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1. Let y=c¢€", so that y' =re™ and y” =r2e™. Direct substitution into the

differential equation yields (r? + 2r —3)e"™ = 0. Canceling the exponential, the
characteristic equationis r? + 2r — 3 = 0. The roots of the equation are r = —3,1.
Hence the general solution is y = cie’ + cpe ™.

2. Let y = e". Substitution of the assumed solution results in the characteristic
equation 72 + 3r +2 = 0. The roots of the equation are » = —2,—1. Hence the
general solution is y = cie ™t 4 cope 2.

5. The characteristic equation is 472 — 9 = 0, with roots 7 = £3/2. Therefore the
general solution is y = cie 3t/2 + ¢pe3t/2.

6. The characteristic equation is r2 —2r —2 =0, with roots r=1=+ V3 . Hence
the general solution is y = c;e(1=V3t 4 coe(1+V3)E,

7. Substitution of the assumed solution y = e"* results in the characteristic equa-
tion r2 +7 —2 = 0. The roots of the equation are r = —2,1. Hence the general
solution is y = c1e™ 2! + coel. Its derivative is y’ = —2cie 2! + coel. Based on the
first condition, y(0) = 1, we require that ¢; + co = 1. In order to satisfy y'(0) =1,
we find that —2c¢; + ¢ = 1. Solving for the constants, ¢; =0 and ¢o = 1. Hence
the specific solution is y(t) = e’. It clearly increases without bound as t — oc.
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Chapter 3. Second-Order Linear Equations

9. The characteristic equation is 72 + 3r = 0, with roots »r = —3, 0. Therefore
the general solution is y = ¢; + coe™3*, with derivative 3y’ = —3coe™3*. In order
to satisfy the initial conditions, we find that ¢; +co = —2, and —3 ¢y = 3. Hence
the specific solution is y(t) = —1 — e~3!. This converges to —1 as t — oo.

z

-0.5 4

-1.5 4

10. The characteristic equation is 2r? +r —4 = 0, with roots 7 = (=1 £/33) /4.
The general solution is y = cye(=1=V33)t/4 4 ) e(-1+V33)t/4 with derivative

y' = i i _4 33 cre"1mV33/4 4 Z1+vas —tl 33 coe(T1TV33)/4

In order to satisfy the initial conditions, we require that

-1-+/33 —1+\/ﬁC
2

ci+ca=0 and c1 1

=1
4

Solving for the coefficients, ¢; = —2/v/33 and ¢ = 2/4/33 . The specific solution

1S

y(t) = —2 p(—1-V33)t/4 6(—1+\/§)t/4} /\/ﬁ

It clearly increases without bound as ¢t — oo.
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12. The characteristic equation is 472 — 1 = 0, with roots 7 = +1/2 . Therefore the
general solution is y = cie */2 + ¢pet/2. Since the initial conditions are specified
at t = —2, is more convenient to write y = dye~(+2/2 4 dye(t+2)/2 The derivative
is given by y’ = — [die=#+2/2] /2 + [dre*2)/2] /2. In order to satisfy the initial
conditions, we find that dy +dy =1, and —d;/2+ds/2=—1. Solving for the
coefficients, dy = 3/2, and ds = —1/2. The specific solution is

y(t) = Bo—v22 _ L iy -3 2 €2
2 2 2e 2

It clearly decreases without bound as ¢ — co.

~104

15. The characteristic equation is 2r> — 3r + 1 = 0, with roots » = 1/2, 1. There-
fore the general solution is y = c;e?/? + cqet, with derivative 3’ = c1et/?/2 + cyel.
In order to satisfy the initial conditions, we require ¢; + ¢ =2 and ¢1/2 + ¢co = 1/2.
Solving for the coefficients, ¢; = 3, and ¢o = —1. The specific solution is y(t) =
3et/2 — ¢!, To find the stationary point, set y’ = 3e*/2/2 —e! =0. There is a
unique solution, with ¢; = In(9/4). The maximum value is then y(t;) =9/4. To
find the a-intercept, solve the equation 3e'/?2 —e! =0. The solution is readily
found to be t; =In9 ~ 2.1972.

17. The characteristic equation is 72 — (2a — 1)r + a(a — 1) = 0. Examining the
coefficients, the roots are »r = o, @« — 1. Hence the general solution of the differen-
tial equation is y(t) = c1e®t + coel®= Dt Assuming o € R, all solutions will tend
to zero as long as a < 0. On the other hand, all solutions will become unbounded
as long as o —1 >0, that is, a > 1.
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19.(a) The characteristic roots are r = —3,—2. The solution of the initial value
problem is y(t) = (6 + B)e= — (4 + B)e 3.

(b) The maximum point has coordinates to = In[(3(4 + 3))/(2(6 + 8))], yo = 4(6 +
B)*/(27(4+ B)?).

(c) yo = 4(6 + B)%/(27(4 + B)?) > 4, as long as B > 6+ 6V/3 .
(d) limg_, 00 to = In(3/2), limg 00 yo = 00.

20.(a) Assuming that y is a constant, the differential equation reduces to cy = d.
Hence the only equilibrium solution is y = d/c.

(b) Setting y =Y + d/c, substitution into the differential equation results in the
equation aY” +bY ' +¢(Y +d/c) =d. The equation satisfied by Y is aY” +
bY'+cY =0.

1.
2t —3t/2
W (e, e_3t/2) = 2662:5 _%:gt/z = _zet/2'
3 o2t te—2t
W™ te™) =1 g2 (1 _gpe-2|=¢
4. . .
W(e'sin t, e’ cos t) = et(sirc; tsj_l (fos t) et(coes ;:O_S ;in t)‘ _ 2t

5.

cos? 6 1+ cos 20

2 _
W (cos™ 0,1 + cos 26) = ‘—2 sin @ cos @ —2 sin 260

‘ 0.
6. Write the equation as y” + (3/t)y’ = 1. p(t) = 3/t is continuous for all ¢ > 0.
Since tg > 0, the IVP has a unique solution for all ¢ > 0.

7. Write the equation as y” + (3/(t —4))y’ + (4/t(t — 4))y = 2/t(t — 4) . The coef-
ficients are not continuous at t = 0 and ¢ = 4. Since t¢ € (0,4), the largest interval
is0<t<4.

8. The coefficient 31n |¢| is discontinuous at ¢ = 0. Since ¢y > 0, the largest interval
of existence is 0 <t < 00.
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10. y{' =2. We see that t*(2) —2(t?) = 0. ys’ = 2¢73, with t>(y4') — 2(y2) = 0.
Let y3 = c1t? + cot™1, then yi’ =2c; +2cot™3. It is evident that ys is also a
solution.

13. No. Substituting y = sin(#?) into the differential equation,
—4t? sin(t?) + 2 cos(t?) + 2t cos(t?)p(t) + sin(t?)q(t) = 0.

At ¢t = 0, this equation becomes 2 = 0 (if we suppose that p(¢) and ¢(t) are contin-
uous), which is impossible.

14. W(e?, g(t)) = e?g’(t) — 2e%'g(t) = 3e**. Dividing both sides by e?, we find
that g must satisfy the ODE g’ — 2g = 3e2'. Hence g(t) = 3t " + ce?’.

15. W(f,9)=fg' —f'g =tcost—sint, and W(u,v)=—-4fg'+4f’'g. Hence
W(u,v) = —4t cos t + 4sin t.

16. We compute

a +a b + b
W(aiy1 + a2yz, biyi + bayz) = aizi I aizz bizli 4 bzzz =

= (a1y1 + azy2) (b1yy + bays) — (bryr + baye)(ar1yy + azys) =

= arba (Y15 — y1Y2) — a2b1(y1ys — yiy2) = (a1by — azb) W (y1, y2)-

This now readily shows that y3 and y, form a fundamental set of solutions if and
only if a1b2 - a2b1 75 0.

