CHAPTER

3

Second-Order Linear Equations

1. Let $y=e^{r t}$, so that $y^{\prime}=r e^{r t}$ and $y^{\prime \prime}=r^{2} e^{r t}$. Direct substitution into the differential equation yields $\left(r^{2}+2 r-3\right) e^{r t}=0$. Canceling the exponential, the characteristic equation is $r^{2}+2 r-3=0$. The roots of the equation are $r=-3,1$. Hence the general solution is $y=c_{1} e^{t}+c_{2} e^{-3 t}$.
2. Let $y=e^{r t}$. Substitution of the assumed solution results in the characteristic equation $r^{2}+3 r+2=0$. The roots of the equation are $r=-2,-1$. Hence the general solution is $y=c_{1} e^{-t}+c_{2} e^{-2 t}$.
3. The characteristic equation is $4 r^{2}-9=0$, with roots $r= \pm 3 / 2$. Therefore the general solution is $y=c_{1} e^{-3 t / 2}+c_{2} e^{3 t / 2}$.
4. The characteristic equation is $r^{2}-2 r-2=0$, with roots $r=1 \pm \sqrt{3}$. Hence the general solution is $y=c_{1} e^{(1-\sqrt{3}) t}+c_{2} e^{(1+\sqrt{3}) t}$.
5. Substitution of the assumed solution $y=e^{r t}$ results in the characteristic equation $r^{2}+r-2=0$. The roots of the equation are $r=-2,1$. Hence the general solution is $y=c_{1} e^{-2 t}+c_{2} e^{t}$. Its derivative is $y^{\prime}=-2 c_{1} e^{-2 t}+c_{2} e^{t}$. Based on the first condition, $y(0)=1$, we require that $c_{1}+c_{2}=1$. In order to satisfy $y^{\prime}(0)=1$, we find that $-2 c_{1}+c_{2}=1$. Solving for the constants, $c_{1}=0$ and $c_{2}=1$. Hence the specific solution is $y(t)=e^{t}$. It clearly increases without bound as $t \rightarrow \infty$.

6. The characteristic equation is $r^{2}+3 r=0$, with roots $r=-3,0$. Therefore the general solution is $y=c_{1}+c_{2} e^{-3 t}$, with derivative $y^{\prime}=-3 c_{2} e^{-3 t}$. In order to satisfy the initial conditions, we find that $c_{1}+c_{2}=-2$, and $-3 c_{2}=3$. Hence the specific solution is $y(t)=-1-e^{-3 t}$. This converges to -1 as $t \rightarrow \infty$.

7. The characteristic equation is $2 r^{2}+r-4=0$, with roots $r=(-1 \pm \sqrt{33}) / 4$. The general solution is $y=c_{1} e^{(-1-\sqrt{33}) t / 4}+c_{2} e^{(-1+\sqrt{33}) t / 4}$, with derivative

$$
y^{\prime}=\frac{-1-\sqrt{33}}{4} c_{1} e^{(-1-\sqrt{33}) t / 4}+\frac{-1+\sqrt{33}}{4} c_{2} e^{(-1+\sqrt{33}) t / 4}
$$

In order to satisfy the initial conditions, we require that

$$
c_{1}+c_{2}=0 \quad \text { and } \quad \frac{-1-\sqrt{33}}{4} c_{1}+\frac{-1+\sqrt{33}}{4} c_{2}=1
$$

Solving for the coefficients, $c_{1}=-2 / \sqrt{33}$ and $c_{2}=2 / \sqrt{33}$. The specific solution is

$$
y(t)=-2\left[e^{(-1-\sqrt{33}) t / 4}-e^{(-1+\sqrt{33}) t / 4}\right] / \sqrt{33}
$$

It clearly increases without bound as $t \rightarrow \infty$.

12. The characteristic equation is $4 r^{2}-1=0$, with roots $r= \pm 1 / 2$. Therefore the general solution is $y=c_{1} e^{-t / 2}+c_{2} e^{t / 2}$. Since the initial conditions are specified at $t=-2$, is more convenient to write $y=d_{1} e^{-(t+2) / 2}+d_{2} e^{(t+2) / 2}$. The derivative is given by $y^{\prime}=-\left[d_{1} e^{-(t+2) / 2}\right] / 2+\left[d_{2} e^{(t+2) / 2}\right] / 2$. In order to satisfy the initial conditions, we find that $d_{1}+d_{2}=1$, and $-d_{1} / 2+d_{2} / 2=-1$. Solving for the coefficients, $d_{1}=3 / 2$, and $d_{2}=-1 / 2$. The specific solution is

$$
y(t)=\frac{3}{2} e^{-(t+2) / 2}-\frac{1}{2} e^{(t+2) / 2}=\frac{3}{2 e} e^{-t / 2}-\frac{e}{2} e^{t / 2} .
$$

It clearly decreases without bound as $t \rightarrow \infty$.

15. The characteristic equation is $2 r^{2}-3 r+1=0$, with roots $r=1 / 2,1$. Therefore the general solution is $y=c_{1} e^{t / 2}+c_{2} e^{t}$, with derivative $y^{\prime}=c_{1} e^{t / 2} / 2+c_{2} e^{t}$. In order to satisfy the initial conditions, we require $c_{1}+c_{2}=2$ and $c_{1} / 2+c_{2}=1 / 2$. Solving for the coefficients, $c_{1}=3$, and $c_{2}=-1$. The specific solution is $y(t)=$ $3 e^{t / 2}-e^{t}$. To find the stationary point, set $y^{\prime}=3 e^{t / 2} / 2-e^{t}=0$. There is a unique solution, with $t_{1}=\ln (9 / 4)$. The maximum value is then $y\left(t_{1}\right)=9 / 4$. To find the x-intercept, solve the equation $3 e^{t / 2}-e^{t}=0$. The solution is readily found to be $t_{2}=\ln 9 \approx 2.1972$.
17. The characteristic equation is $r^{2}-(2 \alpha-1) r+\alpha(\alpha-1)=0$. Examining the coefficients, the roots are $r=\alpha, \alpha-1$. Hence the general solution of the differential equation is $y(t)=c_{1} e^{\alpha t}+c_{2} e^{(\alpha-1) t}$. Assuming $\alpha \in \mathbb{R}$, all solutions will tend to zero as long as $\alpha<0$. On the other hand, all solutions will become unbounded as long as $\alpha-1>0$, that is, $\alpha>1$.
19.(a) The characteristic roots are $r=-3,-2$. The solution of the initial value problem is $y(t)=(6+\beta) e^{-2 t}-(4+\beta) e^{-3 t}$.
(b) The maximum point has coordinates $t_{0}=\ln [(3(4+\beta)) /(2(6+\beta))], y_{0}=4(6+$ $\beta)^{3} /\left(27(4+\beta)^{2}\right)$.
(c) $y_{0}=4(6+\beta)^{3} /\left(27(4+\beta)^{2}\right) \geq 4$, as long as $\beta \geq 6+6 \sqrt{3}$.
(d) $\lim _{\beta \rightarrow \infty} t_{0}=\ln (3 / 2), \lim _{\beta \rightarrow \infty} y_{0}=\infty$.
20.(a) Assuming that y is a constant, the differential equation reduces to $c y=d$. Hence the only equilibrium solution is $y=d / c$.
(b) Setting $y=Y+d / c$, substitution into the differential equation results in the equation $a Y^{\prime \prime}+b Y^{\prime}+c(Y+d / c)=d$. The equation satisfied by Y is $a Y^{\prime \prime}+$ $b Y^{\prime}+c Y=0$.
1.

$$
W\left(e^{2 t}, e^{-3 t / 2}\right)=\left|\begin{array}{cc}
e^{2 t} & e^{-3 t / 2} \\
2 e^{2 t} & -\frac{3}{2} e^{-3 t / 2}
\end{array}\right|=-\frac{7}{2} e^{t / 2}
$$

3.

$$
W\left(e^{-2 t}, t e^{-2 t}\right)=\left|\begin{array}{cc}
e^{-2 t} & t e^{-2 t} \\
-2 e^{-2 t} & (1-2 t) e^{-2 t}
\end{array}\right|=e^{-4 t}
$$

4.

$$
W\left(e^{t} \sin t, e^{t} \cos t\right)=\left|\begin{array}{cc}
e^{t} \sin t & e^{t} \cos t \\
e^{t}(\sin t+\cos t) & e^{t}(\cos t-\sin t)
\end{array}\right|=-e^{2 t}
$$

5.

$$
W\left(\cos ^{2} \theta, 1+\cos 2 \theta\right)=\left|\begin{array}{cc}
\cos ^{2} \theta & 1+\cos 2 \theta \\
-2 \sin \theta \cos \theta & -2 \sin 2 \theta
\end{array}\right|=0
$$

6. Write the equation as $y^{\prime \prime}+(3 / t) y^{\prime}=1 . p(t)=3 / t$ is continuous for all $t>0$. Since $t_{0}>0$, the IVP has a unique solution for all $t>0$.
7. Write the equation as $y^{\prime \prime}+(3 /(t-4)) y^{\prime}+(4 / t(t-4)) y=2 / t(t-4)$. The coefficients are not continuous at $t=0$ and $t=4$. Since $t_{0} \in(0,4)$, the largest interval is $0<t<4$.
8. The coefficient $3 \ln |t|$ is discontinuous at $t=0$. Since $t_{0}>0$, the largest interval of existence is $0<t<\infty$.
9. $y_{1}^{\prime \prime}=2$. We see that $t^{2}(2)-2\left(t^{2}\right)=0$. $y_{2}^{\prime \prime}=2 t^{-3}$, with $t^{2}\left(y_{2}^{\prime \prime}\right)-2\left(y_{2}\right)=0$. Let $y_{3}=c_{1} t^{2}+c_{2} t^{-1}$, then $y_{3}^{\prime \prime}=2 c_{1}+2 c_{2} t^{-3}$. It is evident that y_{3} is also a solution.
10. No. Substituting $y=\sin \left(t^{2}\right)$ into the differential equation,

$$
-4 t^{2} \sin \left(t^{2}\right)+2 \cos \left(t^{2}\right)+2 t \cos \left(t^{2}\right) p(t)+\sin \left(t^{2}\right) q(t)=0
$$

At $t=0$, this equation becomes $2=0$ (if we suppose that $p(t)$ and $q(t)$ are continuous), which is impossible.
14. $W\left(e^{2 t}, g(t)\right)=e^{2 t} g^{\prime}(t)-2 e^{2 t} g(t)=3 e^{4 t}$. Dividing both sides by $e^{2 t}$, we find that g must satisfy the ODE $g^{\prime}-2 g=3 e^{2 t}$. Hence $g(t)=3 t e^{2 t}+c e^{2 t}$.
15. $W(f, g)=f g^{\prime}-f^{\prime} g=t \cos t-\sin t$, and $W(u, v)=-4 f g^{\prime}+4 f^{\prime} g$. Hence $W(u, v)=-4 t \cos t+4 \sin t$.
16. We compute

$$
\begin{gathered}
W\left(a_{1} y_{1}+a_{2} y_{2}, b_{1} y_{1}+b_{2} y_{2}\right)=\left|\begin{array}{ll}
a_{1} y_{1}+a_{2} y_{2} & b_{1} y_{1}+b_{2} y_{2} \\
a_{1} y_{1}^{\prime}+a_{2} y_{2}^{\prime} & b_{1} y_{1}^{\prime}+b_{2} y_{2}^{\prime}
\end{array}\right|= \\
=\left(a_{1} y_{1}+a_{2} y_{2}\right)\left(b_{1} y_{1}^{\prime}+b_{2} y_{2}^{\prime}\right)-\left(b_{1} y_{1}+b_{2} y_{2}\right)\left(a_{1} y_{1}^{\prime}+a_{2} y_{2}^{\prime}\right)= \\
=a_{1} b_{2}\left(y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}\right)-a_{2} b_{1}\left(y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}\right)=\left(a_{1} b_{2}-a_{2} b_{1}\right) W\left(y_{1}, y_{2}\right) .
\end{gathered}
$$

