Beasley/Electronic Communications

Chapter 2: Amplitude Modulation

Multiple Choice Questions

- 1. What law is represented when current flow through a device increases in direct proportion to voltage?
 - A. Hartley's law
 - B. Plank's law
 - C. Ohm's law
 - D. Henry's law
- 2. What situation occurs if the modulating signal amplitude continues to increase?
 - A. Maximum amplitude
 - **B.** Overmodulation
 - C. Sideband splatter
 - D. Odd harmonics
- 3. A transmitter modulator circuit combines carrier and intelligence signals that are widely separated in _____.
 - A. frequency
 - B. amplitude
 - C. harmonics
 - D. voltage
- 4. Which of the following is the most important advantage of SSB systems?
 - A. Reducing the noise present at receiver by half.
 - B. All information is contained within varying-amplitude sidebands.
 - C. More effective utilization of the available frequency spectrum.
 - D. The carrier amplitude and frequency always remain constant.
- 5. Which of the following is the term that defines when two signals at different frequencies are combined in a nonlinear device?
 - A. Aliasing
 - B. Mixing
 - C. Foldover distortion
 - D. Fluctuating
- 6. A phasor rotating at a constant rate will generate a(n)_____.

- A. sine wave
- B. angular velocity
- C. waveform
- D. amplitude
- 7. In an AM transmission, why does the carrier contain no information?
 - A. It is always changing.
 - B. It is related to sine-wave frequency.
 - C. It never changes.
 - D. The signal is a low frequency compared to the carrier.
- 8. Mixing (modulation) is achieved when signals are applied to a(n) ______.

A. nonlinear device

- B. sideband
- C. linear device
- D. intermod
- 9. The ______ produces side frequencies or sidebands, one on each side of the carrier.
 - A. phasors' angular velocity
 - B. vector sum
 - C. pure sine wave
 - D. modulated AM signal

10. The rate of phasor rotation is called angular _____.

- A. velocity
- B. sidebands
- C. sine waves
- D. frequencies
- 11. Which of the following is an example of an application where double-sideband, full-carrier (DSBFC) AM would be used?
 - A. Marine and citizens band (CB) radios
 - B. Military services
 - C. Aircraft-to-tower communication
 - D. Amateur (ham) radios
- 12. What is the carrier's job in the modulator?
 - A. Calculation of the modulation index
 - **B.** Frequency translation

- C. Aliasing
- D. Transmitting
- 13. What was ultimately developed in the search for a communications technique that was immune to noise?

A. FM

- B. AM transmitter
- C. Bandwidth
- D. Frequency spectrum

14. All information contained at the output of the AM modulator is contained within the

- A. balanced modulators
- B. bandwidth
- C. transmitter
- D. sidebands
- 15. Why are SSB receivers more difficult to tune than conventional AM receivers?

A. Need for carrier reinsertion

- B. Bandwidth required by SSB cut in half
- C. Complete signal cancellation may result
- D. Overcrowded high-frequency spectrum
- 16. What type of sideband is used for analog television video transmissions?
 - A. Amplitude-compandored
 - B. Vestigial
 - C. ISB transmission
 - D. Pilot carrier
- 17. Which of the following would be a reason why double-sideband AM is still so widely used?

A. SSB systems more complex

- B. Power-savings
- C. Noise advantages
- D. Effective utilization of available frequency spectrum
- 18. Conventional AM transmitters are rated in terms of ______.
 - A. bandwidth
 - B. amplitude modulating signals
 - C. modulated waveforms

D. carrier power output

- 19. Transmission of a modulated signal with both the carrier and one sideband removed produces what type of signal?
 - A. SSB
 - B. AM
 - C. FM
 - D. HF
- 20. The increase and decrease in the AM waveform's amplitude is caused by the frequency difference in the _____.
 - A. intelligence signals
 - B. bandwidth
 - C. side frequencies
 - D. sine waves
- 21. Undesired frequencies in close proximity to desired ones, such as a difference frequency appearing within the baseband, are difficult if not impossible to identify and remove after they have been created. What does this occurrence represent?
 - A. Modulation envelope
 - B. Pure sine-wave intelligence
 - C. Foldover distortion
 - D. Modulating signal frequency
- 22. Three characteristics of a sine wave carrier are amplitude, frequency, and

A. phase

- B. intelligence
- C. voltage
- D. bandwidth
- 23. What is the gap called that produces distortion and results in the transmission of frequencies outside a station's normal allocated range?
 - A. Odd harmonics
 - B. Sideband splatter
 - C. Square waves
 - D. Intermod

24. What is the term for undesired mixing?

A. Intermod

- B. Peak envelope power
- C. ISB transmission
- D. Amplitude

25. Noise is directly proportional to ______.

- A. total power output
- B. peak envelope power
- C. available frequency spectrum
- D. bandwidth