
Chapter 2 Exercises

2.1
The electric field outside a charged sphere is the same as for a point source,

E(r) =
Q

4πε0r2
,

where Q is the charge on the inner surface of radius a. The potential drop is the integral

∆V = −
∫ a

b

Q

4πε0r2
dr =

Q

4πε0

(
1

a
− 1

b

)
.

The capacitance is therefore

C =
Q

∆V
= 4πε0

(
ab

b− a

)
This is inversely proportional to the resistance found in Exercise 1.4.

2.2
The planar capacitor formula is

C =
Aκε0
d

.

Solving for A,

A =
Cd

κε0
=

(1 F)(10−9 m)

10(8.85× 10−12 C2/N2 −m2)
= 1.1 m2.

2.3
The solenoid inductor formula is

L =
Aµ0N

2

l
.

The loop area is A ≈ π(5 cm2) = 76 cm2 = 7.6 × 10−3 m2. The density of coils is N/l ≈
(62 − 42)/(.052)(2π(.05 m)) = 2.5× 104/m.

Solving for l,

l =
L

Aµ0(N/l)2
=

1 H

(7.6× 10−3 m2)(4π × 10−7 N/A2)(2.5× 104/m)2
= 17 cm.

2.4
Integrate the flux over a rectangular section between the wires of length l. The magnetic

field from a wire is

B =
µ0I

2πr
.
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The flux from one wire is

Φ = l
∫ a

b

µ0I

2πr
dr =

µ0Il

2π
ln(a/b).

The second wire contributes flux in the same direction, so the total flux is

Φtot =
µ0II

π
ln(b/a).

The voltage drop is

∆V =
∂Φtot

∂t
=
µ0l

π
ln(a/b)

∂I

∂t
.

Therefore

L =
µ0l

π
ln(a/b).

[Note: Technically we should account for the magnetic field inside each wire. The current
inside the radius r is Ir2/b2. B(2πr) = µ0Ir

2/b2, so

B =
µ0rI

2πb2

inside the wire. The integral of the flux is inside the wire is

Φ = l
∫ b

0

µ0rI

2πb2
= l

µ0I

4π
.

The contribution to the inductance L from both wires is then

L′ =
µ0l

2π
.

which implies L/L′ = 2 ln(a/b), which means the field inside the wire is negligible if a� b. ]

2.5
The Biot-Savart law is

d ~B(~r) =
µ0

4π

Id~l × ~R

R3
.

For a loop of radius L centered at (0,0), the unit vector along d~l is

θ̂ = −x̂ sin θ + ŷ cos θ.

The distance from a point of the circle to a point r on the x-axis is

R = |L(cos θ, sin θ)− (r, 0)| =
√

(L cos θ − r)2 + L2 sin2 θ

The direction of ~R is

R̂ = −L(cos θ, sin θ)− (r, 0)

R
= − 1

R
(x̂(L cos θ − r) + ŷL sin θ).
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The cross product is

θ̂ × R̂ = − ẑ
R

(r cos θ − L).

The integral of the Biot-Savart element is then

~B = −µ0Iẑ

4π

∫ 2π

0
Ldθ

r cos θ − L
[(L cos θ − r)2 + L2 sin2 θ]3/2

This function involves elliptic integrals. Doing it numerically for r = 0 (the center of the
loop), gives

~B =
µ0Iẑ

4L
,

while at r = L/2, it is

~B = (3.91/π)
µ0Iẑ

4L
.

The magnitude of B rises sharply near r = L.

2.6

Vo = IR = RC
∂

∂t
(V − Vo) = −RC∂Vo

∂t
.

This has the solution
Vo(t) = V e−t/RC .

2.7
Kirchhoff:

0 = RC
∂Vo
∂t

+ Vo.

This has the general solution
Vo(t) = V1e

−t/RC + V2.

Setting this to V at t = t0 gives

V = V1e
−t0/RC + V2.

The current through the capacitor is

I(t0) = −V
R

= C
∂

∂t
(V1e

−t/RC + V2R)
∣∣∣∣
t=t0

= C
(
− V1

RC
e−t0/RC

)

which implies V1 = V et0/RC . Plugging this into the above gives V2 = 0, so the solution is

Vo(t) = V e−(t−t0)/RC .

This is decay to zero with the same time constant RC.
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2.8
The integrator circuit of Figure 2.16(a) is governed by equation (2.4.13),

Vo +RCV̇o = Vi.

For Vo = sinωt, this implies
sinωt+ ωRC cosωt = Vi.

When ωRC � 1, the sinωt term is negligible, and Vi is proportional to V̇o, i.e., Vo is
proportional to the antiderivative of Vi.

