frac{9}{25} \times 10 \ V = \frac{18}{5} \ V = 3.6 \ V$$

The voltage V_1 is split between R_3 and R_7 in proportion to the resistance values. Applying the voltage divider rule, we obtain

$$V_2 = \frac{R_7}{R_3 + R_7} V_1 = \frac{12}{8 + 12} \times 6.4 \ V = \frac{12}{20} \times 6.4 \ V = \frac{96}{25} \ V = 3.84 \ V$$

The voltage across R₃ is given by

$$V_{R3} = \frac{R_3}{R_3 + R_7} V_1 = \frac{8}{8 + 12} \times 6.4 \ V = \frac{8}{20} \times 6.4 \ V = \frac{64}{25} \ V = 2.56 \ V$$

Let R₉ be the equivalent resistance of the parallel connection of R₆, R₇ and R₈. Then, we have

$$R_{9} = \frac{1}{\frac{1}{R_{6}} + \frac{1}{R_{7}} + \frac{1}{R_{8}}} = \frac{1}{\frac{1}{18} + \frac{1}{27} + \frac{1}{54}} k = 9 k\Omega$$

Let R_{10} be the equivalent resistance of the series connection of R_5 and R_9 . Then, we have

$$R_{10} = R_5 + R_9 = 6 \ k\Omega + 9 \ k\Omega = 15 \ k\Omega.$$

Let R₁₁ be the equivalent resistance of the parallel connection of R₄ and R₁₀. Then, we have

$$R_{11} = \frac{R_4 R_{10}}{R_4 + R_{10}} = \frac{30 \times 15}{30 + 15} k = \frac{450}{45} k = 10 k\Omega$$

Let R_{12} be the equivalent resistance of the series connection of R_3 and R_{11} . Then, we have

$$R_{12} = R_3 + R_{11} = 10 \ k\Omega + 10 \ k\Omega = 20 \ k\Omega.$$

Let R_{13} be the equivalent resistance of the parallel connection of R_2 and R_{12} . Then, we have

$$R_{13} = \frac{R_2 R_{12}}{R_2 + R_{12}} = \frac{30 \times 20}{30 + 20} k = \frac{600}{50} k = 12 \ k\Omega$$

The circuit reduces to



The voltage V₁ across R₁₃ is given by

$$V_1 = \frac{R_{13}}{R_1 + R_{13}} V_s = \frac{12}{8 + 12} \times 20 \ V = \frac{12}{20} \times 20 \ V = 12 \ V$$

The voltage across R₁ is given by

$$V_{R1} = \frac{R_1}{R_1 + R_{13}} V_s = \frac{8}{8 + 12} \times 20 \ V = \frac{8}{20} \times 20 \ V = 8 \ V$$

The voltage V_1 is split between R_3 and R_{11} in proportion to the resistance values. Applying the voltage divider rule, we obtain

$$V_2 = \frac{R_{11}}{R_3 + R_{11}} V_1 = \frac{10}{10 + 10} \times 12 \ V = \frac{10}{20} \times 12 \ V = 6 \ V$$

The voltage across R₃ is given by

$$V_{R3} = \frac{R_3}{R_3 + R_{11}} V_1 = \frac{10}{10 + 10} \times 12 \ V = \frac{10}{20} \times 12 \ V = 6 \ V$$

The voltage V_2 is split between R_5 and R_9 in proportion to the resistance values. Applying the voltage divider rule, we obtain

$$V_3 = \frac{R_9}{R_5 + R_9} V_2 = \frac{9}{6+9} \times 6 V = \frac{9}{15} \times 6 V = \frac{18}{5} V = 3.6 V$$

The voltage across R₅ is given by

$$V_{R5} = \frac{R_5}{R_5 + R_9} V_2 = \frac{6}{6+9} \times 6 \ V = \frac{6}{15} \times 6 \ V = \frac{12}{5} \ V = 2.4 \ V$$

Problem 2.55

Let R₇ be the equivalent resistance of the parallel connection of R₄, R₅ and R₆. Then, we have

$$R_7 = \frac{1}{\frac{1}{R_4} + \frac{1}{R_5} + \frac{1}{R_6}} = \frac{1}{\frac{1}{30} + \frac{1}{60} + \frac{1}{80}}k = 16 \ k\Omega$$

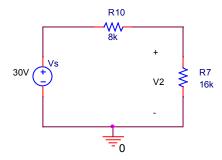
Let R_8 be the equivalent resistance of the series connection of R_1 and R_2 . Then, we have

$$R_9 = R_1 + R_2 = 10 \ k\Omega + 30 \ k\Omega = 40 \ k\Omega.$$

Let R₁₀ be the equivalent resistance of the parallel connection of R₃ and R₉. Then, we have

$$R_{10} = \frac{R_3 R_9}{R_3 + R_9} = \frac{10 \times 40}{10 + 40} k = \frac{400}{50} k = 8 k\Omega$$

R₁₀ is in series with R₇. The circuit reduces to



The voltage V₂ across R₇ is given by

$$V_2 = \frac{R_7}{R_{10} + R_7} V_s = \frac{16}{8 + 16} \times 30 \ V = \frac{16}{24} \times 30 \ V = 20 \ V$$

The voltage across R₁₀ is given by

$$V_{R10} = \frac{R_{10}}{R_{10} + R_7} V_s = \frac{8}{8 + 16} \times 30 \ V = \frac{8}{24} \times 30 \ V = 10 \ V$$

The voltage V_{R10} is split between R_1 and R_2 in proportion to the resistance values. Applying the voltage divider rule, we obtain

$$V_1 = V_2 + \frac{R_2}{R_1 + R_2} V_{R10} = 20 + \frac{30}{10 + 30} \times 10 \ V = 20 + \frac{30}{40} \times 10 \ V = 27.5 \ V$$

Problem 2.56

Let R_7 be the equivalent resistance of the parallel connection of $R_2 + R_4$ and $R_3 + R_5$. Then we have

$$R_7 = (R_2 + R_4) || (R_3 + R_5) = 5k || 5k = \frac{5k \times 5k}{5k + 5k} = \frac{25k^2}{10k} = 2.5k\Omega$$