18. The general solution is y = c1e™3t + coe™t. W(e 3!, e7t) = 2e74, and hence
the exponentials form a fundamental set of solutions. On the other hand, the fun-
damental solutions must also satisfy the conditions y1 (1) = 1, y{(1) = 0; y2(1) =0,
ys(1) = 1. For yi, the initial conditions require ¢; + co = e, —3¢; —ca = 0. The

coefficients are ¢; = —63/2, ¢o = 3e/2. For the solution g9, the initial conditions re-
quire ¢; + ¢ = 0, —3c; — co = e. The coefficients are ¢; = —e3/2, co = ¢/2. Hence
the fundamental solutions are
1 3 1 1
gy = 75673@71) I 567(t71) and  yy = 75673@71) i ief(tfl).

19. Yes. y{ = —4 cos 2t; yy’ = —4 sin 2t. W(cos 2t ,sin 2t) = 2.

20. Clearly, y; = €' is a solution. yq = (1 +t)e’, y4' = (2 + t)e’. Substitution into
the ODE results in (2 + t)e! — 2(1 +t)e! +te! = 0. Furthermore, W (ef, te!) = e?t.
Hence the solutions form a fundamental set of solutions.

24. Writing the equation in standard form, we find that P(¢) = sin ¢/ cos ¢t. Hence
the Wronskian is W(t) = ceJ(smt/cost)dt — pelnleostl — ¢ cos ¢, in which c¢ is
some constant.
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25. Writing the equation in standard form, we find that P(z) = —2z/(1 — z?).
The Wronskian is W (z) = ce~ / ~2/(=e")de — co=[1=2"] — /(1 _ 22) in which
¢ is some constant.

26. Rewrite the equation as p(t)y” + p’(t)y’ + q(t)y = 0. After writing the equa-
tion in standard form, we have P(t) = p’(t)/p(t) . Hence the Wronskian is

W(t) = ce™ [P/ OPOA _ o= p) — oy,

28. For the given differential equation, the Wronskian satisfies the first order dif-
ferential equation W'+ p(t)W = 0. Given that W is constant, it is necessary that

p(t)=0.

32. P=1,Q=z, R=1. We have P" — Q'+ R=0. The equation is exact.
Note that (y’) + (zy)’ =0. Hence y’ + xy = c¢;. This equation is linear, with
z2/2

integrating factor p = e* /. Therefore the general solution is

xT
y(x) = cle_xz/g/ e 2du + coe " /2,
o

34. P=22 Q=x, R=—1. We have P’ — Q'+ R=0. The equation is exact.
Write the equation as (2z%y’)’ — (zy)’ = 0. After integration, We conclude that
z2y’ — zy = c. Divide both sides of the differential equation by z2. The resulting
equation is linear, with integrating factor p = 1/x. Hence (y/z) =cx~3. The
solution is y(t) = c;x™! + o

36. P=2x2, Q==1x, R=2?—v? Hence the coefficients are 2P’ — Q = 3z and
P"— Q'+ R=2?+1-v2 The adjoint of the original differential equation is
given by 2?p” +3zp’ + (22 +1—-vH)p=0.

37. P=1,Q =0, R = —x. Hence the coefficients are given by 2P’ — @ = 0 and
P” — Q'+ R = —xz. Therefore the adjoint of the original equationis u” —zpu=20.

1 2—31

e =ele 3 = €2(

cos 3 — 1 sin 3).
2. e =cosm+isinT=—1.

3. 2~ (/2)0 = ¢2(cos(/2) — i sin(1/2)) = —€2i.

6. The characteristic equation 1s 2 —2r+6 =0, withroots » =1 + i/5 . Hence
the general solution is y = cie? cos V5t + g et sin /5.

7. The characteristic equation is 7% 4+ 2r +2 = 0, with roots r = —1 4+ 7. Hence
the general solution is y = cie "t cos t + co e !sin ¢.
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9. The characteristic equation is 72 + 2r + 1.25 = 0, with roots r = —1 + i/2.
Hence the general solution is y = cie™ ! cos(t/2) + co e sin(t/2).

11. The characteristic equation is 72 + 4r + 6.25 = 0, with roots r = —2 + (3/2) 1.
Hence the general solution is y = cie =2 cos(3t/2) + co e 2! sin(3t/2).

12. The characteristic equation is 72 +4 = 0, with roots r = £2i. Hence the
general solution is y = ¢ cos 2t + ¢o sin 2t. Now y’ = —2c¢; sin 2t + 2¢5 cos 2t.
Based on the first condition, y(0) = 0, we require that ¢; = 0. In order to satisfy
the condition y’(0) =1, we find that 2co =1. The constants are ¢; =0 and
ca = 1/2. Hence the specific solution is y(¢) = sin 2¢ /2. The solution is periodic.
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13. The characteristic equation is 2 — 2r +5 = 0, with roots » = 1 4+ 2. Hence
the general solution is y = cie! cos 2t + cp €' sin 2¢. Based on the initial condition
y(m/2) =0, we require that ¢; = 0. It follows that y = cyelsin 2¢, and so the
first derivative is y’ = ¢y el sin 2t + 2c¢9 €f cos 2¢. In order to satisfy the condition
y'(n/2) = 2, we find that —2e™/2cy = 2. Hence we have ¢y = —e~™/2. There-
fore the specific solution is y(t) = —e?~™/2 sin 2¢. The solution oscillates with an
exponentially growing amplitude.
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14. The characteristic equation is 72 +1 = 0, with roots r = £i. Hence the gen-
eral solution is y = ¢y cos t + ¢o sin t. Its derivative is y’ = —cysin t + ¢y cos t.
Based on the first condition, y(7/3) = 2, we require that ¢, ++v3cy =4. In or-
der to satisfy the condition y'(7/3) = —4, we find that —v/3'¢; + ¢ = —8. Solving
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these for the constants, ¢; = 1 + 2v/3 and Cco = V3 — 2. Hence the specific solution
is a steady oscillation, given by y(t) = (1 +2v/3)cos t + (v/3 — 2)sin t.

17.(a) The characteristic equation is 572 4+ 2r +7 = 0, with roots 7 = —(1 & iv/34) /5.
The solution is u = cie~*/5 cos V/34t/5 + cye /5 sin v/34t/5. Invoking the given
initial conditions, we obtain the equations for the coefficients: ¢; =2, =2 + /34 ¢y =
5. That is, ¢c; =2, ¢ = 7/\/374 . Hence the specific solution is

V34 7 V34
u(t) = 2e7° cos ~—t + ——e /% sin ~—

¢
5 V31 5

(b) Based on the graph of wu(t), T is in the interval 14 <t¢ < 16. A numerical
solution on that interval yields 7"~ 14.5115 .

19. Direct calculation gives the result. On the other hand, it can be shown that
W(fg,fh)=f*W(g,h). Hence W (e cos ut,e M sin ut) = > W (cos ut,sin ut) =
e?M [cos pt(sin pt) — (cos ut) sin ut] = pe?M.

20.(a) Clearly, y; and y» are solutions. Also, W (cos t,sin t) = cos®t +sin®t = 1.

(b) y’' =iett, y"” =i2el = —¢c'. Evidently, y is a solution and so y = c1y1 + ca¥a.

(c) Settingt =0, 1 =cycos 0+ ¢a sin 0, and ¢; = 1.
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(d) Differentiating, ie® = ¢y cos t. Setting t =0, i = cy cos 0 and hence ¢y =i.
Therefore e?* = cost+i sin t.

21. Euler’s formula is e” = cos t + i sin t. It follows that e * = cost — i sin ¢.
Adding these equation, e + e~% = 2 cos t. Subtracting the two equations results
inet —e ™ =2 sint.

22. Let ry = A\ +ip1, and ro = Ay +ipz . Then

elritra)t — pCuA)ttilimtua)t — (A2t [eog( 1y 4 po)t + i sin(pg + p2)t] =

= e+t [(cog iyt 4 disin pugt)(cos pat 4+ isin pot)] =

Tlt ’I‘zt

= eMt(cos pt + isin pit) - e 2t(cos pit + isin pit) = eMte

Hence e(mitr2)t — grit grat,

23. Clearly, u/ = e cos ut — per sin ut = e*(\ cos ut — psin ut) and then v’ =
AeM (X cos put — psin pt) + e (—Apsin ut — p? cos ut). Plugging these into the dif-
ferential equation, dividing by e* # 0 and arranging the sine and cosine terms we
obtain that the identity to prove is

(a(A? — p?) 4+ A + ¢) cos put + (—2Apa — bp) sin put = 0.

