Chapter 2 Exercises

2.1

The electric field outside a charged sphere is the same as for a point source,

$$
E(r)=\frac{Q}{4 \pi \epsilon_{0} r^{2}},
$$

where Q is the charge on the inner surface of radius a. The potential drop is the integral

$$
\Delta V=-\int_{b}^{a} \frac{Q}{4 \pi \epsilon_{0} r^{2}} d r=\frac{Q}{4 \pi \epsilon_{0}}\left(\frac{1}{a}-\frac{1}{b}\right)
$$

The capacitance is therefore

$$
C=\frac{Q}{\Delta V}=4 \pi \epsilon_{0}\left(\frac{a b}{b-a}\right)
$$

This is inversely proportional to the resistance found in Exercise 1.4.

2.2

The planar capacitor formula is

$$
C=\frac{A \kappa \epsilon_{0}}{d} .
$$

Solving for A,

$$
A=\frac{C d}{\kappa \epsilon_{0}}=\frac{(1 \mathrm{~F})\left(10^{-9} \mathrm{~m}\right)}{10\left(8.85 \times 10^{-12} \mathrm{C}^{2} / \mathrm{N}^{2}-\mathrm{m}^{2}\right)}=1.1 \mathrm{~m}^{2}
$$

2.3

The solenoid inductor formula is

$$
L=\frac{A \mu_{0} N^{2}}{l}
$$

The loop area is $A \approx \pi\left(5 \mathrm{~cm}^{2}\right)=76 \mathrm{~cm}^{2}=7.6 \times 10^{-3} \mathrm{~m}^{2}$. The density of coils is $N / l \approx$ $\left(6^{2}-4^{2}\right) /\left(.05^{2}\right)(2 \pi(.05 \mathrm{~m}))=2.5 \times 10^{4} / \mathrm{m}$.

Solving for l,

$$
l=\frac{L}{A \mu_{0}(N / l)^{2}}=\frac{1 \mathrm{H}}{\left(7.6 \times 10^{-3} \mathrm{~m}^{2}\right)\left(4 \pi \times 10^{-7} \mathrm{~N} / \mathrm{A}^{2}\right)\left(2.5 \times 10^{4} / \mathrm{m}\right)^{2}}=17 \mathrm{~cm}
$$

2.4

Integrate the flux over a rectangular section between the wires of length l. The magnetic field from a wire is

$$
B=\frac{\mu_{0} I}{2 \pi r} .
$$

The flux from one wire is

$$
\Phi=l \int_{b}^{a} \frac{\mu_{0} I}{2 \pi r} d r=\frac{\mu_{0} I l}{2 \pi} \ln (a / b) .
$$

The second wire contributes flux in the same direction, so the total flux is

$$
\Phi_{t o t}=\frac{\mu_{0} I I}{\pi} \ln (b / a) .
$$

The voltage drop is

$$
\Delta V=\frac{\partial \Phi_{t o t}}{\partial t}=\frac{\mu_{0} l}{\pi} \ln (a / b) \frac{\partial I}{\partial t}
$$

Therefore

$$
L=\frac{\mu_{0} l}{\pi} \ln (a / b)
$$

[Note: Technically we should account for the magnetic field inside each wire. The current inside the radius r is $I r^{2} / b^{2} . B(2 \pi r)=\mu_{0} I r^{2} / b^{2}$, so

$$
B=\frac{\mu_{0} r I}{2 \pi b^{2}}
$$

inside the wire. The integral of the flux is inside the wire is

$$
\Phi=l \int_{0}^{b} \frac{\mu_{0} r I}{2 \pi b^{2}}=l \frac{\mu_{0} I}{4 \pi} .
$$

The contribution to the inductance L from both wires is then

$$
L^{\prime}=\frac{\mu_{0} l}{2 \pi} .
$$

which implies $L / L^{\prime}=2 \ln (a / b)$, which means the field inside the wire is negligible if $a \gg b$.]

