CHAPTER 2 SOLUTIONS

Problem 2.1

From Ohm's law, the current I_{1} through R_{1} is given by

$$
I_{1}=\frac{V}{R_{1}}=\frac{6 \mathrm{~V}}{3 \mathrm{k} \Omega}=\frac{6 \mathrm{~V}}{3000 \Omega}=0.002 \mathrm{~A}=2 \mathrm{~mA}
$$

Notice that $1 \mathrm{~V} / 1 \mathrm{k} \Omega=1 \mathrm{~mA}$.
From Ohm's law, the current I_{2} through R_{2} is given by
$I_{2}=\frac{V}{R_{2}}=\frac{6 \mathrm{~V}}{6 \mathrm{k} \Omega}=\frac{6 \mathrm{~V}}{6000 \Omega}=0.001 \mathrm{~A}=1 \mathrm{~mA}$

Problem 2.2

From Ohm's law, the current I_{1} through R_{1} is given by
$I_{1}=\frac{V_{1}}{R_{1}}=\frac{2.4 \mathrm{~V}}{800 \Omega}=0.003 \mathrm{~A}=3 \mathrm{~mA}$
From Ohm's law, the current I_{2} through R_{2} is given by
$I_{2}=\frac{V_{2}}{R_{2}}=\frac{3.6 \mathrm{~V}}{2 \mathrm{k} \Omega}=1.8 \mathrm{~mA}$
From Ohm's law, the current I_{3} through R_{3} is given by
$I_{3}=\frac{V_{2}}{R_{3}}=\frac{3.6 \mathrm{~V}}{3 \mathrm{k} \Omega}=1.2 \mathrm{~mA}$

Problem 2.3

From Ohm's law, the current I_{1} through R_{1} is given by
$I_{1}=\frac{V_{1}}{R_{1}}=\frac{2.4 \mathrm{~V}}{4 k \Omega}=0.6 \mathrm{~mA}=600 \mu \mathrm{~A}$
From Ohm's law, the current I_{2} through R_{2} is given by
$I_{2}=\frac{V_{1}}{R_{2}}=\frac{2.4 \mathrm{~V}}{6 \mathrm{k} \Omega}=0.4 \mathrm{~mA}=400 \mu \mathrm{~A}$

From Ohm's law, the current I_{3} through R_{3} is given by

$$
I_{3}=\frac{V_{2}}{R_{2}}=\frac{1.2 \mathrm{~V}}{1.8 \mathrm{k} \Omega}=\frac{2}{3} m A=0.6667 \mathrm{~mA}=666.5557 \mu \mathrm{~A}
$$

From Ohm's law, the current I_{4} through R_{4} is given by
$I_{4}=\frac{V_{2}}{R_{4}}=\frac{1.2 \mathrm{~V}}{6 \mathrm{k} \Omega}=0.2 \mathrm{~mA}=200 \mu \mathrm{~A}$
From Ohm's law, the current I_{5} through R_{5} is given by

$$
I_{5}=\frac{V_{2}}{R_{5}}=\frac{1.2 \mathrm{~V}}{9 \mathrm{k} \Omega}=\frac{2}{15} m A=0.1333 \mathrm{~mA}=133.3333 \mu \mathrm{~A}
$$

Problem 2.4

From Ohm's law, the voltage across R_{2} is given by
$\mathrm{V}_{\mathrm{o}}=\mathrm{R}_{2} \mathrm{I}_{2}=6 \mathrm{k} \Omega \times 1.2 \mathrm{~mA}=6000 \times 0.0012=7.2 \mathrm{~V}$
Notice that $1 \mathrm{k} \Omega \times 1 \mathrm{~mA}=1 \mathrm{~V}$.
From Ohm's law, the current I_{1} through R_{1} is given by
$I_{1}=\frac{V_{1}}{R_{1}}=\frac{2.8 \mathrm{~V}}{1.4 \mathrm{k} \Omega}=2 \mathrm{~mA}$
From Ohm's law, the voltage across R_{2} is given by
$\mathrm{V}_{\mathrm{o}}=\mathrm{R}_{2} \mathrm{I}_{2}=6 \mathrm{k} \Omega \times 1.2 \mathrm{~mA}=6000 \times 0.0012=7.2 \mathrm{~V}$
From Ohm's law, the current I_{3} through R_{3} is given by
$I_{3}=\frac{V_{o}}{R_{3}}=\frac{7.2 \mathrm{~V}}{9 \mathrm{k} \Omega}=0.8 \mathrm{~mA}=800 \mu \mathrm{~A}$

Problem 2.5

From Ohm's law, the voltage across R_{4} is given by
$\mathrm{V}_{\mathrm{o}}=\mathrm{R}_{4} \mathrm{I}_{4}=18 \mathrm{k} \Omega \times 0.2 \mathrm{~mA}=18000 \times 0.0002=3.6 \mathrm{~V}$
From Ohm's law, the current I_{3} through R_{3} is given by
$I_{3}=\frac{V_{o}}{R_{3}}=\frac{3.6 \mathrm{~V}}{6 \mathrm{k} \Omega}=0.6 \mathrm{~mA}=600 \mu \mathrm{~A}$

Problem 2.6

From Ohm's law, the voltage across R_{4} is given by
$\mathrm{V}_{\mathrm{o}}=\mathrm{R}_{4} \mathrm{I}_{4}=8 \mathrm{k} \Omega \times 0.4 \mathrm{~mA}=8000 \times 0.0004=3.2 \mathrm{~V}$
From Ohm's law, the current I_{2} through R_{2} is given by
$I_{2}=\frac{V_{o}}{R_{2}}=\frac{3.2 \mathrm{~V}}{3 \mathrm{k} \Omega}=\frac{16}{15} \mathrm{~mA}=1.06667 \mathrm{~mA}$
From Ohm's law, the current I_{3} through R_{3} is given by
$I_{3}=\frac{V_{o}}{R_{3}}=\frac{3.2 \mathrm{~V}}{6 \mathrm{k} \Omega}=\frac{16}{30} \mathrm{~mA}=0.53333 \mathrm{~mA}=533.3333 \mu \mathrm{~A}$

Problem 2.7

From Ohm's law, the voltage across R_{3} is given by
$\mathrm{V}_{\mathrm{o}}=\mathrm{R}_{3} \mathrm{I}_{3}=42 \mathrm{k} \Omega \times(1 / 12) \mathrm{mA}=42 / 12 \mathrm{~V}=3.5 \mathrm{~V}$
From Ohm's law, the resistance value R_{2} is given by
$R_{2}=\frac{V_{o}}{I_{2}}=\frac{3.5 \mathrm{~V}}{\frac{7}{60} \mathrm{~mA}}=30 \mathrm{k} \Omega$
$1 \mathrm{~V} / 1 \mathrm{~mA}=1 \mathrm{k} \Omega$

Problem 2.8

The power on R_{1} is

$$
P_{R_{1}}=I^{2} R_{1}=\left(2 \times 10^{-3}\right)^{2} \times 2000=4 \times 10^{-6} \times 2 \times 10^{3}=8 \times 10^{-3} \mathrm{~W}=8 \mathrm{~mW} \text { (absorbed) }
$$

The power on R_{2} is

$$
P_{R_{2}}=I^{2} R_{1}=\left(2 \times 10^{-3}\right)^{2} \times 3000=4 \times 10^{-6} \times 3 \times 10^{3}=12 \times 10^{-3} \mathrm{~W}=12 \mathrm{~mW} \text { (absorbed) }
$$

The power on V_{s} is
$P_{V_{s}}=-I V_{s}=-2 \times 10^{-3} \times 10=-20 \times 10^{-3} \mathrm{~W}=-20 \mathrm{~mW}$ (released)
Total power absorbed $=20 \mathrm{~mW}=$ total power released

Problem 2.9

The power on R_{1} is
$P_{R_{1}}=\frac{V_{o}^{2}}{R_{1}}=\frac{4.8^{2}}{8000}=2.88 \times 10^{-3} \mathrm{~W}=2.88 \mathrm{~mW}$ (absorbed)

The power on R_{2} is
$P_{R_{2}}=\frac{V_{o}^{2}}{R_{2}}=\frac{4.8^{2}}{12000}=1.92 \times 10^{-3} \mathrm{~W}=1.92 \mathrm{~mW}$ (absorbed)
The power on V_{s} is
$P_{I_{s}}=-I_{s} V_{o}=-1 \times 10^{-3} \times 4.8=-4.8 \times 10^{-3} \mathrm{~W}=-4.8 \mathrm{~mW}$ (released)
Problem 2.10
From Ohm's law, current I_{1} is given by
$I_{1}=\frac{20 \mathrm{~V}-15 \mathrm{~V}}{R_{1}}=\frac{5 \mathrm{~V}}{0.5 \mathrm{k} \Omega}=10 \mathrm{~mA}$
From Ohm's law, current I_{2} is given by
$I_{2}=\frac{20 \mathrm{~V}-10 \mathrm{~V}}{R_{2}}=\frac{10 \mathrm{~V}}{2 \mathrm{k} \Omega}=5 \mathrm{~mA}$
From Ohm's law, current I_{3} is given by
$I_{3}=\frac{10 \mathrm{~V}-0 \mathrm{~V}}{R_{3}}=\frac{10 \mathrm{~V}}{1 \mathrm{k} \Omega}=10 \mathrm{~mA}$
From Ohm's law, current I_{4} is given by

$$
I_{4}=\frac{10 \mathrm{~V}-15 \mathrm{~V}}{R_{4}}=\frac{-5 \mathrm{~V}}{1 \mathrm{k} \Omega}=-5 \mathrm{~mA}
$$

Problem 2.11

From Ohm's law, current i is given by
$i=\frac{10 \mathrm{~V}-8 \mathrm{~V}}{R_{3}}=\frac{2 \mathrm{~V}}{2 \mathrm{k} \Omega}=1 \mathrm{~mA}$

From Ohm's law, current I_{1} is given by
$I_{1}=\frac{12 \mathrm{~V}-10 \mathrm{~V}}{R_{1}}=\frac{2 \mathrm{~V}}{1 \mathrm{k} \Omega}=2 \mathrm{~mA}$

From Ohm's law, current I_{2} is given by
$I_{2}=\frac{10 \mathrm{~V}-5 \mathrm{~V}}{R_{2}}=\frac{5 \mathrm{~V}}{5 \mathrm{k} \Omega}=1 \mathrm{~mA}$

From Ohm's law, current I_{3} is given by
$I_{3}=\frac{12 \mathrm{~V}-8 \mathrm{~V}}{R_{4}}=\frac{4 \mathrm{~V}}{2 \mathrm{k} \Omega}=2 \mathrm{~mA}$
From Ohm's law, current I_{4} is given by
$I_{4}=\frac{8 V-5 V}{R_{5}}=\frac{3 V}{3 k \Omega}=1 \mathrm{~mA}$
From Ohm's law, current I_{5} is given by
$I_{5}=\frac{8 \mathrm{~V}}{R_{6}}=\frac{8 \mathrm{~V}}{4 \mathrm{k} \Omega}=2 \mathrm{~mA}$
Problem 2.12
Application of Ohm's law results in
$I_{1}=\frac{34 \mathrm{~V}-24 \mathrm{~V}}{R_{1}}=\frac{10 \mathrm{~V}}{2 \mathrm{k} \Omega}=5 \mathrm{~mA}$
$I_{2}=\frac{24 \mathrm{~V}-10 \mathrm{~V}}{R_{2}}=\frac{14 \mathrm{~V}}{2 \mathrm{k} \Omega}=7 \mathrm{~mA}$
$I_{3}=\frac{24 \mathrm{~V}-28 \mathrm{~V}}{R_{3}}=\frac{-4 \mathrm{~V}}{2 k \Omega}=-2 \mathrm{~mA}$
$I_{4}=\frac{34 \mathrm{~V}-28 \mathrm{~V}}{R_{4}}=\frac{6 \mathrm{~V}}{0.6 \mathrm{k} \Omega}=10 \mathrm{~mA}$
$I_{5}=\frac{28 \mathrm{~V}-10 \mathrm{~V}}{R_{5}}=\frac{18 \mathrm{~V}}{6 \mathrm{k} \Omega}=3 \mathrm{~mA}$
$I_{6}=\frac{28 \mathrm{~V}}{R_{6}}=\frac{28 \mathrm{~V}}{5.6 \mathrm{k} \Omega}=5 \mathrm{~mA}$
$I_{7}=\frac{10 \mathrm{~V}}{R_{7}}=\frac{10 \mathrm{~V}}{1 \mathrm{k} \Omega}=10 \mathrm{~mA}$

Problem 2.13

The total voltage from the four voltage sources is
$\mathrm{V}=\mathrm{V}_{\mathrm{s} 1}+\mathrm{V}_{\mathrm{s} 2}+\mathrm{V}_{\mathrm{s} 3}+\mathrm{V}_{\mathrm{s} 4}=9 \mathrm{~V}+2 \mathrm{~V}-3 \mathrm{~V}+2 \mathrm{~V}=10 \mathrm{~V}$
The total resistance from the five resistors is
$\mathrm{R}=\mathrm{R}_{1}+\mathrm{R}_{2}+\mathrm{R}_{3}+\mathrm{R}_{4}+\mathrm{R}_{5}=3 \mathrm{k} \Omega+5 \mathrm{k} \Omega+4 \mathrm{k} \Omega+2 \mathrm{k} \Omega+4 \mathrm{k} \Omega=18 \mathrm{k} \Omega$
The current through the mesh is
$I=\frac{V}{R}=\frac{10 \mathrm{~V}}{18000 \Omega}=\frac{5}{9} \mathrm{~mA}=0.5556 \mathrm{~mA}$

From Ohm's law, the voltages across the five resistors are given respectively
$\mathrm{V}_{1}=\mathrm{R}_{1} \mathrm{I}=3 \times 5 / 9 \mathrm{~V}=15 / 9 \mathrm{~V}=5 / 3 \mathrm{~V}=1.6667 \mathrm{~V}$
$\mathrm{V}_{2}=\mathrm{R}_{2} \mathrm{I}=5 \times 5 / 9 \mathrm{~V}=25 / 9 \mathrm{~V}=2.7778 \mathrm{~V}$
$\mathrm{V}_{3}=\mathrm{R}_{3} \mathrm{I}=4 \times 5 / 9 \mathrm{~V}=20 / 9 \mathrm{~V}=2.2222 \mathrm{~V}$
$\mathrm{V}_{4}=\mathrm{R}_{4} \mathrm{I}=2 \times 5 / 9 \mathrm{~V}=10 / 9 \mathrm{~V}=1.1111 \mathrm{~V}$
$\mathrm{V}_{5}=\mathrm{R}_{5} \mathrm{I}=4 \times 5 / 9 \mathrm{~V}=20 / 9 \mathrm{~V}=2.2222 \mathrm{~V}$

Problem 2.14

Radius is $\mathrm{r}=\mathrm{d} / 2=0.2025 \mathrm{~mm}=0.2025 \times 10^{-3} \mathrm{~m}$ $\mathrm{A}=\pi \mathrm{r}^{2}=1.28825 \times 10^{-7} \mathrm{~m}^{2}$
(a)
$R=\frac{\ell}{\sigma A}=\frac{20}{5.69 \times 10^{7} \times \pi \times\left(0.2025 \times 10^{-3}\right)^{2}}=2.7285 \Omega$
(b)
$R=\frac{\ell}{\sigma A}=\frac{200}{5.69 \times 10^{7} \times \pi \times\left(0.2025 \times 10^{-3}\right)^{2}}=27.2846 \Omega$
(c)
$R=\frac{\ell}{\sigma A}=\frac{2000}{5.69 \times 10^{7} \times \pi \times\left(0.2025 \times 10^{-3}\right)^{2}}=272.8461 \Omega$
(d)
$R=\frac{\ell}{\sigma A}=\frac{20000}{5.69 \times 10^{7} \times \pi \times\left(0.2025 \times 10^{-3}\right)^{2}}=2728.4613 \Omega$