We know that A\ 4 iy solves the characteristic equation ar? + br + ¢ =0, so a(\ —
iw)? + b\ —ip) +c = a(A\? — p?) + bA + ¢ +i(—2Aua — pb) = 0. If this complex
number is zero, then both the real and imaginary parts of it are zero, but those
are the coefficients of cosut and sin ut in the above identity, which proves that
au” + bu’ + cu = 0. The solution for v is analogous.

26. The equation transforms into 3" +y = 0. The characteristic roots are r = =1.
The solution is y = ¢1 cos(x) + ¢ sin(z) = ¢; cos(Int) + cosin(Int).

28. The equation transforms into y” — 5y’ — 6y = 0. The characteristic roots are
r = —1, 6. The solution is y = c1e™® + 257 = cie™ Mt 4 coebnt = ¢ /t + cotF.

29. The equation transforms into y” — 5y’ + 6y = 0. The characteristic roots are
r =2, 3. The solution is y = c1€*® + c2e3® = 12t + cpe3™t = ¢t 4 cot3.

30. The equation transforms into y” + 2y’ — 3y = 0. The characteristic roots are
r =1, —3. The solution is y = c1e” + c2e™3% = c1e!® + coe ™31 = ¢t + o /3.

31. The equation transforms into y” + 6y’ + 10y = 0. The characteristic roots are
r = —3 £ 4. The solution is

1 1
y = cre 3% cos(x) 4 coe 3 sin(z) = Clyg cos(Int) + C233 sin(Int).

32.(a) By the chain rule, y'(z) = (dy/dx)a’. In general, dz/dt = (dz/dx)(dz/dt).
Setting z = (dy/dt), we have

Py _deds _ d [dyde] de _[@yde]de | dy d [d] da
dt2  dx dt  dx |dz dt de2 dt | dt dzdx | dt

dt dt’
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However,
d [de]de _[da]dt de _ dx
de | dt| dt — [di? | de dt — di?’

Hence
Py _ ey [da)?, dy
dt2  dx? | dt dz d?”

(b) Substituting the results in part (a) into the general differential equation, y” +
p(t)y’ + q(t)y = 0, we find that

2y [dz]?  dy d2x dy dx
dx[dt] + 0 qp HPOg g Ay =0,

Collecting the terms,

2 52 2
{dﬂ @y [dx+ dﬂ Wty =0.

gl ae | aE TP |

(c) Assuming (dx/dt)? = kq(t), and q(t) > 0, we find that dx/dt k q(t) , which

can be integrated. That is, x = u(t) = [ \/kq(t) dt = [ \/q(t) dt, since k = 1.

(d) Let k= 1. It follows that d?z/dt* + p(t)dxz/dt = du/dt + p(t)u(t) = ¢'/2\/q +
p+/q - Hence

d*x dx dz]? _q'(t) 4+ 2p(t)q(t)
Rl e v

As long as dz/dt # 0, the differential equation can be expressed as

2 !
LZ L@ +2pgt)(1(t) C/—
da 2] ] de
(e) To find the analogue to the condition found in part d) for the case when ¢(t) < 0
we return to the conditions that make the coefficients on y, dy/dt and d?y/dt>
proportional to each other. Since the coefficients on y and d?y/dt?> are propor-
tional, (dz/dt)? = aq(t), and we may take o = —1. Thus dz/dt = (—q(t))*/? and
d?y/dt* = (—q'/2)(—q)~'/2. Since the coefficients on y and dy/dt are proportional,
there is a constant 8 with

d*y dz _ —q’ —1/2 1/2 —q' —2pq
Bq= 2t p(t )dt 7(‘@ +p(—q)/° = FEnLa
and dividing each side of the equation by —q gives

—q' —2pq q' +2pq
=2 “H 98 =1 4
=g P = g

Thus the desired condition is that (¢’ + 2pg)/(—¢)>/? must be a constant.
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34. Note that p(t) = 3t and q(t) = t*. We have = = [tdt = t?/2. Furthermore,

q'(t) +2p(t)q(t) _ 1+3t2
2 [q(t)]*" v

The ratio is not constant, and therefore the equation cannot be transformed.

35. Note that p(t) =t —1/t and ¢(t) = t>. We have z = [tdt =t*>/2. Further-
more,
a'(t) + 2p(t)a(t) _
2[q(1)]*?

The ratio is constant, and therefore the equation can be transformed. From Problem
32, the transformed equation is
?y dy

Based on the methods in this section, the characteristic equation is 72 +r +1 =0,
with roots = (=1 4 i1/3)/2. The general solution is y(x) = cie~*/? cos V/3z/2 +
cp e ®/?sin \/3x/2. Since x = t2/2, the solution in the original variable t is

y(t) = e=t/4 [e1 cos (V3 12/4) + ¢a sin (V3 t2/4)} .

36. Note that p(t) =t and ¢(t) = —e™ < 0 for —oo < t < co. To proceed we must
confirm that (¢’ + 2pq)/(—q)%/? is a constant:

q +2pq 2te=t" 4 2t(—et”)

e O

Thus the differential equation can be transformed into an equation with constant
coefficients by letting = u(t) = [e~"/2dt. Substituting = = u(t) in the differ-
ential equation found in part (b) of Problem 32 we obtain, after dividing by the
coefficient of d?y/dx?, the differential equation (d?y/dx?) —y = 0. Hence the gen-
eral solution of the original differential equation is y(t) = c1e*®) + coe™*(*) | where
a(t) = [e /2.

2. The characteristic equation is 972 4 67 + 1 = 0, with the double root 7 = —1/3.
The general solution is y(t) = cie™t/3 + cot e /3.

3. The characteristic equation is 472 — 4r — 3 = 0, with roots r = —1/2, 3/2. The
general solution is y(t) = cie~t/? + cpedt/2.

5. The characteristic equation is 2 — 6r +9 = 0, with the double root r = 3. The
general solution is y(t) = c1e3 + cot 3.
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6. The characteristic equation is 4r% +17r +4 = 0, with roots r = —1/4, —4.
The general solution is y(t) = cie™t/* + coe ™.

7. The characteristic equation is 1672 + 24r + 9 = 0, with double root r = —3/4.
The general solution is y(t) = cie™3t/* 4+ cyt e =34/4,

8. The characteristic equation is 2r2 4+ 2r +1 = 0. We obtain the complex roots
r = (=1 % i)/2. The general solution is y(t) = cre~*/? cos(t/2) 4 coe /% sin(t/2).

9. The characteristic equation is 972 — 12r + 4 = 0, with the double root r = 2/3.
The general solution is y(t) = c1€2t/3 4 ot €2/3. Invoking the first initial condi-
tion, it follows that ¢; = 2. Now y'(t) = (4/3 + c2)e?'/3 + 2cot €2t/3 /3. Invoking
the second initial condition, 4/3+ ¢y = —1, or ¢co = —7/3. Hence we obtain the
solution y(t) = 2e2*/3 — (7/3)te*/3. Since the second term dominates for large ¢,
y(t) = —oo.

T
0.5

—104

12. The characteristic roots are r1 = ro = 1/2. Hence the general solution is given
by y(t) = c1€et/? 4 cot €/2. Invoking the initial conditions, we require that ¢; = 2,
and that 1+ ¢y = b. The specific solution is y(t) = 2¢*/2 + (b — 1)t e?/2. Since the
second term dominates, the long-term solution depends on the sign of the coefficient
b — 1. The critical value is b = 1.