2.5

The Biot-Savart law is

$$
d \vec{B}(\vec{r})=\frac{\mu_{0}}{4 \pi} \frac{I d \vec{l} \times \vec{R}}{R^{3}}
$$

For a loop of radius L centered at $(0,0)$, the unit vector along $d \vec{l}$ is

$$
\hat{\theta}=-\hat{x} \sin \theta+\hat{y} \cos \theta \text {. }
$$

The distance from a point of the circle to a point r on the x-axis is

$$
R=|L(\cos \theta, \sin \theta)-(r, 0)|=\sqrt{(L \cos \theta-r)^{2}+L^{2} \sin ^{2} \theta}
$$

The direction of \vec{R} is

$$
\hat{R}=-\frac{L(\cos \theta, \sin \theta)-(r, 0)}{R}=-\frac{1}{R}(\hat{x}(L \cos \theta-r)+\hat{y} L \sin \theta) .
$$

The cross product is

$$
\hat{\theta} \times \hat{R}=-\frac{\hat{z}}{R}(r \cos \theta-L)
$$

The integral of the Biot-Savart element is then

$$
\vec{B}=-\frac{\mu_{0} I \hat{z}}{4 \pi} \int_{0}^{2 \pi} L d \theta \frac{r \cos \theta-L}{\left[(L \cos \theta-r)^{2}+L^{2} \sin ^{2} \theta\right]^{3 / 2}}
$$

This function involves elliptic integrals. Doing it numerically for $r=0$ (the center of the loop), gives

$$
\vec{B}=\frac{\mu_{0} I \hat{z}}{4 L}
$$

while at $r=L / 2$, it is

$$
\vec{B}=(3.91 / \pi) \frac{\mu_{0} I \hat{z}}{4 L}
$$

The magnitude of B rises sharply near $r=L$.
2.6

$$
V_{o}=I R=R C \frac{\partial}{\partial t}\left(V-V_{o}\right)=-R C \frac{\partial V_{o}}{\partial t} .
$$

This has the solution

$$
V_{o}(t)=V e^{-t / R C}
$$

2.7

Kirchhoff:

$$
0=R C \frac{\partial V_{o}}{\partial t}+V_{o}
$$

This has the general solution

$$
V_{o}(t)=V_{1} e^{-t / R C}+V_{2} .
$$

Setting this to V at $t=t_{0}$ gives

$$
V=V_{1} e^{-t_{0} / R C}+V_{2}
$$

The current through the capacitor is

$$
I\left(t_{0}\right)=-\frac{V}{R}=\left.C \frac{\partial}{\partial t}\left(V_{1} e^{-t / R C}+V_{2} R\right)\right|_{t=t_{0}}=C\left(-\frac{V_{1}}{R C} e^{-t_{0} / R C}\right)
$$

which implies $V_{1}=V e^{t_{0} / R C}$. Plugging this into the above gives $V_{2}=0$, so the solution is

$$
V_{o}(t)=V e^{-\left(t-t_{0}\right) / R C}
$$

This is decay to zero with the same time constant $R C$.

2.8

The integrator circuit of Figure 2.16(a) is governed by equation (2.4.13),

$$
V_{o}+R C \dot{V}_{o}=V_{i} .
$$

For $V_{o}=\sin \omega t$, this implies

$$
\sin \omega t+\omega R C \cos \omega t=V_{i}
$$

When $\omega R C \gg 1$, the $\sin \omega t$ term is negligible, and V_{i} is proportional to \dot{V}_{o}, i.e., V_{o} is proportional to the antiderivative of V_{i}.

The differentiator circuit of Figure 2.16(b) is governed by equation (2.4.17),

$$
\dot{V}_{o}+\frac{V_{o}}{R C}=\dot{V}_{i} .
$$

For $V_{o}=\sin \omega t$, this implies

$$
\omega \cos \omega t+\frac{1}{R C} \sin \omega t=\dot{V}_{i} .
$$

When $\omega R C \ll 1$, the $\cos \omega t$ term is negligible, and \dot{V}_{i} is proportional to V_{o}, i.e., V_{o} is proportional to the derivative of V_{i}.

2.9

This is the circuit shown in Fig. 2.18(b). We have

$$
\begin{gathered}
\frac{V_{o}}{V_{i}}=\frac{R}{R+Z_{C}}=\frac{R}{R-i / \omega C} \\
\left|\frac{V_{o}}{V_{i}}\right|^{2}=\frac{R}{R-i / \omega C} \frac{R}{R+i / \omega C}=\frac{R^{2}}{R^{2}+1 / \omega^{2} C^{2}}=\frac{1}{1+1 / \omega^{2} R^{2} C^{2}} .
\end{gathered}
$$