Problem 2.15

From Ohm's law, the voltage across R_{2} is given by
$\mathrm{V}_{2}=\mathrm{I}_{2} \mathrm{R}_{2}=3 \mathrm{~mA} \times 2 \mathrm{k} \Omega=6 \mathrm{~V}$
From Ohm's law, the current through R_{3} is given by
$I_{3}=\frac{V_{2}}{R_{3}}=\frac{6 \mathrm{~V}}{3 \mathrm{k} \Omega}=2 \mathrm{~mA}$
According to KCL, current I_{1} is the sum of I_{2} and I_{3}. Thus, we have
$\mathrm{I}_{1}=\mathrm{I}_{2}+\mathrm{I}_{3}=3 \mathrm{~mA}+2 \mathrm{~mA}=5 \mathrm{~mA}$
The voltage across R_{1} is given by
$\mathrm{V}_{1}=\mathrm{R}_{1} \mathrm{I}_{1}=1 \mathrm{k} \Omega \times 5 \mathrm{~mA}=5 \mathrm{~V}$

Problem 2.16

From Ohm's law, the currents $\mathrm{I}_{2}, \mathrm{I}_{3}$, and I_{4} are given respectively by
$I_{2}=\frac{V_{2}}{R_{2}}=\frac{6 \mathrm{~V}}{2 \mathrm{k} \Omega}=3 \mathrm{~mA}$
$I_{3}=\frac{V_{2}}{R_{3}}=\frac{6 \mathrm{~V}}{3 \mathrm{k} \Omega}=2 \mathrm{~mA}$
$I_{4}=\frac{V_{2}}{R_{4}}=\frac{6 \mathrm{~V}}{6 \mathrm{k} \Omega}=1 \mathrm{~mA}$

From KCL, current I_{1} is the sum of I_{2}, I_{3}, and I_{4}. Thus, we have
$\mathrm{I}_{1}=\mathrm{I}_{2}+\mathrm{I}_{3}+\mathrm{I}_{4}=3 \mathrm{~mA}+2 \mathrm{~mA}+1 \mathrm{~mA}=6 \mathrm{~mA}$
The voltage across R_{1} is given by
$\mathrm{V}_{1}=\mathrm{R}_{1} \mathrm{I}_{1}=1 \mathrm{k} \Omega \times 6 \mathrm{~mA}=6 \mathrm{~V}$

Problem 2.17

From Ohm's law, we have
$\mathrm{V}_{2}=\mathrm{R}_{4} \mathrm{I}_{4}=1 \mathrm{~mA} \times 6 \mathrm{k} \Omega=6 \mathrm{~V}$

From Ohm's law, the current through R_{3} is given by
$I_{3}=\frac{V_{2}}{R_{3}}=\frac{6 \mathrm{~V}}{3 \mathrm{k} \Omega}=2 \mathrm{~mA}$

From KCL, I_{2} is the sum of I_{3} and I_{4}. Thus,
$\mathrm{I}_{2}=\mathrm{I}_{3}+\mathrm{I}_{4}=3 \mathrm{~mA}$
From $\mathrm{KCL}, \mathrm{I}_{1}$ is given by
$\mathrm{I}_{1}=\mathrm{I}_{\mathrm{s}}-\mathrm{I}_{2}=2 \mathrm{~mA}$
From Ohm's law, the voltage across R_{1} is
$\mathrm{V}_{1}=\mathrm{R}_{1} \mathrm{I}_{1}=4.5 \mathrm{k} \Omega \times 2 \mathrm{~mA}=9 \mathrm{~V}$

Problem 2.18
From Ohm's law, we have

$$
I_{3}=\frac{V_{o}}{R_{3}}=\frac{8 \mathrm{~V}}{2 \mathrm{k} \Omega}=4 \mathrm{~mA}
$$

$$
I_{4}=\frac{V_{o}}{R_{4}}=\frac{8 \mathrm{~V}}{4 \mathrm{k} \Omega}=2 \mathrm{~mA}
$$

$$
I_{1}=\frac{V_{s}-V_{o}}{R_{1}}=\frac{12 V-8 V}{1 k \Omega}=\frac{4 V}{1 k \Omega}=4 \mathrm{~mA}
$$

$$
I_{2}=\frac{V_{s}-V_{o}}{R_{2}}=\frac{12 \mathrm{~V}-8 \mathrm{~V}}{2 \mathrm{k} \Omega}=\frac{4 \mathrm{~V}}{2 \mathrm{k} \Omega}=2 \mathrm{~mA}
$$

As a check, $\mathrm{I}_{1}+\mathrm{I}_{2}=\mathrm{I}_{3}+\mathrm{I}_{4}=6 \mathrm{~mA}$

Problem 2.19

From Ohm's law, we have
$I_{3}=\frac{V_{4}}{R_{4}}=\frac{5 \mathrm{~V}}{2.5 \mathrm{k} \Omega}=2 \mathrm{~mA}$
$\mathrm{V}_{3}=\mathrm{R}_{3} \mathrm{I}_{3}=2 \mathrm{k} \Omega \times 2 \mathrm{~mA}=4 \mathrm{~V}$
$\mathrm{V}_{2}=\mathrm{V}_{3}+\mathrm{V}_{4}=4 \mathrm{~V}+5 \mathrm{~V}=9 \mathrm{~V}$
$I_{2}=\frac{V_{2}}{R_{2}}=3 \frac{9 \mathrm{~V}}{4 \mathrm{k} \Omega}=3 \mathrm{~mA}$
From KCL, we have
$\mathrm{I}_{1}=\mathrm{I}_{2}+\mathrm{I}_{3}=5 \mathrm{~mA}$
From Ohm's law, we get
$\mathrm{V}_{1}=\mathrm{R}_{1} \mathrm{I}_{1}=1 \mathrm{k} \Omega \times 5 \mathrm{~mA}=5 \mathrm{~V}$
Problem 2.20
Application of KCL at node a yields
$\mathrm{I}_{\mathrm{s}}=\mathrm{I}_{1}+\mathrm{I}_{2}+\mathrm{I}_{3}$
Solving for I_{2}, we obtain
$\mathrm{I}_{2}=\mathrm{I}_{\mathrm{s}}-\mathrm{I}_{1}-\mathrm{I}_{3}=10 \mathrm{~mA}-5 \mathrm{~mA}-2 \mathrm{~mA}=3 \mathrm{~mA}$
Application of KCL at node b yields
$\mathrm{I}_{1}+\mathrm{I}_{2}=\mathrm{I}_{4}+\mathrm{I}_{5}$
Solving for I_{5}, we obtain
$\mathrm{I}_{5}=\mathrm{I}_{1}+\mathrm{I}_{2}-\mathrm{I}_{4}=5 \mathrm{~mA}+3 \mathrm{~mA}-2 \mathrm{~mA}=6 \mathrm{~mA}$

Figure S2.20
Problem 2.21

Application of KCL at node b yields
$\mathrm{I}_{\mathrm{s}}=\mathrm{I}_{2}+\mathrm{I}_{3}$
Solving for I_{2}, we obtain
$\mathrm{I}_{2}=\mathrm{I}_{\mathrm{s}}-\mathrm{I}_{3}=15 \mathrm{~mA}-10 \mathrm{~mA}=5 \mathrm{~mA}$
Application of KCL at node a yields
$\mathrm{I}_{4}=\mathrm{I}_{2}-\mathrm{I}_{1}=5 \mathrm{~mA}-2 \mathrm{~mA}=3 \mathrm{~mA}$
Application of KCL at node c yields
$\mathrm{I}_{5}=\mathrm{I}_{1}+\mathrm{I}_{3}=2 \mathrm{~mA}+10 \mathrm{~mA}=12 \mathrm{~mA}$

Figure S2.21

Problem 2.22

Application of KCL at node b yields
$\mathrm{I}_{1}=\mathrm{I}_{\mathrm{s}}-\mathrm{I}_{4}=20 \mathrm{~mA}-10 \mathrm{~mA}=10 \mathrm{~mA}$
Application of KCL at node a yields
$\mathrm{I}_{2}=\mathrm{I}_{1}-\mathrm{I}_{3}=10 \mathrm{~mA}-5 \mathrm{~mA}=5 \mathrm{~mA}$
Application of KCL at node c yields
$\mathrm{I}_{6}=\mathrm{I}_{3}+\mathrm{I}_{4}-\mathrm{I}_{5}=5 \mathrm{~mA}+10 \mathrm{~mA}-5 \mathrm{~mA}=10 \mathrm{~mA}$

Application of KCL at node d yields
$\mathrm{I}_{7}=\mathrm{I}_{2}+\mathrm{I}_{5}=5 \mathrm{~mA}+5 \mathrm{~mA}=10 \mathrm{~mA}$

Problem 2.23

Application of KCL at node d yields
$\mathrm{I}_{2}=13-10=3 \mathrm{~A}$
Application of KCL at node a yields
$\mathrm{I}_{1}=\mathrm{I}_{2}-2=3-2=1 \mathrm{~A}$

Application of KCL at node b yields

$\mathrm{I}_{3}=-\mathrm{I}_{1}-5=-1-5=-6 \mathrm{~A}$

Application of KCL at node c yields

$\mathrm{I}_{5}=-2-10=-12 \mathrm{~A}$

Application of KCL at node e yields

$\mathrm{I}_{4}=-\mathrm{I}_{3}-13=-(-6)-13=-7 \mathrm{~A}$

Problem 2.24

Summing the voltage drops around mesh 1 in the circuit shown in Figure S2.24 in the clockwise direction, we obtain
$-\mathrm{V}_{1}+\mathrm{V}_{\mathrm{R} 1}+\mathrm{V}_{\mathrm{R} 3}=0$
Since $\mathrm{V}_{1}=30 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{R} 1}=10 \mathrm{~V}$, this equation becomes
$-30+10+V_{\mathrm{R} 3}=0$

Thus,
$\mathrm{V}_{\mathrm{R} 3}=30-10=20 \mathrm{~V}$.
Summing the voltage drops around mesh 2 in the circuit shown in Figure S2.11 in the clockwise direction, we obtain
$-\mathrm{V}_{\mathrm{R} 3}+\mathrm{V}_{\mathrm{R} 2}+\mathrm{V}_{\mathrm{R} 4}=0$

Since $\mathrm{V}_{\mathrm{R} 3}=20 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{R} 4}=15 \mathrm{~V}$, this equation becomes
$-20+\mathrm{V}_{\mathrm{R} 2}+15=0$
Thus,
$\mathrm{V}_{\mathrm{R} 2}=20-15=5 \mathrm{~V}$.

Figure S2.24

Problem 2.25

Consider the loop consisting of $\mathrm{V}_{1}, \mathrm{R}_{1}$ and R_{5}, shown in the circuit shown in Figure S2.25. Summing the voltage drops around this loop in the clockwise direction, we obtain
$-\mathrm{V}_{1}+\mathrm{V}_{\mathrm{R} 1}+\mathrm{V}_{\mathrm{R} 5}=0$
Since $V_{1}=20 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{R} 1}=10 \mathrm{~V}$, this equation becomes
$-20+10+V_{\mathrm{R} 5}=0$

Thus,
$\mathrm{V}_{\mathrm{R} 5}=20-10=10 \mathrm{~V}$.

In the mesh consisting of $\mathrm{R}_{4}, \mathrm{R}_{3}$ and R_{5}, shown in the circuit shown in Figure S 2.25 , summing the voltage drops around this mesh in the clockwise direction, we obtain
$-\mathrm{V}_{\mathrm{R} 4}+\mathrm{V}_{\mathrm{R} 3}+\mathrm{V}_{\mathrm{R} 5}=0$
Since $\mathrm{V}_{\mathrm{R} 3}=5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{R} 5}=10 \mathrm{~V}$, this equation becomes
$-\mathrm{V}_{\mathrm{R} 4}+5+10=0$
Thus,
$\mathrm{V}_{\mathrm{R} 4}=5+10=15 \mathrm{~V}$.

In the mesh consisting of $\mathrm{V}_{1}, \mathrm{R}_{2}$ and R_{4}, shown in the circuit shown in Figure S 2.25 , summing the voltage drops around this mesh in the clockwise direction, we obtain
$-\mathrm{V}_{1}+\mathrm{V}_{\mathrm{R} 2}+\mathrm{V}_{\mathrm{R} 4}=0$

Since $V_{1}=20 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{R} 4}=15 \mathrm{~V}$, this equation becomes
$-20+\mathrm{V}_{\mathrm{R} 2}+15=0$

Thus,
$\mathrm{V}_{\mathrm{R} 2}=20-15=5 \mathrm{~V}$.

Figure S2.25

Problem 2.26

In the mesh consisting of R_{1}, R_{3} and R_{4}, upper left in the circuit shown in Figure S 2.26 , summing the voltage drops around this mesh in the clockwise direction, we obtain
$V_{R 1}+V_{R 3}-V_{R 4}=0$
Since $\mathrm{V}_{\mathrm{R} 1}=5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{R} 3}=5 \mathrm{~V}$, this equation becomes
$5+5-\mathrm{V}_{\mathrm{R} 4}=0$
Thus,
$\mathrm{V}_{\mathrm{R} 4}=5+5=10 \mathrm{~V}$.

In the mesh consisting of $\mathrm{V}_{1}, \mathrm{R}_{4}$ and R_{6}, lower left in the circuit shown in Figure S 2.26 , summing the voltage drops around this mesh in the clockwise direction, we obtain
$-\mathrm{V}_{1}+\mathrm{V}_{\mathrm{R} 4}+\mathrm{V}_{\mathrm{R} 6}=0$
Since $V_{1}=20 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{R} 4}=10 \mathrm{~V}$, this equation becomes
$-20+10+V_{\mathrm{R} 6}=0$

Thus,
$V_{R 6}=20-10=10 \mathrm{~V}$.
In the mesh consisting of R_{3}, R_{2} and R_{5}, upper right in the circuit shown in Figure S 2.26 , summing the voltage drops around this mesh in the clockwise direction, we obtain
$-\mathrm{V}_{\mathrm{R} 3}+\mathrm{V}_{\mathrm{R} 2}-\mathrm{V}_{\mathrm{R} 5}=0$
Since $\mathrm{V}_{\mathrm{R} 3}=5 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{R} 5}=5 \mathrm{~V}$, this equation becomes
$-5+V_{\mathrm{R} 2}-5=0$
Thus,
$\mathrm{V}_{\mathrm{R} 2}=5+5=10 \mathrm{~V}$.
In the mesh consisting of R_{6}, R_{5} and R_{7}, lower right in the circuit shown in Figure S 2.26 , summing the voltage drops around this mesh in the clockwise direction, we obtain
$-\mathrm{V}_{\mathrm{R} 6}+\mathrm{V}_{\mathrm{R} 5}+\mathrm{V}_{\mathrm{R} 7}=0$
Since $\mathrm{V}_{\mathrm{R} 6}=10 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{R} 5}=5 \mathrm{~V}$, this equation becomes
$-10+5+V_{\mathrm{R} 7}=0$
Thus,
$\mathrm{V}_{\mathrm{R} 7}=10-5=5 \mathrm{~V}$.