This now readily shows that y_{3} and y_{4} form a fundamental set of solutions if and only if $a_{1} b_{2}-a_{2} b_{1} \neq 0$.
18. The general solution is $y=c_{1} e^{-3 t}+c_{2} e^{-t}$. $W\left(e^{-3 t}, e^{-t}\right)=2 e^{-4 t}$, and hence the exponentials form a fundamental set of solutions. On the other hand, the fundamental solutions must also satisfy the conditions $y_{1}(1)=1, y_{1}^{\prime}(1)=0 ; y_{2}(1)=0$, $y_{2}^{\prime}(1)=1$. For y_{1}, the initial conditions require $c_{1}+c_{2}=e,-3 c_{1}-c_{2}=0$. The coefficients are $c_{1}=-e^{3} / 2, c_{2}=3 e / 2$. For the solution y_{2}, the initial conditions require $c_{1}+c_{2}=0,-3 c_{1}-c_{2}=e$. The coefficients are $c_{1}=-e^{3} / 2, c_{2}=e / 2$. Hence the fundamental solutions are

$$
y_{1}=-\frac{1}{2} e^{-3(t-1)}+\frac{3}{2} e^{-(t-1)} \quad \text { and } \quad y_{2}=-\frac{1}{2} e^{-3(t-1)}+\frac{1}{2} e^{-(t-1)}
$$

19. Yes. $y_{1}^{\prime \prime}=-4 \cos 2 t ; y_{2}^{\prime \prime}=-4 \sin 2 t . W(\cos 2 t, \sin 2 t)=2$.
20. Clearly, $y_{1}=e^{t}$ is a solution. $y_{2}^{\prime}=(1+t) e^{t}, y_{2}^{\prime \prime}=(2+t) e^{t}$. Substitution into the ODE results in $(2+t) e^{t}-2(1+t) e^{t}+t e^{t}=0$. Furthermore, $W\left(e^{t}, t e^{t}\right)=e^{2 t}$. Hence the solutions form a fundamental set of solutions.
21. Writing the equation in standard form, we find that $P(t)=\sin t / \cos t$. Hence the Wronskian is $W(t)=c e^{-\int(\sin t / \cos t) d t}=c e^{\ln |\cos t|}=c \cos t$, in which c is some constant.
22. Writing the equation in standard form, we find that $P(x)=-2 x /\left(1-x^{2}\right)$. The Wronskian is $W(x)=c e^{-\int-2 x /\left(1-x^{2}\right) d x}=c e^{-\ln \left|1-x^{2}\right|}=c /\left(1-x^{2}\right)$, in which c is some constant.
23. Rewrite the equation as $p(t) y^{\prime \prime}+p^{\prime}(t) y^{\prime}+q(t) y=0$. After writing the equation in standard form, we have $P(t)=p^{\prime}(t) / p(t)$. Hence the Wronskian is

$$
W(t)=c e^{-\int p^{\prime}(t) / p(t) d t}=c e^{-\ln p(t)}=c / p(t)
$$

28. For the given differential equation, the Wronskian satisfies the first order differential equation $W^{\prime}+p(t) W=0$. Given that W is constant, it is necessary that $p(t) \equiv 0$.
29. $P=1, Q=x, R=1$. We have $P^{\prime \prime}-Q^{\prime}+R=0$. The equation is exact. Note that $\left(y^{\prime}\right)^{\prime}+(x y)^{\prime}=0$. Hence $y^{\prime}+x y=c_{1}$. This equation is linear, with integrating factor $\mu=e^{x^{2} / 2}$. Therefore the general solution is

$$
y(x)=c_{1} e^{-x^{2} / 2} \int_{x_{0}}^{x} e^{u^{2} / 2} d u+c_{2} e^{-x^{2} / 2}
$$

34. $P=x^{2}, Q=x, R=-1$. We have $P^{\prime \prime}-Q^{\prime}+R=0$. The equation is exact. Write the equation as $\left(x^{2} y^{\prime}\right)^{\prime}-(x y)^{\prime}=0$. After integration, we conclude that $x^{2} y^{\prime}-x y=c$. Divide both sides of the differential equation by x^{2}. The resulting equation is linear, with integrating factor $\mu=1 / x$. Hence $(y / x)^{\prime}=c x^{-3}$. The solution is $y(t)=c_{1} x^{-1}+c_{2} x$.
35. $P=x^{2}, Q=x, R=x^{2}-\nu^{2}$. Hence the coefficients are $2 P^{\prime}-Q=3 x$ and $P^{\prime \prime}-Q^{\prime}+R=x^{2}+1-\nu^{2}$. The adjoint of the original differential equation is given by $x^{2} \mu^{\prime \prime}+3 x \mu^{\prime}+\left(x^{2}+1-\nu^{2}\right) \mu=0$.
36. $P=1, Q=0, R=-x$. Hence the coefficients are given by $2 P^{\prime}-Q=0$ and $P^{\prime \prime}-Q^{\prime}+R=-x$. Therefore the adjoint of the original equation is $\mu^{\prime \prime}-x \mu=0$.

3.3

1. $e^{2-3 i}=e^{2} e^{-3 i}=e^{2}(\cos 3-i \sin 3)$.
2. $e^{i \pi}=\cos \pi+i \sin \pi=-1$.
3. $e^{2-(\pi / 2) i}=e^{2}(\cos (\pi / 2)-i \sin (\pi / 2))=-e^{2} i$.
4. The characteristic equation is $r^{2}-2 r+6=0$, with roots $r=1 \pm i \sqrt{5}$. Hence the general solution is $y=c_{1} e^{t} \cos \sqrt{5} t+c_{2} e^{t} \sin \sqrt{5} t$.
5. The characteristic equation is $r^{2}+2 r+2=0$, with roots $r=-1 \pm i$. Hence the general solution is $y=c_{1} e^{-t} \cos t+c_{2} e^{-t} \sin t$.
6. The characteristic equation is $r^{2}+2 r+1.25=0$, with roots $r=-1 \pm i / 2$. Hence the general solution is $y=c_{1} e^{-t} \cos (t / 2)+c_{2} e^{-t} \sin (t / 2)$.
7. The characteristic equation is $r^{2}+4 r+6.25=0$, with roots $r=-2 \pm(3 / 2) i$. Hence the general solution is $y=c_{1} e^{-2 t} \cos (3 t / 2)+c_{2} e^{-2 t} \sin (3 t / 2)$.
8. The characteristic equation is $r^{2}+4=0$, with roots $r= \pm 2 i$. Hence the general solution is $y=c_{1} \cos 2 t+c_{2} \sin 2 t$. Now $y^{\prime}=-2 c_{1} \sin 2 t+2 c_{2} \cos 2 t$. Based on the first condition, $y(0)=0$, we require that $c_{1}=0$. In order to satisfy the condition $y^{\prime}(0)=1$, we find that $2 c_{2}=1$. The constants are $c_{1}=0$ and $c_{2}=1 / 2$. Hence the specific solution is $y(t)=\sin 2 t / 2$. The solution is periodic.

9. The characteristic equation is $r^{2}-2 r+5=0$, with roots $r=1 \pm 2 i$. Hence the general solution is $y=c_{1} e^{t} \cos 2 t+c_{2} e^{t} \sin 2 t$. Based on the initial condition $y(\pi / 2)=0$, we require that $c_{1}=0$. It follows that $y=c_{2} e^{t} \sin 2 t$, and so the first derivative is $y^{\prime}=c_{2} e^{t} \sin 2 t+2 c_{2} e^{t} \cos 2 t$. In order to satisfy the condition $y^{\prime}(\pi / 2)=2$, we find that $-2 e^{\pi / 2} c_{2}=2$. Hence we have $c_{2}=-e^{-\pi / 2}$. Therefore the specific solution is $y(t)=-e^{t-\pi / 2} \sin 2 t$. The solution oscillates with an exponentially growing amplitude.

10. The characteristic equation is $r^{2}+1=0$, with roots $r= \pm i$. Hence the general solution is $y=c_{1} \cos t+c_{2} \sin t$. Its derivative is $y^{\prime}=-c_{1} \sin t+c_{2} \cos t$. Based on the first condition, $y(\pi / 3)=2$, we require that $c_{1}+\sqrt{3} c_{2}=4$. In order to satisfy the condition $y^{\prime}(\pi / 3)=-4$, we find that $-\sqrt{3} c_{1}+c_{2}=-8$. Solving
these for the constants, $c_{1}=1+2 \sqrt{3}$ and $c_{2}=\sqrt{3}-2$. Hence the specific solution is a steady oscillation, given by $y(t)=(1+2 \sqrt{3}) \cos t+(\sqrt{3}-2) \sin t$.

11. (a) The characteristic equation is $5 r^{2}+2 r+7=0$, with roots $r=-(1 \pm i \sqrt{34}) / 5$. The solution is $u=c_{1} e^{-t / 5} \cos \sqrt{34} t / 5+c_{2} e^{-t / 5} \sin \sqrt{34} t / 5$. Invoking the given initial conditions, we obtain the equations for the coefficients : $c_{1}=2,-2+\sqrt{34} c_{2}=$ 5. That is, $c_{1}=2, c_{2}=7 / \sqrt{34}$. Hence the specific solution is

$$
u(t)=2 e^{-t / 5} \cos \frac{\sqrt{34}}{5} t+\frac{7}{\sqrt{34}} e^{-t / 5} \sin \frac{\sqrt{34}}{5} t
$$

(b) Based on the graph of $u(t), T$ is in the interval $14<t<16$. A numerical solution on that interval yields $T \approx 14.5115$.
19. Direct calculation gives the result. On the other hand, it can be shown that $W(f g, f h)=f^{2} W(g, h)$. Hence $W\left(e^{\lambda t} \cos \mu t, e^{\lambda t} \sin \mu t\right)=e^{2 \lambda t} W(\cos \mu t, \sin \mu t)=$ $e^{2 \lambda t}\left[\cos \mu t(\sin \mu t)^{\prime}-(\cos \mu t)^{\prime} \sin \mu t\right]=\mu e^{2 \lambda t}$.
20.(a) Clearly, y_{1} and y_{2} are solutions. Also, $W(\cos t, \sin t)=\cos ^{2} t+\sin ^{2} t=1$.
(b) $y^{\prime}=i e^{i t}, y^{\prime \prime}=i^{2} e^{i t}=-e^{i t}$. Evidently, y is a solution and so $y=c_{1} y_{1}+c_{2} y_{2}$.
(c) Setting $t=0,1=c_{1} \cos 0+c_{2} \sin 0$, and $c_{1}=1$.
(d) Differentiating, $i e^{i t}=c_{2} \cos t$. Setting $t=0, i=c_{2} \cos 0$ and hence $c_{2}=i$. Therefore $e^{i t}=\cos t+i \sin t$.
21. Euler's formula is $e^{i t}=\cos t+i \sin t$. It follows that $e^{-i t}=\cos t-i \sin t$. Adding these equation, $e^{i t}+e^{-i t}=2 \cos t$. Subtracting the two equations results in $e^{i t}-e^{-i t}=2 i \sin t$.
22. Let $r_{1}=\lambda_{1}+i \mu_{1}$, and $r_{2}=\lambda_{2}+i \mu_{2}$. Then

$$
\begin{aligned}
e^{\left(r_{1}+r_{2}\right) t} & =e^{\left(\lambda_{1}+\lambda_{2}\right) t+i\left(\mu_{1}+\mu_{2}\right) t}=e^{\left(\lambda_{1}+\lambda_{2}\right) t}\left[\cos \left(\mu_{1}+\mu_{2}\right) t+i \sin \left(\mu_{1}+\mu_{2}\right) t\right]= \\
& =e^{\left(\lambda_{1}+\lambda_{2}\right) t}\left[\left(\cos \mu_{1} t+i \sin \mu_{1} t\right)\left(\cos \mu_{2} t+i \sin \mu_{2} t\right)\right]= \\
& =e^{\lambda_{1} t}\left(\cos \mu_{1} t+i \sin \mu_{1} t\right) \cdot e^{\lambda_{2} t}\left(\cos \mu_{1} t+i \sin \mu_{1} t\right)=e^{r_{1} t} e^{r_{2} t} .
\end{aligned}
$$

Hence $e^{\left(r_{1}+r_{2}\right) t}=e^{r_{1} t} e^{r_{2} t}$.
23. Clearly, $u^{\prime}=\lambda e^{\lambda t} \cos \mu t-\mu e^{\lambda t} \sin \mu t=e^{\lambda t}(\lambda \cos \mu t-\mu \sin \mu t)$ and then $u^{\prime \prime}=$ $\lambda e^{\lambda t}(\lambda \cos \mu t-\mu \sin \mu t)+e^{\lambda t}\left(-\lambda \mu \sin \mu t-\mu^{2} \cos \mu t\right)$. Plugging these into the differential equation, dividing by $e^{\lambda t} \neq 0$ and arranging the sine and cosine terms we obtain that the identity to prove is

$$
\left(a\left(\lambda^{2}-\mu^{2}\right)+b \lambda+c\right) \cos \mu t+(-2 \lambda \mu a-b \mu) \sin \mu t=0 .
$$