2.10

$$
\frac{V_{o}}{V_{i}}=\frac{Z_{L}}{R+Z_{L}}=\frac{i \omega L}{R+i \omega L}
$$

This is a high-pass filter.
2.11 From Exercise 2.9, we have

$$
\left|\frac{V_{o}}{V_{i}}\right|^{2}=\frac{1}{1+1 / \omega^{2} R^{2} C^{2}}
$$

Solve for ω :

$$
\omega=\frac{1}{R C}\left(\frac{1}{\left|V_{o} / V_{i}\right|^{2}}-1\right)^{-1 / 2}
$$

a)

$$
\begin{gathered}
-3 \mathrm{~dB}=10 \log _{10}\left|V_{o} / V_{i}\right|^{2} \\
\left|V_{o} / V_{i}\right|^{2}=10^{-.3}=0.5 \rightarrow \omega=1 / R C
\end{gathered}
$$

b)

$$
\left|V_{o} / V_{i}\right|^{2}=10^{-1}=0.1 \rightarrow \omega=1 / 3 R C
$$

c)

$$
\left|V_{o} / V_{i}\right|^{2}=10^{-2}=0.01 \rightarrow \omega=1 / 10 R C
$$

2.12

a)

$$
\begin{gathered}
10 \mathrm{dBm}=20 \log _{10}\left(V / V_{0}\right) \\
\frac{V}{V_{0}}=10^{1 / 2} \\
V=3 \cdot 1 V_{0}=1 \mathrm{~V} \\
\bar{P}=\frac{V^{2}}{2 R}=10 \mathrm{~mW}
\end{gathered}
$$

We could also have done this just by noting that 10 dBm is 10 times greater than 0 dBm .
b)

$$
\begin{gathered}
35 \mathrm{~dB}=20 \log _{10} V_{2} / V_{1} \\
\frac{V_{2}}{V_{1}}=10^{35 / 20}=56
\end{gathered}
$$

2.13

$$
\sin \omega t=\frac{e^{i \omega t}-e^{-i \omega t}}{2 i}
$$

From (2.7.11),

$$
F\left(\omega^{\prime}\right)=2 \pi \frac{\delta\left(\omega^{\prime}-\omega\right)-\delta\left(\omega^{\prime}+\omega\right)}{2 i}
$$

2.14

$f(t)$ is given by (note typo in book)

$$
f(t)=\left\{\begin{array}{cc}
1, & (n-1) T<t<(n-1 / 2) T \\
0, & (n-1 / 2) T<t<n T
\end{array}\right.
$$

$$
\begin{aligned}
& c_{n}=\frac{1}{T} \int_{T / 2}^{T} e^{-i 2 \pi n t / T} d t \\
& =\frac{e^{-i 2 \pi n}-e^{-i \pi n}}{-i 2 \pi n} \\
& =\frac{e^{-3 i \pi n / 2}\left(e^{-i \pi n / 2}-e^{i \pi n / 2}\right)}{-i 2 \pi n}=\frac{1}{\pi n} e^{-3 i \pi n / 2} \sin (\pi n / 2) \\
& \begin{array}{c|c}
n & c_{n} \\
\hline 0 & \frac{1}{2} \\
\pm 1 & i \pi^{-1}
\end{array} \\
& \pm 2 \quad 0 \\
& \pm 3 ~ \frac{i}{3} \pi^{-1} \\
& \pm 4 \quad 0 \\
& \pm 5 \quad \frac{i}{5} \pi^{-1} \\
& \pm 60 \\
& \pm 7 \quad \frac{i}{7} \pi^{-1} \\
& f(t)=\sum_{n=-\infty}^{\infty} c_{n} e^{i 2 \pi n t / T}=\frac{1}{2}+\sum_{n=1}^{\infty} \frac{i}{\pi n}\left(e^{i 2 \pi n t / T}-e^{-i 2 \pi n t / T}\right)=\frac{1}{2}-\sum_{n=1}^{\infty} \frac{2}{\pi n} \sin (2 \pi n t / T)
\end{aligned}
$$

The sum of the terms up through $n=7$ (first five nonzero terms) is shown in Figure 6.

Figure 6: Fourier sum for Exercise 2.14.

