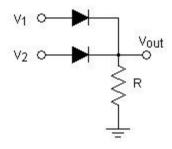

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

1) For this circuit, determine the load-line intersection with the two axis.



- A) $V_{D} = 10 \text{ V}$ and $I_{D} = 1 \text{ mA}$
- C) $V_{D} = 10 \text{ V}$ and $I_{D} = 10 \text{ mA}$

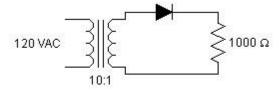
- B) $V_D = 1 \text{ V}$ and $I_D = 1 \text{ mA}$ D) $V_D = 1 \text{ V}$ and $I_D = 10 \text{ mA}$
- 2) If one silicon diode and one germanium diode are connected in series, the voltage drop across the combination of the two diodes will be equal to ______.
- 2) ____

- A) the forward drop equal to that of the silicon diode
- B) the forward drop equal to that of the difference of the voltage drops across the two diodes
- C) the forward drop equal to that of the sum of the voltage drops across the two diodes
- D) the forward drop equal to that of the germanium diode
- 3) Name the logic gate that is formed by this circuit.

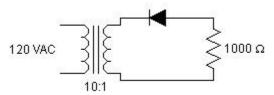
3) _

- A) positive logic AND gate
- C) negative logic OR gate

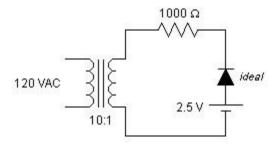
- B) negative logic AND gate
- D) positive logic OR gate
- 4) Name the logic gate that is formed by this circuit.


4) ___

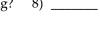
- A) positive logic AND gate
- C) positive logic OR gate

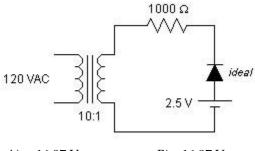

- B) negative logic OR gate
- D) negative logic AND gate
- 5) The current flows through the load resistor in this circuit during the _____.

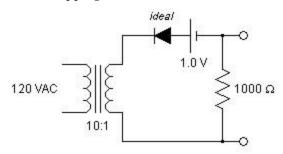
5) ____


- A) The diode will block all current and there will be no current flowing through the load.
- B) positive half cycle of the input waveform

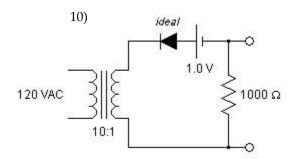
- C) negative half cycle of the input waveform
- D) entire input waveform
- 6) Calculate the peak current that will flow through this circuit, assuming an ideal diode.
- 6) _____



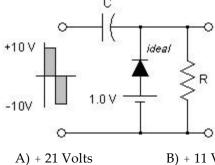

- A) 16.97 mA during the positive half cycle
- C) 12 mA during the negative half cycle
- B) 16.97 mA during the negative half cycle
- D) 12 mA during the positive half cycle
- 7) For this clipping circuit, what will be the maximum output voltage when the diode is conducting?



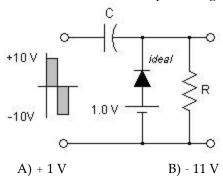
- A) + 19.47 Volts
- B) 16.97 Volts
- C) + 2.5 Volts
- D) + 16.97 Volts
- 8) For this clipping circuit, what is the maximum output voltage when the diode is not conducting?



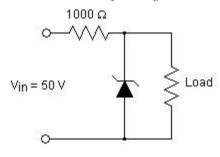
- A) + 16.97 V
- B) 16.97 V
- C) + 19.47 V
- D) + 2.5 V
- 9) For this clipping circuit, what is the minimum output voltage when the diode is conducting?
- 9) _____



- A) 17.97 V
- B) + 16.97 V
- C) 16.97 V
- D) 1.0 V
- 10) What is the minimum output voltage for this clipping circuit when the diode is not conducting?


- A) 17.97 V
- B) 16.97 V
- C) 0 V
- D) + 16.97 V
- 11) What is the maximum output voltage for this clamping circuit?

11) _



- B) + 11 Volts
- C) 11 Volts
- D) 21 Volts
- 12) What is the minimum output voltage for this clamping circuit?

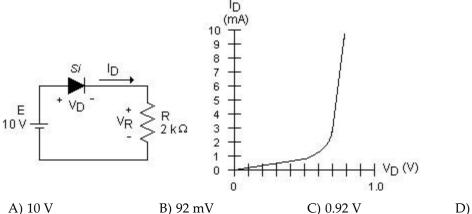
12) ____

- C) 1 V
- D) + 21 V
- 13) What are the minimum and maximum values of current flowing in the variable load resistor 13) _ while the diode is operating in the Zener region? The zener voltage is 10 V.