We know that $\lambda \pm i \mu$ solves the characteristic equation $a r^{2}+b r+c=0$, so $a(\lambda-$ $i \mu)^{2}+b(\lambda-i \mu)+c=a\left(\lambda^{2}-\mu^{2}\right)+b \lambda+c+i(-2 \lambda \mu a-\mu b)=0$. If this complex number is zero, then both the real and imaginary parts of it are zero, but those are the coefficients of $\cos \mu t$ and $\sin \mu t$ in the above identity, which proves that $a u^{\prime \prime}+b u^{\prime}+c u=0$. The solution for v is analogous.
26. The equation transforms into $y^{\prime \prime}+y=0$. The characteristic roots are $r= \pm i$. The solution is $y=c_{1} \cos (x)+c_{2} \sin (x)=c_{1} \cos (\ln t)+c_{2} \sin (\ln t)$.
28. The equation transforms into $y^{\prime \prime}-5 y^{\prime}-6 y=0$. The characteristic roots are $r=-1,6$. The solution is $y=c_{1} e^{-x}+c_{2} e^{6 x}=c_{1} e^{-\ln t}+c_{2} e^{6 \ln t}=c_{1} / t+c_{2} t^{6}$.
29. The equation transforms into $y^{\prime \prime}-5 y^{\prime}+6 y=0$. The characteristic roots are $r=2,3$. The solution is $y=c_{1} e^{2 x}+c_{2} e^{3 x}=c_{1} e^{2 \ln t}+c_{2} e^{3 \ln t}=c_{1} t^{2}+c_{2} t^{3}$.
30. The equation transforms into $y^{\prime \prime}+2 y^{\prime}-3 y=0$. The characteristic roots are $r=1,-3$. The solution is $y=c_{1} e^{x}+c_{2} e^{-3 x}=c_{1} e^{\ln t}+c_{2} e^{-3 \ln t}=c_{1} t+c_{2} / t^{3}$.
31. The equation transforms into $y^{\prime \prime}+6 y^{\prime}+10 y=0$. The characteristic roots are $r=-3 \pm i$. The solution is

$$
y=c_{1} e^{-3 x} \cos (x)+c_{2} e^{-3 x} \sin (x)=c_{1} \frac{1}{t^{3}} \cos (\ln t)+c_{2} \frac{1}{t^{3}} \sin (\ln t)
$$

32.(a) By the chain rule, $y^{\prime}(x)=(d y / d x) x^{\prime}$. In general, $d z / d t=(d z / d x)(d x / d t)$. Setting $z=(d y / d t)$, we have

$$
\frac{d^{2} y}{d t^{2}}=\frac{d z}{d x} \frac{d x}{d t}=\frac{d}{d x}\left[\frac{d y}{d x} \frac{d x}{d t}\right] \frac{d x}{d t}=\left[\frac{d^{2} y}{d x^{2}} \frac{d x}{d t}\right] \frac{d x}{d t}+\frac{d y}{d x} \frac{d}{d x}\left[\frac{d x}{d t}\right] \frac{d x}{d t}
$$

However,

$$
\frac{d}{d x}\left[\frac{d x}{d t}\right] \frac{d x}{d t}=\left[\frac{d^{2} x}{d t^{2}}\right] \frac{d t}{d x} \cdot \frac{d x}{d t}=\frac{d^{2} x}{d t^{2}}
$$

Hence

$$
\frac{d^{2} y}{d t^{2}}=\frac{d^{2} y}{d x^{2}}\left[\frac{d x}{d t}\right]^{2}+\frac{d y}{d x} \frac{d^{2} x}{d t^{2}}
$$

(b) Substituting the results in part (a) into the general differential equation, $y^{\prime \prime}+$ $p(t) y^{\prime}+q(t) y=0$, we find that

$$
\frac{d^{2} y}{d x^{2}}\left[\frac{d x}{d t}\right]^{2}+\frac{d y}{d x} \frac{d^{2} x}{d t^{2}}+p(t) \frac{d y}{d x} \frac{d x}{d t}+q(t) y=0
$$

Collecting the terms,

$$
\left[\frac{d x}{d t}\right]^{2} \frac{d^{2} y}{d x^{2}}+\left[\frac{d^{2} x}{d t^{2}}+p(t) \frac{d x}{d t}\right] \frac{d y}{d x}+q(t) y=0
$$

(c) Assuming $(d x / d t)^{2}=k q(t)$, and $q(t)>0$, we find that $d x / d t=\sqrt{k q(t)}$, which can be integrated. That is, $x=u(t)=\int \sqrt{k q(t)} d t=\int \sqrt{q(t)} d t$, since $k=1$.
(d) Let $k=1$. It follows that $d^{2} x / d t^{2}+p(t) d x / d t=d u / d t+p(t) u(t)=q^{\prime} / 2 \sqrt{q}+$ $p \sqrt{q}$. Hence

$$
\left[\frac{d^{2} x}{d t^{2}}+p(t) \frac{d x}{d t}\right] /\left[\frac{d x}{d t}\right]^{2}=\frac{q^{\prime}(t)+2 p(t) q(t)}{2[q(t)]^{3 / 2}}
$$

As long as $d x / d t \neq 0$, the differential equation can be expressed as

$$
\frac{d^{2} y}{d x^{2}}+\left[\frac{q^{\prime}(t)+2 p(t) q(t)}{2[q(t)]^{3 / 2}}\right] \frac{d y}{d x}+y=0
$$

(e) To find the analogue to the condition found in part d) for the case when $q(t)<0$ we return to the conditions that make the coefficients on $y, d y / d t$ and $d^{2} y / d t^{2}$ proportional to each other. Since the coefficients on y and $d^{2} y / d t^{2}$ are proportional, $(d x / d t)^{2}=\alpha q(t)$, and we may take $\alpha=-1$. Thus $d x / d t=(-q(t))^{1 / 2}$ and $d^{2} y / d t^{2}=\left(-q^{\prime} / 2\right)(-q)^{-1 / 2}$. Since the coefficients on y and $d y / d t$ are proportional, there is a constant β with

$$
\beta q=\frac{d^{2} y}{d t^{2}}+p(t) \frac{d x}{d t}=\frac{-q^{\prime}}{2}(-q)^{-1 / 2}+p(-q)^{1 / 2}=\frac{-q^{\prime}-2 p q}{2(-q)^{1 / 2}}
$$

and dividing each side of the equation by $-q$ gives

$$
-\beta=\frac{-q^{\prime}-2 p q}{2(-q)^{3 / 2}}, \text { or } 2 \beta=\frac{q^{\prime}+2 p q}{(-q)^{3 / 2}}
$$

Thus the desired condition is that $\left(q^{\prime}+2 p q\right) /(-q)^{3 / 2}$ must be a constant.
34. Note that $p(t)=3 t$ and $q(t)=t^{2}$. We have $x=\int t d t=t^{2} / 2$. Furthermore,

$$
\frac{q^{\prime}(t)+2 p(t) q(t)}{2[q(t)]^{3 / 2}}=\frac{1+3 t^{2}}{t^{2}}
$$

The ratio is not constant, and therefore the equation cannot be transformed.
35. Note that $p(t)=t-1 / t$ and $q(t)=t^{2}$. We have $x=\int t d t=t^{2} / 2$. Furthermore,

$$
\frac{q^{\prime}(t)+2 p(t) q(t)}{2[q(t)]^{3 / 2}}=1
$$

The ratio is constant, and therefore the equation can be transformed. From Problem 32 , the transformed equation is

$$
\frac{d^{2} y}{d x^{2}}+\frac{d y}{d x}+y=0
$$

Based on the methods in this section, the characteristic equation is $r^{2}+r+1=0$, with roots $r=(-1 \pm i \sqrt{3}) / 2$. The general solution is $y(x)=c_{1} e^{-x / 2} \cos \sqrt{3} x / 2+$ $c_{2} e^{-x / 2} \sin \sqrt{3} x / 2$. Since $x=t^{2} / 2$, the solution in the original variable t is

$$
y(t)=e^{-t^{2} / 4}\left[c_{1} \cos \left(\sqrt{3} t^{2} / 4\right)+c_{2} \sin \left(\sqrt{3} t^{2} / 4\right)\right]
$$

36. Note that $p(t)=t$ and $q(t)=-e^{-t^{2}}<0$ for $-\infty<t<\infty$. To proceed we must confirm that $\left(q^{\prime}+2 p q\right) /(-q)^{3 / 2}$ is a constant:

$$
\frac{q^{\prime}+2 p q}{(-q)^{3 / 2}}=\frac{2 t e^{-t^{2}}+2 t\left(-e^{t^{2}}\right)}{\left(e^{-t^{2}}\right)^{3 / 2}}=0
$$

Thus the differential equation can be transformed into an equation with constant coefficients by letting $x=u(t)=\int e^{-t^{2} / 2} d t$. Substituting $x=u(t)$ in the differential equation found in part (b) of Problem 32 we obtain, after dividing by the coefficient of $d^{2} y / d x^{2}$, the differential equation $\left(d^{2} y / d x^{2}\right)-y=0$. Hence the general solution of the original differential equation is $y(t)=c_{1} e^{x(t)}+c_{2} e^{-x(t)}$, where $x(t)=\int e^{-t^{2} / 2} d t$.
2. The characteristic equation is $9 r^{2}+6 r+1=0$, with the double root $r=-1 / 3$. The general solution is $y(t)=c_{1} e^{-t / 3}+c_{2} t e^{-t / 3}$.
3. The characteristic equation is $4 r^{2}-4 r-3=0$, with roots $r=-1 / 2,3 / 2$. The general solution is $y(t)=c_{1} e^{-t / 2}+c_{2} e^{3 t / 2}$.
5. The characteristic equation is $r^{2}-6 r+9=0$, with the double root $r=3$. The general solution is $y(t)=c_{1} e^{3 t}+c_{2} t e^{3 t}$.
6. The characteristic equation is $4 r^{2}+17 r+4=0$, with roots $r=-1 / 4,-4$. The general solution is $y(t)=c_{1} e^{-t / 4}+c_{2} e^{-4 t}$.
7. The characteristic equation is $16 r^{2}+24 r+9=0$, with double root $r=-3 / 4$. The general solution is $y(t)=c_{1} e^{-3 t / 4}+c_{2} t e^{-3 t / 4}$.
8. The characteristic equation is $2 r^{2}+2 r+1=0$. We obtain the complex roots $r=(-1 \pm i) / 2$. The general solution is $y(t)=c_{1} e^{-t / 2} \cos (t / 2)+c_{2} e^{-t / 2} \sin (t / 2)$.
9. The characteristic equation is $9 r^{2}-12 r+4=0$, with the double root $r=2 / 3$. The general solution is $y(t)=c_{1} e^{2 t / 3}+c_{2} t e^{2 t / 3}$. Invoking the first initial condition, it follows that $c_{1}=2$. Now $y^{\prime}(t)=\left(4 / 3+c_{2}\right) e^{2 t / 3}+2 c_{2} t e^{2 t / 3} / 3$. Invoking the second initial condition, $4 / 3+c_{2}=-1$, or $c_{2}=-7 / 3$. Hence we obtain the solution $y(t)=2 e^{2 t / 3}-(7 / 3) t e^{2 t / 3}$. Since the second term dominates for large t, $y(t) \rightarrow-\infty$.