2.15

The Fourier transform is

$$
F(\omega)=\int_{-\infty}^{\infty} f(t) e^{-i \omega t} d t
$$

$f(t)$ is given by

$$
f(t)=\left\{\begin{array}{lc}
1, & (n-1) T<t<(n-1 / 2) T \\
0, & (n-1 / 2) T<t<n T
\end{array}\right.
$$

The transform is

$$
\begin{gathered}
F(\omega)=\sum_{n=-\infty}^{\infty} \int_{(n-1) T}^{(n-1 / 2) T} e^{-i \omega t} d t=\sum_{n=-\infty}^{\infty} \frac{i}{\omega}\left(e^{-i \omega(n-1 / 2) T)}-e^{-i \omega(n-1) T)}\right) \\
=\frac{i}{\omega}\left(e^{i \omega T / 2}-e^{i \omega T)}\right) \sum_{n=-\infty}^{\infty} e^{-i \omega n T}
\end{gathered}
$$

The sum will be equal to infinity for $\omega=2 \pi n^{\prime} / T$ and zero otherwise (this is equivalent to a δ-function). Thus we have

$$
F(\omega)=\left\{\begin{array}{cc}
\frac{-2 i}{2 \pi n^{\prime} / T}=\frac{-i}{\pi n^{\prime}}, & \omega=2 \pi n^{\prime} / T \\
0, & \text { else. }
\end{array}\right.
$$

This is the same as the result of Exercise 2.14.

2.16

The Fourier transform is

$$
F(\omega)=\int_{-\infty}^{\infty} \Theta(t) e^{-s t} e^{-i \omega t} d t=\int_{0}^{\infty} e^{-s t} e^{-i \omega t} d t=-\frac{1}{-s-i \omega}=\frac{-i}{\omega-i s}
$$

The response function (2.5.7) is

$$
\frac{V_{o}}{V_{i}}=\frac{-i / \omega C}{R-i / \omega C}=\frac{-i / R C}{\omega-i / R C}
$$

and the product is

$$
F_{o}(\omega)=\left(\frac{-i / R C}{\omega-i / R C}\right)\left(\frac{-i}{\omega-i s}\right)
$$

The reverse Fourier transform is

$$
f(t)=\frac{1}{2 \pi} \int_{-\infty}^{\infty}\left(\frac{-i / R C}{\omega-i / R C}\right)\left(\frac{-i}{\omega-i s}\right) e^{i \omega t} d t
$$

For $t>0, \omega \rightarrow+i \infty$ converges, so this becomes

$$
f(t)=i(-i / R C) \frac{-i}{i / R C-i s} e^{i(i / R C) t}+i \frac{(-i / R C)}{i s-i / R C}(-i) e^{i(i s) t}
$$

Setting $s=0$ gives

$$
f(t)=1-e^{-t / R C}
$$

2.17

Loops:
$V_{i}=I R+I_{c} Z_{C}$
$V_{i}=I R+I_{L} Z_{L}$
Node:
$I=I_{C}+I_{L}$
Solution:

$$
\begin{gathered}
I_{C}=\frac{Z_{L}}{R Z_{C}+R Z_{L}+Z_{C} Z_{L}} V_{i}=\frac{i \omega L}{-i R / \omega C+i \omega R L+L / C} V_{i} \\
V_{C}=I_{C} Z_{C}=\frac{L / C}{-i R / \omega C+i \omega R L+L / C} V_{i}
\end{gathered}
$$

2.18

(2.8.2) is

$$
\frac{V_{o}}{V_{i}}=\frac{R}{R-i / \omega C+i \omega L} .
$$

(2.8.12) is

$$
\dot{V}_{i}=\dot{I} R+\frac{I}{C}+L \ddot{I} .
$$

For $V_{i}=V_{i}(0) e^{i \omega t}$ and $I=I_{0} e^{i \omega t+\phi}$, this becomes

$$
i \omega V_{i}(0) e^{i \omega t}=i \omega I_{0} R e^{i(\omega t+\phi)}+\frac{I_{0}}{C} e^{i(\omega t+\phi)}-L \omega^{2} I_{0} e^{i(\omega t+\phi)}
$$

The output V_{o} is across R, so $V_{o}=I_{0} R e^{i(\omega t+\phi)}$. The above equation therefore becomes

$$
i \omega V_{i}=i \omega V_{o}+\frac{V_{o}}{R C}-\frac{L}{R} \omega^{2} V_{o} .
$$

Solving for V_{o} / V_{i} gives

$$
\frac{V_{o}}{V_{i}}=\frac{i \omega}{i \omega+1 / R C-\omega^{2} L / R}
$$

which is the same as (2.8.2).

