Chapter 1 Line and Angle Relationships

SECTION 1.1: Sets, Statements, and Reasoning

- 1. a. Not a statement.
 - **b.** Statement; true
 - c. Statement; true
 - d. Statement; false
- 2. a. Statement; true
 - **b.** Not a statement.
 - c. Statement; false
 - d. Statement; false
- **3. a.** Christopher Columbus did not cross the Atlantic Ocean.
 - **b.** Some jokes are not funny.
- 4. a. Someone likes me.
 - **b.** Angle 1 is not a right angle.
- 5. Conditional
- 6. Conjunction
- 7. Simple
- 8. Disjunction
- 9. Simple
- 10. Conditional
- 11. H: You go to the game.
 - C: You will have a great time.
- 12. H: Two chords of a circle have equal lengths.
 - C: The arcs of the chords are congruent.
- **13.** H: The diagonals of a parallelogram are perpendicular.
 - C: The parallelogram is a rhombus.
- **14.** H: $\frac{a}{b} = \frac{c}{d} \ (b \neq 0, d \neq 0)$
 - C: $a \cdot d = b \cdot c$
- **15.** H: Two parallel lines are cut by a transversal.
 - C: Corresponding angles are congruent.
- **16.** H: Two lines intersect.
 - C: Vertical angles are congruent.

- **17.** First, write the statement in "If, then" form. If a figure is a square, then it is a rectangle.
 - H: A figure is a square.
 - C: It is a rectangle.
- **18.** First, write the statement in "If, then" form. If angles are base angles, then they are congruent.
 - H: Angles are base angles of an isosceles triangle.
 - C: They are congruent.
- **19.** True
- **20.** True
- **21.** True
- 22. False
- 23. False
- **24.** True
- 25. Induction
- 26. Intuition
- 27. Deduction
- 28. Deduction
- 29. Intuition
- 30. Induction
- **31.** None
- 32. Intuition
- **33.** Angle 1 looks equal in measure to angle 2.
- **34.** \overline{AM} has the same length as \overline{MB} .
- **35.** Three angles in one triangle are equal in measure to the three angles in the other triangle.
- **36.** The angles are not equal in measure.
- **37.** A Prisoner of Society might be nominated for an Academy Award.
- **38.** Andy is a rotten child.
- **39.** The instructor is a math teacher.
- **40.** Your friend likes fruit.
- **41.** Angles 1 and 2 are complementary.
- **42.** Kathy Jones will be a success in life.
- **43.** Alex has a strange sense of humor.
- **44.** None
- **45.** None

- **46.** None
- 47. June Jesse will be in the public eye.
- **48.** None
- **49.** Marilyn is a happy person.
- **50.** None
- **51.** Valid
- **52.** Not valid
- 53. Not valid
- **54.** Valid
- 55. a. True
 - **b.** True
 - c. False
- **56. a.** False
 - b. False
- **57. a.** True
 - b. True

SECTION 1.2: Informal Geometry and Measurement

- 1. AB < CD
- **2.** m∠*ABC* < m∠*DEF*
- 3. Two; one
- **4.** No
- 5. One; none
- **6.** Three
- 7. $\angle ABC$, $\angle ABD$, $\angle DBC$
- **8.** 23°, 90°, 110.5°
- 9. Yes; no; yes
- **10.** *A-X-B*
- **11.** ∠ABC, ∠CBA
- **12.** Yes; yes
- 13. Yes; no
- **14.** a. d
- **15.** a, d
- **16.** *R*; they are equal.
- **17. a.** 3

- **b.** $2\frac{1}{2}$
- **18. a.** 1.5
 - **b.** 5
- **19. a.** 40°
 - **b.** 50°
- **20. a.** 90°
 - **b.** 25°
- 21. Congruent; congruent
- 22. Equal; yes
- 23. Equal
- **24.** 2 inches
- **25.** No
- **26.** Yes
- **27.** Yes
- **28.** No
- 29. Congruent
- 30. Congruent
- **31.** \overline{MN} and \overline{QP}
- 32. Equal
- 33. \overline{AB}
- **34.** ∠*ABD*
- **35.** 22
- **36.** 14
- 37. x+x+3=21 2x=18x=9
- **38.** x + y
- **39.** 124°
- 40. 2x + x = 180 3x = 180 x = 60 $m \angle 1 = 120^{\circ}$
- **41.** 71°
- **42.** 34°
- **43.** x + 2x + 3 = 72 3x = 69x = 23
- **44.** x + y

45.
$$32.7 \div 3 = 10.9$$

46.