15.(a) The characteristic equation is 7% + 2ar +a? = (r +a)? = 0.
(b) With p(t) = 2a, Abel’s Formula becomes W (y; ,ys) = ce™J 20t = ¢e—20t,

(c) y1(t) = e7% is a solution. From part (b), with ¢ = 1, e yJ(¢) + ae %y, (t) =
e~2at which can be written as (e y5(t))’ = 1, resulting in e® yy(t) = t.

17.(a) If the characteristic equation ar? + br + ¢ has equal roots r1, then ar? +
bri +c=a(r —r1)? =0. Then clearly Ll[e™] = (ar? + br + c)e" = a(r —r1)2%e™.
This gives immediately that L[e™!] = 0.

(b) Differentiating the identity in part (a) with respect to r we get (2ar + b)e™ +
(ar? 4+ br + c)te™ = 2a(r — r1)e" + a(r — r1)*te™. Again, this gives L[te™?] = 0.
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18. Set y2(t) = t2v(t) . Substitution into the differential equation results in
t2 (20" + 4tv’ + 20) — 4t(t%v' + 2tv) + 6t20 = 0.

After collecting terms, we end up with t*v” = 0. Hence v(t) = ¢; + cot, and thus
yo(t) = c1t? + cot3. Setting ¢; = 0 and ¢ = 1, we obtain yo(t) = t3.

19. Set ya(t) = tv(f). Substitution into the differential equation results in
t2(tv” +2v") + 2t(tv" +v) —2tv = 0.

After collecting terms, we end up with #3v” + 4t2v’ = 0. This equation is linear
in the variable w = v’. It follows that v/(t) = c¢t*, and v(t) = ¢1t~2 + ¢2. Thus
Yo(t) = c1t72 + cot . Setting ¢; = 1 and cp = 0, we obtain yo(t) = t=2.

23. Direct substitution verifies that g (£) = e92°/2 is a solution of the differential
equation. Now set ya(z) = y1(z) v(x). Substitution of y, into the equation results
in v” — dzv’ = 0. This equation is linear in the variable w = v’. An integrating
factor is = e~9%°/2. Rewrite the equation as [6_5’”2/21)’]’ =0, from which it
follows that v’(z) = ¢, €9°/2. Integrating, we obtain

v(z)=¢ / 52y, + v(0).
0

Hence R
ya(z) = 61676z2/2 / 2y + 6267512/2.
0

Setting co = 0, we obtain a second independent solution.

25. After writing the differential equation in standard form, we have p(t) = 3/t.
Based on Abel’s identity, W (y1,y2) = cre”J 3/t = ¢;t=3. As shown in Problem
24, two solutions of a second order linear equation satisfy (y2/vy1)" = W (y1,y2)/y5.
In the given problem, y;(t) =t~1. Hence (ty2) = cit~!. Integrating both sides
of the equation, y2(t) =cit7tInt+ cot™t. Setting ¢; =1 and ¢y = 0 we obtain
yo(t) =t LInt.

27. Write the differential equation in standard form to find p(z) = 1/x. Based on
Abel’s identity, W (y1,y2) = ce™ Jt/wde — ¢ 2=1 Two solutions of a second order
linear differential equation satisfy (y2/y1)’ = W (y1,y2)/y7 . In the given problem,
y1(x) = 2~ /?sin = . Hence

\/E )/:C 1

P Y2 .2
s T S111

(

T

1/2 1/2

Integrating both sides of the equation, ya(z) = c12~ sin x. Set-

ting ¢; =1 and ¢3 =0, we obtain ys(x) = x Y2 cos .

cosS x + cox™

29.(a) The characteristic equation is ar? +¢=0. If a,c > 0, then the roots are
r = t+iy/c/a . The general solution is

[c . e
y(t) =crcosy/—t+cosing/— t,
a a
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w0
3

which is bounded.

(b) The characteristic equation is ar? 4+ br = 0. The roots are r = 0, —b/a, and
hence the general solution is y(t) = ¢; 4 coe /. Clearly, y(t) — ¢1. With the
given initial conditions, ¢1 = yo + (a/b)yj.

30. Note that 2cos t sin t = sin 2¢t. Then 1 — kcos ¢ sin t =1 — (k/2) sin 2¢t. Now
if 0 <k <2, then (k/2)sin 2t < |sin 2¢| and —(k/2)sin 2t > — |sin 2¢|. Hence

k
1—k‘costsint:1—§sin2t>1—\sin2t\20.

31. The equation transforms into 3" — 4y’ + 4y = 0. We obtain a double root r = 2.
The solution is y = ¢1€?* + coze?® = ¢1e? Int 4 oolnte2™t = ¢t + ot Int.

33. The equation transforms into y” + 2y’ + y = 0. We get a double root r = —1.
The solution is y = c1e™% 4+ core ™ = cre” Mt + colnte 't = ¢t + ot~ ' nt.

34. The equation transforms into y” — 3y’ +9y/4 =0. We obtain the double
root 7 = 3/2. The solution is y = ¢1€3%/2 + cpwe3®/2 = c1e3M/2 4 cyInted /2 =
Clt3/2 + 02t3/2 Int.

2. The characteristic equation for the homogeneous problem is r? — r — 2 = 0, with
roots 7 = —1, 2. Hence y.(t) = cie™! + coe?. Set Y = At? + Bt + C. Substitution
into the given differential equation, and comparing the coefficients, results in the
system of equations —2A4 =4, —2A — 2B = —2 and 24— B —2C =0. Hence Y =
—2t? + 3t — 7/2. The general solution is y(t) = y.(t) + Y.

3. The characteristic equation for the homogeneous problem is 2 +r — 6 = 0, with
roots r = —3, 2. Hence y.(t) = cie™3 + coe?t. Set Y = Ae3t + Be~2t. Substitu-
tion into the given differential equation, and comparing the coefficients, results in
the system of equations 64 = 12 and —4B = 12. Hence Y = 2¢3! — 3e=2¢. The
general solution is y(t) = y.(t) + Y.

4. The characteristic equation for the homogeneous problem is 72 —2r —3 =0,
with roots r = —1, 3. Hence y.(t) = cie~ "+ c2e3. Note that the assignment
Y = Ate™? is not sufficient to match the coefficients. Try Y = Ate~! + Bt2e*.
Substitution into the differential equation, and comparing the coefficients, results
in the system of equations —4A+2B =0 and —8B = —3. This implies that
Y = (3/16)te~t + (3/8)t?e~t. The general solution is y(t) = y.(t) + Y.

8. The characteristic equation for the homogeneous problem is r? + w? = 0, with
complex roots r = twgi. Hence y.(t) = ¢y cos wot + cosin wot. Since w # wy,
set Y = A cos wt + B sin wt. Substitution into the ODE and comparing the co-
efficients results in the system of equations (w3 —w?)A =1 and (w3 —w?)B =0.
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Hence

The general solution is y(t) = y.(t) + Y.

9. From Problem 8, y.(t) is known. Since cos wgt is a solution of the homogeneous
problem, set Y = At cos wot + Bt sin wpt. Substitution into the given ODE and
comparing the coefficients results in A =0 and B = 1/2wy. Hence the general
solution is y(t) = ¢1 cos wot + cosin wot + tsin wot/(2wp ).

12. The characteristic equation for the homogeneous problem is 2 4+ 4 = 0, with
roots r = 4 2i. Hence y.(t) = ¢ cos 2t + casin 2t. Set Y; = A + Bt + Ct2. Com-
paring the coefficients of the respective terms, we find that A= —-1/8, B=0,
C =1/4. Now set Yo = De?, and obtain D = 3/5. Hence the general solution is
y(t) = c1 cos 2t + cosin 2t — 1/8 +t2/4 + 3 €' /5. Invoking the initial conditions, we
require that 19/40 4+ ¢; = 0 and 3/5 4 2co = 2. Hence ¢; = —19/40 and ¢5 = 7/10.

13. The characteristic equation for the homogeneous problem is 2 —2r +1 =0,
with a double root r = 1. Hence y.(t) = c1e! + cat e'. Consider g (t) = te’. Note
that g is a solution of the homogeneous problem. Set Y; = At?e! + Bt3e! (the first
term is not sufficient for a match). Upon substitution, we obtain Y; = t3e!/6. By
inspection, Y» = 4. Hence the general solution is y(t) = cie! + cot et + t3e! /6 + 4.
Invoking the initial conditions, we require that ¢; +4 =1 and ¢; +¢c2 = 1. Hence
cp =—3and cp = 4.