2.19

We want a high-pass filter like that shown in Fig. 2.18(b), which has response (see Exercise 2.9)

$$
\left|\frac{V_{o}}{V_{i}}\right|^{2}=\frac{1}{1+1 / \omega^{2} R^{2} C^{2}}
$$

We solve for C :

$$
C=\frac{\omega}{R} \sqrt{\frac{1}{\left|V_{o} / V_{i}\right|^{2}}-1}=\frac{2 \pi(100 \mathrm{~Hz})}{50 \times 10^{6} \Omega} \sqrt{1 /(.95)^{2}-1}=0.6 \mu \mathrm{~F}
$$

2.20

Solve for 10% value:

$$
\begin{gathered}
e^{-t_{10}^{2} / 2 \tau^{2}}=.1 \\
t_{10}=\sqrt{-2 \tau^{2} \ln (0.1)} .
\end{gathered}
$$

For 90% value,

$$
t_{90}=\sqrt{-2 \tau^{2} \ln (0.9)}
$$

On the positive side,

$$
t_{10}-t_{90}=\sqrt{-2 \tau^{2} \ln (0.9)}-\sqrt{-2 \tau^{2} \ln (0.1)}=\tau \sqrt{2}(\sqrt{-\ln (0.1)}-\sqrt{-\ln (0.9)})=1.2 \sqrt{2} \tau
$$

2.21

The electric field is purely radial. For charge $+Q$ on the inner sphere and $-Q$ on the outer sphere, the electric field is

$$
E(r)=\frac{Q}{4 \pi \epsilon_{0} r^{2}}
$$

and the potential drop is

$$
\Delta V(r)=-\int_{r_{1}}^{r_{2}} E(r) d r=\frac{Q}{4 \pi \epsilon_{0} r_{1}}-\frac{Q}{4 \pi \epsilon_{0} r_{2}}
$$

Comparing to the definition $Q=C \Delta V$, this gives

$$
C=4 \pi \epsilon_{0}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)^{-1} .
$$

2.22

The electric field from a line charge is found from Gauss's law,

$$
E=\frac{\sigma}{2 \pi r \epsilon_{0}},
$$

where $\sigma=Q / l$ is the charge density. The voltage drop from wire of radius b to a distance a is

$$
\Delta V=-\int_{b}^{a} E(r) d r=\frac{Q / l}{2 \pi \epsilon_{0}} \ln (a / b)
$$

By superposition, the other wire contributes the same, so we multiply by 2 . This implies

$$
C=\frac{\pi \epsilon_{0} l}{\ln (a / b)} .
$$

2.23

$$
\begin{gathered}
C=\frac{A \epsilon_{0}}{d}=\frac{l w \epsilon_{0}}{d} \\
L=\frac{\mu_{0} l d}{w} \\
\omega_{0}=\frac{1}{\sqrt{L C}}=\frac{1}{\sqrt{\frac{\mu_{0} l d}{w} \frac{l w \epsilon_{0}}{d}}}=\frac{1}{\sqrt{\mu_{0} \epsilon_{0} l^{2}}}=\frac{c}{l} .
\end{gathered}
$$

2.24

The high-pass filter of Fig. 2.18(b) has response (see Exercise 2.9)

$$
\frac{V_{o}}{V_{i}}=\frac{R}{R-i / \omega C}=\frac{R(R+i / \omega C)}{R^{2}+1 / \omega^{2} C^{2}} .
$$

From (2.5.9),

$$
\begin{aligned}
\tan \phi & =\frac{\operatorname{Im} V_{o} / V_{i}}{\operatorname{Re} V_{o} / V_{i}} \\
& =\frac{1 / \omega C}{R}
\end{aligned}
$$

At high frequency, $\phi=0$. At low frequency, $\phi=\pi / 2$.

2.25

$$
\frac{V_{o}}{V_{i}}=\frac{i \omega L}{i \omega L+R}=\frac{i \omega L / R}{i \omega L / R+1} .
$$

Figure ?? shows the plot with frequency in units of R / L.