Figure S2.26
Problem 2.27
From Ohm's law, the current I_{5} is given by
$I_{5}=\frac{V_{5}}{R_{5}}=\frac{6 \mathrm{~V}}{1 \mathrm{k} \Omega}=6 \mathrm{~mA}$

From Ohm's law, the current I_{1} is given by
$I_{1}=\frac{V_{s}-V_{5}}{R_{1}}=\frac{16 \mathrm{~V}-6 \mathrm{~V}}{5 \mathrm{k} \Omega}=\frac{10 \mathrm{~V}}{5 \mathrm{k} \Omega}=2 \mathrm{~mA}$

From KCL, we have
$\mathrm{I}_{3}=\mathrm{I}_{5}-\mathrm{I}_{1}=6 \mathrm{~mA}-2 \mathrm{~mA}=4 \mathrm{~mA}$
The voltage across R_{3} is
$\mathrm{V}_{3}=\mathrm{R}_{3} \mathrm{I}_{3}=1 \mathrm{k} \Omega \times 4 \mathrm{~mA}=4 \mathrm{~V}$
From KVL, the voltage across R_{4} is given by
$\mathrm{V}_{4}=\mathrm{V}_{3}+\mathrm{V}_{5}=4 \mathrm{~V}+6 \mathrm{~V}=10 \mathrm{~V}$
The current through R_{4} is given by
$I_{4}=\frac{V_{4}}{R_{4}}=\frac{10 \mathrm{~V}}{5 \mathrm{k} \Omega}=2 \mathrm{~mA}$
From KCL, current I_{2} is given by
$\mathrm{I}_{2}=\mathrm{I}_{3}+\mathrm{I}_{4}=4 \mathrm{~mA}+2 \mathrm{~mA}=6 \mathrm{~mA}$

Problem 2.28

The voltage across R_{3} is given by
$\mathrm{V}_{2}=\mathrm{R}_{3} \mathrm{I}_{3}=4 \mathrm{k} \Omega \times 2 \mathrm{~mA}=8 \mathrm{~V}$
From Ohm's law, current I_{4} is given by
$I_{4}=\frac{V_{2}}{R_{4}}=\frac{8 \mathrm{~V}}{2 \mathrm{k} \Omega}=4 \mathrm{~mA}$
From KCL, the current through R_{2} is given by
$\mathrm{I}_{2}=\mathrm{I}_{3}+\mathrm{I}_{4}=2 \mathrm{~mA}+4 \mathrm{~mA}=6 \mathrm{~mA}$
From KCL, the current through R_{1} is given by
$\mathrm{I}_{1}=\mathrm{I}_{\mathrm{s}}-\mathrm{I}_{2}=8 \mathrm{~mA}-6 \mathrm{~mA}=2 \mathrm{~mA}$

The voltage across R_{1} is given by
$\mathrm{V}_{1}=\mathrm{R}_{1} \mathrm{I}_{1}=7 \mathrm{k} \Omega \times 2 \mathrm{~mA}=14 \mathrm{~V}$
Problem 2.29
The voltage across R_{1} is given by
$\mathrm{V}_{1}=\mathrm{R}_{1} \mathrm{I}_{1}=5 \mathrm{k} \Omega \times 1 \mathrm{~mA}=5 \mathrm{~V}$
From KCL, the current through R_{2} is given by
$\mathrm{I}_{2}=\mathrm{I}_{\mathrm{s}}-\mathrm{I}_{1}=5 \mathrm{~mA}-1 \mathrm{~mA}=4 \mathrm{~mA}$
From KVL, V_{2} is given by
$\mathrm{V}_{2}=\mathrm{V}_{1}-\mathrm{R}_{2} \mathrm{I}_{2}=5 \mathrm{~V}-0.5 \mathrm{k} \Omega \times 4 \mathrm{~mA}=5 \mathrm{~V}-2 \mathrm{~V}=3 \mathrm{~V}$
From Ohm's law, current I_{3} is given by
$I_{3}=\frac{V_{2}}{R_{3}}=\frac{3 \mathrm{~V}}{1 \mathrm{k} \Omega}=3 \mathrm{~mA}$
From Ohm's law, current I_{4} is given by
$I_{4}=\frac{V_{2}}{R_{4}}=\frac{3 \mathrm{~V}}{3 \mathrm{k} \Omega}=1 \mathrm{~mA}$
Problem 2.30
Application of KVL around the outer loop yields
$-2-\mathrm{V}_{1}-3=0$
Solving for V_{1}, we obtain
$V_{1}=-5 \mathrm{~V}$
Application of KVL around the top mesh yields
$-\mathrm{V}_{1}-4+\mathrm{V}_{2}=0$
Solving for V_{2}, we obtain
$\mathrm{V}_{2}=\mathrm{V}_{1}+4=-1 \mathrm{~V}$

Application of KVL around the center left mesh yields
$-\mathrm{V}_{2}+5-\mathrm{V}_{3}=0$
Solving for V_{3}, we obtain
$\mathrm{V}_{3}=-\mathrm{V}_{2}+5=6 \mathrm{~V}$
Application of KVL around the center right mesh yields
$-5+4+\mathrm{V}_{4}=0$
Solving for V_{4}, we obtain
$\mathrm{V}_{4}=5-4=1 \mathrm{~V}$
Application of KVL around the bottom left mesh yields
$-2+\mathrm{V}_{3}-\mathrm{V}_{5}=0$
Solving for V_{5}, we obtain
$V_{5}=-2+6=4 V$

Problem 2.31

Application of KVL around the outer loop yields
$-3-\mathrm{V}_{1}=0$
Solving for V_{1}, we obtain
$V_{1}=-3 V$
Application of KVL around the lower left mesh yields
$-3+\mathrm{V}_{2}-1=0$
Solving for V_{2}, we obtain
$\mathrm{V}_{2}=3+1=4 \mathrm{~V}$
Application of KVL around the lower right mesh yields
$1-V_{5}=0$

Solving for V_{5}, we obtain
$\mathrm{V}_{5}=1 \mathrm{~V}$
Application of KCL at node a yields
$\mathrm{I}_{1}=2+2=4 \mathrm{~A}$
Application of KCL at node b yields
$\mathrm{I}_{4}=2+3=5 \mathrm{~A}$

Problem 2.32

Resistor R_{1} is in series to the parallel combination of R_{2} and R_{3}. Thus, the equivalent resistance $\mathrm{R}_{\text {eq }}$ is given by

$$
\begin{aligned}
& R_{e q}=R_{1}+\left(R_{2} \| R_{3}\right)=R_{1}+\frac{R_{2} R_{3}}{R_{2}+R_{3}}=2000+\frac{4000 \times 12000}{4000+12000} \\
& =2000+\frac{48,000,000}{16,000}=2000+3000=5000 \Omega=5 \mathrm{k} \Omega
\end{aligned}
$$

Instead of ohms (Ω), we can use kilo ohms $(\mathrm{k} \Omega)$ to simplify the algebra:

$$
R_{e q}=R_{1}+\left(R_{2} \| R_{3}\right)=R_{1}+\frac{R_{2} R_{3}}{R_{2}+R_{3}}=2 k+\frac{4 k \times 12 k}{4 k+12 k}=2 k+\frac{48 k^{2}}{16 k}=2 k+3 k=5 k \Omega
$$

If all the resistance values are in $\mathrm{k} \Omega, \mathrm{k}$ can be removed during calculations, and represent the answer in $\mathrm{k} \Omega$ as shown below.

$$
R_{e q}=R_{1}+\left(R_{2} \| R_{3}\right)=R_{1}+\frac{R_{2} R_{3}}{R_{2}+R_{3}}=2+\frac{4 \times 12}{4+12}=2+\frac{48}{16}=2+3=5 \mathrm{k} \Omega
$$

Problem 2.33

Resistors R_{1} and R_{2} are in parallel, and resistors R_{3} and R_{4} are in parallel. The equivalent resistance is the sum of $R_{1} \| R_{2}$ and $R_{3} \| R_{4}$.
$R_{e q}=\left(R_{1} \| R_{2}\right)+\left(R_{3} \| R_{4}\right)=\frac{R_{1} R_{2}}{R_{1}+R_{2}}+\frac{R_{3} R_{4}}{R_{3}+R_{4}}=\frac{10 \times 40}{10+40}+\frac{8 \times 56}{8+56}=\frac{400}{50}+\frac{448}{64}=8+7=15 \mathrm{k} \Omega$

Problem 2.34

The equivalent resistance is the sum of R_{1} and the parallel combination of R_{2}, R_{3}, and R_{4}.

$$
\begin{aligned}
& R_{e q}=R_{1}+\left(R_{2}\left\|R_{3}\right\| R_{4}\right)=R_{1}+\frac{1}{\frac{1}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{4}}}=5+\frac{1}{\frac{1}{30}+\frac{1}{60}+\frac{1}{5}}=5+\frac{1}{\frac{2}{60}+\frac{1}{60}+\frac{12}{60}} \\
& =5+\frac{60}{15}=5+4=9 k \Omega
\end{aligned}
$$

Problem 2.35

The equivalent resistance of the parallel combination of R_{4} and a short circuit (0Ω) is given by $R_{4} \| 0=\frac{20 \times 0}{20+0}=\frac{0}{20}=0 \Omega$

The equivalent resistance is the sum of R_{1} and the parallel combination of R_{2} and R_{3}.

$$
R_{e q}=R_{1}+\left(R_{2} \| R_{3}\right)=R_{1}+\frac{R_{2} R_{3}}{R_{2}+R_{3}}=12+\frac{99 \times 22}{99+22}=12+\frac{2178}{121}=12+18=30 \mathrm{k} \Omega
$$

Problem 2.36

The equivalent resistance R_{a} of the series connection of three resistors R_{4}, R_{5}, and R_{6} is
$\mathrm{R}_{\mathrm{a}}=\mathrm{R}_{4}+\mathrm{R}_{5}+\mathrm{R}_{6}=25+20+33=78 \mathrm{k} \Omega$
The equivalent resistance R_{b} of the parallel connection of R_{3} and R_{a} is
$R_{b}=R_{3} \| R_{a}=\frac{R_{3} R_{a}}{R_{3}+R_{a}}=\frac{39 \times 78}{39+78}=\frac{3042}{117}=26 \mathrm{k} \Omega$
The equivalent resistance R_{eq} of the circuit shown in Figure P 2.5 is the sum of $\mathrm{R}_{1}, \mathrm{R}_{\mathrm{b}}$, and R_{2} :
$\mathrm{R}_{\mathrm{eq}}=\mathrm{R}_{1}+\mathrm{R}_{\mathrm{b}}+\mathrm{R}_{2}=10+26+14=50 \mathrm{k} \Omega$

Problem 2.37

The resistors R_{1} and R_{2} are connected in parallel. Let R_{a} be $R_{1} \| R_{2}$. Then, we have
$R_{a}=R_{1} \| R_{2}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}=\frac{50 \times 75}{50+75}=\frac{50 \times 75}{125}=\frac{50 \times 3}{5}=10 \times 3=30 \mathrm{k} \Omega$

The resistors R_{3} and R_{4} are connected in parallel. Let R_{b} be $\mathrm{R}_{3} \| \mathrm{R}_{4}$. Then, we have

$$
R_{b}=R_{3} \| R_{4}=\frac{R_{3} R_{4}}{R_{3}+R_{4}}=\frac{55 \times 66}{55+66}=\frac{5 \times 66}{5+6}=\frac{5 \times 66}{11}=5 \times 6=30 \mathrm{k} \Omega
$$

The equivalent resistance R_{eq} of the circuit shown in Figure P 2.6 is given by the sum of R_{a} and R_{b} :
$\mathrm{R}_{\mathrm{eq}}=\mathrm{R}_{\mathrm{a}}+\mathrm{R}_{\mathrm{b}}=30 \mathrm{k} \Omega+30 \mathrm{k} \Omega=60 \mathrm{k} \Omega$

MATLAB

```
clear all;
R1=50000;R2=75000;R3=55000;R4=66000;
Req=P([R1,R2])+P([R3,R4])
```

Answer:
Req $=$
60000

Problem 2.38

The equivalent resistance $\mathrm{R}_{\text {eq }}$ can be found by combining resistances from the right side of the circuit and moving toward the left. Since $\mathrm{R}_{7}, \mathrm{R}_{8}$, and R_{9} are connected in series, we have
$\mathrm{R}_{\mathrm{a}}=\mathrm{R}_{7}+\mathrm{R}_{8}+\mathrm{R}_{9}=15+19+20=54 \mathrm{k} \Omega$
Let R_{b} be the equivalent resistance of the parallel connection of R_{6} and R_{a}. Then we have $R_{b}=R_{6} \| R_{a}=\frac{R_{6} \times R_{a}}{R_{6}+R_{a}}=\frac{27 \times 54}{27+54}=\frac{1 \times 54}{1+2}=\frac{54}{3}=18 \mathrm{k} \Omega$

Let R_{c} be the sum of R_{4}, R_{b}, and R_{5}. Then, we have
$\mathrm{R}_{\mathrm{c}}=\mathrm{R}_{4}+\mathrm{R}_{\mathrm{b}}+\mathrm{R}_{5}=6+18+4=28 \mathrm{k} \Omega$.
Let R_{d} be the equivalent resistance of the parallel connection of R_{3} and R_{c}. Then, we have $R_{d}=R_{3} \| R_{c}=\frac{R_{3} \times R_{c}}{R_{3}+R_{c}}=\frac{21 \times 28}{21+28}=\frac{3 \times 28}{3+4}=\frac{3 \times 28}{7}=12 \mathrm{k} \Omega$

The equivalent resistance $R_{\text {eq }}$ is the sum of R_{1}, R_{d}, and R_{2}. Thus, we have
$\mathrm{R}_{\mathrm{eq}}=\mathrm{R}_{1}+\mathrm{R}_{\mathrm{d}}+\mathrm{R}_{2}=3+12+5=20 \mathrm{k} \Omega$

MATLAB

```
clear all;
R1=3000;R2=5000;R3=21000;R4=6000;R5=4000;R6=27000;R7=15000;R8=19000;R9=20000;
Req=R1+R2+P([R3,R4+R5+P([R6,R7+R8+R9])])
Answer:
Req =

\section*{Problem 2.39}

Let \(R_{a}\) be the equivalent resistance of the parallel connection of \(R_{5}\) and \(R_{6}\). Then, we have \(R_{a}=R_{5} \| R_{6}=\frac{R_{5} \times R_{6}}{R_{5}+R_{6}}=\frac{20 \times 20}{20+20}=\frac{1 \times 20}{1+1}=\frac{20}{2}=10 \mathrm{k} \Omega\)

Let \(R_{b}\) be the equivalent resistance of the series connection of \(R_{4}\) and \(R_{a}\). Then, we have
\(\mathrm{R}_{\mathrm{b}}=\mathrm{R}_{4}+\mathrm{R}_{\mathrm{a}}=10+10=20 \mathrm{k} \Omega\).
Let \(R_{c}\) be the equivalent resistance of the parallel connection of \(R_{3}\) and \(R_{b}\). Then, we have \(R_{c}=R_{3} \| R_{b}=\frac{R_{3} \times R_{b}}{R_{3}+R_{b}}=\frac{20 \times 20}{20+20}=\frac{1 \times 20}{1+1}=\frac{20}{2}=10 \mathrm{k} \Omega\)

Let \(R_{d}\) be the equivalent resistance of the series connection of \(R_{2}\) and \(R_{c}\). Then, we have
\(\mathrm{R}_{\mathrm{d}}=\mathrm{R}_{2}+\mathrm{R}_{\mathrm{c}}=10+10=20 \mathrm{k} \Omega\).
The equivalent resistance \(\mathrm{R}_{\mathrm{eq}}\) of the circuit shown in Figure P 3.8 is the parallel connection of \(\mathrm{R}_{1}\) and \(\mathrm{R}_{\mathrm{d}}\). Thus, we get
\[
R_{e q}=R_{1} \| R_{d}=\frac{R_{1} \times R_{d}}{R_{1}+R_{d}}=\frac{20 \times 20}{20+20}=\frac{1 \times 20}{1+1}=\frac{20}{2}=10 \mathrm{k} \Omega
\]

\section*{MATLAB}
```

clear all;
R1=20000;R2=10000; R3=20000;R4=10000; R5=20000;R6=20000;
Req=P([R1,R2+P([R3,R4+P([R5,R6])])])
Answer:
Req =