The voltage Vs is divided across R_1 , R_7 , and R_6 in proportion to the resistance values. The voltage across R_7 is given by

$$V_{R7} = \frac{R_7}{R_1 + R_7 + R_6} V_S = \frac{2.5}{1 + 2.5 + 1.5} \times 10V = \frac{2.5}{5} \times 10V = 5V$$

The voltage across R₁ is given by

$$V_{R1} = \frac{R_1}{R_1 + R_7 + R_6} V_S = \frac{1}{1 + 2.5 + 1.5} \times 10V = \frac{1}{5} \times 10V = 2V$$

The voltage across R₆ is given by

$$V_{R6} = \frac{R_6}{R_1 + R_7 + R_6} V_S = \frac{1.5}{1 + 2.5 + 1.5} \times 10V = \frac{1.5}{5} \times 10V = 3V$$

The voltage V_{R7} is divided across R₂ and R₄ in proportion to the resistance values. Thus, we have

$$V_{R2} = \frac{R_2}{R_2 + R_4} V_{R7} = \frac{1}{1+4} \times 5V = \frac{1}{5} \times 5V = 1V$$
$$V_{R4} = \frac{R_4}{R_2 + R_4} V_{R7} = \frac{4}{1+4} \times 5V = \frac{4}{5} \times 5V = 4V$$

The voltage V_{R7} is divided across R₃ and R₅ in proportion to the resistance values. Thus, we have

$$V_{R3} = \frac{R_3}{R_3 + R_5} V_{R7} = \frac{3}{3+2} \times 5V = \frac{3}{5} \times 5V = 3V$$

$$V_{R5} = \frac{R_5}{R_3 + R_5} V_{R7} = \frac{2}{3+2} \times 5V = \frac{2}{5} \times 5V = 2V$$

The voltage at node a, V_a , is the sum of V_{R4} and V_{R6} . Thus, we have

$$V_a = V_{R4} + V_{R6} = 4V + 3V = 7V$$

The voltage at node b, V_b , is the sum of V_{R5} and V_{R6} . Thus, we have

$$V_b = V_{R5} + V_{R6} = 2V + 3V = 5V$$

The voltage V_{ab} is the difference of V_a and V_b , that is,

$$V_{ab} = V_a - V_b = 7V - 5V = 2V.$$

Problem 2.57

Let $R_7 = R_2 ||R_3$ and $R_8 = R_5 ||R_6$. Then, we have

$$R_{7} = R_{2} \parallel R_{3} = \frac{R_{2} \times R_{3}}{R_{2} + R_{3}} = \frac{5k\Omega \times 5k\Omega}{5k\Omega + 5k\Omega} = \frac{25}{10}k\Omega = 2.5k\Omega$$
$$R_{8} = R_{5} \parallel R_{6} = \frac{R_{5} \times R_{6}}{R_{5} + R_{6}} = \frac{2k\Omega \times 8k\Omega}{2k\Omega + 8k\Omega} = \frac{16}{10}k\Omega = 1.6k\Omega$$

The equivalent resistance seen from the voltage source is

$$R_{eq} = R_1 + R_7 + R_4 + R_8 = 0.5 \text{ k}\Omega + 2.5 \text{ k}\Omega + 0.4 \text{ k}\Omega + 1.6 \text{ k}\Omega = 5 \text{ k}\Omega$$

From Ohm's law, the current I₁ is given by

$$I_1 = \frac{V_s}{R_{eq}} = \frac{10V}{5k\Omega} = 2mA$$

The voltage drop across R_1 is $I_1R_1 = 2mA \times 0.5k\Omega = 1V$. The voltage V_1 is given by

$$V_1 = V_S - I_1 R_1 = 10 V - 1V = 9V.$$

Since $R_2 = R_3$, $I_2 = I_3 = I_1/2 = 1$ mA. The voltage drop across R_7 is $I_1 \times R_7 = 2$ mA×2.5k $\Omega = 5$ V. We can get the same voltage drop from $I_2R_2 = I_3R_3 = 5$ V. The voltage V₂ is given by

 $V_2 = V_1 - 5V = 9V - 5V = 4V.$

The voltage drop across R₄ is $I_1 \times R_4 = 2mA \times 0.4k\Omega = 0.8V$. The voltage V₃ is given by

$$V_3 = V_2 - 0.8V = 4V - 0.8V = 3.2V.$$

The current through R₅ is given by

$$I_4 = \frac{V_3}{R_5} = \frac{3.2V}{2k\Omega} = 1.6mA$$

The current through R₆ is given by

$$I_5 = \frac{V_3}{R_6} = \frac{3.2V}{8k\Omega} = 0.4mA$$

Problem 2.58

From the current divider rule, the current I_{R1} is given by

$$I_{R1} = \frac{R_2}{R_1 + R_2} I_S = \frac{3}{2+3} \times 10 \, mA = 6 \, mA$$

Similarly, the current I_{R2} is given by

$$I_{R2} = \frac{R_1}{R_1 + R_2} I_s = \frac{2}{2+3} \times 10 \, mA = 4 \, mA$$

Problem 2.59

From the current divider rule, the current I_{R1} is given by

$$I_{R1} = \frac{\frac{1}{R_1}}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}}I_S = \frac{\frac{1}{2}}{\frac{1}{2} + \frac{1}{3} + \frac{1}{4}} \times 26\,mA = \frac{\frac{1}{2}}{\frac{6}{12} + \frac{4}{12} + \frac{3}{12}} \times 26\,mA = 12\,mA$$