Figure 7: Response function for Exercise 2.25.
2.26
$\left|V_{o}\right|^{2}$ is increased by $(3 / 2)^{2}=2.25$.
$10\left(\log _{10} 2.25\right)=3.52 \mathrm{~dB}$

2.27

From Exercises 2.9 and 2.18:

$$
\left|\frac{V_{o}}{V_{i}}\right|^{2}=\frac{1}{1+1 / \omega^{2} R^{2} C^{2}}
$$

Solving for ω,

$$
\omega=\frac{1}{R C}\left(\frac{1}{\left|V_{o} / V_{i}\right|^{2}}-1\right)^{-1 / 2}=\frac{0.1}{R C}
$$

2.28

The low-pass filter response (2.5.7) is

$$
\frac{V_{o}}{V_{i}}=\frac{-i / \omega C}{R-i / \omega C} .
$$

Power response is

$$
\left|\frac{V_{o}}{V_{i}}\right|^{2}=\frac{-i / \omega C}{R-i / \omega C} \frac{i / \omega C}{R+i / \omega C}=\frac{1 / \omega^{2} C^{2}}{R^{2}+1 / \omega^{2} C^{2}}=\frac{1}{\omega^{2}(R C)^{2}+1}
$$

Solve for ω :

$$
\omega=\frac{1}{R C} \sqrt{\frac{1}{\left|V_{o} / V_{i}\right|^{2}}-1}
$$

10% :
$\omega=\frac{3}{R C}$.
90\%:
$\omega=\frac{1}{3 R C}$.
10-90 range:

$$
\Delta \omega=\frac{2.667}{R C}
$$

2.29

$$
\begin{gathered}
\Delta \mathrm{dB}=20 \log _{10} V_{2} / V_{1} \\
\frac{V_{2}}{V_{1}}=10^{\Delta \mathrm{dB} / 20}=10^{13 / 20}=4.5
\end{gathered}
$$

The amplitude signal-to-noise ratio increases by a factor of 4.5 , i.e. from 2 to 9 .
It is also common to talk in terms of the signal-to-noise power ratio.

2.30

The circuit is shown in Figure 8.

Figure 8: Circuit for Exercise 2.30.

Loops:
$V_{i}=I_{1} R_{1}+I_{C 1} Z_{C 1}$
$V_{i}=I_{1} R_{1}+I_{2} R_{2}+V_{o}$
$V_{o}=I_{2} Z_{C 2}$
Node:
$I_{1}=I_{C 1}+I_{2}$

Set $R_{1}=R_{2}=R, C_{1}=C_{2}=C$. Solution:

$$
\begin{aligned}
\frac{V_{o}}{V_{i}} & =\frac{Z_{C}^{2}}{R^{2}+3 R Z_{C}+Z_{C}^{2}} \\
\left|\frac{V_{o}}{V_{i}}\right|^{2} & =\frac{1}{1+7 C^{2} R^{2} \omega^{2}+C^{4} R^{4} \omega^{4}}
\end{aligned}
$$

In the Figure 9, the lower curve is this response function, while the upper curve is the single low-pass response, from Exercise 2.27.

Figure 9: Response functions for Exercise 2.30.

2.31

Assuming perfect detector; no current flows into output; I_{o} is the current flowing from top to bottom in the right side of the circuit.

Loops:
$V_{i}=I_{C 1} Z_{C}+I_{R 3} \frac{R}{2}$

$$
\begin{aligned}
V_{i} & =I_{R 1} R+I_{C 3} \frac{Z_{C}}{2} \\
V_{i} & =I_{R 1} R+I_{o} R+V_{o} \\
V_{o} & =I_{o} Z_{C}+I_{R 3} \frac{R}{2}
\end{aligned}
$$

Nodes:
$I_{R 1}=I_{C 3}+I_{o}$
$I_{C 1}+I_{o}=I_{R 3}$
Solution:

$$
\frac{V_{o}}{V_{i}}=\frac{\left(-1+C^{2} R^{2} \omega^{2}\right)}{-1-4 i C R \omega+C^{2} R^{2} \omega^{2}}
$$

This is plotted in Figure 10. When $\omega=1 / R C$, this equals 0 . When $\omega \rightarrow 0$ or $\omega \rightarrow \infty$, it approaches unity.

Figure 10: Response function for Exercise 2.31.