14. The characteristic equation for the homogeneous problem is 72 4+ 4 = 0, with
roots r = £2i. Hence y.(t) = ¢y cos 2t + cosin 2¢. Since the function sin 2¢ is
a solution of the homogeneous problem, set Y = At cos 2t + Bt sin 2¢t. Upon
substitution, we obtain Y = —3¢ cos 2t /4. Hence the general solution is y(t) =
1 cos 2t + ¢ sin 2t — 3t cos 2t /4. Invoking the initial conditions, we require that
¢y =2 and 2¢y — (3/4) = —1. Hence ¢; = 2 and ¢ = —1/8.

15. The characteristic equation for the homogeneous problem is 72 4+ 2r +5 =
0, with complex roots 7= —14 2i. Hence y.(t) = cie ! cos 2t + coe ' sin 2¢.
Based on the form of g(t), set Y = Ate ! cos 2t + Bte 'sin 2t. After compar-
ing coefficients, we obtain Y =te tsin 2¢t. Hence the general solution is y(t) =
cre~tcos 2t 4 cpe~tsin 2t 4+ te~tsin 2¢. Invoking the initial conditions, we require
that ¢; =1 and —c¢; +2¢3 =0. Hence ¢y =1 and ¢o = 1/2.

17.(a) The characteristic equation for the homogeneous problem is 72 — 5r +6 = 0,
with roots r = 2, 3. Hence y.(t) = c1e* + c2e3'. Consider g;(t) = e* (3t +4)sin t,
and g2(t) = €’ cos 2t. Based on the form of these functions on the right hand side
of the ODE, set Y5(t) = (A cos 2t + Ay sin 2t) and Y;(¢) = (B + Bat)e?! sin t +
(Cy + Ost)e? cos t.

(b) Substitution into the equation and comparing the coefficients results in

1 3 1
Y(t) = —%(et cos 2t + 3e’ sin 2t) + gte%(cos t—sint) + th(§ cos t — Hsin t).
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19.(a) The homogeneous solution is y.(t) = ¢1 cos 2t + co sin 2¢. Since cos 2t and
sin 2t are both solutions of the homogeneous equation, set

Y (t) = t(Ag + Art + Agt?) cos 2t + t(By + Byt + Bot?)sin 2t.

(b) Substitution into the equation and comparing the coefficients results in

1 1 1
Y() = (S%t - ﬁts ) cos 2t + T6(28t + 13t%) sin 2t .

20.(a) The homogeneous solution is y.(t) = cie~* + cate 2. None of the functions
on the right hand side are solutions of the homogenous equation. In order to include
all possible combinations of the derivatives, consider

Y (t) = e'(Ag + Art + Ast?) cos 2t + e’ (By 4+ Byt + Byt?)sin 2t +
+ e "(Cycos t + Cysin t) + De'.

(b) Substitution into the differential equation and comparing the coefficients results
in
Y (t) = e'(Ag + Ayt + Ast?) cos 2t + e’ (By + Byt + Byt?)sin 2t
3 3
+ e_t(—§ cos t + 3 sin t) + 2¢'/3,

in which Ay = —4105/35152, A, = 73/676, Ay = —5/52, By = —1233/35152, B) =
10/169, By = 1/52.

21.(a) The homogeneous solution is y.(t) = cie”* cos 2t + cae~t sin 2t. None of the
terms on the right hand side are solutions of the homogenous equation. In order to
include the appropriate combinations of derivatives, consider
Y (t) = e H(Ast + Agt?) cos 2t + e H(Byt + Byt?)sin 2t +
+ e 2(Cy + C1t) cos 2t + e~ (Dy + Dyt)sin 2t.

(b) Substitution into the differential equation and comparing the coefficients results
in

Y(t) = 1—36te_t cos 2t + gt%_t sin 2t
Lo Lo .
T (7+ 10¢t) cos 2t—|—25e (14 5t)sin 2t.

23. The homogeneous solution is y.(t) = ¢1 cos At + co sin At. Since the differential
operator does not contain a first derivative (and A # mm), we can set

N
Y(t) = Z Cy, sin mmt .
m=1
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Substitution into the differential equation yields

N N N

- Z m2m2C,, sin mat + A2 Z C,p sin mat = Z Q Sin Mt .
m=1 m=1 m=1

Equating coefficients of the individual terms, we obtain

am

Crm = 2 _ m2n2’

m=1,2...N.

25. Since a,b,c > 0, the roots of the characteristic equation have negative real
parts. That is, r = a + 4, where a < 0. Hence the homogeneous solution is

ye(t) = c1e® cos Bt + coe™ sin St .
If g(t) = d, then the general solution is
y(t) = d/c+ cre™ cos Bt + cae* sin Bt.

Since a < 0, y(t) — d/c as t — oo. If ¢ =0, then the characteristic roots are
r=0andr = —b/a. The ODE becomes ay” + by’ = d. Integrating both sides, we
find that ay’ + by = dt + ¢;. The general solution can be expressed as

y(t) = dt/b+ 1 + coe

In this case, the solution grows without bound. If b = 0, also, then the differential
equation can be written as y” = d/a, which has general solution y(t) = dt?/2a +
c1 + co . Hence the assertion is true only if the coefficients are positive.

27.(a) Since D is a linear operator, D%y + bDy + cy = Dy — (r1 + r2) Dy + riray =
D?*y —raDy — r1 Dy + r1rey = D(Dy — roy) — r1(Dy — ray) = (D = r1)(D — r2)y.

(b) Let w= (D —r3)y. Then the ODE (i) can be written as (D — ri)u = g(t),
that is, u’ — ryu = g(t). The latter is a linear first order equation in w. Its general
solution is .
u(t) = e”t/ e " Tg(T)dr + cre™t .
to

From above, we have y’ — roy = u(t). This equation is also a first order ODE.
Hence the general solution of the original second order equation is

t
y(t) = e™* / e "2 Tu(T)dT + coe™.

to

Note that the solution y(t) contains two arbitrary constants.

29. We have (D? +2D + 1)y = (D +1)(D + 1)y. Let w = (D + 1)y, and consider
the ODE u’ + u = 2e~*. The general solution is u(t) = 2te~* + ce~*. We therefore
have the first order equation u’ +u = 2te~* 4 cie~!. The general solution of the
latter differential equation is

t
y(t) = e_t/ [27 + c1 ] dr + coe™t = eTHE? 4 1t + ca).
to
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30. We have (D? 4+ 2D)y = D(D +2)y. Let u = (D + 2)y, and consider the equa-
tion uw’ =34 4sin 2¢t. Direct integration results in u(t) = 3t — 2cos 2t + ¢. The
problem is reduced to solving the ODE y’ + 2y = 3t — 2cos 2t + ¢. The general
solution of this first order differential equation is

t
y(t) = e / er [37 —2cos 27 + c]dT + cpe2t =

to
3 1 . ot
= it_ Q(cos 2t + sin 2t) + ¢1 + coe” .

1. The solution of the homogeneous equation is y.(t) = c1e?* + cpe3t. The functions

y1(t) = e?* and ys(t) = €3 form a fundamental set of solutions. The Wronskian

of these functions is W (y1,92) = €. Using the method of variation of parameters,

the particular solution is given by Y () = uq(t) y1 (t) + ua(t) y2(t), in which
e3t(2et) e?t(2et)

ui(t) = — W dt =2 " and wuy(t) = W@ dt = —e™ 2.

Hence the particular solution is Y (t) = 2¢! — et = €.