Similarly, the currents I_{R2} and I_{R3} are given respectively by

$$I_{R2} = \frac{\frac{1}{R_2}}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}} I_S = \frac{\frac{1}{3}}{\frac{1}{2} + \frac{1}{3} + \frac{1}{4}} \times 26 \, mA = \frac{\frac{1}{3}}{\frac{6}{12} + \frac{4}{12} + \frac{3}{12}} \times 26 \, mA = 8 \, mA$$
$$I_{R3} = \frac{\frac{1}{R_3}}{\frac{1}{R_1} + \frac{1}{R_2} + \frac{1}{R_3}} I_S = \frac{\frac{1}{4}}{\frac{1}{2} + \frac{1}{3} + \frac{1}{4}} \times 26 \, mA = \frac{\frac{1}{4}}{\frac{6}{12} + \frac{4}{12} + \frac{3}{12}} \times 26 \, mA = 6 \, mA$$

Problem 2.60

Let R₆ be the equivalent resistance of the parallel connection of R₂ and R₃. Then, R₆ is given by

$$R_6 = \frac{R_2 R_3}{R_2 + R_3} = \frac{30k \times 60k}{30k + 60k} = \frac{1800}{90} k = 20 k\Omega$$

Let R₇ be the equivalent resistance of the parallel connection of R₄ and R₅. Then, R₇ is given by

$$R_7 = \frac{R_4 R_5}{R_4 + R_5} = \frac{90k \times 180k}{90k + 180k} = \frac{180}{3}k = 60\,k\Omega$$

Let R₈ be the equivalent resistance of the series connection of R₆ and R₇. Then, R₈ is given by

$$R_8 = R_6 + R_7 = 80 \text{ k}\Omega$$

The current from the current source I_S is split into I_{R1} and I_{R8} according to the current divider rule. Thus, we have

$$I_{R1} = \frac{R_8}{R_1 + R_8} I_S = \frac{80}{20 + 80} \times 48 \, mA = 38.4 \, mA$$

$$I_{R8} = \frac{R_1}{R_1 + R_8} I_s = \frac{20}{20 + 80} \times 48 \, mA = 9.6 \, mA$$

The current I_{R8} is split into I_{R2} and I_{R3} according to the current divider rule. Thus, we have

$$I_{R2} = \frac{R_3}{R_2 + R_3} I_{R8} = \frac{60}{30 + 60} \times 9.6 \, mA = 6.4 \, mA$$
$$I_{R3} = \frac{R_2}{R_2 + R_3} I_{R8} = \frac{30}{30 + 60} \times 9.6 \, mA = 3.2 \, mA$$

The current I_{R8} is split into I_{R4} and I_{R5} according to the current divider rule. Thus, we have

$$I_{R4} = \frac{R_5}{R_4 + R_5} I_{R8} = \frac{180}{90 + 180} \times 9.6 \, mA = 6.4 \, mA$$
$$I_{R5} = \frac{R_4}{R_4 + R_5} I_{R8} = \frac{90}{90 + 180} \times 9.6 \, mA = 3.2 \, mA$$

Problem 2.61

$$R_3 \parallel R_4 = \frac{R_3 \times R_4}{R_3 + R_4} = \frac{4k\Omega \times 6k\Omega}{4k\Omega + 6k\Omega} = \frac{24}{10}k\Omega = 2.4k\Omega$$

$$R_5 = R_2 + (R_3 || R_4) = 0.6 \text{ k}\Omega + 2.4 \text{ k}\Omega = 3\text{k}\Omega$$

The current from the current source, $I_s = 2$ mA, is split between I_1 and I_2 based on the current divider rule.

$$I_1 = I_s \times \frac{R_5}{R_1 + R_5} = 2mA \times \frac{3k\Omega}{7k\Omega + 3k\Omega} = 0.6mA$$
$$I_2 = I_s \times \frac{R_1}{R_1 + R_5} = 2mA \times \frac{7k\Omega}{7k\Omega + 3k\Omega} = 1.4mA$$

The currents I₃ and I₄ are found by applying the current divider rule on R₃ and R₄.

$$I_{3} = I_{2} \times \frac{R_{4}}{R_{3} + R_{4}} = 1.4mA \times \frac{6k\Omega}{4k\Omega + 6k\Omega} = 0.84mA$$

$$I_4 = I_2 \times \frac{R_3}{R_3 + R_4} = 1.4mA \times \frac{4k\Omega}{4k\Omega + 6k\Omega} = 0.56mA$$

The voltages V_1 and V_2 are found by applying Ohm's law.

$$V_1 = I_1 \times R_1 = 0.6 \text{mA} \times 7 \text{k}\Omega = 4.2 \text{V}$$

$$V_2 = I_3 \times R_3 = 0.84 \text{mA} \times 4 \text{k}\Omega = 3.36 \text{V}$$

Problem 2.62

Let R_a be the equivalent resistance of the series connection of R_2 and R_3 . Then, we have

$$R_a = R_2 + R_3 = 2 k\Omega + 5 k\Omega = 7 k\Omega$$

Application of current divider rule yields

$$I_1 = I_s \times \frac{R_a}{R_1 + R_a} = 20 \, mA \times \frac{7}{3 + 7} = 14 \, mA$$

$$I_2 = I_s \times \frac{R_1}{R_1 + R_a} = 20 \, mA \times \frac{3}{3 + 7} = 6 \, mA$$

Problem 2.63

Let R_a be the equivalent resistance of the parallel connection of R_2 and R_3 . Then, we have

$$R_a = \frac{R_2 \times R_3}{R_2 + R_3} = \frac{20 \times 20}{20 + 20} k = 10 \, k\Omega$$

Application of voltage divider rule yields

$$V_1 = V_s \times \frac{R_a}{R_1 + R_a} = 50 \, V \times \frac{10}{15 + 10} = 20 \, V$$

Application of Ohm's law yields

$$I_{2} = \frac{V_{1}}{R_{2}} = \frac{20V}{20k\Omega} = 1mA$$
$$I_{3} = \frac{V_{1}}{R_{3}} = \frac{20V}{20k\Omega} = 1mA$$

From KCL, we have

 $I_1 = I_2 + I_3 = 1 mA + 1 mA = 2 mA$

Problem 2.64

Let R₈ be the equivalent resistance of the parallel connection of R₆ and R₇. Then, R₈ is given by

$$R_8 = \frac{R_6 R_7}{R_6 + R_7} = \frac{9k \times 18k}{9k + 18k} = \frac{18}{3}k = 6\,k\Omega$$