Problem 2.40

$$
\begin{aligned}
& R_{e q}=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{4}}}=\frac{1}{\frac{1}{2000}+\frac{1}{5000}+\frac{1}{4000}+\frac{1}{3000}}=\frac{60000}{30+12+15+20} \\
& =\frac{60000}{77}=779.2208 \Omega \\
& \gg R 1=2000 ; R 2=5000 ; R 3=4000 ; R 4=3000 ; \\
& \gg R e q=P([R 1, R 2, R 3, R 4]) \\
& R e q= \\
& 7.792207792207792 e+02
\end{aligned}
$$

Problem 2.41

Let $\mathrm{R}_{9}=\mathrm{R}_{2}\left\|\mathrm{R}_{3}\right\| \mathrm{R}_{4}, \mathrm{R}_{10}=\mathrm{R}_{6}\left\|\mathrm{R}_{7}\right\| \mathrm{R}_{8}$, and $\mathrm{R}_{11}=\mathrm{R}_{9}+\mathrm{R}_{5}+\mathrm{R}_{10}$. Then, $\mathrm{R}_{\mathrm{eq}}=\mathrm{R}_{1} \| \mathrm{R}_{11}$.

$$
\begin{aligned}
& R_{9}=\frac{1}{\frac{1}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{4}}}=\frac{1}{\frac{1}{1000}+\frac{1}{2700}+\frac{1}{2000}}=534.6535 \Omega \\
& R_{10}=\frac{1}{\frac{1}{R_{6}}+\frac{1}{R_{7}}+\frac{1}{R_{8}}}=\frac{1}{2000}+\frac{1}{1500}+\frac{1}{6000} \\
& \mathrm{R}_{11}=\mathrm{R}_{9}+\mathrm{R}_{5}+\mathrm{R}_{10}=3.7837 \mathrm{k} \Omega \\
& R_{\text {eq }}=\frac{R_{1} R_{11}}{R_{1}+R_{11}}=2.877215 \mathrm{k} \Omega \\
& \text { clear all; } \\
& \begin{array}{l}
\mathrm{R} 1=12000 ; \mathrm{R} 2=1000 ; \mathrm{R} 3=2700 ; \mathrm{R} 4=2000 ; \mathrm{R} 5=2500 ; \mathrm{R} 6=2000 ; \mathrm{R} 7=1500 ; \mathrm{R} 8=6000 ; \\
\mathrm{R} 9=\mathrm{P}([\mathrm{R} 2, \mathrm{R} 3, \mathrm{R} 4]) \\
\mathrm{R} 10=\mathrm{P}([\mathrm{R} 6, \mathrm{R} 7, \mathrm{R} 8]) \\
\mathrm{R} 11=\mathrm{R} 9+\mathrm{R} 5+\mathrm{R} 10 \\
\text { Req }=\mathrm{P}([\mathrm{R} 1, \mathrm{R} 11])
\end{array} \\
& \text { Answer }: \\
& \text { Req }=
\end{aligned}
$$

Problem 2.42

Let $R_{6}=R_{1}\left\|R_{2}, R_{7}=R_{3}\right\| R_{4}$. Then we have

$$
R_{6}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}=571.4286 \Omega
$$

$$
R_{7}=\frac{R_{3} R_{4}}{R_{3}+R_{4}}=1.66667 \mathrm{k} \Omega
$$

$$
\mathrm{R}_{\mathrm{eq}}=\mathrm{R}_{6}+\mathrm{R}_{7}+\mathrm{R}_{5}=2.7381 \mathrm{k} \Omega
$$

```
clear all;
R1=600;R2=12000;R3=2000;R4=10000; R5=500;
R6=P([R1,R2])
R7=P([R3,R4])
Req=R6+R7+R5
Answer:
Req =
    2.738095238095238e+03
```


Problem 2.43

Let $\mathrm{R}_{9}=\mathrm{R}_{3}\left\|\mathrm{R}_{4}, \mathrm{R}_{10}=\mathrm{R}_{5}\right\| \mathrm{R}_{6}, \mathrm{R}_{11}=\mathrm{R}_{7} \| \mathrm{R}_{8}, \mathrm{R}_{12}=\mathrm{R}_{2}+\mathrm{R}_{9}, \mathrm{R}_{13}=\mathrm{R}_{10}+\mathrm{R}_{11}$. Then, $\mathrm{R}_{\text {eq }}=\mathrm{R}_{1}+\left(\mathrm{R}_{12}| | \mathrm{R}_{13}\right)$.

$$
R_{9}=\frac{R_{3} \times R_{4}}{R_{3}+R_{4}}=\frac{60 k \times 20 k}{60 k+20 k}=\frac{1200 k}{80}=15 k \Omega
$$

$$
R_{10}=\frac{R_{5} \times R_{6}}{R_{5}+R_{6}}=\frac{10 k \times 15 k}{10 k+15 k}=\frac{150 k}{25}=6 k \Omega
$$

$$
R_{11}=\frac{R_{7} \times R_{8}}{R_{7}+R_{8}}=\frac{20 k \times 30 k}{20 k+30 k}=\frac{600 k}{50}=12 k \Omega
$$

$$
\mathrm{R}_{12}=\mathrm{R}_{2}+\mathrm{R}_{9}=3 \mathrm{k} \Omega+15 \mathrm{k} \Omega=18 \mathrm{k} \Omega
$$

$$
\mathrm{R}_{13}=\mathrm{R}_{10}+\mathrm{R}_{11}=6 \mathrm{k} \Omega+12 \mathrm{k} \Omega=18 \mathrm{k} \Omega
$$

$$
\mathrm{R}_{\mathrm{eq}}=\mathrm{R}_{1}+\left(\mathrm{R}_{12} \| \mathrm{R}_{13}\right)=6 \mathrm{k} \Omega+(18 \mathrm{k} \Omega \| 18 \mathrm{k} \Omega)=6 \mathrm{k} \Omega+9 \mathrm{k} \Omega=15 \mathrm{k} \Omega
$$

```
clear all;
R1=6000;R2=3000;R3=60000;R4=20000;R5=10000;R6=15000;R7=20000;R8=30000;
R9=P([R3,R4])
R10=P([R5,R6])
R11=P([R7,R8])
R12=R2+R9
R13=R10+R11
Req=R1+P([R12,R13])
Req =
    1 5 0 0 0
```


Problem 2.44

Let $\mathrm{R}_{6}=\mathrm{R}_{4}\left\|\mathrm{R}_{5}, \mathrm{R}_{7}=\mathrm{R}_{3}+\mathrm{R}_{6}, \mathrm{R}_{8}=\mathrm{R}_{2}\right\| \mathrm{R}_{7}$. Then, $\mathrm{R}_{\mathrm{eq}}=\mathrm{R}_{1}+\mathrm{R}_{8}$.

$$
\begin{aligned}
& R_{6}=\frac{R_{4} \times R_{5}}{R_{4}+R_{5}}=\frac{2 k \times 3 k}{2 k+3 k}=\frac{6 k}{5}=1.2 k \Omega \\
& \mathrm{R}_{7}=\mathrm{R}_{3}+\mathrm{R}_{6}=1.8 \mathrm{k} \Omega+1.2 \mathrm{k} \Omega=3 \mathrm{k} \Omega \\
& R_{8}=\frac{R_{2} \times R_{7}}{R_{2}+R_{7}}=\frac{7 k \times 3 k}{7 k+3 k}=\frac{21 k}{10}=2.1 k \Omega \\
& \mathrm{R}_{\text {eq }}=\mathrm{R}_{1}+\mathrm{R}_{8}=0.9 \mathrm{k} \Omega+2.1 \mathrm{k} \Omega=3 \mathrm{k} \Omega \\
& \text { clear all; } \\
& \begin{array}{l}
\text { R1=900; R2=7000;R3=1800; R4 } \Omega 2000 ; \mathrm{R} 5=3000 \\
\text { Req=R1 } \mathrm{R}(\mathrm{P}([\mathrm{R} 2, \mathrm{R} 3+\mathrm{P}([\mathrm{R} 4, \mathrm{R} 5])])
\end{array} \\
& \text { Answer: } \\
& \text { Req }= \\
& \quad 3000
\end{aligned}
$$

Problem 2.45

Let $\mathrm{R}_{8}=\mathrm{R}_{6} \| \mathrm{R}_{7}, \mathrm{R}_{9}=\mathrm{R}_{4}+\mathrm{R}_{5}+\mathrm{R}_{8}$. Then, $\mathrm{R}_{\text {eq }}=\mathrm{R}_{1}\left\|\mathrm{R}_{2}\right\| \mathrm{R}_{3} \| \mathrm{R}_{9}$.

$$
\begin{aligned}
& R_{8}=\frac{R_{6} \times R_{7}}{R_{6}+R_{7}}=\frac{20 k \times 80 k}{20 k+80 k}=\frac{1600 k}{100}=16 \mathrm{k} \Omega \\
& \mathrm{R}_{9}=\mathrm{R}_{4}+\mathrm{R}_{5}+\mathrm{R}_{8}=10 \mathrm{k} \Omega+4 \mathrm{k} \Omega+16 \mathrm{k} \Omega=30 \mathrm{k} \Omega
\end{aligned}
$$

$$
R_{e q}=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}+\frac{1}{R_{9}}}=\frac{1}{\frac{1}{4000}+\frac{1}{10000}+\frac{1}{30000}+\frac{1}{30000}}=2.4 \mathrm{k} \Omega
$$

```
clear all;
```

$R 1=4000 ; R 2=10000 ; R 3=30000 ; R 4=10000 ; R 5=4000 ; R 6=20000 ; R 7=80000$;
Req $=P([R 1, R 2, R 3, R 4+R 5+P([R 6, R 7])])$
Req $=$

Problem 2.46

Let $\mathrm{R}_{8}=\mathrm{R}_{3}\left\|\mathrm{R}_{4}, \mathrm{R}_{9}=\mathrm{R}_{6}\right\| \mathrm{R}_{7}, \mathrm{R}_{10}=\mathrm{R}_{8}+\mathrm{R}_{5}+\mathrm{R}_{9}$. Then, $\mathrm{R}_{\mathrm{eq}}=\mathrm{R}_{1}| | \mathrm{R}_{2} \| \mathrm{R}_{10}$.

$$
R_{8}=\frac{R_{3} \times R_{4}}{R_{3}+R_{4}}=\frac{10 k \times 10 k}{10 k+10 k}=\frac{100 k}{20}=5 k \Omega
$$

$R_{9}=\frac{R_{6} \times R_{7}}{R_{6}+R_{7}}=\frac{10 k \times 15 k}{10 k+15 k}=\frac{150 k}{25}=6 \mathrm{k} \Omega$

$$
\begin{aligned}
& \mathrm{R}_{10}=\mathrm{R}_{8}+\mathrm{R}_{5}+\mathrm{R}_{9}=5 \mathrm{k} \Omega+4 \mathrm{k} \Omega+6 \mathrm{k} \Omega=15 \mathrm{k} \Omega \\
& R_{e q}=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{10}}}=\frac{1}{3000}+\frac{1}{10000}+\frac{1}{15000}=\frac{30000}{\frac{30000}{3000}+\frac{30000}{10000}+\frac{30000}{15000}}=\frac{30000}{15}=2 \mathrm{k} \Omega \\
& \begin{array}{l}
\text { Clear all; } \\
\mathrm{R} 1=3000 ; \mathrm{R} 2=10000 ; \mathrm{R} 3=10000 ; \mathrm{R} 4=10000 ; \mathrm{R} 5=4000 ; \mathrm{R} 6=10000 ; \mathrm{R} 7=15000 ; \\
\mathrm{Req}=\mathrm{P}([\mathrm{R} 1, \mathrm{R} 2, \mathrm{P}([\mathrm{R} 3, \mathrm{R} 4])+\mathrm{R} 5+\mathrm{P}([\mathrm{R} 6, \mathrm{R} 7])])
\end{array} \\
& \text { Req }= \\
& 2000
\end{aligned}
$$

Problem 2.47

The voltage from the voltage source is divided into V_{1} and V_{2} in proportion to the resistance values. Thus, we have

$$
\begin{aligned}
& V_{1}=\frac{R_{1}}{R_{1}+R_{2}} V_{s}=\frac{2.5}{2.5+7.5} 20 \mathrm{~V}=\frac{1}{4} 20 \mathrm{~V}=5 \mathrm{~V} \\
& V_{2}=\frac{R_{2}}{R_{1}+R_{2}} V_{s}=\frac{7.5}{2.5+7.5} 20 \mathrm{~V}=\frac{3}{4} 20 \mathrm{~V}=15 \mathrm{~V}
\end{aligned}
$$

Notice that V_{2} can also be obtained from $\mathrm{V}_{2}=\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{1}=20-5=15 \mathrm{~V}$.

Problem 2.48

The equivalent resistance of the parallel connection of R_{2} and R_{3} is given by

$$
R_{4}=R_{2} \| R_{3}=\frac{R_{2} R_{3}}{R_{2}+R_{3}}=\frac{38 k \times 57 k}{38 k+57 k}=\frac{2166}{95} k=22.8 \mathrm{k} \Omega
$$

The voltage V_{1} across R_{1} is given by

$$
V_{1}=\frac{R_{1}}{R_{1}+R_{4}} V_{s}=\frac{27.2}{27.2+22.8} 25 \mathrm{~V}=\frac{27.2}{50} 25 \mathrm{~V}=\frac{27.2}{2} \mathrm{~V}=13.6 \mathrm{~V}
$$

The voltage V_{2} across R_{2} and R_{3} is given by

$$
V_{2}=\frac{R_{4}}{R_{1}+R_{4}} V_{s}=\frac{22.8}{27.2+22.8} 25 \mathrm{~V}=\frac{22.8}{50} 25 \mathrm{~V}=\frac{22.8}{2} \mathrm{~V}=11.4 \mathrm{~V}
$$

Notice that V_{2} can also be obtained from $\mathrm{V}_{2}=\mathrm{V}_{\mathrm{s}}-\mathrm{V}_{1}=25-13.6=11.4 \mathrm{~V}$.

Problem 2.49

Let R_{5} be the equivalent resistance of the parallel connection of R_{1} and R_{2}. Then, we have $R_{5}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}=\frac{30 k \times 95 k}{30 k+95 k}=\frac{2850}{125} k=22.8 \mathrm{k} \Omega$

Let R_{6} be the equivalent resistance of the parallel connection of R_{3} and R_{4}. Then, we have $R_{6}=\frac{R_{3} R_{4}}{R_{3}+R_{4}}=\frac{62 k \times 93 k}{62 k+93 k}=\frac{5766}{155} k=37.2 \mathrm{k} \Omega$

The circuit reduces to

The voltage V_{1} across R_{5} is given by
$V_{1}=\frac{R_{5}}{R_{5}+R_{6}} V_{S}=\frac{22.8}{22.8+37.2} \times 30 \mathrm{~V}=\frac{22.8}{60} \times 30 \mathrm{~V}=\frac{22.8}{2} \mathrm{~V}=11.4 \mathrm{~V}$
The voltage V_{2} across R_{6} is given by
$V_{2}=\frac{R_{6}}{R_{5}+R_{6}} V_{s}=\frac{37.2}{22.8+37.2} \times 30 \mathrm{~V}=\frac{37.2}{60} \times 30 \mathrm{~V}=\frac{37.2}{2} \mathrm{~V}=18.6 \mathrm{~V}$

Notice that V_{2} can also be obtained from $\mathrm{V}_{2}=\mathrm{V}_{\mathrm{S}}-\mathrm{V}_{1}=30-11.4=18.6 \mathrm{~V}$.