12. The characteristic roots are $r_{1}=r_{2}=1 / 2$. Hence the general solution is given by $y(t)=c_{1} e^{t / 2}+c_{2} t e^{t / 2}$. Invoking the initial conditions, we require that $c_{1}=2$, and that $1+c_{2}=b$. The specific solution is $y(t)=2 e^{t / 2}+(b-1) t e^{t / 2}$. Since the second term dominates, the long-term solution depends on the sign of the coefficient $b-1$. The critical value is $b=1$.
15.(a) The characteristic equation is $r^{2}+2 a r+a^{2}=(r+a)^{2}=0$.
(b) With $p(t)=2 a$, Abel's Formula becomes $W\left(y_{1}, y_{2}\right)=c e^{-\int 2 a d t}=c e^{-2 a t}$.
(c) $y_{1}(t)=e^{-a t}$ is a solution. From part (b), with $c=1, e^{-a t} y_{2}^{\prime}(t)+a e^{-a t} y_{2}(t)=$ $e^{-2 a t}$, which can be written as $\left(e^{a t} y_{2}(t)\right)^{\prime}=1$, resulting in $e^{a t} y_{2}(t)=t$.
17.(a) If the characteristic equation $a r^{2}+b r+c$ has equal roots r_{1}, then $a r_{1}^{2}+$ $b r_{1}+c=a\left(r-r_{1}\right)^{2}=0$. Then clearly $L\left[e^{r t}\right]=\left(a r^{2}+b r+c\right) e^{r t}=a\left(r-r_{1}\right)^{2} e^{r t}$. This gives immediately that $L\left[e^{r_{1} t}\right]=0$.
(b) Differentiating the identity in part (a) with respect to r we get $(2 a r+b) e^{r t}+$ $\left(a r^{2}+b r+c\right) t e^{r t}=2 a\left(r-r_{1}\right) e^{r t}+a\left(r-r_{1}\right)^{2} t e^{r t}$. Again, this gives $L\left[t e^{r_{1} t}\right]=0$.
18. Set $y_{2}(t)=t^{2} v(t)$. Substitution into the differential equation results in

$$
t^{2}\left(t^{2} v^{\prime \prime}+4 t v^{\prime}+2 v\right)-4 t\left(t^{2} v^{\prime}+2 t v\right)+6 t^{2} v=0
$$

After collecting terms, we end up with $t^{4} v^{\prime \prime}=0$. Hence $v(t)=c_{1}+c_{2} t$, and thus $y_{2}(t)=c_{1} t^{2}+c_{2} t^{3}$. Setting $c_{1}=0$ and $c_{2}=1$, we obtain $y_{2}(t)=t^{3}$.
19. Set $y_{2}(t)=t v(t)$. Substitution into the differential equation results in

$$
t^{2}\left(t v^{\prime \prime}+2 v^{\prime}\right)+2 t\left(t v^{\prime}+v\right)-2 t v=0
$$

After collecting terms, we end up with $t^{3} v^{\prime \prime}+4 t^{2} v^{\prime}=0$. This equation is linear in the variable $w=v^{\prime}$. It follows that $v^{\prime}(t)=c t^{-4}$, and $v(t)=c_{1} t^{-3}+c_{2}$. Thus $y_{2}(t)=c_{1} t^{-2}+c_{2} t$. Setting $c_{1}=1$ and $c_{2}=0$, we obtain $y_{2}(t)=t^{-2}$.
23. Direct substitution verifies that $y_{1}(t)=e^{-\delta x^{2} / 2}$ is a solution of the differential equation. Now set $y_{2}(x)=y_{1}(x) v(x)$. Substitution of y_{2} into the equation results in $v^{\prime \prime}-\delta x v^{\prime}=0$. This equation is linear in the variable $w=v^{\prime}$. An integrating factor is $\mu=e^{-\delta x^{2} / 2}$. Rewrite the equation as $\left[e^{-\delta x^{2} / 2} v^{\prime}\right]^{\prime}=0$, from which it follows that $v^{\prime}(x)=c_{1} e^{\delta x^{2} / 2}$. Integrating, we obtain

$$
v(x)=c_{1} \int_{0}^{x} e^{\delta u^{2} / 2} d u+v(0)
$$

Hence

$$
y_{2}(x)=c_{1} e^{-\delta x^{2} / 2} \int_{0}^{x} e^{\delta u^{2} / 2} d u+c_{2} e^{-\delta x^{2} / 2}
$$

Setting $c_{2}=0$, we obtain a second independent solution.
25. After writing the differential equation in standard form, we have $p(t)=3 / t$. Based on Abel's identity, $W\left(y_{1}, y_{2}\right)=c_{1} e^{-\int 3 / t d t}=c_{1} t^{-3}$. As shown in Problem 24 , two solutions of a second order linear equation satisfy $\left(y_{2} / y_{1}\right)^{\prime}=W\left(y_{1}, y_{2}\right) / y_{1}^{2}$. In the given problem, $y_{1}(t)=t^{-1}$. Hence $\left(t y_{2}\right)^{\prime}=c_{1} t^{-1}$. Integrating both sides of the equation, $y_{2}(t)=c_{1} t^{-1} \ln t+c_{2} t^{-1}$. Setting $c_{1}=1$ and $c_{2}=0$ we obtain $y_{2}(t)=t^{-1} \ln t$.
27. Write the differential equation in standard form to find $p(x)=1 / x$. Based on Abel's identity, $W\left(y_{1}, y_{2}\right)=c e^{-\int 1 / x d x}=c x^{-1}$. Two solutions of a second order linear differential equation satisfy $\left(y_{2} / y_{1}\right)^{\prime}=W\left(y_{1}, y_{2}\right) / y_{1}^{2}$. In the given problem, $y_{1}(x)=x^{-1 / 2} \sin x$. Hence

$$
\left(\frac{\sqrt{x}}{\sin x} y_{2}\right)^{\prime}=c \frac{1}{\sin ^{2} x} .
$$

Integrating both sides of the equation, $y_{2}(x)=c_{1} x^{-1 / 2} \cos x+c_{2} x^{-1 / 2} \sin x$. Setting $c_{1}=1$ and $c_{2}=0$, we obtain $y_{2}(x)=x^{-1 / 2} \cos x$.
29.(a) The characteristic equation is $a r^{2}+c=0$. If $a, c>0$, then the roots are $r= \pm i \sqrt{c / a}$. The general solution is

$$
y(t)=c_{1} \cos \sqrt{\frac{c}{a}} t+c_{2} \sin \sqrt{\frac{c}{a}} t
$$

which is bounded.
(b) The characteristic equation is $a r^{2}+b r=0$. The roots are $r=0,-b / a$, and hence the general solution is $y(t)=c_{1}+c_{2} e^{-b t / a}$. Clearly, $y(t) \rightarrow c_{1}$. With the given initial conditions, $c_{1}=y_{0}+(a / b) y_{0}^{\prime}$.
30. Note that $2 \cos t \sin t=\sin 2 t$. Then $1-k \cos t \sin t=1-(k / 2) \sin 2 t$. Now if $0<k<2$, then $(k / 2) \sin 2 t<|\sin 2 t|$ and $-(k / 2) \sin 2 t>-|\sin 2 t|$. Hence

$$
1-k \cos t \sin t=1-\frac{k}{2} \sin 2 t>1-|\sin 2 t| \geq 0
$$

31. The equation transforms into $y^{\prime \prime}-4 y^{\prime}+4 y=0$. We obtain a double root $r=2$. The solution is $y=c_{1} e^{2 x}+c_{2} x e^{2 x}=c_{1} e^{2 \ln t}+c_{2} \ln t e^{2 \ln t}=c_{1} t^{2}+c_{2} t^{2} \ln t$.
32. The equation transforms into $y^{\prime \prime}+2 y^{\prime}+y=0$. We get a double root $r=-1$. The solution is $y=c_{1} e^{-x}+c_{2} x e^{-x}=c_{1} e^{-\ln t}+c_{2} \ln t e^{-\ln t}=c_{1} t^{-1}+c_{2} t^{-1} \ln t$.
33. The equation transforms into $y^{\prime \prime}-3 y^{\prime}+9 y / 4=0$. We obtain the double root $r=3 / 2$. The solution is $y=c_{1} e^{3 x / 2}+c_{2} x e^{3 x / 2}=c_{1} e^{3 \ln t / 2}+c_{2} \ln t e^{3 \ln t / 2}=$ $c_{1} t^{3 / 2}+c_{2} t^{3 / 2} \ln t$.

3.5

2. The characteristic equation for the homogeneous problem is $r^{2}-r-2=0$, with roots $r=-1,2$. Hence $y_{c}(t)=c_{1} e^{-t}+c_{2} e^{2 t}$. Set $Y=A t^{2}+B t+C$. Substitution into the given differential equation, and comparing the coefficients, results in the system of equations $-2 A=4,-2 A-2 B=-2$ and $2 A-B-2 C=0$. Hence $Y=$ $-2 t^{2}+3 t-7 / 2$. The general solution is $y(t)=y_{c}(t)+Y$.
3. The characteristic equation for the homogeneous problem is $r^{2}+r-6=0$, with roots $r=-3,2$. Hence $y_{c}(t)=c_{1} e^{-3 t}+c_{2} e^{2 t}$. Set $Y=A e^{3 t}+B e^{-2 t}$. Substitution into the given differential equation, and comparing the coefficients, results in the system of equations $6 A=12$ and $-4 B=12$. Hence $Y=2 e^{3 t}-3 e^{-2 t}$. The general solution is $y(t)=y_{c}(t)+Y$.
4. The characteristic equation for the homogeneous problem is $r^{2}-2 r-3=0$, with roots $r=-1,3$. Hence $y_{c}(t)=c_{1} e^{-t}+c_{2} e^{3 t}$. Note that the assignment $Y=A t e^{-t}$ is not sufficient to match the coefficients. Try $Y=A t e^{-t}+B t^{2} e^{-t}$. Substitution into the differential equation, and comparing the coefficients, results in the system of equations $-4 A+2 B=0$ and $-8 B=-3$. This implies that $Y=(3 / 16) t e^{-t}+(3 / 8) t^{2} e^{-t}$. The general solution is $y(t)=y_{c}(t)+Y$.
5. The characteristic equation for the homogeneous problem is $r^{2}+\omega_{0}^{2}=0$, with complex roots $r= \pm \omega_{0} i$. Hence $y_{c}(t)=c_{1} \cos \omega_{0} t+c_{2} \sin \omega_{0} t$. Since $\omega \neq \omega_{0}$, set $Y=A \cos \omega t+B \sin \omega t$. Substitution into the ODE and comparing the coefficients results in the system of equations $\left(\omega_{0}^{2}-\omega^{2}\right) A=1$ and $\left(\omega_{0}^{2}-\omega^{2}\right) B=0$.

Hence

$$
Y=\frac{1}{\omega_{0}^{2}-\omega^{2}} \cos \omega t
$$

The general solution is $y(t)=y_{c}(t)+Y$.
9. From Problem $8, y_{c}(t)$ is known. Since $\cos \omega_{0} t$ is a solution of the homogeneous problem, set $Y=A t \cos \omega_{0} t+B t \sin \omega_{0} t$. Substitution into the given ODE and comparing the coefficients results in $A=0$ and $B=1 / 2 \omega_{0}$. Hence the general solution is $y(t)=c_{1} \cos \omega_{0} t+c_{2} \sin \omega_{0} t+t \sin \omega_{0} t /\left(2 \omega_{0}\right)$.
12. The characteristic equation for the homogeneous problem is $r^{2}+4=0$, with roots $r= \pm 2 i$. Hence $y_{c}(t)=c_{1} \cos 2 t+c_{2} \sin 2 t$. Set $Y_{1}=A+B t+C t^{2}$. Comparing the coefficients of the respective terms, we find that $A=-1 / 8, B=0$, $C=1 / 4$. Now set $Y_{2}=D e^{t}$, and obtain $D=3 / 5$. Hence the general solution is $y(t)=c_{1} \cos 2 t+c_{2} \sin 2 t-1 / 8+t^{2} / 4+3 e^{t} / 5$. Invoking the initial conditions, we require that $19 / 40+c_{1}=0$ and $3 / 5+2 c_{2}=2$. Hence $c_{1}=-19 / 40$ and $c_{2}=7 / 10$.
13. The characteristic equation for the homogeneous problem is $r^{2}-2 r+1=0$, with a double root $r=1$. Hence $y_{c}(t)=c_{1} e^{t}+c_{2} t e^{t}$. Consider $g_{1}(t)=t e^{t}$. Note that g_{1} is a solution of the homogeneous problem. Set $Y_{1}=A t^{2} e^{t}+B t^{3} e^{t}$ (the first term is not sufficient for a match). Upon substitution, we obtain $Y_{1}=t^{3} e^{t} / 6$. By inspection, $Y_{2}=4$. Hence the general solution is $y(t)=c_{1} e^{t}+c_{2} t e^{t}+t^{3} e^{t} / 6+4$. Invoking the initial conditions, we require that $c_{1}+4=1$ and $c_{1}+c_{2}=1$. Hence $c_{1}=-3$ and $c_{2}=4$.
14. The characteristic equation for the homogeneous problem is $r^{2}+4=0$, with roots $r= \pm 2 i$. Hence $y_{c}(t)=c_{1} \cos 2 t+c_{2} \sin 2 t$. Since the function $\sin 2 t$ is a solution of the homogeneous problem, set $Y=A t \cos 2 t+B t \sin 2 t$. Upon substitution, we obtain $Y=-3 t \cos 2 t / 4$. Hence the general solution is $y(t)=$ $c_{1} \cos 2 t+c_{2} \sin 2 t-3 t \cos 2 t / 4$. Invoking the initial conditions, we require that $c_{1}=2$ and $2 c_{2}-(3 / 4)=-1$. Hence $c_{1}=2$ and $c_{2}=-1 / 8$.
15. The characteristic equation for the homogeneous problem is $r^{2}+2 r+5=$ 0 , with complex roots $r=-1 \pm 2 i$. Hence $y_{c}(t)=c_{1} e^{-t} \cos 2 t+c_{2} e^{-t} \sin 2 t$. Based on the form of $g(t)$, set $Y=A t e^{-t} \cos 2 t+B t e^{-t} \sin 2 t$. After comparing coefficients, we obtain $Y=t e^{-t} \sin 2 t$. Hence the general solution is $y(t)=$ $c_{1} e^{-t} \cos 2 t+c_{2} e^{-t} \sin 2 t+t e^{-t} \sin 2 t$. Invoking the initial conditions, we require that $c_{1}=1$ and $-c_{1}+2 c_{2}=0$. Hence $c_{1}=1$ and $c_{2}=1 / 2$.
17.(a) The characteristic equation for the homogeneous problem is $r^{2}-5 r+6=0$, with roots $r=2,3$. Hence $y_{c}(t)=c_{1} e^{2 t}+c_{2} e^{3 t}$. Consider $g_{1}(t)=e^{2 t}(3 t+4) \sin t$, and $g_{2}(t)=e^{t} \cos 2 t$. Based on the form of these functions on the right hand side of the ODE, set $Y_{2}(t)=e^{t}\left(A_{1} \cos 2 t+A_{2} \sin 2 t\right)$ and $Y_{1}(t)=\left(B_{1}+B_{2} t\right) e^{2 t} \sin t+$ $\left(C_{1}+C_{2} t\right) e^{2 t} \cos t$.
(b) Substitution into the equation and comparing the coefficients results in

$$
Y(t)=-\frac{1}{20}\left(e^{t} \cos 2 t+3 e^{t} \sin 2 t\right)+\frac{3}{2} t e^{2 t}(\cos t-\sin t)+e^{2 t}\left(\frac{1}{2} \cos t-5 \sin t\right)
$$