Let R₉ be the equivalent resistance of the series connection of R₅ and R₈. Then, R₉ is given by

$$R_9 = R_5 + R_8 = 10 \text{ k}\Omega$$

Let R_{10} be the equivalent resistance of the parallel connection of R_3 , R_4 and R_9 . Then, R_{10} is given by

$$R_{10} = \frac{1}{\frac{1}{R_3} + \frac{1}{R_4} + \frac{1}{R_9}} = \frac{1}{\frac{1}{20k} + \frac{1}{20k} + \frac{1}{10k}} = \frac{20k}{4} = 5k\Omega$$

Let R_{11} be the equivalent resistance of the series connection of R_2 and R_{10} . Then, R_{11} is given by

$$R_{11} = R_2 + R_{10} = 10 \text{ k}\Omega$$

The current from the current source I_S is split into I_{R1} and I_{R11} according to the current divider rule. Thus, we have

$$I_{R1} = \frac{R_{11}}{R_1 + R_{11}} I_S = \frac{10}{15 + 10} \times 50 \, mA = 20 \, mA$$

$$I_{R11} = \frac{R_1}{R_1 + R_{11}} I_S = \frac{15}{15 + 10} \times 50 \, mA = 30 \, mA$$

Notice that $I_{R2} = I_{R11} = 30$ mA.

The current I_{R11} is split into I_{R3}, I_{R4} and I_{R9} according to the current divider rule. Thus, we have

$$I_{R3} = \frac{\frac{1}{R_3}}{\frac{1}{R_3} + \frac{1}{R_4} + \frac{1}{R_9}} I_{R11} = \frac{\frac{1}{20}}{\frac{1}{20} + \frac{1}{20} + \frac{1}{10}} \times 30 \, mA = \frac{1}{4} \times 30 \, mA = 7.5 \, mA$$

$$I_{R4} = \frac{\frac{1}{R_4}}{\frac{1}{R_3} + \frac{1}{R_4} + \frac{1}{R_9}} I_{R11} = \frac{\frac{1}{20}}{\frac{1}{20} + \frac{1}{20} + \frac{1}{10}} \times 30 \, mA = \frac{1}{4} \times 30 \, mA = 7.5 \, mA$$
$$I_{R9} = \frac{\frac{1}{R_9}}{\frac{1}{R_3} + \frac{1}{R_4} + \frac{1}{R_9}} I_{R11} = \frac{\frac{1}{10k}}{\frac{1}{20k} + \frac{1}{20k} + \frac{1}{10k}} \times 30 \, mA = \frac{2}{4} \times 30 \, mA = 15 \, mA$$

Notice that $I_{R5} = I_{R9} = 15$ mA.

The current I_{R9} is split into I_{R6} and I_{R7} according to the current divider rule. Thus, we have

$$I_{R6} = \frac{R_7}{R_6 + R_7} I_{R9} = \frac{18k}{9k + 18k} \times 15 \, mA = \frac{2}{3} \times 15 \, mA = 10 \, mA$$
$$I_{R7} = \frac{R_6}{R_6 + R_7} I_{R9} = \frac{9k}{9k + 18k} \times 15 \, mA = \frac{1}{3} \times 15 \, mA = 5 \, mA$$

Problem 2.65

Let R_a be the equivalent resistance of the parallel connection of R_1 and R_2 . Then, we have

$$R_a = \frac{R_1 \times R_2}{R_1 + R_2} = \frac{90 \times 180}{90 + 180} = \frac{1 \times 180}{1 + 2} = 60\,\Omega$$

Let R_b be the equivalent resistance of the parallel connection of R₄ and R₅. Then, we have

$$R_{b} = \frac{R_{4} \times R_{5}}{R_{4} + R_{5}} = \frac{100 \times 150}{100 + 150} = \frac{2 \times 150}{2 + 3} = 60\,\Omega$$

Let R_c be the equivalent resistance of the series connection of R_a and R_b . Then, we have

$$R_c = R_a + R_b = 60 \ \Omega + 60 \ \Omega = 120 \ \Omega$$

Application of current divider rule yields

$$I_3 = I_s \times \frac{R_c}{R_3 + R_c} = 9.6 \, mA \times \frac{120}{360 + 120} = 2.4 \, mA$$

From Ohm's law, the voltage across R₃ is given by

$$V_1 = R_3 I_3 = 360 \ \Omega \times 0.0024 \ A = 0.864 \ V$$

Application of voltage divider rule yields

$$V_2 = V_1 \times \frac{R_b}{R_a + R_b} = 0.864 V \times \frac{60}{60 + 60} = 0.432 V$$

Application of Ohm's law yields

$$I_{1} = \frac{V_{1} - V_{2}}{R_{1}} = \frac{0.864 - 0.432}{90} = \frac{0.432}{90} = 4.8 \, mA$$

$$I_{2} = \frac{V_{1} - V_{2}}{R_{2}} = \frac{0.864 - 0.432}{180} = \frac{0.432}{180} = 2.4 \, mA$$

$$I_{4} = \frac{V_{2}}{R_{4}} = \frac{0.432}{100} = 4.32 \, mA$$

$$I_{5} = \frac{V_{2}}{R_{5}} = \frac{0.432}{150} = 2.88 \, mA$$

MATLAB

```
clear all;format long;
R1=90;R2=180;R3=360;R4=100;R5=150;
Is=9.6e-3;
Ra=P([R1,R2])
Rb=P([R4,R5])
Rc=Ra+Rb
I3=Is*Rc/(R3+Rc)
V1=R3*I3
V2=V1*Rb/(Ra+Rb)
I1=(V1-V2)/R1
I2=(V1-V2)/R2
I4=V2/R4
I5=V2/R5
Answers:
Ra =
   60
Rb =
   60
Rc =
  120
I3 =
   0.002400000000000
V1 =
   0.864000000000000
V2 =
   0.432000000000000
I1 =
   0.004800000000000
I2 =
   0.002400000000000
I4 =
```