Problem 2.50

Let R_{5} be the combined resistance of the series connection of R_{3} and R_{4}. Then, we have
$\mathrm{R}_{5}=\mathrm{R}_{3}+\mathrm{R}_{4}=24 \mathrm{k} \Omega+60 \mathrm{k} \Omega=84 \mathrm{k} \Omega$.
Let R_{6} be the equivalent resistance of the parallel connection of R_{2} and R_{5}. Then, R_{6} is given by $R_{6}=R_{2} \| R_{5}=\frac{R_{2} R_{5}}{R_{2}+R_{5}}=\frac{42 k \times 84 k}{42 k+84 k}=\frac{3528}{126} k=28 \mathrm{k} \Omega$

The circuit reduces to

The voltage V_{1} across R_{6} is given by
$V_{1}=\frac{R_{6}}{R_{1}+R_{6}} V_{s}=\frac{28}{22+28} \times 20 \mathrm{~V}=\frac{28}{50} \times 20 \mathrm{~V}=\frac{56}{5} \mathrm{~V}=11.2 \mathrm{~V}$
The voltage V_{1} is split between R_{3} and R_{4} in proportion to the resistance values. Applying the voltage divider rule, we have

$$
V_{2}=\frac{R_{4}}{R_{3}+R_{4}} V_{1}=\frac{60}{24+60} \times 11.2 \mathrm{~V}=\frac{60}{84} \times 11.2 \mathrm{~V}=8 \mathrm{~V}
$$

Problem 2.51

Let R_{6} be the equivalent resistance of the parallel connection of R_{4} and R_{5}. Then, we have
$R_{6}=\frac{R_{4} R_{5}}{R_{4}+R_{5}}=\frac{22 k \times 99 k}{22 k+99 k}=\frac{2178}{121} k=18 \mathrm{k} \Omega$
Let R_{7} be the equivalent resistance of the series connection of R_{3} and R_{6}. Then, we have
$\mathrm{R}_{7}=\mathrm{R}_{3}+\mathrm{R}_{6}=70 \mathrm{k} \Omega+18 \mathrm{k} \Omega=88 \mathrm{k} \Omega$.
Let R_{8} be the equivalent resistance of the parallel connection of R_{2} and R_{7}. Then, we have
$R_{8}=\frac{R_{2} R_{7}}{R_{2}+R_{7}}=\frac{33 k \times 88 k}{33 k+88 k}=\frac{2904}{121} k=24 \mathrm{k} \Omega$
The circuit reduces to

The voltage V_{1} across R_{8} is given by

$$
V_{1}=\frac{R_{8}}{R_{1}+R_{8}} V_{s}=\frac{24}{6+24} \times 45 V=\frac{24}{30} \times 45 V=\frac{72}{2} V=36 \mathrm{~V}
$$

The voltage across R_{1} is given by

$$
V_{R 1}=\frac{R_{1}}{R_{1}+R_{8}} V_{s}=\frac{6}{6+24} \times 45 V=\frac{6}{30} \times 45 V=\frac{18}{2} V=9 \mathrm{~V}
$$

The voltage V_{1} is split between R_{3} and R_{6} in proportion to the resistance values. Applying the voltage divider rule, we obtain

$$
V_{2}=\frac{R_{6}}{R_{3}+R_{6}} V_{1}=\frac{18}{70+18} \times 36 V=\frac{18}{88} \times 36 V=\frac{81}{11} V=7.3636 \mathrm{~V}
$$

The voltage across R_{3} is given by

$$
V_{R 3}=\frac{R_{3}}{R_{3}+R_{6}} V_{1}=\frac{70}{70+18} \times 36 V=\frac{70}{88} \times 36 V=\frac{315}{11} V=28.6364 \mathrm{~V}
$$

Problem 2.52

Let R_{8} be the equivalent resistance of the parallel connection of R_{6} and R_{7}. Then, we have $R_{8}=\frac{R_{6} R_{7}}{R_{6}+R_{7}}=\frac{6 \times 12}{6+12} k=\frac{72}{18} k=4 k \Omega$

Let R_{9} be the equivalent resistance of the series connection of R_{5} and R_{8}. Then, we have
$\mathrm{R}_{9}=\mathrm{R}_{5}+\mathrm{R}_{8}=5 \mathrm{k} \Omega+4 \mathrm{k} \Omega=9 \mathrm{k} \Omega$.
Let R_{10} be the equivalent resistance of the parallel connection of R_{4} and R_{9}. Then, we have

$$
R_{10}=\frac{R_{4} R_{9}}{R_{4}+R_{9}}=\frac{18 \times 9}{18+9} k=\frac{162}{27} k=6 \mathrm{k} \Omega
$$

Let R_{11} be the equivalent resistance of the series connection of R_{3} and R_{10}. Then, we have
$\mathrm{R}_{11}=\mathrm{R}_{3}+\mathrm{R}_{10}=4 \mathrm{k} \Omega+6 \mathrm{k} \Omega=10 \mathrm{k} \Omega$.
Let R_{12} be the equivalent resistance of the parallel connection of R_{2} and R_{11}. Then, we have $R_{12}=\frac{R_{2} R_{11}}{R_{2}+R_{11}}=\frac{40 \times 10}{40+10} k=\frac{400}{50} k=8 \mathrm{k} \Omega$

The circuit reduces to

The voltage V_{1} across R_{12} is given by

$$
V_{1}=\frac{R_{12}}{R_{1}+R_{12}} V_{s}=\frac{8}{4+8} \times 24 V=\frac{8}{12} \times 24 V=16 \mathrm{~V}
$$

The voltage across R_{1} is given by
$V_{R 1}=\frac{R_{1}}{R_{1}+R_{12}} V_{s}=\frac{4}{4+8} \times 24 \mathrm{~V}=\frac{4}{12} \times 24 \mathrm{~V}=8 \mathrm{~V}$
The voltage V_{1} is split between R_{3} and R_{10} in proportion to the resistance values. Applying the voltage divider rule, we obtain
$V_{2}=\frac{R_{10}}{R_{3}+R_{10}} V_{1}=\frac{6}{4+6} \times 16 \mathrm{~V}=\frac{6}{10} \times 16 \mathrm{~V}=\frac{48}{5} \mathrm{~V}=9.6 \mathrm{~V}$

The voltage across R_{3} is given by
$V_{R 3}=\frac{R_{3}}{R_{3}+R_{10}} V_{1}=\frac{4}{4+6} \times 16 \mathrm{~V}=\frac{4}{10} \times 16 \mathrm{~V}=\frac{32}{5} \mathrm{~V}=6.4 \mathrm{~V}$
The voltage V_{2} is split between R_{5} and R_{8} in proportion to the resistance values. Applying the voltage divider rule, we obtain
$V_{3}=\frac{R_{8}}{R_{5}+R_{8}} V_{2}=\frac{4}{5+4} \times 9.6 \mathrm{~V}=\frac{4}{9} \times 9.6 \mathrm{~V}=\frac{12.8}{3} \mathrm{~V}=4.2667 \mathrm{~V}$
The voltage across R_{5} is given by
$V_{R 5}=\frac{R_{5}}{R_{5}+R_{8}} V_{2}=\frac{5}{5+4} \times 9.6 \mathrm{~V}=\frac{5}{9} \times 9.6 \mathrm{~V}=\frac{16}{3} \mathrm{~V}=5.3333 \mathrm{~V}$

Problem 2.53

Let R_{7} be the equivalent resistance of the parallel connection of $\mathrm{R}_{4}, \mathrm{R}_{5}$ and R_{6}. Then, we have

$$
R_{7}=\frac{1}{\frac{1}{\mathrm{R}_{4}}+\frac{1}{\mathrm{R}_{5}}+\frac{1}{\mathrm{R}_{6}}}=\frac{1}{\frac{1}{30}+\frac{1}{36}+\frac{1}{45}} k=12 \mathrm{k} \Omega
$$

Let R_{8} be the equivalent resistance of the series connection of R_{3} and R_{7}. Then, we have
$\mathrm{R}_{8}=\mathrm{R}_{3}+\mathrm{R}_{7}=8 \mathrm{k} \Omega+12 \mathrm{k} \Omega=20 \mathrm{k} \Omega$.

Let R_{9} be the equivalent resistance of the parallel connection of R_{2} and R_{8}. Then, we have

$$
R_{9}=\frac{R_{2} R_{8}}{R_{2}+R_{8}}=\frac{80 \times 20}{80+20} k=\frac{1600}{100} k=16 \mathrm{k} \Omega
$$

The circuit reduces to

The voltage V_{1} across R_{9} is given by

$$
V_{1}=\frac{R_{9}}{R_{1}+R_{9}} V_{s}=\frac{16}{9+16} \times 10 V=\frac{16}{25} \times 10 V=\frac{32}{5} V=6.4 \mathrm{~V}
$$

The voltage across R_{1} is given by
$V_{R 1}=\frac{R_{1}}{R_{1}+R_{9}} V_{s}=\frac{9}{9+16} \times 10 \mathrm{~V}=\frac{9}{25} \times 10 \mathrm{~V}=\frac{18}{5} \mathrm{~V}=3.6 \mathrm{~V}$
The voltage V_{1} is split between R_{3} and R_{7} in proportion to the resistance values. Applying the voltage divider rule, we obtain

$$
V_{2}=\frac{R_{7}}{R_{3}+R_{7}} V_{1}=\frac{12}{8+12} \times 6.4 V=\frac{12}{20} \times 6.4 V=\frac{96}{25} V=3.84 \mathrm{~V}
$$

The voltage across R_{3} is given by

$$
V_{R 3}=\frac{R_{3}}{R_{3}+R_{7}} V_{1}=\frac{8}{8+12} \times 6.4 \mathrm{~V}=\frac{8}{20} \times 6.4 \mathrm{~V}=\frac{64}{25} \mathrm{~V}=2.56 \mathrm{~V}
$$

Problem 2.54

Let R_{9} be the equivalent resistance of the parallel connection of $\mathrm{R}_{6}, \mathrm{R}_{7}$ and R_{8}. Then, we have
$R_{9}=\frac{1}{\frac{1}{\mathrm{R}_{6}}+\frac{1}{\mathrm{R}_{7}}+\frac{1}{\mathrm{R}_{8}}}=\frac{1}{\frac{1}{18}+\frac{1}{27}+\frac{1}{54}} k=9 k \Omega$
Let R_{10} be the equivalent resistance of the series connection of R_{5} and R_{9}. Then, we have
$\mathrm{R}_{10}=\mathrm{R}_{5}+\mathrm{R}_{9}=6 \mathrm{k} \Omega+9 \mathrm{k} \Omega=15 \mathrm{k} \Omega$.
Let R_{11} be the equivalent resistance of the parallel connection of R_{4} and R_{10}. Then, we have $R_{11}=\frac{R_{4} R_{10}}{R_{4}+R_{10}}=\frac{30 \times 15}{30+15} k=\frac{450}{45} k=10 k \Omega$

Let R_{12} be the equivalent resistance of the series connection of R_{3} and R_{11}. Then, we have
$\mathrm{R}_{12}=\mathrm{R}_{3}+\mathrm{R}_{11}=10 \mathrm{k} \Omega+10 \mathrm{k} \Omega=20 \mathrm{k} \Omega$.
Let R_{13} be the equivalent resistance of the parallel connection of R_{2} and R_{12}. Then, we have

$$
R_{13}=\frac{R_{2} R_{12}}{R_{2}+R_{12}}=\frac{30 \times 20}{30+20} k=\frac{600}{50} k=12 \mathrm{k} \Omega
$$

The circuit reduces to

The voltage V_{1} across R_{13} is given by
$V_{1}=\frac{R_{13}}{R_{1}+R_{13}} V_{s}=\frac{12}{8+12} \times 20 \mathrm{~V}=\frac{12}{20} \times 20 \mathrm{~V}=12 \mathrm{~V}$
The voltage across R_{1} is given by

$$
V_{R 1}=\frac{R_{1}}{R_{1}+R_{13}} V_{s}=\frac{8}{8+12} \times 20 \mathrm{~V}=\frac{8}{20} \times 20 \mathrm{~V}=8 \mathrm{~V}
$$

The voltage V_{1} is split between R_{3} and R_{11} in proportion to the resistance values. Applying the voltage divider rule, we obtain
$V_{2}=\frac{R_{11}}{R_{3}+R_{11}} V_{1}=\frac{10}{10+10} \times 12 \mathrm{~V}=\frac{10}{20} \times 12 \mathrm{~V}=6 \mathrm{~V}$

The voltage across R_{3} is given by
$V_{R 3}=\frac{R_{3}}{R_{3}+R_{11}} V_{1}=\frac{10}{10+10} \times 12 \mathrm{~V}=\frac{10}{20} \times 12 \mathrm{~V}=6 \mathrm{~V}$
The voltage V_{2} is split between R_{5} and R_{9} in proportion to the resistance values. Applying the voltage divider rule, we obtain
$V_{3}=\frac{R_{9}}{R_{5}+R_{9}} V_{2}=\frac{9}{6+9} \times 6 \mathrm{~V}=\frac{9}{15} \times 6 \mathrm{~V}=\frac{18}{5} \mathrm{~V}=3.6 \mathrm{~V}$
The voltage across R_{5} is given by
$V_{R 5}=\frac{R_{5}}{R_{5}+R_{9}} V_{2}=\frac{6}{6+9} \times 6 \mathrm{~V}=\frac{6}{15} \times 6 \mathrm{~V}=\frac{12}{5} \mathrm{~V}=2.4 \mathrm{~V}$

Problem 2.55

Let R_{7} be the equivalent resistance of the parallel connection of R_{4}, R_{5} and R_{6}. Then, we have
$R_{7}=\frac{1}{\frac{1}{\mathrm{R}_{4}}+\frac{1}{\mathrm{R}_{5}}+\frac{1}{\mathrm{R}_{6}}}=\frac{1}{\frac{1}{30}+\frac{1}{60}+\frac{1}{80}} k=16 \mathrm{k} \Omega$

Let R_{8} be the equivalent resistance of the series connection of R_{1} and R_{2}. Then, we have
$\mathrm{R}_{9}=\mathrm{R}_{1}+\mathrm{R}_{2}=10 \mathrm{k} \Omega+30 \mathrm{k} \Omega=40 \mathrm{k} \Omega$.
Let R_{10} be the equivalent resistance of the parallel connection of R_{3} and R_{9}. Then, we have
$R_{10}=\frac{R_{3} R_{9}}{R_{3}+R_{9}}=\frac{10 \times 40}{10+40} k=\frac{400}{50} k=8 \mathrm{k} \Omega$
R_{10} is in series with R_{7}. The circuit reduces to

The voltage V_{2} across R_{7} is given by

$$
V_{2}=\frac{R_{7}}{R_{10}+R_{7}} V_{S}=\frac{16}{8+16} \times 30 \mathrm{~V}=\frac{16}{24} \times 30 \mathrm{~V}=20 \mathrm{~V}
$$

The voltage across R_{10} is given by
$V_{R 10}=\frac{R_{10}}{R_{10}+R_{7}} V_{S}=\frac{8}{8+16} \times 30 \mathrm{~V}=\frac{8}{24} \times 30 \mathrm{~V}=10 \mathrm{~V}$