19.(a) The homogeneous solution is $y_{c}(t)=c_{1} \cos 2 t+c_{2} \sin 2 t$. Since $\cos 2 t$ and $\sin 2 t$ are both solutions of the homogeneous equation, set

$$
Y(t)=t\left(A_{0}+A_{1} t+A_{2} t^{2}\right) \cos 2 t+t\left(B_{0}+B_{1} t+B_{2} t^{2}\right) \sin 2 t
$$

(b) Substitution into the equation and comparing the coefficients results in

$$
Y(t)=\left(\frac{13}{32} t-\frac{1}{12} t^{3}\right) \cos 2 t+\frac{1}{16}\left(28 t+13 t^{2}\right) \sin 2 t
$$

20.(a) The homogeneous solution is $y_{c}(t)=c_{1} e^{-t}+c_{2} t e^{-2 t}$. None of the functions on the right hand side are solutions of the homogenous equation. In order to include all possible combinations of the derivatives, consider

$$
\begin{aligned}
Y(t) & =e^{t}\left(A_{0}+A_{1} t+A_{2} t^{2}\right) \cos 2 t+e^{t}\left(B_{0}+B_{1} t+B_{2} t^{2}\right) \sin 2 t+ \\
& +e^{-t}\left(C_{1} \cos t+C_{2} \sin t\right)+D e^{t}
\end{aligned}
$$

(b) Substitution into the differential equation and comparing the coefficients results in

$$
\begin{aligned}
Y(t) & =e^{t}\left(A_{0}+A_{1} t+A_{2} t^{2}\right) \cos 2 t+e^{t}\left(B_{0}+B_{1} t+B_{2} t^{2}\right) \sin 2 t \\
& +e^{-t}\left(-\frac{3}{2} \cos t+\frac{3}{2} \sin t\right)+2 e^{t} / 3
\end{aligned}
$$

in which $A_{0}=-4105 / 35152, A_{1}=73 / 676, A_{2}=-5 / 52, B_{0}=-1233 / 35152, B_{1}=$ $10 / 169, B_{2}=1 / 52$.
21.(a) The homogeneous solution is $y_{c}(t)=c_{1} e^{-t} \cos 2 t+c_{2} e^{-t} \sin 2 t$. None of the terms on the right hand side are solutions of the homogenous equation. In order to include the appropriate combinations of derivatives, consider

$$
\begin{aligned}
Y(t) & =e^{-t}\left(A_{1} t+A_{2} t^{2}\right) \cos 2 t+e^{-t}\left(B_{1} t+B_{2} t^{2}\right) \sin 2 t+ \\
& +e^{-2 t}\left(C_{0}+C_{1} t\right) \cos 2 t+e^{-2 t}\left(D_{0}+D_{1} t\right) \sin 2 t
\end{aligned}
$$

(b) Substitution into the differential equation and comparing the coefficients results in

$$
\begin{aligned}
Y(t) & =\frac{3}{16} t e^{-t} \cos 2 t+\frac{3}{8} t^{2} e^{-t} \sin 2 t \\
& -\frac{1}{25} e^{-2 t}(7+10 t) \cos 2 t+\frac{1}{25} e^{-2 t}(1+5 t) \sin 2 t
\end{aligned}
$$

23. The homogeneous solution is $y_{c}(t)=c_{1} \cos \lambda t+c_{2} \sin \lambda t$. Since the differential operator does not contain a first derivative (and $\lambda \neq m \pi$), we can set

$$
Y(t)=\sum_{m=1}^{N} C_{m} \sin m \pi t
$$

Substitution into the differential equation yields

$$
-\sum_{m=1}^{N} m^{2} \pi^{2} C_{m} \sin m \pi t+\lambda^{2} \sum_{m=1}^{N} C_{m} \sin m \pi t=\sum_{m=1}^{N} a_{m} \sin m \pi t
$$

Equating coefficients of the individual terms, we obtain

$$
C_{m}=\frac{a_{m}}{\lambda^{2}-m^{2} \pi^{2}}, \quad m=1,2 \ldots N .
$$

25. Since $a, b, c>0$, the roots of the characteristic equation have negative real parts. That is, $r=\alpha \pm \beta i$, where $\alpha<0$. Hence the homogeneous solution is

$$
y_{c}(t)=c_{1} e^{\alpha t} \cos \beta t+c_{2} e^{\alpha t} \sin \beta t
$$

If $g(t)=d$, then the general solution is

$$
y(t)=d / c+c_{1} e^{\alpha t} \cos \beta t+c_{2} e^{\alpha t} \sin \beta t
$$

Since $\alpha<0, y(t) \rightarrow d / c$ as $t \rightarrow \infty$. If $c=0$, then the characteristic roots are $r=0$ and $r=-b / a$. The ODE becomes $a y^{\prime \prime}+b y^{\prime}=d$. Integrating both sides, we find that $a y^{\prime}+b y=d t+c_{1}$. The general solution can be expressed as

$$
y(t)=d t / b+c_{1}+c_{2} e^{-b t / a} .
$$

In this case, the solution grows without bound. If $b=0$, also, then the differential equation can be written as $y^{\prime \prime}=d / a$, which has general solution $y(t)=d t^{2} / 2 a+$ $c_{1}+c_{2}$. Hence the assertion is true only if the coefficients are positive.
27.(a) Since D is a linear operator, $D^{2} y+b D y+c y=D^{2} y-\left(r_{1}+r_{2}\right) D y+r_{1} r_{2} y=$ $D^{2} y-r_{2} D y-r_{1} D y+r_{1} r_{2} y=D\left(D y-r_{2} y\right)-r_{1}\left(D y-r_{2} y\right)=\left(D-r_{1}\right)\left(D-r_{2}\right) y$.
(b) Let $u=\left(D-r_{2}\right) y$. Then the ODE (i) can be written as $\left(D-r_{1}\right) u=g(t)$, that is, $u^{\prime}-r_{1} u=g(t)$. The latter is a linear first order equation in u. Its general solution is

$$
u(t)=e^{r_{1} t} \int_{t_{0}}^{t} e^{-r_{1} \tau} g(\tau) d \tau+c_{1} e^{r_{1} t}
$$

From above, we have $y^{\prime}-r_{2} y=u(t)$. This equation is also a first order ODE. Hence the general solution of the original second order equation is

$$
y(t)=e^{r_{2} t} \int_{t_{0}}^{t} e^{-r_{2} \tau} u(\tau) d \tau+c_{2} e^{r_{2} t}
$$

Note that the solution $y(t)$ contains two arbitrary constants.
29. We have $\left(D^{2}+2 D+1\right) y=(D+1)(D+1) y$. Let $u=(D+1) y$, and consider the ODE $u^{\prime}+u=2 e^{-t}$. The general solution is $u(t)=2 t e^{-t}+c e^{-t}$. We therefore have the first order equation $u^{\prime}+u=2 t e^{-t}+c_{1} e^{-t}$. The general solution of the latter differential equation is

$$
y(t)=e^{-t} \int_{t_{0}}^{t}\left[2 \tau+c_{1}\right] d \tau+c_{2} e^{-t}=e^{-t}\left(t^{2}+c_{1} t+c_{2}\right)
$$

30. We have $\left(D^{2}+2 D\right) y=D(D+2) y$. Let $u=(D+2) y$, and consider the equation $u^{\prime}=3+4 \sin 2 t$. Direct integration results in $u(t)=3 t-2 \cos 2 t+c$. The problem is reduced to solving the ODE $y^{\prime}+2 y=3 t-2 \cos 2 t+c$. The general solution of this first order differential equation is

$$
\begin{aligned}
y(t)= & e^{-2 t} \int_{t_{0}}^{t} e^{2 \tau}[3 \tau-2 \cos 2 \tau+c] d \tau+c_{2} e^{-2 t}= \\
& =\frac{3}{2} t-\frac{1}{2}(\cos 2 t+\sin 2 t)+c_{1}+c_{2} e^{-2 t}
\end{aligned}
$$

1. The solution of the homogeneous equation is $y_{c}(t)=c_{1} e^{2 t}+c_{2} e^{3 t}$. The functions $y_{1}(t)=e^{2 t}$ and $y_{2}(t)=e^{3 t}$ form a fundamental set of solutions. The Wronskian of these functions is $W\left(y_{1}, y_{2}\right)=e^{5 t}$. Using the method of variation of parameters, the particular solution is given by $Y(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)$, in which

$$
u_{1}(t)=-\int \frac{e^{3 t}\left(2 e^{t}\right)}{W(t)} d t=2 e^{-t} \quad \text { and } \quad u_{2}(t)=\int \frac{e^{2 t}\left(2 e^{t}\right)}{W(t)} d t=-e^{-2 t}
$$

Hence the particular solution is $Y(t)=2 e^{t}-e^{t}=e^{t}$.
3. The functions $y_{1}(t)=e^{t / 2}$ and $y_{2}(t)=t e^{t / 2}$ form a fundamental set of solutions. The Wronskian of these functions is $W\left(y_{1}, y_{2}\right)=e^{t}$. First write the equation in standard form, so that $g(t)=4 e^{t / 2}$. Using the method of variation of parameters, the particular solution is given by $Y(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)$, in which

$$
u_{1}(t)=-\int \frac{t e^{t / 2}\left(4 e^{t / 2}\right)}{W(t)} d t=-2 t^{2} \quad \text { and } \quad u_{2}(t)=\int \frac{e^{t / 2}\left(4 e^{t / 2}\right)}{W(t)} d t=4 t
$$