0.00432000000000 I5 = 0.00288000000000

Problem 2.66

Let R_a be the equivalent resistance of the series connection of R₅ and R₆. Then, we have

 $R_a = R_5 + R_6 = 10 \ \Omega + 5 \ \Omega = 15 \ \Omega$

Let R_b be the equivalent resistance of the parallel connection of R₄ and R_a. Then, we have

$$R_b = \frac{R_4 \times R_a}{R_4 + R_a} = \frac{10 \times 15}{10 + 15} = \frac{150}{25} = 6\,\Omega$$

Let R_c be the equivalent resistance of the series connection of R₃ and R_b. Then, we have

 $R_c = R_3 + R_b = 10 \Omega + 6 \Omega = 16 \Omega$

Let R_d be the equivalent resistance of the parallel connection of R₂ and R_c. Then, we have

$$R_d = \frac{R_2 \times R_b}{R_2 + R_b} = \frac{20 \times 16}{20 + 16} = \frac{320}{36} = \frac{80}{9} = 8.8889\,\Omega$$

Let R_e be the equivalent resistance of the series connection of R₁ and R_d. Then, we have

$$R_e = R_1 + R_d = 4 \ \Omega + 8.8889 \ \Omega = 12.8889 \ \Omega$$

Application of Ohm's law yields

$$I_1 = \frac{V_s}{R_e} = \frac{100}{12.8889} = 7.9786 A$$

 $V_1 = R_1 I_1 = 4 \times 7.9786 = 31.0345 V$

From KVL, we have

 $V_2 = V_s - V_1 = 100 - 31.0345 = 68.9655 V$

Application of Ohm's law yields

$$I_2 = \frac{V_2}{R_2} = \frac{68.9655V}{20\Omega} = 3.4483 A$$

From KCL, we have

 $I_3 = I_1 - I_2 = 7.9786 - 3.4483 = 4.3103 A$

From Ohm's law, we have

$$V_3 = R_3 I_3 = 10 \times 4.3103 = 43.1034 V$$

From KVL, we have

$$V_4 = V_2 - V_3 = 68.9655 - 43.1034 = 25.8621 V$$

Application of Ohm's law yields

$$I_4 = \frac{V_4}{R_4} = \frac{25.8621V}{10\Omega} = 2.5862A$$
$$I_5 = \frac{V_4}{R_a} = \frac{25.8621V}{15\Omega} = 1.7241A$$
$$V_5 = R_5 I_5 = 10 \times 1.7241 = 17.2414 \text{ V}$$

$$V_6 = R_6 I_5 = 5 \times 1.7241 = 8.6207 V$$

MATLAB

```
clear all;format long;
R1=4;R2=20;R3=10;R4=10;R5=10;R6=5;
Vs=100;
Ra=R5+R6
Rb=P([R4,Ra])
Rc=R3+Rb
Rd=P([R2,Rc])
Re=R1+Rd
I1=Vs/Re
V1=R1*I1
V2=Vs-V1
I2=V2/R2
I3=I1-I2
V3=R3*I3
V4=V2-V3
I4=V4/R4
I5=V4/Ra
V5=R5*I5
V6=R6*I5
SV=-Vs+V1+V3+V5+V6
SI=-I1+I2+I4+I5
Answers:
Ra =
   15
Rb =
  5.99999999999999999
Rc =
   16
Rd =
   8.8888888888888888
Re =
 12.88888888888888888
```

т1	_
ΤT	- 7.758620689655173
V1	
	31.034482758620690
V2	
	68.965517241379303
12	= 3.448275862068965
I3	
	4.310344827586207
VЗ	
	43.103448275862071
V4,	= 25.862068965517231
I4	
	2.586206896551723
Ι5	
	1.724137931034482
V5	= 17.241379310344819
V6	
	8.620689655172409
SV	
~ -	-3.552713678800501e-15
SI	= -1.998401444325282e-15
	T.))04014440202026=10

Problem 2.67

Let R_a be the equivalent resistance of the parallel connection of $R_6 = 4 \Omega$ and $R_7 + R_8 + R_9 = 12 \Omega$. Then, we have

$$R_a = \frac{4 \times 12}{4 + 12} = \frac{48}{16} = 3\Omega$$

Let R_b be the equivalent resistance of the parallel connection of $R_2 = 4 \Omega$ and $R_3 + R_4 + R_5 = 12 \Omega$. Then, we have

$$R_b = \frac{4 \times 12}{4 + 12} = \frac{48}{16} = 3\Omega$$

Let R_c be the equivalent resistance of the series connection of R₁, R_a, and R_b. Then, we have

 $R_c = R_1 + R_a + R_b = 4 \ \Omega + 3 \ \Omega + 3 \ \Omega = 10 \ \Omega$

The current through R₁ is

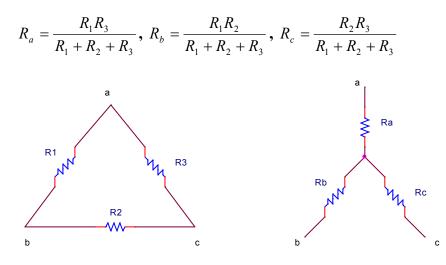
$$I_1 = \frac{V_2}{R_c} = \frac{40V}{10\Omega} = 4A$$

Application of current divider rule yields

$$I = 4 A \times \frac{4}{4+12} = \frac{16}{16} A = 1 A$$

Problem 2.68

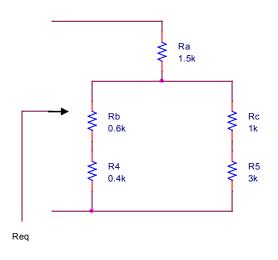
Resistors R_1 , R_2 , and R_3 are connected in delta. These three resistors can be transformed to wye configuration with resistors R_a , R_b , and R_c using



Substituting the values, we obtain

$$R_{a} = \frac{R_{1}R_{3}}{R_{1} + R_{2} + R_{3}} = \frac{3 \times 5}{3 + 2 + 5} = \frac{15}{10} = 1.5 \,k\Omega$$
$$R_{b} = \frac{R_{1}R_{2}}{R_{1} + R_{2} + R_{3}} = \frac{3 \times 2}{3 + 2 + 5} = \frac{6}{10} = 0.6 \,k\Omega$$
$$R_{c} = \frac{R_{2}R_{3}}{R_{1} + R_{2} + R_{3}} = \frac{2 \times 5}{3 + 2 + 5} = \frac{10}{10} = 1 \,k\Omega$$

The circuit shown in Figure P2.68 can be redrawn as that shown below.