The voltage $\mathrm{V}_{\mathrm{R} 10}$ is split between R_{1} and R_{2} in proportion to the resistance values. Applying the voltage divider rule, we obtain
$V_{1}=V_{2}+\frac{R_{2}}{R_{1}+R_{2}} V_{R 10}=20+\frac{30}{10+30} \times 10 \mathrm{~V}=20+\frac{30}{40} \times 10 \mathrm{~V}=27.5 \mathrm{~V}$

Problem 2.56

Let R_{7} be the equivalent resistance of the parallel connection of $R_{2}+R_{4}$ and $R_{3}+R_{5}$. Then we have
$R_{7}=\left(R_{2}+R_{4}\right)\left\|\left(R_{3}+R_{5}\right)=5 k\right\| 5 k=\frac{5 k \times 5 k}{5 k+5 k}=\frac{25 k^{2}}{10 k}=2.5 k \Omega$

The voltage Vs is divided across $\mathrm{R}_{1}, \mathrm{R}_{7}$, and R_{6} in proportion to the resistance values. The voltage across R_{7} is given by
$V_{R 7}=\frac{R_{7}}{R_{1}+R_{7}+R_{6}} V_{S}=\frac{2.5}{1+2.5+1.5} \times 10 \mathrm{~V}=\frac{2.5}{5} \times 10 \mathrm{~V}=5 \mathrm{~V}$

The voltage across R_{1} is given by
$V_{R 1}=\frac{R_{1}}{R_{1}+R_{7}+R_{6}} V_{S}=\frac{1}{1+2.5+1.5} \times 10 \mathrm{~V}=\frac{1}{5} \times 10 \mathrm{~V}=2 \mathrm{~V}$

The voltage across R_{6} is given by
$V_{R 6}=\frac{R_{6}}{R_{1}+R_{7}+R_{6}} V_{S}=\frac{1.5}{1+2.5+1.5} \times 10 \mathrm{~V}=\frac{1.5}{5} \times 10 \mathrm{~V}=3 \mathrm{~V}$
The voltage $\mathrm{V}_{\mathrm{R} 7}$ is divided across R_{2} and R_{4} in proportion to the resistance values. Thus, we have
$V_{R 2}=\frac{R_{2}}{R_{2}+R_{4}} V_{R 7}=\frac{1}{1+4} \times 5 \mathrm{~V}=\frac{1}{5} \times 5 \mathrm{~V}=1 \mathrm{~V}$
$V_{R 4}=\frac{R_{4}}{R_{2}+R_{4}} V_{R 7}=\frac{4}{1+4} \times 5 \mathrm{~V}=\frac{4}{5} \times 5 \mathrm{~V}=4 \mathrm{~V}$
The voltage $V_{R 7}$ is divided across R_{3} and R_{5} in proportion to the resistance values. Thus, we have
$V_{R 3}=\frac{R_{3}}{R_{3}+R_{5}} V_{R 7}=\frac{3}{3+2} \times 5 \mathrm{~V}=\frac{3}{5} \times 5 \mathrm{~V}=3 \mathrm{~V}$
$V_{R 5}=\frac{R_{5}}{R_{3}+R_{5}} V_{R 7}=\frac{2}{3+2} \times 5 \mathrm{~V}=\frac{2}{5} \times 5 \mathrm{~V}=2 \mathrm{~V}$
The voltage at node $a, \mathrm{~V}_{\mathrm{a}}$, is the sum of $\mathrm{V}_{\mathrm{R} 4}$ and $\mathrm{V}_{\mathrm{R} 6}$. Thus, we have
$\mathrm{V}_{\mathrm{a}}=\mathrm{V}_{\mathrm{R} 4}+\mathrm{V}_{\mathrm{R} 6}=4 \mathrm{~V}+3 \mathrm{~V}=7 \mathrm{~V}$
The voltage at node $b, \mathrm{~V}_{\mathrm{b}}$, is the sum of $\mathrm{V}_{\mathrm{R} 5}$ and $\mathrm{V}_{\mathrm{R} 6}$. Thus, we have
$\mathrm{V}_{\mathrm{b}}=\mathrm{V}_{\mathrm{R} 5}+\mathrm{V}_{\mathrm{R} 6}=2 \mathrm{~V}+3 \mathrm{~V}=5 \mathrm{~V}$
The voltage V_{ab} is the difference of V_{a} and V_{b}, that is,
$\mathrm{V}_{\mathrm{ab}}=\mathrm{V}_{\mathrm{a}}-\mathrm{V}_{\mathrm{b}}=7 \mathrm{~V}-5 \mathrm{~V}=2 \mathrm{~V}$.

Problem 2.57

Let $\mathrm{R}_{7}=\mathrm{R}_{2} \| \mathrm{R}_{3}$ and $\mathrm{R}_{8}=\mathrm{R}_{5} \| \mathrm{R}_{6}$. Then, we have
$R_{7}=R_{2} \| R_{3}=\frac{R_{2} \times R_{3}}{R_{2}+R_{3}}=\frac{5 k \Omega \times 5 k \Omega}{5 k \Omega+5 k \Omega}=\frac{25}{10} k \Omega=2.5 k \Omega$
$R_{8}=R_{5} \| R_{6}=\frac{R_{5} \times R_{6}}{R_{5}+R_{6}}=\frac{2 k \Omega \times 8 k \Omega}{2 k \Omega+8 k \Omega}=\frac{16}{10} k \Omega=1.6 k \Omega$

The equivalent resistance seen from the voltage source is
$\mathrm{R}_{\mathrm{eq}}=\mathrm{R}_{1}+\mathrm{R}_{7}+\mathrm{R}_{4}+\mathrm{R}_{8}=0.5 \mathrm{k} \Omega+2.5 \mathrm{k} \Omega+0.4 \mathrm{k} \Omega+1.6 \mathrm{k} \Omega=5 \mathrm{k} \Omega$
From Ohm's law, the current I_{1} is given by
$I_{1}=\frac{V_{S}}{R_{e q}}=\frac{10 \mathrm{~V}}{5 k \Omega}=2 \mathrm{~mA}$
The voltage drop across R_{1} is $I_{1} R_{1}=2 \mathrm{~mA} \times 0.5 \mathrm{k} \Omega=1 \mathrm{~V}$. The voltage V_{1} is given by
$\mathrm{V}_{1}=\mathrm{V}_{\mathrm{S}}-\mathrm{I}_{1} \mathrm{R}_{1}=10 \mathrm{~V}-1 \mathrm{~V}=9 \mathrm{~V}$.
Since $\mathrm{R}_{2}=\mathrm{R}_{3}, \mathrm{I}_{2}=\mathrm{I}_{3}=\mathrm{I}_{1} / 2=1 \mathrm{~mA}$. The voltage drop across R_{7} is $\mathrm{I}_{1} \times \mathrm{R}_{7}=2 \mathrm{~mA} \times 2.5 \mathrm{k} \Omega=5 \mathrm{~V}$. We can get the same voltage drop from $I_{2} R_{2}=I_{3} R_{3}=5 \mathrm{~V}$. The voltage V_{2} is given by
$\mathrm{V}_{2}=\mathrm{V}_{1}-5 \mathrm{~V}=9 \mathrm{~V}-5 \mathrm{~V}=4 \mathrm{~V}$.
The voltage drop across R_{4} is $\mathrm{I}_{1} \times \mathrm{R}_{4}=2 \mathrm{~mA} \times 0.4 \mathrm{k} \Omega=0.8 \mathrm{~V}$. The voltage V_{3} is given by
$\mathrm{V}_{3}=\mathrm{V}_{2}-0.8 \mathrm{~V}=4 \mathrm{~V}-0.8 \mathrm{~V}=3.2 \mathrm{~V}$.
The current through R_{5} is given by
$I_{4}=\frac{V_{3}}{R_{5}}=\frac{3.2 \mathrm{~V}}{2 k \Omega}=1.6 \mathrm{~mA}$
The current through R_{6} is given by
$I_{5}=\frac{V_{3}}{R_{6}}=\frac{3.2 \mathrm{~V}}{8 k \Omega}=0.4 \mathrm{~mA}$

Problem 2.58

From the current divider rule, the current $\mathrm{I}_{\mathrm{R} 1}$ is given by
$I_{R 1}=\frac{R_{2}}{R_{1}+R_{2}} I_{S}=\frac{3}{2+3} \times 10 \mathrm{~mA}=6 \mathrm{~mA}$
Similarly, the current $\mathrm{I}_{\mathrm{R} 2}$ is given by
$I_{R 2}=\frac{R_{1}}{R_{1}+R_{2}} I_{S}=\frac{2}{2+3} \times 10 \mathrm{~mA}=4 \mathrm{~mA}$

Problem 2.59

From the current divider rule, the current $\mathrm{I}_{\mathrm{R} 1}$ is given by
$I_{R 1}=\frac{\frac{1}{R_{1}}}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}} I_{S}=\frac{\frac{1}{2}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}} \times 26 \mathrm{~mA}=\frac{\frac{1}{2}}{\frac{6}{12}+\frac{4}{12}+\frac{3}{12}} \times 26 \mathrm{~mA}=12 \mathrm{~mA}$
Similarly, the currents $\mathrm{I}_{\mathrm{R} 2}$ and $\mathrm{I}_{\mathrm{R} 3}$ are given respectively by

$$
\begin{aligned}
& I_{R 2}=\frac{\frac{1}{R_{2}}}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}} I_{S}=\frac{\frac{1}{3}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}} \times 26 m A=\frac{\frac{1}{3}}{\frac{6}{12}+\frac{4}{12}+\frac{3}{12}} \times 26 m A=8 m A \\
& I_{R 3}=\frac{\frac{1}{R_{3}}}{\frac{1}{R_{1}}+\frac{1}{R_{2}}+\frac{1}{R_{3}}} I_{S}=\frac{\frac{1}{4}}{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}} \times 26 m A=\frac{\frac{1}{4}}{\frac{6}{12}+\frac{4}{12}+\frac{3}{12}} \times 26 m A=6 m A
\end{aligned}
$$

Problem 2.60

Let R_{6} be the equivalent resistance of the parallel connection of R_{2} and R_{3}. Then, R_{6} is given by $R_{6}=\frac{R_{2} R_{3}}{R_{2}+R_{3}}=\frac{30 k \times 60 k}{30 k+60 k}=\frac{1800}{90} k=20 k \Omega$

Let R_{7} be the equivalent resistance of the parallel connection of R_{4} and R_{5}. Then, R_{7} is given by
$R_{7}=\frac{R_{4} R_{5}}{R_{4}+R_{5}}=\frac{90 k \times 180 k}{90 k+180 k}=\frac{180}{3} k=60 k \Omega$
Let R_{8} be the equivalent resistance of the series connection of R_{6} and R_{7}. Then, R_{8} is given by
$\mathrm{R}_{8}=\mathrm{R}_{6}+\mathrm{R}_{7}=80 \mathrm{k} \Omega$
The current from the current source I_{S} is split into $\mathrm{I}_{\mathrm{R} 1}$ and $\mathrm{I}_{\mathrm{R} 8}$ according to the current divider rule. Thus, we have
$I_{R 1}=\frac{R_{8}}{R_{1}+R_{8}} I_{S}=\frac{80}{20+80} \times 48 \mathrm{~mA}=38.4 \mathrm{~mA}$
$I_{R 8}=\frac{R_{1}}{R_{1}+R_{8}} I_{S}=\frac{20}{20+80} \times 48 \mathrm{~mA}=9.6 \mathrm{~mA}$
The current $\mathrm{I}_{\mathrm{R} 8}$ is split into $\mathrm{I}_{\mathrm{R} 2}$ and $\mathrm{I}_{\mathrm{R} 3}$ according to the current divider rule. Thus, we have
$I_{R 2}=\frac{R_{3}}{R_{2}+R_{3}} I_{R 8}=\frac{60}{30+60} \times 9.6 \mathrm{~mA}=6.4 \mathrm{~mA}$
$I_{R 3}=\frac{R_{2}}{R_{2}+R_{3}} I_{R 8}=\frac{30}{30+60} \times 9.6 \mathrm{~mA}=3.2 \mathrm{~mA}$
The current $\mathrm{I}_{\mathrm{R} 8}$ is split into $\mathrm{I}_{\mathrm{R} 4}$ and $\mathrm{I}_{\mathrm{R} 5}$ according to the current divider rule. Thus, we have
$I_{R 4}=\frac{R_{5}}{R_{4}+R_{5}} I_{R 8}=\frac{180}{90+180} \times 9.6 \mathrm{~mA}=6.4 \mathrm{~mA}$
$I_{R 5}=\frac{R_{4}}{R_{4}+R_{5}} I_{R 8}=\frac{90}{90+180} \times 9.6 \mathrm{~mA}=3.2 \mathrm{~mA}$

Problem 2.61

$R_{3} \| R_{4}=\frac{R_{3} \times R_{4}}{R_{3}+R_{4}}=\frac{4 k \Omega \times 6 \mathrm{k} \Omega}{4 k \Omega+6 k \Omega}=\frac{24}{10} k \Omega=2.4 \mathrm{k} \Omega$
$\mathrm{R}_{5}=\mathrm{R}_{2}+\left(\mathrm{R}_{3}| | \mathrm{R}_{4}\right)=0.6 \mathrm{k} \Omega+2.4 \mathrm{k} \Omega=3 \mathrm{k} \Omega$
The current from the current source, $I_{S}=2 \mathrm{~mA}$, is split between I_{1} and I_{2} based on the current divider rule.
$I_{1}=I_{S} \times \frac{R_{5}}{R_{1}+R_{5}}=2 \mathrm{~mA} \times \frac{3 \mathrm{k} \Omega}{7 \mathrm{k} \Omega+3 \mathrm{k} \Omega}=0.6 \mathrm{~mA}$
$I_{2}=I_{S} \times \frac{R_{1}}{R_{1}+R_{5}}=2 \mathrm{~mA} \times \frac{7 \mathrm{k} \Omega}{7 \mathrm{k} \Omega+3 \mathrm{k} \Omega}=1.4 \mathrm{~mA}$
The currents I_{3} and I_{4} are found by applying the current divider rule on R_{3} and R_{4}.
$I_{3}=I_{2} \times \frac{R_{4}}{R_{3}+R_{4}}=1.4 \mathrm{~mA} \times \frac{6 \mathrm{k} \Omega}{4 \mathrm{k} \Omega+6 \mathrm{k} \Omega}=0.84 \mathrm{~mA}$
$I_{4}=I_{2} \times \frac{R_{3}}{R_{3}+R_{4}}=1.4 \mathrm{~mA} \times \frac{4 k \Omega}{4 \mathrm{k} \Omega+6 \mathrm{k} \Omega}=0.56 \mathrm{~mA}$
The voltages V_{1} and V_{2} are found by applying Ohm's law.
$\mathrm{V}_{1}=\mathrm{I}_{1} \times \mathrm{R}_{1}=0.6 \mathrm{~mA} \times 7 \mathrm{k} \Omega=4.2 \mathrm{~V}$
$\mathrm{V}_{2}=\mathrm{I}_{3} \times \mathrm{R}_{3}=0.84 \mathrm{~mA} \times 4 \mathrm{k} \Omega=3.36 \mathrm{~V}$