47.
$$x + y = 180$$

 $x - y = 24$
 $2x = 204$
 $x = 102$
 $y = 78$

48.
$$x + y = 67$$

 $x - y = 17$
 $2x = 84$
 $x = 42$
 $y = 25$

SECTION 1.3: Early Definitions and Postulates

- **1.** AC
- 2. Midpoint
- 3. $6.25 \text{ ft} \cdot 12 \text{ in./ft} = 75 \text{ in.}$
- **4.** 52 in. \div 12 in./ft = $4\frac{1}{3}$ ft or 4 ft 4 in.
- 5. $\frac{1}{2}$ m · 3.28 ft/m = 1.64 feet
- **6.** $16.4 \text{ ft} \div 3.28 \text{ ft/m} = 5 \text{ m}$
- 7. 18 15 = 3 mi
- 8. 300 + 450 + 600 = 1350 ft $1350 \text{ ft} \div 15 \text{ ft/s} = 90 \text{ s or } 1 \text{ min } 30 \text{ s}$
- 9. a. A-C-D
 - **b.** *A*, *B*, *C* or *B*, *C*, *D* or *A*, *B*, *D*
- 10. a. Infinite
 - b. One
 - c. None
 - d. None

- **11.** \overrightarrow{CD} means line CD;
 - \overline{CD} means segment CD;
 - CD means the measure or length of \overline{CD} ;
 - \overrightarrow{CD} means ray CD with endpoint C.
- 12. a. No difference
 - **b.** No difference
 - c. No difference
 - **d.** \overrightarrow{CD} is the ray starting at C and going to the right.

 \overline{DC} is starting at D and going to the left.

- **13. a.** *m* and *t*
 - **b.** m and p or p and t
- **14. a.** False
 - b. False
 - c. True
 - d. True
 - e. False

15.
$$2x+1=3x-2$$

 $-x=-3$
 $x=3$
 $AM=7$

16.
$$2(x+1) = 3(x-2)$$

 $2x+2 = 3x-6$
 $-1x = -8$
 $x = 8$
 $AB = AM + MB$
 $AB = 18 + 18 = 36$

17.
$$2x+1+3x = 6x-4$$

 $5x+3=6x-4$
 $-1x = -7$
 $x = 7$
 $AB = 38$

- 18. No; Yes; Yes; No
- **19.** a. \overrightarrow{OA} and \overrightarrow{OD}
 - **b.** \overrightarrow{OA} and \overrightarrow{OB} (There are other possible answers.)
- **20.** \overrightarrow{CD} lies on plane X.

- **23.** Planes *M* and *N* intersect at \overrightarrow{AB} .
- **24.** *B*
- **25.** *A*
- **26.** a. One
 - **b.** Infinite
 - c. One
 - d. None
- **27.** a. C
 - **b.** *C*
 - **c.** *H*
- **28. a.** Equal
 - **b.** Equal
 - **c.** AC is twice DC.
- **29.** Given: \overline{AB} and \overline{CD} as shown (AB > CD)Construct \overline{MN} on line l so that

30. Given: \overline{AB} and \overline{CD} as shown (AB > CD)Construct: \overline{EF} so that EF = AB - CD.

31. Given: \overline{AB} as shown Construct: \overline{PQ} on line *n* so that PQ = 3(AB)

32. Given: \overline{AB} as shown

Construct: \overline{TV} on line *n* so that $TV = \frac{1}{2}(AB)$

- **33.** a. No
 - **b.** Yes
 - c. No
 - d. Yes
- **34.** A segment can be divided into 2^n congruent parts where $n \ge 1$.
- **35.** Six
- **36.** Four
- 37. Nothing
- **38.** a. One
 - b. One
 - c. None
 - d. One
 - e. One
 - f. One
 - g. None
- 39. a. Yes
 - **b.** Yes
 - c. No
- **40.** a. Yes
 - **b.** No
 - c. Yes
- **41.** $\frac{1}{3}a + \frac{1}{2}b$ or $\frac{2a+3b}{6}$

SECTION 1.4: Angles and Their Relationships

- 1. a. Acute
 - b. Right
 - c. Obtuse

- 2. a. Obtuse
 - b. Straight
 - c. Acute
- 3. a. Complementary
 - **b.** Supplementary
- 4. a. Congruent
 - b. None
- 5. Adjacent
- 6. Vertical
- 7. Complementary (also adjacent)
- 8. Supplementary
- 9. Yes; No
- **10.** a. True
 - **b.** False
 - c. False
 - d. False
 - e. True
- 11. a. Obtuse
 - **b.** Straight
 - c. Acute
 - d. Obtuse
- **12.** *B* is not in the interior of $\angle FAE$; the Angle-Addition Postulate does not apply.
- 13. $m\angle FAC + m\angle CAD = 180$ $\angle FAC$ and $\angle CAD$ are supplementary.
- **14. a.** x + y = 180
 - **b.** x = y
- **15. a.** x + y = 90
 - **b.** x = y
- **16.** 62°
- **17.** 42°
- 18. 2x+9+3x-2=67 5x+7=67 5x=60x=12