© 2018 Cengage Learning®. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

The sum of R_b and R_4 is 1 k Ω , and the sum of R_c and R_5 is 4 k Ω . These two are connected in parallel. Thus, we have

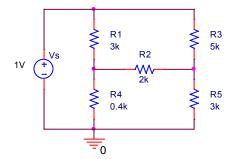
$$(R_b + R_4) || (R_c + R_5) = 1 || 4 = \frac{1 \times 4}{1 + 4} = \frac{4}{5} = 0.8 k\Omega$$

The equivalent resistance R_{eq} is the sum of R_a and $(R_b + R_4) \parallel (R_c + R_5)$:

 $R_{eq} = R_a + 0.8 = 1.5 + 0.8 = 2.3 \ \text{k}\Omega.$

MATLAB

PSpice

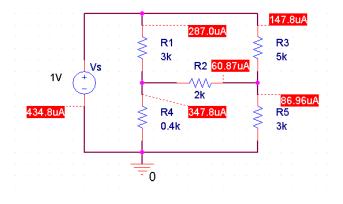


Simulation Settings - bias1 General Analysis Configuration Analysis type: Bias Point	on Files Options Data Collection Probe Window Output File Options Include detailed bias point information for nonlinear controlled
Options:	Image: Sources and semiconductors (.OP) Perform Sensitivity analysis (.SENS) Output variable(s): Image: Source small-signal DC gain (.TF) From Input source name: Vs To Output variable: V(R5)
	OK Cancel Apply Help

Click on View Simulation Output File. Part of the output file reads

```
**** SMALL-SIGNAL CHARACTERISTICS
V(R_R5)/V_Vs = 2.609E-01
INPUT RESISTANCE AT V_Vs = 2.300E+03
OUTPUT RESISTANCE AT V(R_R5) = 1.043E+03
```

The input resistance is 2.3 k Ω . Alternatively, just run the bias point analysis (uncheck .TF) and display currents.



The current through the voltage source is 434.8μ A. The input resistance is given by the ratio of the test voltage 1V to the current. Thus, we have

$$R_{eq} = \frac{1V}{434.8 \times 10^{-6}} = 2.2999 \, k\Omega$$

Problem 2.69

The wye-connected resistors R_a , R_b , and R_c can be transformed to delta connected resistors R_1 , R_2 , and R_3 .

$$R_{1} = \frac{R_{a}R_{b} + R_{b}R_{c} + R_{a}R_{c}}{R_{c}} = \frac{14.4 \times 21.6 + 21.6 \times 12.96 + 14.4 \times 12.96}{12.96} = 60 \, k\Omega$$

$$R_{2} = \frac{R_{a}R_{b} + R_{b}R_{c} + R_{a}R_{c}}{R_{a}} = \frac{14.4 \times 21.6 + 21.6 \times 12.96 + 14.4 \times 12.96}{14.4} = 54 \, k\Omega$$

$$R_{3} = \frac{R_{a}R_{b} + R_{b}R_{c} + R_{a}R_{c}}{R_{b}} = \frac{14.4 \times 21.6 + 21.6 \times 12.96 + 14.4 \times 12.96}{21.6} = 36 \, k\Omega$$

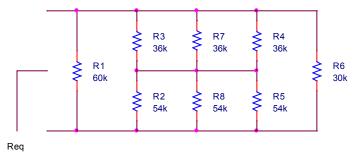
Similarly, the wye-connected resistors R_d , R_e , and R_f can be transformed to delta connected resistors R_4 , R_5 , and R_6 .

$$R_{4} = \frac{R_{d}R_{e} + R_{e}R_{f} + R_{d}R_{f}}{R_{f}} = \frac{9 \times 16.2 + 16.2 \times 13.5 + 9 \times 13.5}{13.5} = 36 \,k\Omega$$

$$R_{5} = \frac{R_{d}R_{e} + R_{e}R_{f} + R_{d}R_{f}}{R_{d}} = \frac{9 \times 16.2 + 16.2 \times 13.5 + 9 \times 13.5}{9} = 54 \,k\Omega$$

$$R_{6} = \frac{R_{d}R_{e} + R_{e}R_{f} + R_{d}R_{f}}{R_{e}} = \frac{9 \times 16.2 + 16.2 \times 13.5 + 9 \times 13.5}{16.2} = 30 \,k\Omega$$

After two wye-delta transformations, the circuit shown in Figure P2.69 is transformed to the circuit shown below.