Problem 2.62

Let R_{a} be the equivalent resistance of the series connection of R_{2} and R_{3}. Then, we have
$\mathrm{R}_{\mathrm{a}}=\mathrm{R}_{2}+\mathrm{R}_{3}=2 \mathrm{k} \Omega+5 \mathrm{k} \Omega=7 \mathrm{k} \Omega$
Application of current divider rule yields
$I_{1}=I_{s} \times \frac{R_{a}}{R_{1}+R_{a}}=20 \mathrm{~mA} \times \frac{7}{3+7}=14 \mathrm{~mA}$
$I_{2}=I_{s} \times \frac{R_{1}}{R_{1}+R_{a}}=20 \mathrm{~mA} \times \frac{3}{3+7}=6 \mathrm{~mA}$
Problem 2.63
Let R_{a} be the equivalent resistance of the parallel connection of R_{2} and R_{3}. Then, we have
$R_{a}=\frac{R_{2} \times R_{3}}{R_{2}+R_{3}}=\frac{20 \times 20}{20+20} k=10 \mathrm{k} \Omega$
Application of voltage divider rule yields
$V_{1}=V_{s} \times \frac{R_{a}}{R_{1}+R_{a}}=50 \mathrm{~V} \times \frac{10}{15+10}=20 \mathrm{~V}$
Application of Ohm's law yields
$I_{2}=\frac{V_{1}}{R_{2}}=\frac{20 \mathrm{~V}}{20 \mathrm{k} \Omega}=1 \mathrm{~mA}$
$I_{3}=\frac{V_{1}}{R_{3}}=\frac{20 \mathrm{~V}}{20 \mathrm{k} \Omega}=1 \mathrm{~mA}$

From KCL, we have
$\mathrm{I}_{1}=\mathrm{I}_{2}+\mathrm{I}_{3}=1 \mathrm{~mA}+1 \mathrm{~mA}=2 \mathrm{~mA}$

Problem 2.64

Let R_{8} be the equivalent resistance of the parallel connection of R_{6} and R_{7}. Then, R_{8} is given by
$R_{8}=\frac{R_{6} R_{7}}{R_{6}+R_{7}}=\frac{9 k \times 18 k}{9 k+18 k}=\frac{18}{3} k=6 k \Omega$
Let R_{9} be the equivalent resistance of the series connection of R_{5} and R_{8}. Then, R_{9} is given by
$\mathrm{R}_{9}=\mathrm{R}_{5}+\mathrm{R}_{8}=10 \mathrm{k} \Omega$
Let R_{10} be the equivalent resistance of the parallel connection of R_{3}, R_{4} and R_{9}. Then, R_{10} is given by

$$
R_{10}=\frac{1}{\frac{1}{R_{3}}+\frac{1}{R_{4}}+\frac{1}{R_{9}}}=\frac{1}{\frac{1}{20 k}+\frac{1}{20 k}+\frac{1}{10 k}}=\frac{20 k}{4}=5 k \Omega
$$

Let R_{11} be the equivalent resistance of the series connection of R_{2} and R_{10}. Then, R_{11} is given by
$\mathrm{R}_{11}=\mathrm{R}_{2}+\mathrm{R}_{10}=10 \mathrm{k} \Omega$
The current from the current source I_{S} is split into $\mathrm{I}_{\mathrm{R} 1}$ and $\mathrm{I}_{\mathrm{R} 11}$ according to the current divider rule. Thus, we have
$I_{R 1}=\frac{R_{11}}{R_{1}+R_{11}} I_{S}=\frac{10}{15+10} \times 50 \mathrm{~mA}=20 \mathrm{~mA}$
$I_{R 11}=\frac{R_{1}}{R_{1}+R_{11}} I_{S}=\frac{15}{15+10} \times 50 \mathrm{~mA}=30 \mathrm{~mA}$
Notice that $\mathrm{I}_{\mathrm{R} 2}=\mathrm{I}_{\mathrm{R} 11}=30 \mathrm{~mA}$.
The current $\mathrm{I}_{\mathrm{R} 11}$ is split into $\mathrm{I}_{\mathrm{R} 3}, \mathrm{I}_{\mathrm{R} 4}$ and $\mathrm{I}_{\mathrm{R} 9}$ according to the current divider rule. Thus, we have
$I_{R 3}=\frac{\frac{1}{R_{3}}}{\frac{1}{R_{3}}+\frac{1}{R_{4}}+\frac{1}{R_{9}}} I_{R 11}=\frac{\frac{1}{20}}{\frac{1}{20}+\frac{1}{20}+\frac{1}{10}} \times 30 \mathrm{~mA}=\frac{1}{4} \times 30 \mathrm{~mA}=7.5 \mathrm{~mA}$

$$
\begin{aligned}
& I_{R 4}=\frac{\frac{1}{R_{4}}}{\frac{1}{R_{3}}+\frac{1}{R_{4}}+\frac{1}{R_{9}}} I_{R 11}=\frac{\frac{1}{20}}{\frac{1}{20}+\frac{1}{20}+\frac{1}{10}} \times 30 \mathrm{~mA}=\frac{1}{4} \times 30 \mathrm{~mA}=7.5 \mathrm{~mA} \\
& I_{R 9}=\frac{\frac{1}{R_{9}}}{\frac{1}{R_{3}}+\frac{1}{R_{4}}+\frac{1}{R_{9}}} I_{R 11}=\frac{\frac{1}{10 \mathrm{k}}}{\frac{1}{20 k}+\frac{1}{20 k}+\frac{1}{10 \mathrm{k}}} \times 30 \mathrm{~mA}=\frac{2}{4} \times 30 \mathrm{~mA}=15 \mathrm{~mA}
\end{aligned}
$$

Notice that $\mathrm{I}_{\mathrm{R} 5}=\mathrm{I}_{\mathrm{R} 9}=15 \mathrm{~mA}$.
The current $\mathrm{I}_{\mathrm{R} 9}$ is split into $\mathrm{I}_{\mathrm{R} 6}$ and $\mathrm{I}_{\mathrm{R} 7}$ according to the current divider rule. Thus, we have

$$
\begin{aligned}
& I_{R 6}=\frac{R_{7}}{R_{6}+R_{7}} I_{R 9}=\frac{18 k}{9 k+18 k} \times 15 \mathrm{~mA}=\frac{2}{3} \times 15 \mathrm{~mA}=10 \mathrm{~mA} \\
& I_{R 7}=\frac{R_{6}}{R_{6}+R_{7}} I_{R 9}=\frac{9 k}{9 k+18 k} \times 15 \mathrm{~mA}=\frac{1}{3} \times 15 \mathrm{~mA}=5 \mathrm{~mA}
\end{aligned}
$$

Problem 2.65

Let R_{a} be the equivalent resistance of the parallel connection of R_{1} and R_{2}. Then, we have

$$
R_{a}=\frac{R_{1} \times R_{2}}{R_{1}+R_{2}}=\frac{90 \times 180}{90+180}=\frac{1 \times 180}{1+2}=60 \Omega
$$

Let R_{b} be the equivalent resistance of the parallel connection of R_{4} and R_{5}. Then, we have
$R_{b}=\frac{R_{4} \times R_{5}}{R_{4}+R_{5}}=\frac{100 \times 150}{100+150}=\frac{2 \times 150}{2+3}=60 \Omega$
Let R_{c} be the equivalent resistance of the series connection of R_{a} and R_{b}. Then, we have
$\mathrm{R}_{\mathrm{c}}=\mathrm{R}_{\mathrm{a}}+\mathrm{R}_{\mathrm{b}}=60 \Omega+60 \Omega=120 \Omega$
Application of current divider rule yields
$I_{3}=I_{s} \times \frac{R_{c}}{R_{3}+R_{c}}=9.6 \mathrm{~mA} \times \frac{120}{360+120}=2.4 \mathrm{~mA}$
From Ohm's law, the voltage across R_{3} is given by
$\mathrm{V}_{1}=\mathrm{R}_{3} \mathrm{I}_{3}=360 \Omega \times 0.0024 \mathrm{~A}=0.864 \mathrm{~V}$

Application of voltage divider rule yields

$V_{2}=V_{1} \times \frac{R_{b}}{R_{a}+R_{b}}=0.864 \mathrm{~V} \times \frac{60}{60+60}=0.432 \mathrm{~V}$
Application of Ohm's law yields
$I_{1}=\frac{V_{1}-V_{2}}{R_{1}}=\frac{0.864-0.432}{90}=\frac{0.432}{90}=4.8 \mathrm{~mA}$
$I_{2}=\frac{V_{1}-V_{2}}{R_{2}}=\frac{0.864-0.432}{180}=\frac{0.432}{180}=2.4 \mathrm{~mA}$
$I_{4}=\frac{V_{2}}{R_{4}}=\frac{0.432}{100}=4.32 \mathrm{~mA}$
$I_{5}=\frac{V_{2}}{R_{5}}=\frac{0.432}{150}=2.88 \mathrm{~mA}$

MATLAB

```
clear all;format long;
R1=90;R2=180;R3=360;R4=100;R5=150;
Is=9.6e-3;
Ra=P([R1,R2])
Rb=P([R4,R5])
Rc=Ra+Rb
I3=Is*Rc/(R3+Rc)
V1=R3*I3
V2=V1*Rb/ (Ra+Rb)
I1=(V1-V2)/R1
I2=(V1-V2)/R2
I4=V2/R4
I5=V2/R5
Answers:
Ra =
Rb =
Rc=
    120
I3 =
        0.002400000000000
V1 =
    0.8640000000000000
V2 =
    0.4320000000000000
I1 =
    0.004800000000000
I2 =
    0.0024000000000000
I4 =
```


Problem 2.66

Let R_{a} be the equivalent resistance of the series connection of R_{5} and R_{6}. Then, we have
$\mathrm{R}_{\mathrm{a}}=\mathrm{R}_{5}+\mathrm{R}_{6}=10 \Omega+5 \Omega=15 \Omega$
Let R_{b} be the equivalent resistance of the parallel connection of R_{4} and R_{a}. Then, we have

$$
R_{b}=\frac{R_{4} \times R_{a}}{R_{4}+R_{a}}=\frac{10 \times 15}{10+15}=\frac{150}{25}=6 \Omega
$$

Let R_{c} be the equivalent resistance of the series connection of R_{3} and R_{b}. Then, we have
$\mathrm{R}_{\mathrm{c}}=\mathrm{R}_{3}+\mathrm{R}_{\mathrm{b}}=10 \Omega+6 \Omega=16 \Omega$
Let R_{d} be the equivalent resistance of the parallel connection of R_{2} and R_{c}. Then, we have
$R_{d}=\frac{R_{2} \times R_{b}}{R_{2}+R_{b}}=\frac{20 \times 16}{20+16}=\frac{320}{36}=\frac{80}{9}=8.8889 \Omega$
Let R_{e} be the equivalent resistance of the series connection of R_{1} and R_{d}. Then, we have
$R_{e}=R_{1}+R_{d}=4 \Omega+8.8889 \Omega=12.8889 \Omega$
Application of Ohm's law yields
$I_{1}=\frac{V_{s}}{R_{e}}=\frac{100}{12.8889}=7.9786 \mathrm{~A}$
$\mathrm{V}_{1}=\mathrm{R}_{1} \mathrm{I}_{1}=4 \times 7.9786=31.0345 \mathrm{~V}$
From KVL, we have
$\mathrm{V}_{2}=\mathrm{V}_{\mathrm{s}}-\mathrm{V}_{1}=100-31.0345=68.9655 \mathrm{~V}$
Application of Ohm's law yields
$I_{2}=\frac{V_{2}}{R_{2}}=\frac{68.9655 \mathrm{~V}}{20 \Omega}=3.4483 \mathrm{~A}$
From KCL, we have
$\mathrm{I}_{3}=\mathrm{I}_{1}-\mathrm{I}_{2}=7.9786-3.4483=4.3103 \mathrm{~A}$
From Ohm's law, we have
$\mathrm{V}_{3}=\mathrm{R}_{3} \mathrm{I}_{3}=10 \times 4.3103=43.1034 \mathrm{~V}$
From KVL, we have
$V_{4}=V_{2}-V_{3}=68.9655-43.1034=25.8621 \mathrm{~V}$
Application of Ohm's law yields
$I_{4}=\frac{V_{4}}{R_{4}}=\frac{25.8621 \mathrm{~V}}{10 \Omega}=2.5862 \mathrm{~A}$
$I_{5}=\frac{V_{4}}{R_{a}}=\frac{25.8621 \mathrm{~V}}{15 \Omega}=1.7241 \mathrm{~A}$
$\mathrm{V}_{5}=\mathrm{R}_{5} \mathrm{I}_{5}=10 \times 1.7241=17.2414 \mathrm{~V}$
$\mathrm{V}_{6}=\mathrm{R}_{6} \mathrm{I}_{5}=5 \times 1.7241=8.6207 \mathrm{~V}$
MATLAB

```
clear all;format long;
R1=4;R2=20;R3=10;R4=10;R5=10;R6=5;
Vs=100;
Ra=R5+R6
Rb=P([R4,Ra])
Rc=R3+Rb
Rd=P([R2,Rc])
Re=R1+Rd
II=Vs/Re
V1=R1*I1
V2=Vs-V1
I2=V2/R2
I3=I1-I2
V3=R3*I3
V4=V2-V3
I4 =V 4/R4
I5=V4/Ra
V5=R5*I 5
V6=R6*I5
SV=-Vs+V1+V3+V5+V6
SI=-I1+I2+I4+I5
```

Answers:
$\mathrm{Ra}=$
15
$\mathrm{Rb}=$
5.999999999999999
$\mathrm{Rc}=$
16
$\mathrm{Rd}=$
8.888888888888889
$\mathrm{Re}=$
12.888888888888889

```
I1 =
    7.758620689655173
V1 =
    31.034482758620690
V2 =
    68.965517241379303
I2 =
    3.448275862068965
I3 =
    4.310344827586207
V3 =
    43.103448275862071
V4 =
    25.862068965517231
I4 =
    2.586206896551723
I5 =
    1.724137931034482
V5 =
    17.241379310344819
V6 =
    .620689655172409
SV =
-3.552713678800501e-15
SI =
-1.998401444325282e-15
```

Problem 2.67
Let R_{a} be the equivalent resistance of the parallel connection of $R_{6}=4 \Omega$ and $R_{7}+R_{8}+R_{9}=12$ Ω. Then, we have

$$
R_{a}=\frac{4 \times 12}{4+12}=\frac{48}{16}=3 \Omega
$$

Let R_{b} be the equivalent resistance of the parallel connection of $R_{2}=4 \Omega$ and $R_{3}+R_{4}+R_{5}=12$ Ω. Then, we have
$R_{b}=\frac{4 \times 12}{4+12}=\frac{48}{16}=3 \Omega$
Let R_{c} be the equivalent resistance of the series connection of R_{1}, R_{a}, and R_{b}. Then, we have
$\mathrm{R}_{\mathrm{c}}=\mathrm{R}_{1}+\mathrm{R}_{\mathrm{a}}+\mathrm{R}_{\mathrm{b}}=4 \Omega+3 \Omega+3 \Omega=10 \Omega$
The current through R_{1} is
$I_{1}=\frac{V_{2}}{R_{c}}=\frac{40 \mathrm{~V}}{10 \Omega}=4 \mathrm{~A}$

Application of current divider rule yields
$I=4 A \times \frac{4}{4+12}=\frac{16}{16} A=1 A$

Problem 2.68

Resistors R_{1}, R_{2}, and R_{3} are connected in delta. These three resistors can be transformed to wye configuration with resistors R_{a}, R_{b}, and R_{c} using

$$
R_{a}=\frac{R_{1} R_{3}}{R_{1}+R_{2}+R_{3}}, R_{b}=\frac{R_{1} R_{2}}{R_{1}+R_{2}+R_{3}}, R_{c}=\frac{R_{2} R_{3}}{R_{1}+R_{2}+R_{3}}
$$

b

Substituting the values, we obtain
$R_{a}=\frac{R_{1} R_{3}}{R_{1}+R_{2}+R_{3}}=\frac{3 \times 5}{3+2+5}=\frac{15}{10}=1.5 \mathrm{k} \Omega$
$R_{b}=\frac{R_{1} R_{2}}{R_{1}+R_{2}+R_{3}}=\frac{3 \times 2}{3+2+5}=\frac{6}{10}=0.6 \mathrm{k} \Omega$
$R_{c}=\frac{R_{2} R_{3}}{R_{1}+R_{2}+R_{3}}=\frac{2 \times 5}{3+2+5}=\frac{10}{10}=1 \mathrm{k} \Omega$

The circuit shown in Figure P2.68 can be redrawn as that shown below.