The differentiator circuit of Figure 2.16(b) is governed by equation (2.4.17),

V̇o +
Vo
RC

= V̇i.

For Vo = sinωt, this implies

ω cosωt+
1

RC
sinωt = V̇i.

When ωRC � 1, the cosωt term is negligible, and V̇i is proportional to Vo, i.e., Vo is
proportional to the derivative of Vi.

2.9
This is the circuit shown in Fig. 2.18(b). We have

Vo
Vi

=
R

R + ZC
=

R

R− i/ωC
∣∣∣∣VoVi

∣∣∣∣2 =
R

R− i/ωC
R

R + i/ωC
=

R2

R2 + 1/ω2C2
=

1

1 + 1/ω2R2C2
.

2.10

Vo
Vi

=
ZL

R + ZL
=

iωL

R + iωL

This is a high-pass filter.

2.11 From Exercise 2.9, we have ∣∣∣∣VoVi
∣∣∣∣2 =

1

1 + 1/ω2R2C2

Solve for ω:

ω =
1

RC

(
1

|Vo/Vi|2
− 1

)−1/2
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a)
−3 dB = 10 log10 |Vo/Vi|2

|Vo/Vi|2 = 10−.3 = 0.5→ ω = 1/RC

b)
|Vo/Vi|2 = 10−1 = 0.1→ ω = 1/3RC

c)
|Vo/Vi|2 = 10−2 = 0.01→ ω = 1/10RC

2.12
a)

10 dBm = 20 log10(V/V0)

V

V0

= 101/2

V = 3.1V0 = 1 V

P̄ =
V 2

2R
= 10 mW.

We could also have done this just by noting that 10 dBm is 10 times greater than 0 dBm.
b)

35 dB = 20 log10 V2/V1

V2

V1

= 1035/20 = 56

2.13

sinωt =
eiωt − e−iωt

2i

From (2.7.11),

F (ω′) = 2π
δ(ω′ − ω)− δ(ω′ + ω)

2i

2.14
f(t) is given by (note typo in book)

f(t) =

{
1, (n− 1)T < t < (n− 1/2)T
0, (n− 1/2)T < t < nT.
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cn =
1

T

∫ T

T/2
e−i2πnt/Tdt

=
e−i2πn − e−iπn

−i2πn

=
e−3iπn/2(e−iπn/2 − eiπn/2)

−i2πn
=

1

πn
e−3iπn/2 sin(πn/2)

n cn
0 1

2

±1 iπ−1

±2 0
±3 i

3
π−1

±4 0
±5 i

5
π−1

±6 0
±7 i

7
π−1

f(t) =
∞∑

n=−∞
cne

i2πnt/T =
1

2
+
∞∑
n=1

i

πn
(ei2πnt/T − e−i2πnt/T ) =

1

2
−
∞∑
n=1

2

πn
sin(2πnt/T )

The sum of the terms up through n = 7 (first five nonzero terms) is shown in Figure 6.

Figure 6: Fourier sum for Exercise 2.14.
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2.15
The Fourier transform is

F (ω) =
∫ ∞
−∞

f(t)e−iωtdt.

f(t) is given by

f(t) =

{
1, (n− 1)T < t < (n− 1/2)T
0, (n− 1/2)T < t < nT.

The transform is

F (ω) =
∞∑

n=−∞

∫ (n−1/2)T

(n−1)T
e−iωtdt =

∞∑
n=−∞

i

ω
(e−iω(n−1/2)T ) − e−iω(n−1)T ))

=
i

ω
(eiωT/2 − eiωT ))

∞∑
n=−∞

e−iωnT .

The sum will be equal to infinity for ω = 2πn′/T and zero otherwise (this is equivalent to a
δ-function). Thus we have

F (ω) =


−2i

2πn′/T
=
−i
πn′

, ω = 2πn′/T

0, else.

This is the same as the result of Exercise 2.14.

2.16
The Fourier transform is

F (ω) =
∫ ∞
−∞

Θ(t)e−ste−iωtdt =
∫ ∞

0
e−ste−iωtdt = − 1

−s− iω
=
−i

ω − is
The response function (2.5.7) is

Vo
Vi

=
−i/ωC
R− i/ωC

=
−i/RC
ω − i/RC

and the product is

Fo(ω) =

(
−i/RC
ω − i/RC

)( −i
ω − is

)
The reverse Fourier transform is

f(t) =
1

2π

∫ ∞
−∞

(
−i/RC
ω − i/RC

)( −i
ω − is

)
eiωtdt.

For t > 0, ω → +i∞ converges, so this becomes

f(t) = i(−i/RC)
−i

i/RC − is
ei(i/RC)t + i

(−i/RC)

is− i/RC
(−i)ei(is)t.
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Setting s = 0 gives

f(t) = 1− e−t/RC .