3. The functions y; (t) = e*/? and y»(t) = te’/? form a fundamental set of solutions.
The Wronskian of these functions is W (y;,y2) = e!. First write the equation in
standard form, so that g(t) = 4e*/2. Using the method of variation of parameters,
the particular solution is given by Y (t) = uq (t) y1(t) + u2(t) y2(t), in which

tet/2(4et/2) et/2(4et/2)

W W dt = 4t.

ui(t) = dt = —2t> and ug(t) = /

Hence the particular solution is V() = —2t2et/2 4+ 4t%et/? = 2t%et/2 .

5. The solution of the homogeneous equation is y.(t) = ¢; cos 3t + co sin 3t. The
two functions y;(t) = cos 3t and ys(t) = sin 3¢ form a fundamental set of solu-
tions, with W (y1, y2) = 3. The particular solution is given by Y () = uy (¢) y1(¢) +
us(t) y2(t), in which

: 2
up(t) = — / SRS ) 3t$(s§c 3t) dt = —csc 3t

dt = In(sec 3t + tan 3t),

[ cos 3t(9 sec? 3t)
nlt) = [ 2

since 0 < ¢t < 7/6. Hence Y (t) = —1 + (sin 3¢) In(sec 3t + tan 3t). The general so-
lution is given by

y(t) = c1 cos 3t + cosin 3t + (sin 3t) In(sec 3t + tan 3t) — 1.
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6. The functions y;(t) = e %' and ya(t) = te 2" form a fundamental set of so-
lutions. The Wronskian of these functions is W (yi,y2) = e~4. The particular
solution is given by Y (t) = u1(t) y1(t) + u2(t) y2(¢), in which

ul(t):—/te_‘;;t)e_)dt:—lnt and u2(t>:/e_$;/_(t§_)dt:_1/t.

Hence the particular solution is Y (t) = —e~2!In t — e~2!. Since the second term is
a solution of the homogeneous equation, the general solution is given by

y(t) = cre™® + cpte™ — e HIn t.

7. The functions y;(t) = cos (¢t/2) and ys(t) = sin(t/2) form a fundamental set of
solutions. The Wronskian of these functions is W(y1,y2) = 1/2. First write the
ODE in standard form, so that g(t) = sec(¢/2)/2. The particular solution is given
by Y (t) = uq(t) y1(t) + u2(t) y2(¢), in which

w(t) = — / cos (t/;%/[?’;c“/ DLt — 9 wn(eos (1/2))

sin(t/2) [sec(t/2)]
us (1) :/ T dt = t.

The particular solution is Y (¢) = 2 cos(t/2) In(cos (t/2)) + ¢ sin(¢/2). The general
solution is given by

y(t) = c1cos (t/2) + casin(t/2) + 2 cos(t/2) In(cos (t/2)) + ¢ sin(¢/2).

8. The solution of the homogeneous equation is y.(t) = cie? + catel. The functions
y1(t) = et and ya(t) = te! form a fundamental set of solutions, with W (yy,y2) =
e?t. The particular solution is given by Y (t) = uy () y1(t) + ua(t) y2(t), in which

ui(t) = /W(t;;t((lezﬁ)dt = —%ln(l + 1)

B e'(et) B
ug(t) = / mdt = arctan t.

The particular solution is Y () = —(1/2)e’ In(1 + ¢2) + te! arctan(t). Hence the
general solution is given by

1
y(t) = cre’ + cote! — §et In(1 4 %) + te’ arctan(t).

10. Note first that p(t) = 0,q(t) = —2/t* and g¢(t) = (3t*> — 1)/t>. The functions
y1(t) and yo(t) are solutions of the homogeneous equation, verified by substitution.
The Wronskian of these two functions is W (y1,y2) = —3. Using the method of
variation of parameters, the particular solution is Y (t) = uy(t) y1 () + ua2(t) y2(t),
in which

uy (t) = —/Wc&t =t2/6+Int
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us(t) :/Wdt: —t3/3 +1/3.

Therefore Y (t) =1/6 +t>Int —t2/3+1/3.
12. Observe that g(t) = te?'. The functions y;(t) and y»(t) are a fundamental set
of solutions. The Wronskian of these two functions is W (y1,y2) = tet. Using the

method of variation of parameters, the particular solution is Y (¢) = w1 () y1(¢) +
us(t) y2(t), in which

ot (t €2t o2t
ul(t):—/ é;(t))dtezt/Q and uz(t)/%dttet.

Therefore Y () = —(1+t)e?!/2 +te? = —e?t /2 +te?!)2.

13. Note that g(z) = In z. The functions y;(z) = 22 and y2(x) = 22 In z are solu-
tions of the homogeneous equation, as verified by substitution. The Wronskian of
the solutions is W (y1,y2) = x3. Using the method of variation of parameters, the
particular solution is Y (z) = ui(z) y1(x) + ua(z) y2(z), in which

2%In z(In )

uy(z) = — W) dr = —(In z)*/3
_ [2*(nz),
ug(x) = Wda: = (In z)%/2.

Therefore Y (z) = —2%(In 2)3/3 + 22(In 2)3/2 = 2%(In 2)3/6.

15. First write the equation in standard form. The forcing function becomes
g(x)/2z%. The functions y;(z) = z~/?sin z and ys(z) = 2~/ cos = are a fun-
damental set of solutions. The Wronskian of thesolutions is W(y1,y2) = —1/z.
Using the method of variation of parameters, the particular solution is Y (z) =
ur(x) y1 (z) + ua(x) y2(z), in which

ul(x)—/xo T2 and us(a) /m s

Therefore

_sinz [TcosT(g(r)) ,, cosx [*sinT(g(7)) -
v = 5F [ A - [ SR

1 e,
ﬁL my

t

16. Eq.(28) is

p2()g(s) ne)

to W(y1,92)(s) to W(y1,42)(s)

where tp is now considered the initial point. Bringing the terms y; (¢) and yo(¢)
inside the integrals and using the fact that W(y1,v2)(s) = y1(s)v5(s) — y1(s)y2(s),
the desired result holds. To show that Y'(¢) satisfies L[y] = g(t) we must take
the derivative using Leibniz’s rule, which says that if y(t) = f:o G(t,s)ds, then

Y(t) = —4(t) ds + ya(t)
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Y'(t) = G(t,t) + ftto G¢(t,s)ds. Letting G(t,s) be the above integrand, we have
that G(t,t) = 0 and
G _ yi(s)ya(t) — v (t)ya(s)
ot W(y1,y2)(s)

g(s).
Likewise,

G0) [ PG (s gty 4 [ DB A,

Y= to 1,92)(s)
(t

Since y; and ys are solutions of Ly] = 0, we have L[Y] = ¢(t) since all the terms
involving the integral will add to zero. Clearly y(tp) = 0 and y'(¢9) = 0.

17. Let y1(t) and yo(t) be a fundamental set of solutions, and W (t) = W (y1,y2) be
the corresponding Wronskian. Any solution, u(t), of the homogeneous equation is
a linear combination u(t) = a1y1(t) + aay2(t). Invoking the initial conditions, we
require that
Yo = a1 y1(to) + a2 y2(to)
! !/ !/
Yo = a1 y1(to) + a2 y(to)

Note that this system of equations has a unique solution, since W (¢y) # 0. Now
consider the nonhomogeneous problem, L [v] = g(t), with homogeneous initial con-
ditions. Using the method of variation of parameters, the particular solution is

given by
Y(t) = *yl(t)/t yQ(V![S/)(LZ)(S)dserz(t)/lt le(;)(“;(S)ds.

The general solution of the IVP (iii) is
v(t) = Bryi(t) + Paya(t) + Y (1) = By (t) + Bayz(t) + y1(H)ua (t) + ya(H)uz(?)

in which u; and us are defined above. Invoking the initial conditions, we require
that

0 = Bryi(to) + Baya(to) + Y (to)
0 = Bryi(to) + Bays(to) + Y (to)

Based on the definition of uy and us, Y (tg) = 0. Furthermore, since yyu{ + youqs =
0, it follows that Y’(¢9) = 0. Hence the only solution of the above system of equa-
tions is the trivial solution. Therefore v(¢t) =Y (t). Now consider the function
y=u+wv. Then L[y] = L{u+v] = L[u] + L[v] = g(t). That is, y(t) is a solution
of the nonhomogeneous problem. Further, y(to) = u(to) + v(to) = yo, and simi-
larly, y'(to) = y§. By the uniqueness theorems, y(t¢) is the unique solution of the
initial value problem.