© 2018 Cengage Learning®. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

The equivalent resistance of the parallel connection of R₃, R₇, and R₄ is given by

$$R_g = \frac{1}{\frac{1}{R_3} + \frac{1}{R_7} + \frac{1}{R_7}} = \frac{1}{\frac{1}{36} + \frac{1}{36} + \frac{1}{36}} = \frac{1}{\frac{3}{36}} = \frac{36}{3} = 12 \,k\Omega$$

The equivalent resistance of the parallel connection of R₂, R₈, and R₅ is given by

$$R_{h} = \frac{1}{\frac{1}{R_{2}} + \frac{1}{R_{8}} + \frac{1}{R_{5}}} = \frac{1}{\frac{1}{54} + \frac{1}{54} + \frac{1}{54}} = \frac{1}{\frac{3}{54}} = \frac{54}{3} = 18 \, k\Omega$$

Resistors Rg and Rh are connected in series. The equivalent resistance of Rg and Rh is given by

 $R_i = R_g + R_h = 12 + 18 = 30 \text{ k}\Omega.$

The equivalent resistance R_{eq} of the circuit shown in Figure P2.10 is given by the parallel connection of R_1 , R_i , and R_6 , that is,

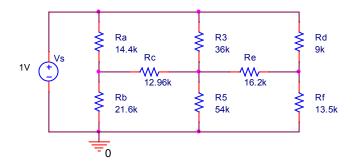
$$R_{eq} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_1} + \frac{1}{R_6}} = \frac{1}{\frac{1}{60} + \frac{1}{30} + \frac{1}{30}} = \frac{1}{\frac{5}{60}} = \frac{60}{5} = 12 \,k\Omega$$

MATLAB

```
clear all;
Ra=14400;Rb=21600;Rc=12960;Rd=9000;Re=16200;Rf=13500;R7=36000;R8=54000;
[R1,R2,R3]=Y2D([Ra,Rb,Rc])
[R4,R5,R6]=Y2D([Rd,Re,Rf])
Req=P([R1,R6,P([R3,R7,R4])+P([R2,R8,R5])])
```

Answer: Req = 1.2000e+04

PSpice



© 2018 Cengage Learning®. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

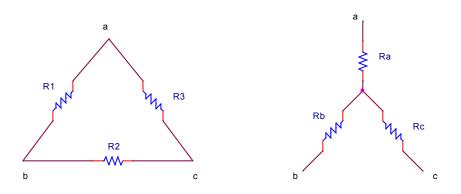
Simulation Settings - bias1	E	×
General Analysis Configuration Analysis type: Image: Configuration Bias Point Image: Configuration Options: Image: Configuration Image: Configuration I	Image: Second	itrolled
	OK Cancel Apply Help	Help

View Simulation Output File.

```
**** SMALL-SIGNAL CHARACTERISTICS
V(R_Rf)/V_Vs = 6.000E-01
INPUT RESISTANCE AT V_Vs = 1.200E+04
OUTPUT RESISTANCE AT V(R_Rf) = 4.500E+03
```

The input resistance is $R_{eq} = 12 \text{ k}\Omega$.

Problem 2.70



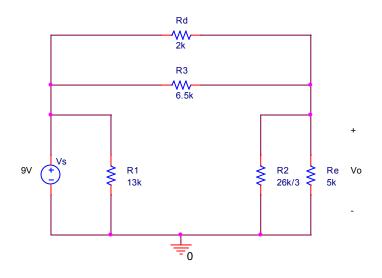
The wye-connected resistors R_a , R_b , and R_c can be transformed to delta connected resistors R_1 , R_2 , and R_3 .

$$R_{1} = \frac{R_{a}R_{b} + R_{b}R_{c} + R_{a}R_{c}}{R_{c}} = \frac{3 \times 4 + 4 \times 2 + 3 \times 2}{2} k = \frac{26}{2} k = 13 k\Omega$$

$$R_{2} = \frac{R_{a}R_{b} + R_{b}R_{c} + R_{a}R_{c}}{R_{a}} = \frac{3 \times 4 + 4 \times 2 + 3 \times 2}{3} k = \frac{26}{3} k = 8.6667 k\Omega$$

$$R_{3} = \frac{R_{a}R_{b} + R_{b}R_{c} + R_{a}R_{c}}{R_{b}} = \frac{3 \times 4 + 4 \times 2 + 3 \times 2}{4} k = \frac{26}{4} k = 6.5 k\Omega$$

The circuit shown in Figure P2.70 can be redrawn as that shown below.



Notice that

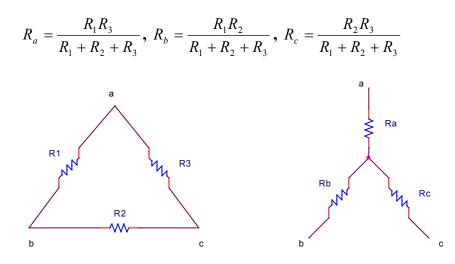
 $R_3 \parallel R_d = 1.5294 \text{ k}\Omega, R_2 \parallel R_e = 3.1707 \text{ k}\Omega$

Application of voltage divider rule yields

$$V_o = V_s \times \frac{R_2 \parallel R_e}{R_3 \parallel R_d + R_2 \parallel R_e} = 9V \times \frac{3.1707}{1.5294 + 3.1707} = 6.0714V$$

Problem 2.71

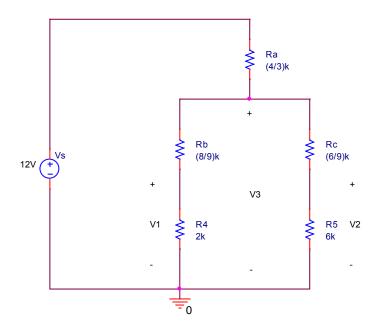
Resistors R_1 , R_2 , and R_3 are connected in delta. These three resistors can be transformed to wye configuration with resistors R_a , R_b , and R_c using



Substituting the values, we obtain

$$R_{a} = \frac{R_{1}R_{3}}{R_{1} + R_{2} + R_{3}} = \frac{4 \times 3}{4 + 2 + 3} = \frac{12}{9} = \frac{4}{3}k\Omega = 1.3333\,k\Omega$$
$$R_{b} = \frac{R_{1}R_{2}}{R_{1} + R_{2} + R_{3}} = \frac{4 \times 2}{4 + 2 + 3} = \frac{8}{9}k\Omega = 0.8889\,k\Omega$$
$$R_{c} = \frac{R_{2}R_{3}}{R_{1} + R_{2} + R_{3}} = \frac{2 \times 3}{4 + 2 + 3} = \frac{6}{9}k\Omega = 0.6667\,k\Omega$$

The circuit shown in Figure P2.70 can be redrawn as that shown below.