2.17
Loops:

Vi = IR + IcZC
Vi = IR + ILZL

Node:

I = IC + IL

Solution:

IC =
ZL

RZC +RZL + ZCZL
Vi =

iωL

−iR/ωC + iωRL+ L/C
Vi

VC = ICZC =
L/C

−iR/ωC + iωRL+ L/C
Vi

2.18
(2.8.2) is

Vo
Vi

=
R

R− i/ωC + iωL
.

(2.8.12) is

V̇i = İR +
I

C
+ LÏ.

For Vi = Vi(0)eiωt and I = I0e
iωt+φ, this becomes

iωVi(0)eiωt = iωI0Re
i(ωt+φ) +

I0

C
ei(ωt+φ) − Lω2I0e

i(ωt+φ).

The output Vo is across R, so Vo = I0Re
i(ωt+φ). The above equation therefore becomes

iωVi = iωVo +
Vo
RC
− L

R
ω2Vo.

Solving for Vo/Vi gives

Vo
Vi

=
iω

iω + 1/RC − ω2L/R

which is the same as (2.8.2).
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2.19
We want a high-pass filter like that shown in Fig. 2.18(b), which has response (see

Exercise 2.9) ∣∣∣∣VoVi
∣∣∣∣2 =

1

1 + 1/ω2R2C2

We solve for C:

C =
ω

R

√
1

|Vo/Vi|2
− 1 =

2π(100 Hz)

50× 106 Ω

√
1/(.95)2 − 1 = 0.6 µF.

2.20
Solve for 10% value:

e−t
2
10/2τ

2

= .1

t10 =
√
−2τ 2 ln(0.1).

For 90% value,

t90 =
√
−2τ 2 ln(0.9).

On the positive side,

t10 − t90 =
√
−2τ 2 ln(0.9)−

√
−2τ 2 ln(0.1) = τ

√
2(
√
− ln(0.1)−

√
− ln(0.9)) = 1.2

√
2τ.

2.21
The electric field is purely radial. For charge +Q on the inner sphere and −Q on the

outer sphere, the electric field is

E(r) =
Q

4πε0r2

and the potential drop is

∆V (r) = −
∫ r2

r1
E(r)dr =

Q

4πε0r1

− Q

4πε0r2

.

Comparing to the definition Q = C∆V , this gives

C = 4πε0

(
1

r1

− 1

r2

)−1

.

2.22
The electric field from a line charge is found from Gauss’s law,

E =
σ

2πrε0
,
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where σ = Q/l is the charge density. The voltage drop from wire of radius b to a distance a
is

∆V = −
∫ a

b
E(r)dr =

Q/l

2πε0
ln(a/b).

By superposition, the other wire contributes the same, so we multiply by 2. This implies

C =
πε0l

ln(a/b)
.

2.23

C =
Aε0
d

=
lwε0
d

L =
µ0ld

w

ω0 =
1√
LC

=
1√

µ0ld

w

lwε0
d

=
1√
µ0ε0l2

=
c

l
.

2.24
The high-pass filter of Fig. 2.18(b) has response (see Exercise 2.9)

Vo
Vi

=
R

R− i/ωC
=
R(R + i/ωC)

R2 + 1/ω2C2
.

From (2.5.9),

tanφ =
Im Vo/Vi
Re Vo/Vi

=
1/ωC

R

At high frequency, φ = 0. At low frequency, φ = π/2.
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2.25

Vo
Vi

=
iωL

iωL+R
=

iωL/R

iωL/R + 1
.

Figure ?? shows the plot with frequency in units of R/L.

Figure 7: Response function for Exercise 2.25.

2.26
|Vo|2 is increased by (3/2)2 = 2.25.
10(log10 2.25) = 3.52 dB

2.27
From Exercises 2.9 and 2.18: ∣∣∣∣VoVi

∣∣∣∣2 =
1

1 + 1/ω2R2C2

Solving for ω,

ω =
1

RC

(
1

|Vo/Vi|2
− 1

)−1/2

=
0.1

RC

2.28
The low-pass filter response (2.5.7) is

Vo
Vi

=
−i/ωC
R− i/ωC

.
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Power response is∣∣∣∣VoVi
∣∣∣∣2 =

−i/ωC
R− i/ωC

i/ωC

R + i/ωC
=

1/ω2C2

R2 + 1/ω2C2
=

1

ω2(RC)2 + 1
.

Solve for ω:

ω =
1

RC

√
1

|Vo/Vi|2
− 1

10%:

ω =
3

RC
.

90%:

ω =
1

3RC
.