18.(a) A fundamental set of solutions is y;(t) = cos t and y2(t) = sin ¢. The Wron-
skian W (t) = y1y4 — y{y2 = 1. By the result in Problem 17,

[ cos(s) sin(t) — cos(t) sin(s)
Y(t) —/tU W) g(s)ds

= / [cos(s) sin(t) — cos(t) sin(s)] g(s)ds .

to



74

Chapter 3. Second-Order Linear Equations

Finally, we have cos(s) sin(t) — cos(t) sin(s) = sin(t — s).
(b) Using Problem 16 and part (a), the solution is

¢
y(t) = yo cost + yg sint + / sin(t — s)g(s)ds .
0

19. A fundamental set of solutions is yi(t) = e* and yo(t) = €**. The Wronskian
W(t) = y1ys — yiy2 = (b — a)el®t?? | By the result in Problem 17,

t _as bt at ,bs t as_ bt at ,bs
e®e’ —ee 1 e®e’ —ee
v = [ S s = e [ (syas.
to tO e

W(s) b—a
Hence the particular solution is
1 t
Y(t) = m/ [eb(t*‘q) - e“(tfs)] g(s)ds.
to

21. A fundamental set of solutions is y;(t) = e and ys(t) = te®* . The Wronskian
W (t) = y1y4 — y{y2 = €***. By the result in Problem 17,

t as+at at+as t as+at
te —se (t—s)e
Y(t)= ds = - ds .
Q /t W(s) gls)ds /to e2as gls)ds

0

Hence the particular solution is

Y(t) = / (t — 5)e = g(s)ds .

to

22. The form of the kernel depends on the characteristic roots. If the roots are real
and distinct, o) atis
K(t—s)= eT
If the roots are real and identical,
K(t—s)=(t—s)e*)
If the roots are complex conjugates,

A(t—s)

e sin p(t — s)

K(t—s)= .

23. Let y(t) = v(t)y1(t), in which y; () is a solution of the homogeneous equation.
Substitution into the given ODE results in

v"y1 +20"y{ + vyl +p(t) [y +vyi] + a(t)oyr = g(t) -
By assumption, y{’ + p(t)y1 + q(t)y1 = 0, hence v(¢) must be a solution of the ODE
vy + 2y] + )] v’ = g(t).
Setting w = v’, we also have w'y; + [2y{ + p(t)y1] w = g(¢) .
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25. First write the equation as y” 4+ 7t 'y + 5t 2y =t~!. As shown in Problem
23, the function y(t) =t tv(t) is a solution of the given ODE as long as v is a
solution of

T [P+ T =
that is, v + 5t ' v’ = 1. This ODE is linear and first order in v’. The integrating

factor is u = t°. The solution is v’/ = t/6 + c¢t~5. Direct integration now results in
v(t) =t2/12+ e1t™* + co. Hence y(t) = /12 + c1t75 + cot L.

26. Write the equation as y” —t~1(1 +t)y + ¢t~y =te?. As shown in Problem
23, the function y(t) = (1 + t)v(t) is a solution of the given ODE as long as v is a
solution of
(I+t)v" + 2=t (1+t)*] v =te*,
that is,
"o 1+t2 v = t e21&
t(t+1) t+1

This equation is first order linear in v/, with integrating factor u = t=1(1 + t)%e~".
The solution is v/ = (t2€2! + ¢ tet) /(1 + t)2. Integrating, we obtain v(t) = e2!/2 —
e?/(t+1) +cret/(t + 1) + co. Hence the solution of the original ODE is y(t) =

(t—1)e%/2 +cre! + ca(t+1).

1. Rcosd =3 and Rsin § =4, so R=1+v25=75 and § = arctan(4/3). We obtain
that u = 5 cos(2t — arctan(4/3)).

2. Rcos 0 = —2and Rsin § = —3,50 R = v/13 and § = 7 + arctan(3/2). We obtain
that v = /13 cos(nt — m — arctan(3/2)).

4. The spring constant is k = 3/(1/4) = 12 Ib/ft. Mass m = 3/32 lb-s?/ft. Since
there is no damping, the equation of motion is 3u” /32 + 12u = 0, that is, u” +
128u = 0. The initial conditions are u(0) = —1/12 ft, u/(0) = 2 ft/s. The general
solution is wu(t) = A cos 8v/2t + B sin 8V/2t. Invoking the initial conditions, we
have

1 1
U(t) = 75 COS 8ﬁt —+ m Sin 8\/§t .

R =/11/288 ft, § = m — arctan(3/v/2) rad, wy = 8v/2 rad/s, T = 7/(4v/2) s.

6. The spring constant is k = 3/(.1) = 30 N/m. The damping coefficient is given as
v =3/5 N-s/m. Hence the equation of motion is 2u” + 3u’/5 + 30u = 0, that is,
u” 4+ 0.3u’ 4+ 154 = 0. The initial conditions are «(0) = 0.05 m and «/(0) = 0.01
m/s. The general solution is u(t) = A cos ut + B sin ut, in which p = 3.87008

rad/s. Invoking the initial conditions, we have u(t) = e~%15(0.05 cos ut + 0.00452sin ut).

Also, p/wy = 3.87008/+/15 =~ 0.99925 .



76

Chapter 3. Second-Order Linear Equations

8. The frequency of the undamped motion is wy = 1. The quasi frequency of the
damped motion is p = /4 —~2 /2. Setting u = 2wq /3, we obtain v = 2v/5 /3.

9. The spring constant is k = mg/L. The equation of motion for an undamped
system is mu” + mgu/L = 0. Hence the natural frequency of the system is wg =

v/9/L. The period is T = 27 /wy .

10. The general solution of the system is u(t) = A cos y(t — tg) + B sin y(t — tg) -
Invoking the initial conditions, we have u(t) = ug cosy(t — to) + (ug/) siny(t —
to). Clearly, the functions v = ug cosy(t — to) and w = (uf/y)sinvy(t — to) satisfy
the given criteria.

11. Note that r sin(wot — 0) = r sinwgt cos § — r coswpt sinf. Comparing the
given expressions, we have A = —rsin§ and B=rcosf. That is, r=R=
VA2 + B?  and tan 6 = —A/B = —1/tan §. The latter relation is also tan 6 +
cot 6 =1.

12. The system is critically damped, when R =2,/L/C . Here R = 1000 ohms.

15.(a) Let u = Re~7*/?™ cos(ut — §). Then attains a maximum when uty —§ =
2kn. Hence Ty = tgy1 —tr =27/

(D) () u(t43) = ¢~/ s/ 210 — s 020 Fonce ()t 1) =
e (2m/m)/2m _ oy Ta/2m

(c) A = Infu(ty) /u(tiss)] = ¥(2m/p)/2m = 7y/pm

16. The spring constant is k = 16/(1/4) = 64 1b/ft. Mass m = 1/2 1b-s?/ft. The
damping coefficient is v =2 lb-s/ft. The quasi frequency is u =231 rad/s.
Hence A = 27 /+/31 ~ 1.1285.

18.(a) The characteristic equation is mr? +~yr +k = 0. Since v < 4km , the roots
are 11 2 = (—y £ i\/4mk — v2)/2m. The general solution is

\/Amk — ~2 v Amk — ~2
Acosut—l—Bsinut .
2m 2m

u(t) — e—'yt/Qm

Invoking the initial conditions, A = ug and B = (2mvg — yug)/\/4mk — 2.

(b) We can write u(t) = Re™"/?™ cos(ut — 0), in which

2 - 2 ) _
R= \/u% + @muo — yuo)* and § = arctan l( mvo — o) ] )

dmk — ugy/4dmk — 2

3 -

Re Ju+ (2muy — yug)? _y m(kud + yuovo + mug) _ a+by
0 dmk — ~? Amk — ~2 dmk — ~
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It is evident that R increases (monotonically) without bound as v — (2vmk)™ .