© 2018 Cengage Learning[®]. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

 $R_{10} = R_b + R_4 = 2.8889 \text{ k}\Omega$ $R_{11} = R_c + R_5 = 6.6667 \text{ k}\Omega$ $R_{12} = R_{10} || R_{11} = \frac{R_{10} \times R_{11}}{R_{10} + R_{11}} = 2.0115 \text{ k}\Omega$

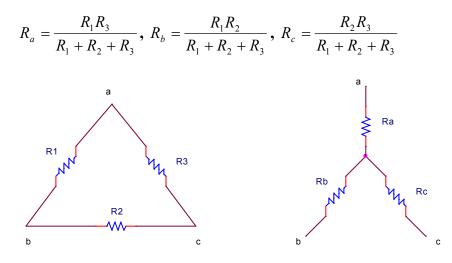
 $V_3 =$ voltage across R_{10} and R_{11} .

Application of voltage divider rule yields

$$V_{3} = V_{s} \times \frac{R_{12}}{R_{a} + R_{12}} = 9V \times \frac{2.0115}{1.3333 + 2.0115} = 7.2222V$$
$$V_{1} = V_{3} \times \frac{R_{4}}{R_{10}} = 7.2222V \times \frac{2}{2.8889} = 5V$$
$$V_{2} = V_{3} \times \frac{R_{5}}{R_{11}} = 7.2222V \times \frac{6}{6.6667} = 6.5V$$

Problem 2.72

Resistors R_1 , R_2 , and R_3 are connected in delta. These three resistors can be transformed to wye configuration with resistors R_a , R_b , and R_c using

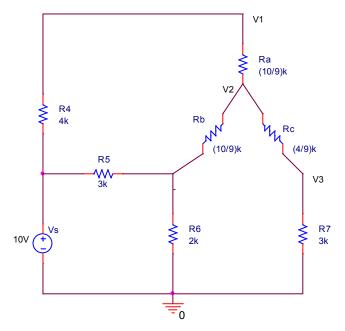


Substituting the values, we obtain

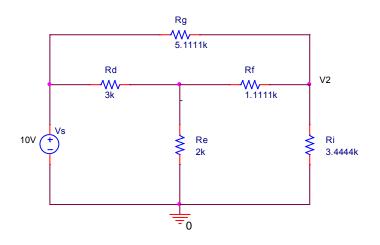
Let

$$R_{a} = \frac{R_{1}R_{3}}{R_{1} + R_{2} + R_{3}} = \frac{5 \times 2}{5 + 2 + 2} = \frac{10}{9}k\Omega = 1.1111k\Omega$$
$$R_{b} = \frac{R_{1}R_{2}}{R_{1} + R_{2} + R_{3}} = \frac{5 \times 2}{5 + 2 + 2} = \frac{10}{9}k\Omega = 1.1111k\Omega$$
$$R_{c} = \frac{R_{2}R_{3}}{R_{1} + R_{2} + R_{3}} = \frac{2 \times 2}{5 + 2 + 2} = \frac{4}{9}k\Omega = 0.4444k\Omega$$

The circuit shown in Figure P2.70 can be redrawn as that shown below.



This circuit can be redrawn as



© 2018 Cengage Learning[®]. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

63

Notice that

$$R_{g} = R_{4} + R_{a} = 5.1111 \text{ k}\Omega$$

$$R_{d} = R_{5} = 3 \text{ k}\Omega$$

$$R_{e} = R_{6} = 2 \text{ k}\Omega$$

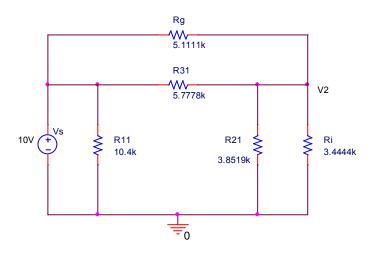
$$R_{f} = R_{b} = 1.1111 \text{ k}\Omega$$

$$R_{i} = R_{7} + R_{c} = 3.4444 \text{ k}\Omega$$

Converting the wye configuration R_d , R_e , R_f to delta configuration, we obtain

$$\begin{split} R_{11} &= \frac{R_d R_e + R_e R_f + R_d R_f}{R_f} = \frac{3 \times 2 + 2 \times 1.1111 + 3 \times 1.1111}{1.1111} k = 10.4 k\Omega \\ R_{21} &= \frac{R_d R_e + R_e R_f + R_d R_f}{R_d} = \frac{3 \times 2 + 2 \times 1.1111 + 3 \times 1.1111}{3} k = 3.8519 k\Omega \\ R_{31} &= \frac{R_d R_e + R_e R_f + R_d R_f}{R_e} = \frac{3 \times 2 + 2 \times 1.1111 + 3 \times 1.1111}{2} k = 5.7778 k\Omega \end{split}$$

The circuit with R_{11} , R_{21} , and R_{31} is shown below.



Let $R_{51} = R_g \parallel R_{31}$ and $R_{52} = R_i \parallel R_{21}$. Then, we have

$$R_{51} = \frac{R_g \times R_{31}}{R_g + R_{31}} = \frac{5.1111 \times 5.7778}{5.1111 + 5.7778} k = 2.712 \, k\Omega$$

$$R_{52} = \frac{R_i \times R_{21}}{R_i + R_{21}} = \frac{3.4444 \times 3.8519}{3.4444 + 3.8519} k = 1.8184 k\Omega$$

Application of voltage divider rule yields

$$V_2 = V_s \times \frac{R_{52}}{R_{51} + R_{52}} = 10V \times \frac{1.8184}{2.712 + 1.8184} = 4.0137V$$

Application of voltage divider rule yields

$$V_1 = V_2 + (V_s - V_2) \times \frac{R_a}{R_4 + R_a} = 4.0137V + 5.9863V \times \frac{1.1111}{5.1111} = 5.3151V$$

Electric Circuits 1st Edition Kang Solutions Manual

66 © 2018 Cengage Learning®. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part.

Visit TestBankDeal.com to get complete for all chapters