Hence the particular solution is $Y(t)=-2 t^{2} e^{t / 2}+4 t^{2} e^{t / 2}=2 t^{2} e^{t / 2}$.
5. The solution of the homogeneous equation is $y_{c}(t)=c_{1} \cos 3 t+c_{2} \sin 3 t$. The two functions $y_{1}(t)=\cos 3 t$ and $y_{2}(t)=\sin 3 t$ form a fundamental set of solutions, with $W\left(y_{1}, y_{2}\right)=3$. The particular solution is given by $Y(t)=u_{1}(t) y_{1}(t)+$ $u_{2}(t) y_{2}(t)$, in which

$$
\begin{gathered}
u_{1}(t)=-\int \frac{\sin 3 t\left(9 \sec ^{2} 3 t\right)}{W(t)} d t=-\csc 3 t \\
u_{2}(t)=\int \frac{\cos 3 t\left(9 \sec ^{2} 3 t\right)}{W(t)} d t=\ln (\sec 3 t+\tan 3 t)
\end{gathered}
$$

since $0<t<\pi / 6$. Hence $Y(t)=-1+(\sin 3 t) \ln (\sec 3 t+\tan 3 t)$. The general solution is given by

$$
y(t)=c_{1} \cos 3 t+c_{2} \sin 3 t+(\sin 3 t) \ln (\sec 3 t+\tan 3 t)-1
$$

6. The functions $y_{1}(t)=e^{-2 t}$ and $y_{2}(t)=t e^{-2 t}$ form a fundamental set of solutions. The Wronskian of these functions is $W\left(y_{1}, y_{2}\right)=e^{-4 t}$. The particular solution is given by $Y(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)$, in which
$u_{1}(t)=-\int \frac{t e^{-2 t}\left(t^{-2} e^{-2 t}\right)}{W(t)} d t=-\ln t \quad$ and $\quad u_{2}(t)=\int \frac{e^{-2 t}\left(t^{-2} e^{-2 t}\right)}{W(t)} d t=-1 / t$.
Hence the particular solution is $Y(t)=-e^{-2 t} \ln t-e^{-2 t}$. Since the second term is a solution of the homogeneous equation, the general solution is given by

$$
y(t)=c_{1} e^{-2 t}+c_{2} t e^{-2 t}-e^{-2 t} \ln t
$$

7. The functions $y_{1}(t)=\cos (t / 2)$ and $y_{2}(t)=\sin (t / 2)$ form a fundamental set of solutions. The Wronskian of these functions is $W\left(y_{1}, y_{2}\right)=1 / 2$. First write the ODE in standard form, so that $g(t)=\sec (t / 2) / 2$. The particular solution is given by $Y(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)$, in which

$$
\begin{gathered}
u_{1}(t)=-\int \frac{\cos (t / 2)[\sec (t / 2)]}{2 W(t)} d t=2 \ln (\cos (t / 2)) \\
u_{2}(t)=\int \frac{\sin (t / 2)[\sec (t / 2)]}{2 W(t)} d t=t
\end{gathered}
$$

The particular solution is $Y(t)=2 \cos (t / 2) \ln (\cos (t / 2))+t \sin (t / 2)$. The general solution is given by

$$
y(t)=c_{1} \cos (t / 2)+c_{2} \sin (t / 2)+2 \cos (t / 2) \ln (\cos (t / 2))+t \sin (t / 2)
$$

8. The solution of the homogeneous equation is $y_{c}(t)=c_{1} e^{t}+c_{2} t e^{t}$. The functions $y_{1}(t)=e^{t}$ and $y_{2}(t)=t e^{t}$ form a fundamental set of solutions, with $W\left(y_{1}, y_{2}\right)=$ $e^{2 t}$. The particular solution is given by $Y(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)$, in which

$$
\begin{gathered}
u_{1}(t)=-\int \frac{t e^{t}\left(e^{t}\right)}{W(t)\left(1+t^{2}\right)} d t=-\frac{1}{2} \ln \left(1+t^{2}\right) \\
u_{2}(t)=\int \frac{e^{t}\left(e^{t}\right)}{W(t)\left(1+t^{2}\right)} d t=\arctan t
\end{gathered}
$$

The particular solution is $Y(t)=-(1 / 2) e^{t} \ln \left(1+t^{2}\right)+t e^{t} \arctan (t)$. Hence the general solution is given by

$$
y(t)=c_{1} e^{t}+c_{2} t e^{t}-\frac{1}{2} e^{t} \ln \left(1+t^{2}\right)+t e^{t} \arctan (t)
$$

10. Note first that $p(t)=0, q(t)=-2 / t^{2}$ and $g(t)=\left(3 t^{2}-1\right) / t^{2}$. The functions $y_{1}(t)$ and $y_{2}(t)$ are solutions of the homogeneous equation, verified by substitution. The Wronskian of these two functions is $W\left(y_{1}, y_{2}\right)=-3$. Using the method of variation of parameters, the particular solution is $Y(t)=u_{1}(t) y_{1}(t)+u_{2}(t) y_{2}(t)$, in which

$$
u_{1}(t)=-\int \frac{t^{-1}\left(3 t^{2}-1\right)}{t^{2} W(t)} d t=t^{-2} / 6+\ln t
$$

$$
u_{2}(t)=\int \frac{t^{2}\left(3 t^{2}-1\right)}{t^{2} W(t)} d t=-t^{3} / 3+t / 3
$$

Therefore $Y(t)=1 / 6+t^{2} \ln t-t^{2} / 3+1 / 3$.
12. Observe that $g(t)=t e^{2 t}$. The functions $y_{1}(t)$ and $y_{2}(t)$ are a fundamental set of solutions. The Wronskian of these two functions is $W\left(y_{1}, y_{2}\right)=t e^{t}$. Using the method of variation of parameters, the particular solution is $Y(t)=u_{1}(t) y_{1}(t)+$ $u_{2}(t) y_{2}(t)$, in which

$$
u_{1}(t)=-\int \frac{e^{t}\left(t e^{2 t}\right)}{W(t)} d t=-e^{2 t} / 2 \quad \text { and } \quad u_{2}(t)=\int \frac{(1+t)\left(t e^{2 t}\right)}{W(t)} d t=t e^{t}
$$

Therefore $Y(t)=-(1+t) e^{2 t} / 2+t e^{2 t}=-e^{2 t} / 2+t e^{2 t} / 2$.
13. Note that $g(x)=\ln x$. The functions $y_{1}(x)=x^{2}$ and $y_{2}(x)=x^{2} \ln x$ are solutions of the homogeneous equation, as verified by substitution. The Wronskian of the solutions is $W\left(y_{1}, y_{2}\right)=x^{3}$. Using the method of variation of parameters, the particular solution is $Y(x)=u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)$, in which

$$
\begin{gathered}
u_{1}(x)=-\int \frac{x^{2} \ln x(\ln x)}{W(x)} d x=-(\ln x)^{3} / 3 \\
u_{2}(x)=\int \frac{x^{2}(\ln x)}{W(x)} d x=(\ln x)^{2} / 2
\end{gathered}
$$

Therefore $Y(x)=-x^{2}(\ln x)^{3} / 3+x^{2}(\ln x)^{3} / 2=x^{2}(\ln x)^{3} / 6$.
15. First write the equation in standard form. The forcing function becomes $g(x) / x^{2}$. The functions $y_{1}(x)=x^{-1 / 2} \sin x$ and $y_{2}(x)=x^{-1 / 2} \cos x$ are a fundamental set of solutions. The Wronskian of the solutions is $W\left(y_{1}, y_{2}\right)=-1 / x$. Using the method of variation of parameters, the particular solution is $Y(x)=$ $u_{1}(x) y_{1}(x)+u_{2}(x) y_{2}(x)$, in which

$$
u_{1}(x)=\int_{x_{0}}^{x} \frac{\cos \tau(g(\tau))}{\tau \sqrt{\tau}} d \tau \quad \text { and } \quad u_{2}(x)=-\int_{x_{0}}^{x} \frac{\sin \tau(g(\tau))}{\tau \sqrt{\tau}} d \tau
$$

Therefore

$$
\begin{gathered}
Y(x)=\frac{\sin x}{\sqrt{x}} \int_{x_{0}}^{x} \frac{\cos \tau(g(\tau))}{\tau \sqrt{\tau}} d t-\frac{\cos x}{\sqrt{x}} \int_{x_{0}}^{x} \frac{\sin \tau(g(\tau))}{\tau \sqrt{\tau}} d \tau= \\
=\frac{1}{\sqrt{x}} \int_{x_{0}}^{x} \frac{\sin (x-\tau) g(\tau)}{\tau \sqrt{\tau}} d \tau
\end{gathered}
$$

16. Eq.(28) is

$$
Y(t)=-y_{1}(t) \int_{t_{0}}^{t} \frac{y_{2}(s) g(s)}{W\left(y_{1}, y_{2}\right)(s)} d s+y_{2}(t) \int_{t_{0}}^{t} \frac{y_{1}(s) g(s)}{W\left(y_{1}, y_{2}\right)(s)} d s
$$

where t_{0} is now considered the initial point. Bringing the terms $y_{1}(t)$ and $y_{2}(t)$ inside the integrals and using the fact that $W\left(y_{1}, y_{2}\right)(s)=y_{1}(s) y_{2}^{\prime}(s)-y_{1}^{\prime}(s) y_{2}(s)$, the desired result holds. To show that $Y(t)$ satisfies $L[y]=g(t)$ we must take the derivative using Leibniz's rule, which says that if $y(t)=\int_{t_{0}}^{t} G(t, s) d s$, then
$Y^{\prime}(t)=G(t, t)+\int_{t_{0}}^{t} G_{t}(t, s) d s$. Letting $G(t, s)$ be the above integrand, we have that $G(t, t)=0$ and

$$
\frac{\partial G}{\partial t}=\frac{y_{1}(s) y_{2}^{\prime}(t)-y_{1}^{\prime}(t) y_{2}(s)}{W\left(y_{1}, y_{2}\right)(s)} g(s) .
$$

Likewise,

$$
Y^{\prime \prime}=\frac{\partial G(t, t)}{\partial t}+\int_{t_{0}}^{t} \frac{\partial^{2} G}{\partial t^{2}}(t, s) d s=g(t)+\int_{t_{0}}^{t} \frac{y_{1}(s) y_{2}^{\prime \prime}(t)-y_{1}^{\prime \prime}(t) y_{2}(s)}{W\left(y_{1}, y_{2}\right)(s)} g(s) d s
$$

Since y_{1} and y_{2} are solutions of $L[y]=0$, we have $L[Y]=g(t)$ since all the terms involving the integral will add to zero. Clearly $y\left(t_{0}\right)=0$ and $y^{\prime}\left(t_{0}\right)=0$.
17. Let $y_{1}(t)$ and $y_{2}(t)$ be a fundamental set of solutions, and $W(t)=W\left(y_{1}, y_{2}\right)$ be the corresponding Wronskian. Any solution, $u(t)$, of the homogeneous equation is a linear combination $u(t)=\alpha_{1} y_{1}(t)+\alpha_{2} y_{2}(t)$. Invoking the initial conditions, we require that

$$
\begin{aligned}
& y_{0}=\alpha_{1} y_{1}\left(t_{0}\right)+\alpha_{2} y_{2}\left(t_{0}\right) \\
& y_{0}^{\prime}=\alpha_{1} y_{1}^{\prime}\left(t_{0}\right)+\alpha_{2} y_{2}^{\prime}\left(t_{0}\right)
\end{aligned}
$$

Note that this system of equations has a unique solution, since $W\left(t_{0}\right) \neq 0$. Now consider the nonhomogeneous problem, $L[v]=g(t)$, with homogeneous initial conditions. Using the method of variation of parameters, the particular solution is given by

$$
Y(t)=-y_{1}(t) \int_{t_{0}}^{t} \frac{y_{2}(s) g(s)}{W(s)} d s+y_{2}(t) \int_{t_{0}}^{t} \frac{y_{1}(s) g(s)}{W(s)} d s
$$

The general solution of the IVP (iii) is

$$
v(t)=\beta_{1} y_{1}(t)+\beta_{2} y_{2}(t)+Y(t)=\beta_{1} y_{1}(t)+\beta_{2} y_{2}(t)+y_{1}(t) u_{1}(t)+y_{2}(t) u_{2}(t)
$$

in which u_{1} and u_{2} are defined above. Invoking the initial conditions, we require that

$$
\begin{aligned}
& 0=\beta_{1} y_{1}\left(t_{0}\right)+\beta_{2} y_{2}\left(t_{0}\right)+Y\left(t_{0}\right) \\
& 0=\beta_{1} y_{1}^{\prime}\left(t_{0}\right)+\beta_{2} y_{2}^{\prime}\left(t_{0}\right)+Y^{\prime}\left(t_{0}\right)
\end{aligned}
$$

Based on the definition of u_{1} and $u_{2}, Y\left(t_{0}\right)=0$. Furthermore, since $y_{1} u_{1}^{\prime}+y_{2} u_{2}^{\prime}=$ 0 , it follows that $Y^{\prime}\left(t_{0}\right)=0$. Hence the only solution of the above system of equations is the trivial solution. Therefore $v(t)=Y(t)$. Now consider the function $y=u+v$. Then $L[y]=L[u+v]=L[u]+L[v]=g(t)$. That is, $y(t)$ is a solution of the nonhomogeneous problem. Further, $y\left(t_{0}\right)=u\left(t_{0}\right)+v\left(t_{0}\right)=y_{0}$, and similarly, $y^{\prime}\left(t_{0}\right)=y_{0}^{\prime}$. By the uniqueness theorems, $y(t)$ is the unique solution of the initial value problem.
18.(a) A fundamental set of solutions is $y_{1}(t)=\cos t$ and $y_{2}(t)=\sin t$. The Wronskian $W(t)=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}=1$. By the result in Problem 17,

$$
\begin{aligned}
Y(t) & =\int_{t_{0}}^{t} \frac{\cos (s) \sin (t)-\cos (t) \sin (s)}{W(s)} g(s) d s \\
& =\int_{t_{0}}^{t}[\cos (s) \sin (t)-\cos (t) \sin (s)] g(s) d s
\end{aligned}
$$