2.32

The circuit in the book is missing a $50-\Omega$ resistor between V_{i} and the rest of the circuit-as drawn, the circuit will give $V_{o}=V_{i}$ for all inputs. Putting a resistor there gives

Loops:
$V_{i}=I R+V_{o}$
$V_{o}=I_{1}\left(Z_{C 1}+Z_{L 1}\right)$

$$
V_{o}=I_{2}\left(Z_{C 2}+Z_{L 2}\right)
$$

Node:
$I=I_{1}+I_{2}$
Solution:

$$
\frac{V_{o}}{V_{i}}=\frac{\left(-1+C_{1} L_{1} \omega^{2}\right)\left(-1+C_{2} L_{2} \omega^{2}\right)}{1+i C_{1} R \omega+i C_{2} R \omega-C_{1} L_{1} \omega^{2}-C_{2} L_{2} \omega^{2}-i C_{1} C_{2} L_{1} R \omega^{3}-i C_{1} C_{2} L_{2} R \omega^{3}+C_{1} C_{2} L_{1} L_{2} \omega^{4}}
$$

This is a double notch filter, with zeroes where the two terms in the numerator vanish. Figure 11 shows a plot for the values given:

Figure 11: Double notch response function, for Exercise 2.32.

2.33

a) Capacitor relation:

$$
I=C \frac{\partial \Delta V_{C}}{\partial t}
$$

Loops:
$V_{s}=I_{1} R_{1}+I_{2} R_{2}$
$V_{i}=\Delta V_{C}+V_{o} \rightarrow \dot{V}_{i}=\frac{I_{C}}{C}+\dot{V}_{o}$
$V_{o}=I_{2} R_{2}$
These become

$$
\begin{aligned}
& V_{s}=I_{1} R_{1}+I_{2} R_{2} \\
& i \omega V_{1} e^{i \omega t}=\frac{I_{C}}{C}+i \omega V_{A C} e^{i(\omega t+\phi)} \\
& V_{D C}+V_{A C} e^{i(\omega t+\phi)}=I_{2} R_{2}
\end{aligned}
$$

Node:
$I_{C}+I_{1}=I_{2}$.
Write $I_{1}=I_{1 D C}+I_{1 A C}$ and $I_{2}=I_{2 D C}+I_{2 A C}$ (note that there is no DC component through the capacitor), and set DC terms equal and AC terms equal:

$$
\begin{aligned}
& V_{s}=I_{1 D C} R_{1}+I_{2 D C} R_{2} \\
& 0=I_{1 A C} R_{1}+I_{2 A C} R_{2} \\
& i \omega V_{1} e^{i \omega t}=\frac{I_{C}}{C}+i \omega V_{A C} e^{i(\omega t+\phi)} \\
& V_{D C}=I_{2 D C} R_{2} \\
& V_{A C} e^{i(\omega t+\phi)}=I_{2 A C} R_{2} \\
& I_{C}+I_{1 A C}=I_{2 A C} \\
& I_{1 D C}=I_{2 D C}
\end{aligned}
$$

We solve these for $I_{C}, I_{1 D C}, I_{1 A C}, I_{2 D C}, I_{2 A C}, V_{D C}$, and $V_{A C} e^{i \phi}$, which gives

$$
\begin{gathered}
V_{D C}=\frac{R_{2} V_{s}}{R_{1}+R_{2}}, \\
V_{A C} e^{i \phi}=\frac{C R_{1} R_{2} \omega}{-i R_{1}-i R_{2}+C R_{1} R_{2} \omega} V_{1} \\
=\frac{C R_{\mathrm{eff}} \omega}{-i+C R_{\mathrm{eff}} \omega} V_{1}
\end{gathered}
$$

where

$$
R_{\mathrm{eff}}=\frac{R_{1} R_{2}}{R_{1}+R_{2}}
$$

2.34

We want a low-pass filter that eliminates AC frequency of 60 Hz . We use the circuit shown in Fig. 2.18(a) with a polarized capacitor with the negative side grounded. Formula (2.5.11) gives us

$$
\left|V_{o} / V_{i}\right|^{2}=\frac{1}{1+\omega^{2} R^{2} C^{2}}
$$

We would like low series R to prevent DC droop of the voltage supply. Pick $R=1 \Omega$, which is small compared to a typical 50Ω load impedance. Solve for C:

$$
C=\frac{1}{\omega R} \sqrt{1 /\left|V_{o} / V_{i}\right|^{2}-1}
$$

To eliminate 99% of the ripple, pick $\left|V_{o} / V_{i}\right|^{2}=.01$. Setting $\omega=2 \pi(60 \mathrm{~Hz})=377 \mathrm{~s}^{-1}$, we then have

$$
C=\frac{1}{\left(377 \mathrm{~s}^{-1}\right)(50 \Omega)} \sqrt{99}=0.00053 \mathrm{~F}=530 \mu \mathrm{~F}
$$