The sum of R_{b} and R_{4} is $1 \mathrm{k} \Omega$, and the sum of R_{c} and R_{5} is $4 \mathrm{k} \Omega$. These two are connected in parallel. Thus, we have

$$
\left(R_{b}+R_{4}\right)\left\|\left(R_{c}+R_{5}\right)=1\right\| 4=\frac{1 \times 4}{1+4}=\frac{4}{5}=0.8 \mathrm{k} \Omega
$$

The equivalent resistance $R_{e q}$ is the sum of R_{a} and $\left(R_{b}+R_{4}\right) \|\left(R_{c}+R_{5}\right)$:
$\mathrm{R}_{\mathrm{eq}}=\mathrm{R}_{\mathrm{a}}+0.8=1.5+0.8=2.3 \mathrm{k} \Omega$.
MATLAB

```
>> [Ra,Rb,Rc]=D2Y([3000,2000,5000])
Ra=
        1 5 0 0
Rb =
    600
RC =
    1000
>> Req=Ra+P([Rb+400,Rc+3000])
Req =
    2 3 0 0
```


PSpice

Click on View Simulation Output File. Part of the output file reads

```
**** SMALL-SIGNAL CHARACTERISTICS
    V(R_R5)/V_Vs = 2.609E-01
    INPUT RESISTANCE AT V_Vs = 2.300E+03
    OUTPUT RESISTANCE AT V(R_R5) = 1.043E+03
```

The input resistance is $2.3 \mathrm{k} \Omega$. Alternatively, just run the bias point analysis (uncheck .TF) and display currents.

The current through the voltage source is $434.8 \mu \mathrm{~A}$. The input resistance is given by the ratio of the test voltage 1 V to the current. Thus, we have

$$
R_{e q}=\frac{1 V}{434.8 \times 10^{-6}}=2.2999 \mathrm{k} \Omega
$$

Problem 2.69

The wye-connected resistors R_{a}, R_{b}, and R_{c} can be transformed to delta connected resistors R_{1}, R_{2}, and R_{3}.

$$
\begin{aligned}
& R_{1}=\frac{R_{a} R_{b}+R_{b} R_{c}+R_{a} R_{c}}{R_{c}}=\frac{14.4 \times 21.6+21.6 \times 12.96+14.4 \times 12.96}{12.96}=60 \mathrm{k} \Omega \\
& R_{2}=\frac{R_{a} R_{b}+R_{b} R_{c}+R_{a} R_{c}}{R_{a}}=\frac{14.4 \times 21.6+21.6 \times 12.96+14.4 \times 12.96}{14.4}=54 \mathrm{k} \Omega \\
& R_{3}=\frac{R_{a} R_{b}+R_{b} R_{c}+R_{a} R_{c}}{R_{b}}=\frac{14.4 \times 21.6+21.6 \times 12.96+14.4 \times 12.96}{21.6}=36 \mathrm{k} \Omega
\end{aligned}
$$

Similarly, the wye-connected resistors $\mathrm{R}_{\mathrm{d}}, \mathrm{R}_{\mathrm{e}}$, and R_{f} can be transformed to delta connected resistors $\mathrm{R}_{4}, \mathrm{R}_{5}$, and R_{6}.

$$
\begin{aligned}
& R_{4}=\frac{R_{d} R_{e}+R_{e} R_{f}+R_{d} R_{f}}{R_{f}}=\frac{9 \times 16.2+16.2 \times 13.5+9 \times 13.5}{13.5}=36 \mathrm{k} \Omega \\
& R_{5}=\frac{R_{d} R_{e}+R_{e} R_{f}+R_{d} R_{f}}{R_{d}}=\frac{9 \times 16.2+16.2 \times 13.5+9 \times 13.5}{9}=54 \mathrm{k} \Omega \\
& R_{6}=\frac{R_{d} R_{e}+R_{e} R_{f}+R_{d} R_{f}}{R_{e}}=\frac{9 \times 16.2+16.2 \times 13.5+9 \times 13.5}{16.2}=30 \mathrm{k} \Omega
\end{aligned}
$$

After two wye-delta transformations, the circuit shown in Figure P2.69 is transformed to the circuit shown below.

Req

The equivalent resistance of the parallel connection of R_{3}, R_{7}, and R_{4} is given by

$$
R_{g}=\frac{1}{\frac{1}{R_{3}}+\frac{1}{R_{7}}+\frac{1}{R_{7}}}=\frac{1}{\frac{1}{36}+\frac{1}{36}+\frac{1}{36}}=\frac{1}{\frac{3}{36}}=\frac{36}{3}=12 \mathrm{k} \Omega
$$

The equivalent resistance of the parallel connection of R_{2}, R_{8}, and R_{5} is given by

$$
R_{h}=\frac{1}{\frac{1}{R_{2}}+\frac{1}{R_{8}}+\frac{1}{R_{5}}}=\frac{1}{\frac{1}{54}+\frac{1}{54}+\frac{1}{54}}=\frac{1}{\frac{3}{54}}=\frac{54}{3}=18 \mathrm{k} \Omega
$$

Resistors R_{g} and R_{h} are connected in series. The equivalent resistance of R_{g} and R_{h} is given by
$\mathrm{R}_{\mathrm{i}}=\mathrm{R}_{\mathrm{g}}+\mathrm{R}_{\mathrm{h}}=12+18=30 \mathrm{k} \Omega$.
The equivalent resistance R_{eq} of the circuit shown in Figure P 2.10 is given by the parallel connection of R_{1}, R_{i}, and R_{6}, that is,

$$
R_{e q}=\frac{1}{\frac{1}{R_{1}}+\frac{1}{R_{i}}+\frac{1}{R_{6}}}=\frac{1}{\frac{1}{60}+\frac{1}{30}+\frac{1}{30}}=\frac{1}{\frac{5}{60}}=\frac{60}{5}=12 \mathrm{k} \Omega
$$

MATLAB

```
clear all;
Ra=14400;Rb=21600;Rc=12960;Rd=9000; Re=16200;Rf=13500;R7=36000;R8=54000;
[R1,R2,R3]=Y2D ([Ra,Rb,Rc])
[R4,R5,R6]=Y2D ([Rd,Re,Rf])
Req=P([R1,R6,P([R3,R7,R4])+P([R2,R8,R5])])
Answer:
Req =
    1.2000e+04
```


PSpice

View Simulation Output File.

```
**** SMALL-SIGNAL CHARACTERISTICS
V(R_Rf)/V_Vs = 6.000E-01
INPUT RESISTANCE AT V_Vs = 1.200E+04
OUTPUT RESISTANCE AT V(R_Rf) = 4.500E+03
```

The input resistance is $\mathrm{R}_{\mathrm{eq}}=12 \mathrm{k} \Omega$.
Problem 2.70

The wye-connected resistors R_{a}, R_{b}, and R_{c} can be transformed to delta connected resistors R_{1}, R_{2}, and R_{3}.

$$
\begin{aligned}
& R_{1}=\frac{R_{a} R_{b}+R_{b} R_{c}+R_{a} R_{c}}{R_{c}}=\frac{3 \times 4+4 \times 2+3 \times 2}{2} k=\frac{26}{2} k=13 \mathrm{k} \Omega \\
& R_{2}=\frac{R_{a} R_{b}+R_{b} R_{c}+R_{a} R_{c}}{R_{a}}=\frac{3 \times 4+4 \times 2+3 \times 2}{3} k=\frac{26}{3} k=8.6667 \mathrm{k} \Omega \\
& R_{3}=\frac{R_{a} R_{b}+R_{b} R_{c}+R_{a} R_{c}}{R_{b}}=\frac{3 \times 4+4 \times 2+3 \times 2}{4} k=\frac{26}{4} k=6.5 \mathrm{k} \Omega
\end{aligned}
$$

The circuit shown in Figure P2.70 can be redrawn as that shown below.

Notice that
$\mathrm{R}_{3}\left\|\mathrm{R}_{\mathrm{d}}=1.5294 \mathrm{k} \Omega, \mathrm{R}_{2}\right\| \mathrm{R}_{\mathrm{e}}=3.1707 \mathrm{k} \Omega$
Application of voltage divider rule yields
$V_{o}=V_{s} \times \frac{R_{2} \| R_{e}}{R_{3}\left\|R_{d}+R_{2}\right\| R_{e}}=9 \mathrm{~V} \times \frac{3.1707}{1.5294+3.1707}=6.0714 \mathrm{~V}$

Problem 2.71

Resistors $\mathrm{R}_{1}, \mathrm{R}_{2}$, and R_{3} are connected in delta. These three resistors can be transformed to wye configuration with resistors R_{a}, R_{b}, and R_{c} using

$$
R_{a}=\frac{R_{1} R_{3}}{R_{1}+R_{2}+R_{3}}, R_{b}=\frac{R_{1} R_{2}}{R_{1}+R_{2}+R_{3}}, R_{c}=\frac{R_{2} R_{3}}{R_{1}+R_{2}+R_{3}}
$$

Substituting the values, we obtain
$R_{a}=\frac{R_{1} R_{3}}{R_{1}+R_{2}+R_{3}}=\frac{4 \times 3}{4+2+3}=\frac{12}{9}=\frac{4}{3} k \Omega=1.3333 \mathrm{k} \Omega$
$R_{b}=\frac{R_{1} R_{2}}{R_{1}+R_{2}+R_{3}}=\frac{4 \times 2}{4+2+3}=\frac{8}{9} k \Omega=0.8889 \mathrm{k} \Omega$
$R_{c}=\frac{R_{2} R_{3}}{R_{1}+R_{2}+R_{3}}=\frac{2 \times 3}{4+2+3}=\frac{6}{9} \mathrm{k} \Omega=0.6667 \mathrm{k} \Omega$
The circuit shown in Figure P2.70 can be redrawn as that shown below.

Let
$\mathrm{R}_{10}=\mathrm{R}_{\mathrm{b}}+\mathrm{R}_{4}=2.8889 \mathrm{k} \Omega$
$\mathrm{R}_{11}=\mathrm{R}_{\mathrm{c}}+\mathrm{R}_{5}=6.6667 \mathrm{k} \Omega$
$R_{12}=R_{10} \| R_{11}=\frac{R_{10} \times R_{11}}{R_{10}+R_{11}}=2.0115 \mathrm{k} \Omega$
$\mathrm{V}_{3}=$ voltage across R_{10} and R_{11}.
Application of voltage divider rule yields
$V_{3}=V_{s} \times \frac{R_{12}}{R_{a}+R_{12}}=9 \mathrm{~V} \times \frac{2.0115}{1.3333+2.0115}=7.2222 \mathrm{~V}$
$V_{1}=V_{3} \times \frac{R_{4}}{R_{10}}=7.2222 \mathrm{~V} \times \frac{2}{2.8889}=5 \mathrm{~V}$
$V_{2}=V_{3} \times \frac{R_{5}}{R_{11}}=7.2222 \mathrm{~V} \times \frac{6}{6.6667}=6.5 \mathrm{~V}$

Problem 2.72
Resistors R_{1}, R_{2}, and R_{3} are connected in delta. These three resistors can be transformed to wye configuration with resistors $\mathrm{R}_{\mathrm{a}}, \mathrm{R}_{\mathrm{b}}$, and R_{c} using

$$
R_{a}=\frac{R_{1} R_{3}}{R_{1}+R_{2}+R_{3}}, R_{b}=\frac{R_{1} R_{2}}{R_{1}+R_{2}+R_{3}}, R_{c}=\frac{R_{2} R_{3}}{R_{1}+R_{2}+R_{3}}
$$

Substituting the values, we obtain

$$
\begin{aligned}
& R_{a}=\frac{R_{1} R_{3}}{R_{1}+R_{2}+R_{3}}=\frac{5 \times 2}{5+2+2}=\frac{10}{9} \mathrm{k} \Omega=1.1111 \mathrm{k} \Omega \\
& R_{b}=\frac{R_{1} R_{2}}{R_{1}+R_{2}+R_{3}}=\frac{5 \times 2}{5+2+2}=\frac{10}{9} \mathrm{k} \Omega=1.1111 \mathrm{k} \Omega \\
& R_{c}=\frac{R_{2} R_{3}}{R_{1}+R_{2}+R_{3}}=\frac{2 \times 2}{5+2+2}=\frac{4}{9} \mathrm{k} \Omega=0.4444 \mathrm{k} \Omega
\end{aligned}
$$

The circuit shown in Figure P2.70 can be redrawn as that shown below.

This circuit can be redrawn as

Notice that
$\mathrm{R}_{\mathrm{g}}=\mathrm{R}_{4}+\mathrm{R}_{\mathrm{a}}=5.1111 \mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{d}}=\mathrm{R}_{5}=3 \mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{e}}=\mathrm{R}_{6}=2 \mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{f}}=\mathrm{R}_{\mathrm{b}}=1.1111 \mathrm{k} \Omega$
$\mathrm{R}_{\mathrm{i}}=\mathrm{R}_{7}+\mathrm{R}_{\mathrm{c}}=3.4444 \mathrm{k} \Omega$
Converting the wye configuration $\mathrm{R}_{\mathrm{d}}, \mathrm{R}_{\mathrm{e}}, \mathrm{R}_{\mathrm{f}}$ to delta configuration, we obtain

$$
R_{11}=\frac{R_{d} R_{e}+R_{e} R_{f}+R_{d} R_{f}}{R_{f}}=\frac{3 \times 2+2 \times 1.1111+3 \times 1.1111}{1.1111} k=10.4 \mathrm{k} \Omega
$$

$$
R_{21}=\frac{R_{d} R_{e}+R_{e} R_{f}+R_{d} R_{f}}{R_{d}}=\frac{3 \times 2+2 \times 1.1111+3 \times 1.1111}{3} k=3.8519 \mathrm{k} \Omega
$$

$$
R_{31}=\frac{R_{d} R_{e}+R_{e} R_{f}+R_{d} R_{f}}{R_{e}}=\frac{3 \times 2+2 \times 1.1111+3 \times 1.1111}{2} k=5.7778 \mathrm{k} \Omega
$$

The circuit with R_{11}, R_{21}, and R_{31} is shown below.

Let $\mathrm{R}_{51}=\mathrm{R}_{\mathrm{g}} \| \mathrm{R}_{31}$ and $\mathrm{R}_{52}=\mathrm{R}_{\mathrm{i}} \| \mathrm{R}_{21}$. Then, we have
$R_{51}=\frac{R_{g} \times R_{31}}{R_{g}+R_{31}}=\frac{5.1111 \times 5.7778}{5.1111+5.7778} k=2.712 \mathrm{k} \Omega$

$$
R_{52}=\frac{R_{i} \times R_{21}}{R_{i}+R_{21}}=\frac{3.4444 \times 3.8519}{3.4444+3.8519} k=1.8184 \mathrm{k} \Omega
$$

Application of voltage divider rule yields
$V_{2}=V_{s} \times \frac{R_{52}}{R_{51}+R_{52}}=10 \mathrm{~V} \times \frac{1.8184}{2.712+1.8184}=4.0137 \mathrm{~V}$
Application of voltage divider rule yields
$V_{1}=V_{2}+\left(V_{s}-V_{2}\right) \times \frac{R_{a}}{R_{4}+R_{a}}=4.0137 \mathrm{~V}+5.9863 \mathrm{~V} \times \frac{1.1111}{5.1111}=5.3151 \mathrm{~V}$