Finally, we have $\cos (s) \sin (t)-\cos (t) \sin (s)=\sin (t-s)$.
(b) Using Problem 16 and part (a), the solution is

$$
y(t)=y_{0} \cos t+y_{0}^{\prime} \sin t+\int_{0}^{t} \sin (t-s) g(s) d s
$$

19. A fundamental set of solutions is $y_{1}(t)=e^{a t}$ and $y_{2}(t)=e^{b t}$. The Wronskian $W(t)=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}=(b-a) e^{(a+b) t}$. By the result in Problem 17,

$$
Y(t)=\int_{t_{0}}^{t} \frac{e^{a s} e^{b t}-e^{a t} e^{b s}}{W(s)} g(s) d s=\frac{1}{b-a} \int_{t_{0}}^{t} \frac{e^{a s} e^{b t}-e^{a t} e^{b s}}{e^{(a+b) s}} g(s) d s
$$

Hence the particular solution is

$$
Y(t)=\frac{1}{b-a} \int_{t_{0}}^{t}\left[e^{b(t-s)}-e^{a(t-s)}\right] g(s) d s
$$

21. A fundamental set of solutions is $y_{1}(t)=e^{a t}$ and $y_{2}(t)=t e^{a t}$. The Wronskian $W(t)=y_{1} y_{2}^{\prime}-y_{1}^{\prime} y_{2}=e^{2 a t}$. By the result in Problem 17,

$$
Y(t)=\int_{t_{0}}^{t} \frac{t e^{a s+a t}-s e^{a t+a s}}{W(s)} g(s) d s=\int_{t_{0}}^{t} \frac{(t-s) e^{a s+a t}}{e^{2 a s}} g(s) d s .
$$

Hence the particular solution is

$$
Y(t)=\int_{t_{0}}^{t}(t-s) e^{a(t-s)} g(s) d s
$$

22. The form of the kernel depends on the characteristic roots. If the roots are real and distinct,

$$
K(t-s)=\frac{e^{b(t-s)}-e^{a(t-s)}}{b-a}
$$

If the roots are real and identical,

$$
K(t-s)=(t-s) e^{a(t-s)}
$$

If the roots are complex conjugates,

$$
K(t-s)=\frac{e^{\lambda(t-s)} \sin \mu(t-s)}{\mu} .
$$

23. Let $y(t)=v(t) y_{1}(t)$, in which $y_{1}(t)$ is a solution of the homogeneous equation. Substitution into the given ODE results in

$$
v^{\prime \prime} y_{1}+2 v^{\prime} y_{1}^{\prime}+v y_{1}^{\prime \prime}+p(t)\left[v^{\prime} y_{1}+v y_{1}^{\prime}\right]+q(t) v y_{1}=g(t) .
$$

By assumption, $y_{1}^{\prime \prime}+p(t) y_{1}+q(t) y_{1}=0$, hence $v(t)$ must be a solution of the ODE

$$
v^{\prime \prime} y_{1}+\left[2 y_{1}^{\prime}+p(t) y_{1}\right] v^{\prime}=g(t) .
$$

Setting $w=v^{\prime}$, we also have $w^{\prime} y_{1}+\left[2 y_{1}^{\prime}+p(t) y_{1}\right] w=g(t)$.
25. First write the equation as $y^{\prime \prime}+7 t^{-1} y+5 t^{-2} y=t^{-1}$. As shown in Problem 23, the function $y(t)=t^{-1} v(t)$ is a solution of the given ODE as long as v is a solution of

$$
t^{-1} v^{\prime \prime}+\left[-2 t^{-2}+7 t^{-2}\right] v^{\prime}=t^{-1}
$$

that is, $v^{\prime \prime}+5 t^{-1} v^{\prime}=1$. This ODE is linear and first order in v^{\prime}. The integrating factor is $\mu=t^{5}$. The solution is $v^{\prime}=t / 6+c t^{-5}$. Direct integration now results in $v(t)=t^{2} / 12+c_{1} t^{-4}+c_{2}$. Hence $y(t)=t / 12+c_{1} t^{-5}+c_{2} t^{-1}$.
26. Write the equation as $y^{\prime \prime}-t^{-1}(1+t) y+t^{-1} y=t e^{2 t}$. As shown in Problem 23, the function $y(t)=(1+t) v(t)$ is a solution of the given ODE as long as v is a solution of

$$
(1+t) v^{\prime \prime}+\left[2-t^{-1}(1+t)^{2}\right] v^{\prime}=t e^{2 t}
$$

that is,

$$
v^{\prime \prime}-\frac{1+t^{2}}{t(t+1)} v^{\prime}=\frac{t}{t+1} e^{2 t}
$$

This equation is first order linear in v^{\prime}, with integrating factor $\mu=t^{-1}(1+t)^{2} e^{-t}$. The solution is $v^{\prime}=\left(t^{2} e^{2 t}+c_{1} t e^{t}\right) /(1+t)^{2}$. Integrating, we obtain $v(t)=e^{2 t} / 2-$ $e^{2 t} /(t+1)+c_{1} e^{t} /(t+1)+c_{2}$. Hence the solution of the original ODE is $y(t)=$ $(t-1) e^{2 t} / 2+c_{1} e^{t}+c_{2}(t+1)$.

3.7

1. $R \cos \delta=3$ and $R \sin \delta=4$, so $R=\sqrt{25}=5$ and $\delta=\arctan (4 / 3)$. We obtain that $u=5 \cos (2 t-\arctan (4 / 3))$.
2. $R \cos \delta=-2$ and $R \sin \delta=-3$, so $R=\sqrt{13}$ and $\delta=\pi+\arctan (3 / 2)$. We obtain that $u=\sqrt{13} \cos (\pi t-\pi-\arctan (3 / 2))$.
3. The spring constant is $k=3 /(1 / 4)=12 \mathrm{lb} / \mathrm{ft}$. Mass $m=3 / 32 \mathrm{lb}-\mathrm{s}^{2} / \mathrm{ft}$. Since there is no damping, the equation of motion is $3 u^{\prime \prime} / 32+12 u=0$, that is, $u^{\prime \prime}+$ $128 u=0$. The initial conditions are $u(0)=-1 / 12 \mathrm{ft}, u^{\prime}(0)=2 \mathrm{ft} / \mathrm{s}$. The general solution is $u(t)=A \cos 8 \sqrt{2} t+B \sin 8 \sqrt{2} t$. Invoking the initial conditions, we have

$$
u(t)=-\frac{1}{12} \cos 8 \sqrt{2} t+\frac{1}{4 \sqrt{2}} \sin 8 \sqrt{2} t
$$

$R=\sqrt{11 / 288} \mathrm{ft}, \delta=\pi-\arctan (3 / \sqrt{2}) \mathrm{rad}, \omega_{0}=8 \sqrt{2} \mathrm{rad} / \mathrm{s}, T=\pi /(4 \sqrt{2}) \mathrm{s}$.
6. The spring constant is $k=3 /(.1)=30 \mathrm{~N} / \mathrm{m}$. The damping coefficient is given as $\gamma=3 / 5 \mathrm{~N}-\mathrm{s} / \mathrm{m}$. Hence the equation of motion is $2 u^{\prime \prime}+3 u^{\prime} / 5+30 u=0$, that is, $u^{\prime \prime}+0.3 u^{\prime}+15 u=0$. The initial conditions are $u(0)=0.05 \mathrm{~m}$ and $u^{\prime}(0)=0.01$ m / s. The general solution is $u(t)=A \cos \mu t+B \sin \mu t$, in which $\mu=3.87008$ $\mathrm{rad} / \mathrm{s}$. Invoking the initial conditions, we have $u(t)=e^{-0.15 t}(0.05 \cos \mu t+0.00452 \sin \mu t)$. Also, $\mu / \omega_{0}=3.87008 / \sqrt{15} \approx 0.99925$.
8. The frequency of the undamped motion is $\omega_{0}=1$. The quasi frequency of the damped motion is $\mu=\sqrt{4-\gamma^{2}} / 2$. Setting $\mu=2 \omega_{0} / 3$, we obtain $\gamma=2 \sqrt{5} / 3$.
9. The spring constant is $k=m g / L$. The equation of motion for an undamped system is $m u^{\prime \prime}+m g u / L=0$. Hence the natural frequency of the system is $\omega_{0}=$ $\sqrt{g / L}$. The period is $T=2 \pi / \omega_{0}$.
10. The general solution of the system is $u(t)=A \cos \gamma\left(t-t_{0}\right)+B \sin \gamma\left(t-t_{0}\right)$. Invoking the initial conditions, we have $u(t)=u_{0} \cos \gamma\left(t-t_{0}\right)+\left(u_{0}^{\prime} / \gamma\right) \sin \gamma(t-$ $\left.t_{0}\right)$. Clearly, the functions $v=u_{0} \cos \gamma\left(t-t_{0}\right)$ and $w=\left(u_{0}^{\prime} / \gamma\right) \sin \gamma\left(t-t_{0}\right)$ satisfy the given criteria.
11. Note that $r \sin \left(\omega_{0} t-\theta\right)=r \sin \omega_{0} t \cos \theta-r \cos \omega_{0} t \sin \theta$. Comparing the given expressions, we have $A=-r \sin \theta$ and $B=r \cos \theta$. That is, $r=R=$ $\sqrt{A^{2}+B^{2}}$, and $\tan \theta=-A / B=-1 / \tan \delta$. The latter relation is also $\tan \theta+$ $\cot \delta=1$.
12. The system is critically damped, when $R=2 \sqrt{L / C}$. Here $R=1000$ ohms.
15.(a) Let $u=R e^{-\gamma t / 2 m} \cos (\mu t-\delta)$. Then attains a maximum when $\mu t_{k}-\delta=$ $2 k \pi$. Hence $T_{d}=t_{k+1}-t_{k}=2 \pi / \mu$.
(b) $u\left(t_{k}\right) / u\left(t_{k+1}\right)=e^{-\gamma t_{k} / 2 m} / e^{-\gamma t_{k+1} / 2 m}=e^{\left(\gamma t_{k+1}-\gamma t_{k}\right) / 2 m}$. Hence $u\left(t_{k}\right) / u\left(t_{k+1}\right)=$ $e^{\gamma(2 \pi / \mu) / 2 m}=e^{\gamma T_{d} / 2 m}$.
(c) $\Delta=\ln \left[u\left(t_{k}\right) / u\left(t_{k+1}\right)\right]=\gamma(2 \pi / \mu) / 2 m=\pi \gamma / \mu m$.
16. The spring constant is $k=16 /(1 / 4)=64 \mathrm{lb} / \mathrm{ft}$. Mass $m=1 / 2 \mathrm{lb}-\mathrm{s}^{2} / \mathrm{ft}$. The damping coefficient is $\gamma=2 \mathrm{lb}-\mathrm{s} / \mathrm{ft}$. The quasi frequency is $\mu=2 \sqrt{31} \mathrm{rad} / \mathrm{s}$. Hence $\Delta=2 \pi / \sqrt{31} \approx 1.1285$.
18.(a) The characteristic equation is $m r^{2}+\gamma r+k=0$. Since $\gamma^{2}<4 k m$, the roots are $r_{1,2}=\left(-\gamma \pm i \sqrt{4 m k-\gamma^{2}}\right) / 2 m$. The general solution is

$$
u(t)=e^{-\gamma t / 2 m}\left[A \cos \frac{\sqrt{4 m k-\gamma^{2}}}{2 m} t+B \sin \frac{\sqrt{4 m k-\gamma^{2}}}{2 m} t\right]
$$

Invoking the initial conditions, $A=u_{0}$ and $B=\left(2 m v_{0}-\gamma u_{0}\right) / \sqrt{4 m k-\gamma^{2}}$.
(b) We can write $u(t)=R e^{-\gamma t / 2 m} \cos (\mu t-\delta)$, in which

$$
R=\sqrt{u_{0}^{2}+\frac{\left(2 m v_{0}-\gamma u_{0}\right)^{2}}{4 m k-\gamma^{2}}} \quad \text { and } \quad \delta=\arctan \left[\frac{\left(2 m v_{0}-\gamma u_{0}\right)}{u_{0} \sqrt{4 m k-\gamma^{2}}}\right]
$$