- A) 8 mA and 35 mA
- B) 12.5 mA and 40 mA
- C) Need to know the load resistance to determine the values.
- D) 8 mA and 40 mA
- 14) The point of intersection between the characteristic curve of the diode and the resistors loadline

- A) quiescent point

B) Q-point


C) point of operation

- D) All of the above
- 15) Given a series silicon diode circuit with the resistor R = $2 \text{ k}\Omega$ ohms and an applied voltage of 10 V, what is ^IDQ?
- 15) _

- A) 4.65 mA
- B) 0.5 mA
- C) 1.0 mA
- D) 10 mA
- $^{16)}$ A series silicon diode circuit has a 2 k Ω resistor and a 10 V source. Determine ^{V}DQ if ^{I}DQ is 4.5 16) ____
 - A) 0.7 V
- B) 2 V

C) 1 V

- D) 11.5 V
- 17) For this series diode configuration, use the diode characteristic to estimate the value of VR. 17) ___

- D) 9.2 V
- 18) Generally a silicon diode is in the _____ state if the current established by the applied voltage source is in the direction of the diode symbol's arrow and ^{VD} is greater than or equal to 0.7 V.
- 18)

- A) saturated
- B) on

- D) reverse-biased
- 19) Generally a germanium diode is in the _____ state when the current established by the applied voltage source is in the direction of the diode symbol's arrow and $^{
 m VD}$ is greater than or equal to 0.3 V.
- 19)

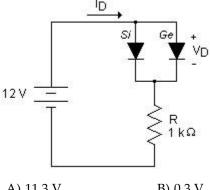
A) on

- B) reverse-biased
- C) saturated
- D) off
- $^{20)}$ The practical value of the current $^{\text{IR}}$ in this circuit is

20)

A) 0 A

- B) 0.5 mA
- C) 5 mA
- D) 0.5 A
- 21) The resistor voltage and resistor current in this circuit are _____.

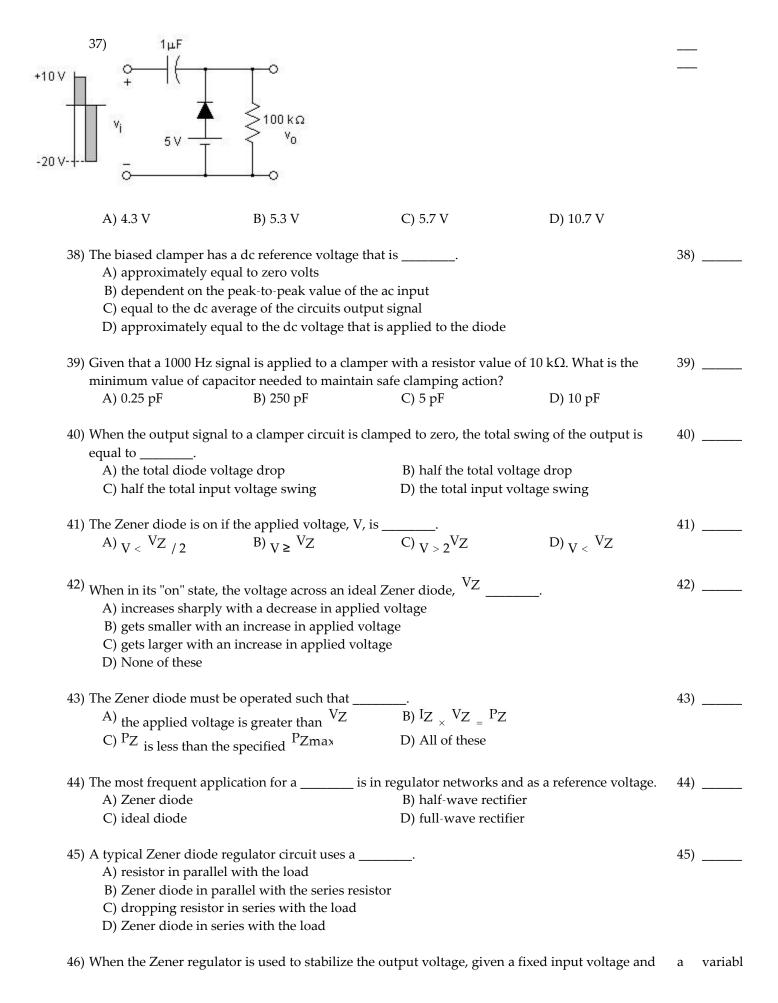


- A) 10 V, 5 mA
- B) 2 V, 11 mA
- C) 11 V, 2 mA
- D) 11 V, 11 mA
- 22) What is the value of the voltage dropped across forward-biased silicon diodes that are connected in parallel with each other?
 - A) 11.3 V
- B) 1.4 V
- C) 0.3 5 V
- D) 0.7 V

 $^{23)}$ The value of VD in this circuit is _____.