10-90 range:

∆ω =
2.667

RC
.

2.29

∆dB = 20 log10 V2/V1

V2

V1

= 10∆dB/20 = 1013/20 = 4.5

The amplitude signal-to-noise ratio increases by a factor of 4.5, i.e. from 2 to 9.
It is also common to talk in terms of the signal-to-noise power ratio.

2.30
The circuit is shown in Figure 8.

Figure 8: Circuit for Exercise 2.30.
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Loops:

Vi = I1R1 + IC1ZC1

Vi = I1R1 + I2R2 + Vo
Vo = I2ZC2

Node:
I1 = IC1 + I2

Set R1 = R2 = R, C1 = C2 = C. Solution:

Vo
Vi

=
Z2
C

R2 + 3RZC + Z2
C

.

∣∣∣∣VoVi
∣∣∣∣2 =

1

1 + 7C2R2ω2 + C4R4ω4

In the Figure 9, the lower curve is this response function, while the upper curve is the
single low-pass response, from Exercise 2.27.

Figure 9: Response functions for Exercise 2.30.

2.31
Assuming perfect detector; no current flows into output; Io is the current flowing from

top to bottom in the right side of the circuit.
Loops:

Vi = IC1ZC + IR3
R

2
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Vi = IR1R + IC3
ZC
2

Vi = IR1R + IoR + Vo

Vo = IoZC + IR3
R

2

Nodes:

IR1 = IC3 + Io
IC1 + Io = IR3

Solution:

Vo
Vi

=
(−1 + C2R2ω2)

−1− 4iCRω + C2R2ω2

This is plotted in Figure 10. When ω = 1/RC, this equals 0. When ω → 0 or ω → ∞, it
approaches unity.

Figure 10: Response function for Exercise 2.31.

2.32
The circuit in the book is missing a 50-Ω resistor between Vi and the rest of the circuit—as

drawn, the circuit will give Vo = Vi for all inputs. Putting a resistor there gives

Loops:
Vi = IR + Vo
Vo = I1(ZC1 + ZL1)
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Vo = I2(ZC2 + ZL2)

Node:
I = I1 + I2

Solution:

Vo
Vi

=
(−1 + C1L1ω

2)(−1 + C2L2ω
2)

1 + iC1Rω + iC2Rω − C1L1ω2 − C2L2ω2 − iC1C2L1Rω3 − iC1C2L2Rω3 + C1C2L1L2ω4

This is a double notch filter, with zeroes where the two terms in the numerator vanish.
Figure 11 shows a plot for the values given:

Figure 11: Double notch response function, for Exercise 2.32.

2.33
a) Capacitor relation:

I = C
∂∆VC
∂t

Loops:

Vs = I1R1 + I2R2

Vi = ∆VC + Vo → V̇i =
IC
C

+ V̇o

Vo = I2R2

These become
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Vs = I1R1 + I2R2

iωV1e
iωt =

IC
C

+ iωVACe
i(ωt+φ)

VDC + VACe
i(ωt+φ) = I2R2

Node:
IC + I1 = I2.

Write I1 = I1DC + I1AC and I2 = I2DC + I2AC (note that there is no DC component
through the capacitor), and set DC terms equal and AC terms equal:

Vs = I1DCR1 + I2DCR2

0 = I1ACR1 + I2ACR2

iωV1e
iωt =

IC
C

+ iωVACe
i(ωt+φ)

VDC = I2DCR2

VACe
i(ωt+φ) = I2ACR2

IC + I1AC = I2AC

I1DC = I2DC

We solve these for IC , I1DC , I1AC , I2DC , I2AC , VDC , and VACe
iφ, which gives

VDC =
R2Vs

R1 +R2

,

VACe
iφ =

CR1R2ω

−iR1 − iR2 + CR1R2ω
V1

=
CReffω

−i+ CReffω
V1

where

Reff =
R1R2

R1 +R2

.

2.34
We want a low-pass filter that eliminates AC frequency of 60 Hz. We use the circuit

shown in Fig. 2.18(a) with a polarized capacitor with the negative side grounded. Formula
(2.5.11) gives us

|Vo/Vi|2 =
1

1 + ω2R2C2
.

We would like low series R to prevent DC droop of the voltage supply. Pick R = 1 Ω, which
is small compared to a typical 50 Ω load impedance. Solve for C:

C =
1

ωR

√
1/|Vo/Vi|2 − 1
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To eliminate 99% of the ripple, pick |Vo/Vi|2 = .01. Setting ω = 2π(60 Hz) = 377 s−1, we
then have

C =
1

(377 s−1)(50 Ω)

√
99 = 0.00053 F = 530 µF.
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