(c)

$$
R=\sqrt{u_{0}^{2}+\frac{\left(2 m v_{0}-\gamma u_{0}\right)^{2}}{4 m k-\gamma^{2}}}=2 \sqrt{\frac{m\left(k u_{0}^{2}+\gamma u_{0} v_{0}+m v_{0}^{2}\right)}{4 m k-\gamma^{2}}}=\sqrt{\frac{a+b \gamma}{4 m k-\gamma^{2}}}
$$

It is evident that R increases (monotonically) without bound as $\gamma \rightarrow(2 \sqrt{m k})^{-}$.
20.(a) The general solution is $u(t)=A \cos \sqrt{2} t+B \sin \sqrt{2} t$. Invoking the initial conditions, we have $u(t)=\sqrt{2} \sin \sqrt{2} t$.
(b)

(c)

The condition $u^{\prime}(0)=2$ implies that $u(t)$ initially increases. Hence the phase point travels clockwise.
23. Based on Newton's second law, with the positive direction to the right, $\sum F=$ $m u^{\prime \prime}$, where $\sum F=-k u-\gamma u^{\prime}$. Hence the equation of motion is $m u^{\prime \prime}+\gamma u^{\prime}+$ $k u=0$. The only difference in this problem is that the equilibrium position is located at the unstretched configuration of the spring.
24.(a) The restoring force exerted by the spring is $F_{s}=-\left(k u+\epsilon u^{3}\right)$. The opposing viscous force is $F_{d}=-\gamma u^{\prime}$. Based on Newton's second law, with the positive direction to the right, $F_{s}+F_{d}=m u^{\prime \prime}$. Hence the equation of motion is $m u^{\prime \prime}+\gamma u^{\prime}+k u+\epsilon u^{3}=0$.
(b) With the specified parameter values, the equation of motion is $u^{\prime \prime}+u=0$. The general solution of this ODE is $u(t)=A \cos t+B \sin t$. Invoking the initial conditions, the specific solution is $u(t)=\sin t$. Clearly, the amplitude is $R=1$, and the period of the motion is $T=2 \pi$.
(c) Given $\epsilon=0.1$, the equation of motion is $u^{\prime \prime}+u+0.1 u^{3}=0$. A solution of the IVP can be generated numerically. We estimate $A=0.98$ and $T=6.07$.

(d) For $\epsilon=0.2, A=0.96$ and $T=5.90$. For $\epsilon=0.3, A=0.94$ and $T=5.74$.

(e) The amplitude and period both seem to decrease.
(f) For $\epsilon=-0.1, A=1.03$ and $T=6.55$. For $\epsilon=-0.2, A=1.06$ and $T=6.90$. For $\epsilon=-0.3, A=1.11$ and $T=7.41$. The amplitude and period both seem to increase.

(a) $\varepsilon=-0.1$

(b) $\varepsilon=-0.2$

(c) $\varepsilon=-0.3$

1. We have $\sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta$. Subtracting the two identities, we obtain $\sin (\alpha+\beta)-\sin (\alpha-\beta)=2 \cos \alpha \sin \beta$. Setting $\alpha+\beta=7 t$ and $\alpha-$ $\beta=6 t$, we get that $\alpha=6.5 t$ and $\beta=0.5 t$. This implies that $\sin 7 t-\sin 6 t=$ $2 \sin (t / 2) \cos (13 t / 2)$.
2. Consider the trigonometric identities $\cos (\alpha \pm \beta)=\cos \alpha \cos \beta \mp \sin \alpha \sin \beta$. Adding the two identities, we get $\cos (\alpha-\beta)+\cos (\alpha+\beta)=2 \cos \alpha \cos \beta$. Comparing the expressions, set $\alpha+\beta=2 \pi t$ and $\alpha-\beta=\pi t$. This means $\alpha=3 \pi t / 2$ and $\beta=\pi t / 2$. Upon substitution, we have $\cos (\pi t)+\cos (2 \pi t)=2 \cos (3 \pi t / 2) \cos (\pi t / 2)$.
3. Adding the two identities $\sin (\alpha \pm \beta)=\sin \alpha \cos \beta \pm \cos \alpha \sin \beta$, it follows that $\sin (\alpha-\beta)+\sin (\alpha+\beta)=2 \sin \alpha \cos \beta$. Setting $\alpha+\beta=4 t$ and $\alpha-\beta=3 t$, we have $\alpha=7 t / 2$ and $\beta=t / 2$. Hence $\sin 3 t+\sin 4 t=2 \sin (7 t / 2) \cos (t / 2)$.
4. Using MKS units, the spring constant is $k=5(9.8) / 0.1=490 \mathrm{~N} / \mathrm{m}$, and the damping coefficient is $\gamma=2 / 0.04=50 \mathrm{~N}-\mathrm{s} / \mathrm{m}$. The equation of motion is

$$
5 u^{\prime \prime}+50 u^{\prime}+490 u=10 \sin (t / 2) .
$$

The initial conditions are $u(0)=0 \mathrm{~m}$ and $u^{\prime}(0)=0.03 \mathrm{~m} / \mathrm{s}$.
5. (a) The homogeneous solution is $u_{c}(t)=A e^{-5 t} \cos \sqrt{73} t+B e^{-5 t} \sin \sqrt{73} t$. Based on the method of undetermined coefficients, the particular solution is

$$
U(t)=\frac{1}{153281}[-160 \cos (t / 2)+3128 \sin (t / 2)]
$$

Hence the general solution of the ODE is $u(t)=u_{c}(t)+U(t)$. Invoking the initial conditions, we find that

$$
A=160 / 153281 \text { and } B=383443 \sqrt{73} / 1118951300
$$

Hence the response is

$$
u(t)=\frac{1}{153281}\left[160 e^{-5 t} \cos \sqrt{73} t+\frac{383443 \sqrt{73}}{7300} e^{-5 t} \sin \sqrt{73} t\right]+U(t)
$$

(b) $u_{c}(t)$ is the transient part and $U(t)$ is the steady state part of the response.
(c)

(d) The amplitude of the forced response is given by $R=2 / \Delta$, in which

$$
\Delta=\sqrt{25\left(98-\omega^{2}\right)^{2}+2500 \omega^{2}}
$$

The maximum amplitude is attained when Δ is a minimum. Hence the amplitude is maximum at $\omega=4 \sqrt{3} \mathrm{rad} / \mathrm{s}$.
8. The equation of motion is $2 u^{\prime \prime}+u^{\prime}+3 u=3 \cos 3 t-2 \sin 3 t$. Since the system is damped, the steady state response is equal to the particular solution. Using the method of undetermined coefficients, we obtain $u_{s s}(t)=(\sin 3 t-\cos 3 t) / 6$. Further, we find that $R=\sqrt{2} / 6$ and $\delta=\arctan (-1)=3 \pi / 4$. Hence we can write $u_{s s}(t)=(\sqrt{2} / 6) \cos (3 t-3 \pi / 4)$.
9. (a) Plug in $u(t)=R \cos (\omega t-\delta)$ into the equation $m u^{\prime \prime}+\gamma u^{\prime}+k u=F_{0} \cos \omega t$, then use trigonometric identities and compare the coefficients of $\cos \omega t$ and $\sin \omega t$. The result follows.
(b) First note that since $R=F_{0} / \Delta, R k / F_{0}=k / \Delta$ and that since $\Gamma=\gamma^{2} /(m k)$, $\left(\gamma^{2} \omega^{2}\right) / m^{2}=\Gamma \omega_{0}^{2} \omega^{2}$. Then using Eq.12,

$$
\begin{aligned}
\frac{R k}{F_{0}} & =\frac{k}{\Delta}=\frac{m \omega_{0}^{2}}{\sqrt{m^{2}\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \omega^{2}}}=\frac{m \omega_{0}^{2}}{\sqrt{m^{2}\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \omega^{2}}} \\
& =\frac{\omega_{0}^{2}}{\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\frac{\gamma^{2} \omega^{2}}{m^{2}}}}=\frac{\omega_{0}^{2}}{\sqrt{\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\Gamma \omega_{0}^{2} \omega^{2}}} \\
& =\frac{1}{\sqrt{\left(\frac{\omega_{0}^{2}-\omega^{2}}{\omega_{0}^{2}}\right)^{2}+\Gamma \frac{\omega_{0}^{2} \omega^{2}}{\omega_{0}^{4}}}}=\frac{1}{\sqrt{\left(1-\frac{\omega^{2}}{\omega_{0}^{2}}\right)^{2}+\Gamma \frac{\omega^{2}}{\omega_{0}^{2}}}}
\end{aligned}
$$

(c) The amplitude of the steady-state response is given by

$$
R=\frac{F_{0}}{\sqrt{m^{2}\left(\omega_{0}^{2}-\omega^{2}\right)^{2}+\gamma^{2} \omega^{2}}} .
$$

Since F_{0} is constant, the amplitude is maximum when the denominator of R is minimum. Let $z=\omega^{2}$, and consider the function $f(z)=m^{2}\left(\omega_{0}^{2}-z\right)^{2}+\gamma^{2} z$. Note
that $f(z)$ is a quadratic, with minimum at $z=\omega_{0}^{2}-\gamma^{2} / 2 m^{2}$. Hence the amplitude R attains a maximum at $\omega_{\max }^{2}=\omega_{0}^{2}-\gamma^{2} / 2 m^{2}$. Furthermore, since $\omega_{0}^{2}=k / m$,

$$
\omega_{\max }^{2}=\omega_{0}^{2}\left[1-\frac{\gamma^{2}}{2 k m}\right]
$$

(d) Substituting $\omega^{2}=\omega_{\max }^{2}$ into the expression for the amplitude R gives the maximum value for R :
$R_{\max }=\frac{F_{0}}{\sqrt{\gamma^{4} / 4 m^{2}+\gamma^{2}\left(\omega_{0}^{2}-\gamma^{2} / 2 m^{2}\right)}}=\frac{F_{0}}{\sqrt{\omega_{0}^{2} \gamma^{2}-\gamma^{4} / 4 m^{2}}}=\frac{F_{0}}{\gamma \omega_{0} \sqrt{1-\gamma^{2} / 4 m k}}$.
To understand the approximation, note that

$$
R_{\max }=\frac{F_{0}}{\gamma \omega_{0}}\left(1-\frac{\gamma^{2}}{4 m k}\right)^{-1 / 2}
$$

Recall that binomial theorem states that $(1+a)^{p} \approx 1+p a$ when a is small. Applying this result with $a=-\gamma^{2} /(4 m k)$ and $p=-1 / 2$ gives that
$R_{\max }=\frac{F_{0}}{\gamma \omega_{0}}\left(1-\frac{\gamma^{2}}{4 m k}\right)^{-1 / 2} \approx \frac{F_{0}}{\gamma \omega_{0}}\left(1+\left(-\frac{1}{2}\right)\left(-\frac{\gamma^{2}}{4 m k}\right)\right)=\frac{F_{0}}{\gamma \omega_{0}}\left(1+\frac{\gamma^{2}}{8 m k}\right)$
13. (a) The homogeneous solution is $u_{c}(t)=A \cos t+B \sin t$. Based on the method of undetermined coefficients, the particular solution is

$$
U(t)=\frac{3}{1-\omega^{2}} \cos \omega t
$$

Hence the general solution of the ODE is $u(t)=u_{c}(t)+U(t)$. Invoking the initial conditions, we find that $A=3 /\left(\omega^{2}-1\right)$ and $B=0$. Hence the response is

$$
u(t)=\frac{3}{1-\omega^{2}}[\cos \omega t-\cos t]
$$

(b)

Note that

$$
u(t)=\frac{6}{1-\omega^{2}} \sin \left[\frac{(1-\omega) t}{2}\right] \sin \left[\frac{(\omega+1) t}{2}\right]
$$

14.(a) The homogeneous solution is $u_{c}(t)=A \cos t+B \sin t$. Based on the method of undetermined coefficients, the particular solution is

$$
U(t)=\frac{3}{1-\omega^{2}} \cos \omega t
$$

Hence the general solution is $u(t)=u_{c}(t)+U(t)$. Invoking the initial conditions, we find that $A=\left(\omega^{2}+2\right) /\left(\omega^{2}-1\right)$ and $B=1$. Hence the response is

$$
u(t)=\frac{1}{1-\omega^{2}}\left[3 \cos \omega t-\left(\omega^{2}+2\right) \cos t\right]+\sin t
$$

(b)

Note that

$$
u(t)=\frac{6}{1-\omega^{2}} \sin \left[\frac{(1-\omega) t}{2}\right] \sin \left[\frac{(\omega+1) t}{2}\right]+\cos t+\sin t
$$

15.

(a) $\omega=0.7$

(b) $\omega=0.8$

(c) $\omega=0.9$
18.(a)

(b) Phase plot $-u^{\prime}$ vs u :