20.(a) The general solution is u(t) = Acos v/2t + Bsin v/2t. Invoking the initial
conditions, we have u(t) = /2 sin v/2 t.

(b)

The condition »'(0) = 2 implies that u(t) initially increases. Hence the phase point
travels clockwise.

23. Based on Newton’s second law, with the positive direction to the right, > F =
mu”, where Y F = —ku —yu’. Hence the equation of motion is mu” 4+ ~yu’ +
ku=0. The only difference in this problem is that the equilibrium position is
located at the unstretched configuration of the spring.

24.(a) The restoring force exerted by the spring is Fy = —(ku + eu?®). The oppos-
ing viscous force is F; = —yu’. Based on Newton’s second law, with the pos-
itive direction to the right, Fy + F; = mu’. Hence the equation of motion is
mu” +yu' +ku+eud =0.

(b) With the specified parameter values, the equation of motion is u” +u =20.
The general solution of this ODE is u(t) = A cos t + B sin t. Invoking the initial
conditions, the specific solution is u(t) =sin t. Clearly, the amplitude is R =1,
and the period of the motion is T = 27 .
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(c) Given € = 0.1, the equation of motion is u” +u + 0.1u® = 0. A solution of the
IVP can be generated numerically. We estimate A = 0.98 and T' = 6.07.

e=0.1

0.8 4
0.6 4
0.4

0.2 1

o T T T T 1

4 2 4 8 10 12
-0.2 A
~0.4 -
-0.6 A
-0.8 4

(d) For e =0.2, A =0.96 and T'=5.90. For e = 0.3, A =0.94 and T = 5.74.

e—02
0.8
0.6 A
0.4 -

0.2 +

o T T T T T /v
2 4 A 8 10 2
~0.2 - N
~0.4 4
-0.6 4
-0.8 o

0.8 -

0.6

=03

o
-0.2
-0.4
-0.6

-0.8

| v 8v
:

(e) The amplitude and period both seem to decrease.

(f) For e = —-0.1, A=1.03 and T'=6.55. For e = —0.2, A=1.06 and T = 6.90.
For e = —0.3, A=1.11 and T = 7.41. The amplitude and period both seem to

increase.

A

A

A

1V VTV

A

(c) e=-0.3
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1. We have sin(a & ) = sin « cos f £ cos « sin . Subtracting the two identities,
we obtain sin(a + ) —sin(a — 8) =2 cos o sin 5. Setting a+ =Tt and a —
B = 6t, we get that o = 6.5t and S = 0.5t. This implies that sin 7¢ — sin 6t =
2 sin (t/2) cos (13t/2).

2. Consider the trigonometric identities cos(a 4 3) = cos « cos 8 F sin « sin .
Adding the two identities, we get cos(a — ) + cos(a+ ) = 2 cos a cos . Com-
paring the expressions, set o + 8 = 27t and o — 8 = 7t. This means o = 37¢/2 and
B = wt/2. Upon substitution, we have cos(wt) + cos(2nt) = 2 cos(3nt/2) cos(nt/2).

3. Adding the two identities sin(« =+ ) =sin « cos 8 % cos a sin 3, it follows
that sin(a — ) + sin(a + ) = 2sin a cos §. Setting o+ 5 =4t and o — § = 3t,
we have a = 7t/2 and 8 =t/2. Hence sin 3t + sin 4t = 2 sin(7t/2) cos(t/2).

4. Using MKS units, the spring constant is k¥ = 5(9.8)/0.1 = 490 N/m, and the
damping coefficient is v = 2/0.04 = 50 N-s/m. The equation of motion is

5u” + 50u’ + 490u = 10 sin(t/2).
The initial conditions are u(0) =0 m and «’(0) = 0.03 m/s.

5.(a) The homogeneous solution is u.(t) = Ae™5 cos /73t + Be 5t sin\/73t. Based
on the method of undetermined coefficients, the particular solution is

1
t) =
ut) 153281
Hence the general solution of the ODE is u(t) = u.(t) + U(¢). Invoking the initial
conditions, we find that

A =160/153281 and B = 383443+/73 /1118951300 .

[—160 cos(t/2) + 3128 sin(t/2)].

Hence the response is

1 383443y/73
)= |160e 5t cos VT3t + o OV IT =Sty T3] + U(L).
ult) = 5gag7 |160€ " cos om0 ¢ +U®

(b) wc(t) is the transient part and U(t) is the steady state part of the response.
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0.02 o

0.01

-0.01

-0.02 4

(d) The amplitude of the forced response is given by R = 2/A, in which

A = /25(98 — w?)2 4 2500 w2 .

The maximum amplitude is attained when A is a minimum. Hence the amplitude
is maximum at w = 4v/3 rad/s.

8. The equation of motion is 2u” + u’ + 3u = 3 cos 3t — 2sin 3t. Since the system
is damped, the steady state response is equal to the particular solution. Using
the method of undetermined coefficients, we obtain us4(t) = (sin 3t — cos 3t)/6.
Further, we find that R = /2 /6 and ¢ = arctan(—1) = 37/4. Hence we can write
uss(t) = (V2 /6) cos(3t — 31 /4).

9.(a) Plug in u(t) = Rcos(wt — ) into the equation mu” + yu' + ku = Fy coswt,
then use trigonometric identities and compare the coefficients of coswt and sinwt.
The result follows.

(b) First note that since R = Fy/A, Rk/Fy = k/A and that since I' = v2/(mk),
(72w?)/m? = Tw3w?. Then using Eq.12,

Rk k mwg B mws
F, A Vm2(w? — w?)? + 72w? B Vm2(wZ — w?)? + 42w?
_ w _ w
\/(wg —w?)2 4 % V(w§ — w?)? + Twgw?
1 1

w22\ 2 w2w? B 2\ 2 2
\/( ) e \/(1‘53) +I
(¢) The amplitude of the steady-state response is given by

F
R= 9 :
\/mQ(wg _ w2)2 + 72w

Since Fp is constant, the amplitude is maximum when the denominator of R is
minimum . Let z = w?, and consider the function f(z) = m?(w? — 2)? + 4%z . Note
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that f(z) is a quadratic, with minimum at z = w3 — v%/2m?. Hence the amplitude

R attains a maximum at w2, = w3 —?/2m?. Furthermore, since wg = k/m,,

2
2 2 g
=wd|1— 1.
Winaz Wo |: 2km]

(d) Substituting w? = w?, . into the expression for the amplitude R gives the

maximum value for R:

X

FO FO o FO

Rmam =

VA /4m?2 + 42 (w3 — 42/2m2) B Vwiy? — 4 /4m? T w1 — V2 /4mk
To understand the approximation, note that

12 2 —1/2
Ryow = 0 (1 -

Ywo dmk

Recall that binomial theorem states that (1 + a)? &~ 1+ pa when a is small. Ap-
plying this result with a = —2/(4mk) and p = —1/2 gives that

P o PR O W N U A W A G N T U
AT N dmk Ywo 2 dmk YWo 8mk

13.(a) The homogeneous solution is u.(t) = Acos t + Bsin t. Based on the method
of undetermined coefficients, the particular solution is

cos wt.

v =1"m

Hence the general solution of the ODE is u(t) = u(t) + U(t). Invoking the initial
conditions, we find that A = 3/(w? — 1) and B = 0. Hence the response is

u(t)

:ﬁ[coswt—cost].
—w

AT P O o 1
LA L A A L

(a) w=10.7 (b) w=10.8 (¢) w=0.9

Note that
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14.(a) The homogeneous solution is u.(t) = Acos t + Bsin ¢. Based on the method
of undetermined coefficients, the particular solution is

U(t) cos wt .

T 1 w?
Hence the general solution is u(t) = u.(t) + U(t). Invoking the initial conditions,
we find that A = (w? +2)/(w? — 1) and B = 1. Hence the response is

1

u(t) = T2 [3 cos wt — (w2+2)cos t} +sin t.

Note that
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