22) ____

- A) 11.3 V
- B) 0.3 V
- C) 0.7 V
- D) 10.6 V
- 24) When the diode in a half-wave rectifier points toward the load, the output from the rectifier is
- 24)
- A) either positive or negative, depending on the polarity of the transformer secondary voltage
- B) positive
- C) negative
- D) full-wave
- 25) A half-wave rectifier with the diode arrow pointing away from the load has a DC output voltage of _____ for an AC input voltage of 20 V maximum.
- 25)


- A) -6.14 V
- B) 12.49 V
- C) 19.3 V
- D) -13.65 V
- 26) Why are bridge rectifiers preferred over full-wave center-tapped rectifiers?

26)

28)

- A) They provide higher dc output voltages.
- B) They require a lower PIV rating.
- C) They do not require the use of a center-tapped transformer.
- D) All the above
- 27) A bridge rectifier has values of $^{V}m = 177 \text{ V}$, turns ratio = 5 : 1, and $^{R}L = 500 \Omega$. What is the dc output voltage?
 - A) 3.75 V
- B) 6.88 V
- C) 21.62 V
- D) 9.91 V
- $^{28)}$ A positive full-wave center-tapped rectifier has a secondary voltage of 20 V m. The peak load voltage for the circuit is _____ if the diode drop is included.
 - A) $_{10}$ $^{\rm V}_{\rm p}$
- B) $_{19.3}$ V_{p}
- C) $_{20}$ ^{V}p
- D) $_{93}$ V_p

29) A full-wave center-tappe			$20^{- m V_{m}}$ and a $4.7~{ m k}\Omega$	29)
load resistance. What is the A) 2.61 mA	he dc load current for the B) 629.8 mA	0) 4 6 6 4	D) 1.4 mA	
30) Which of the following ci	rcuits is used to elimina	te a portion of a signal?		30)
A) Voltage multiplier		B) Clipper		/
C) Voltage divider		D) Damper		
31) The two general categories	es of clippers are	<u>_</u> .		31)
A) half-wave and full-wave		B) series and paralle	el	
C) dc restorer and dc eliminator		D) regenerator and eliminator		
32) The circuit shown here is	a			32)
• R				
vi 4v T -				
A) series clamper	B) shunt clamper	C) shunt clipper	D) series clipper	
33) A(n) is commor	nly used to provide trans	sient protection.		33)
A) eliminator	B) clipper	C) clamper	D) multiplier	
_	Which of the following circuits is used to change the dc reference of a signal without changing the shape of the signal?		34)	
A) a clamper		B) a voltage multipl	ier	
C) a voltage divider		D) a clipper		
35) A clamper must have a(n	_	nough to maintain the c	capacitor's charge	35)
during diode conduction.	•	D) and induction		
A) dc restorerC) diode voltage		B) applied voltageD) RC time constant	ŧ	
36) This circuit uses a	<u>_</u> .			36)
1μF				
¢ (]	- ○			
y _i 5 V T	> 100 kΩ > v _o			
ō	- ○			
A) negative clipper		B) positive clamper		
C) positive clipper		D) negative clamper	:	
37) Assuming this circuit use	s a silicon diode, the out	put voltage is clamped	to	

e load resistanc e, a load resistanc e that is too small results in	46)				
•	A) $^{ m VL}$ being greater than $^{ m VZ}$	B) V_{Z} being equal to V_{in}			
	C) VL being equal to VZ	D) VL being less than VZ			
47) When a Zener diode circuit is used to stabilize the output voltage given a fixed load resistor and			47)		
	a variable input voltage, the input voltage must be _				
	A) small enough to turn off the Zener diode	B) large enough to turn on the Zener diode			
	C) small enough to turn on the Zener diode	D) large enough to turn off the Zener diode			
48)	Two Zener diodes connected can be used	ener diodes connected can be used as an ac regulator.			
	A) in series with the load	B) in series with the input voltage	·		
	C) in parallel with each other	D) back-to-back			
49)	A Zener diode is designed to operate in the	region of its characteristic curve.	49)		
/	A) reverse breakdown	B) reverse bias			
	C) zero voltage	D) forward operating			
50)	When analyzing a diode circuit with both a dc and a	ac source .	50)		
,	A) first determine the bulk resistance of the diode				
	B) only the dc source is considered				
	C) use superposition				
	D) Thevenize the circuit				
	,				

- 1) C
- 2) C
- 3) D
- 4) C
- 5) B
- 6) B
- 7) C
- 8) A
- 9) D
- 10) C
- 11) A
- 12) C
- 13) D
- 14) D
- 15) A
- 16) C
- 17) D
- 18) B
- 19) A
- 20) A
- 21) D
- 22) D
- 23) B
- 24) B
- 25) A
- 26) D
- 27) C
- 28) D
- 29) C
- 30) B
- 31) B
- 32) C
- 33) B
- 34) A
- 35) D
- 36) D
- 37) A
- 38) D
- 39) B
- 40) D 41) B
- 42) D
- 43) D
- 44) A
- 45) C
- 46) D
- 47) B
- 48) D
- 49) A
- 50) C