19.
$$2x-10+x+6=4(x-6)$$

 $3x-4=4x-24$
 $20=x$
 $x=20$
 $m\angle RSV = 4(20-6) = 56^{\circ}$

20.
$$5(x+1)-3+4(x-2)+3=4(2x+3)-7$$

 $5x+5-3+4x-8+3=8x+12-7$
 $9x-3=8x+5$
 $x=8$
 $m\angle RSV = 4(2\cdot8+3)-7=69^{\circ}$

21.
$$\frac{x}{2} + \frac{x}{4} = 45$$

Multiply by LCD, 4

$$2x + x = 180$$

$$3x = 180$$

$$x = 60$$
; m $\angle RST = 30^{\circ}$

22.
$$\frac{2x}{3} + \frac{x}{2} = 49$$

Multiply by LCD, 6

$$4x + 3x = 294$$

$$7x = 294$$

$$x = 42$$
; m $\angle TSV = \frac{x}{2} = 21^{\circ}$

23.
$$x + y = 2x - 2y$$
$$x + y + 2x - 2y = 64$$
$$-1x + 3y = 0$$
$$3x - 1y = 64$$
$$-3x + 9y = 0$$
$$3x - y = 64$$
$$8y = 64$$
$$y = 8; x = 24$$

24.
$$2x+3y=3x-y+2$$

$$2x+3y+3x-y+2=80$$

$$-1x+4y=2$$

$$5x+2y=78$$

$$-5x+20y=10$$

$$5x+2y=78$$

$$22y=88$$

$$y=4; x=14$$

26.
$$x + y = 90$$

 $x = 12 + y$

$$x + y = 90$$

$$x - y = 12$$

$$2x = 102$$

$$x = 51$$

$$51 + y = 90$$

$$y = 39$$

27.
$$x + y = 180$$

$$x = 24 + 2y$$

$$x + y = 180$$

$$x - 2y = 24$$

$$-2x + 2y = 360$$

$$x - 2y = 24$$

$$3x = 384$$

$$x = 128; y = 52$$

 \angle s are 128° and 52°.

28. a.
$$(90-x)^{\circ}$$

b.
$$(90-(3x-12))^{\circ} = (102-3x)^{\circ}$$

c.
$$90 - (2x + 5y) = (90 - 2x - 5y)^{\circ}$$

29. a.
$$(180 - x)^{\circ}$$

b.
$$180 - (3x - 12) = (192 - 3x)^{\circ}$$

c.
$$180 - (2x + 5y)$$

 $(180 - 2x - 5y)^{\circ}$

30.
$$x-92=92-53$$

 $x-92=39$
 $x=131$

31.
$$x-92+(92-53)=90$$

 $x-92+39=90$
 $x-53=90$
 $x=143$

b. False

c. False

33. Given: Obtuse $\angle MRP$

Construct: With \overrightarrow{OA} as one side, an angle $\cong \angle MRP$.

34. Given: Obtuse $\angle MRP$

Construct: \overrightarrow{RS} , the angle-bisector of $\angle MRP$.

35. Given: Obtuse $\angle MRP$

Construct: Rays RS, RT, and RU so that $\angle MRP$ is divided into $4 \cong$ angles.

36. Given: Straight angle *DEF*

Construct: a right angle with vertex at *E*.

37. For the triangle shown, the angle bisectors are been constructed.

It appears that the angle bisectors meet at one point.

38. Given: Acute ∠1

Construct: Triangle ABC which has

 $\angle A \cong \angle 1$, $\angle B \cong \angle 1$ and base \overline{AB} .

- **39.** It appears that the two sides opposite \angle s *A* and *B* are congruent.
- **40.** Given: Straight angle ABC Construct: Bisectors of $\angle ABD$ and $\angle DBC$.

It appears that a right angle is formed.

- **41. a.** 90°
 - **b.** 90°
 - c. Equal
- **42.** Let $m \angle USV = x$, then $m \angle TSU = 38 x$

$$38 - x + 40 = 61$$

$$78 - x = 61$$

$$78 - 61 = x$$

$$x = 17$$
; m $\angle USV = 17^{\circ}$

43.
$$x + 2z + x - z + 2x - z = 60$$

 $4x = 60$

$$x = 15$$

If x = 15, then $m \angle USV = 15 - z$,

$$m \angle VSW = 30 - z$$
, and

$$m \angle USW = 3x - 6 = 3(15) - 6 = 39$$

So
$$15 - z + 2(15) - z = 39$$

$$45 - 2z = 39$$

$$6 = 2z$$

$$z = 3$$

- **44. a.** 52°
 - **b.** 52°
 - c. Equal

45.
$$90 + x + x = 360$$

 $2x = 270$
 $x = 135^{\circ}$

SECTION 1.5: Introduction to Geometric Proof

- 1. Division Property of Equality or Multiplication Property of Equality
- **2.** Distributive Property [x + x = (1+1)x = 2x]
- 3. Subtraction Property of Equality
- 4. Addition Property of Equality
- 5. Multiplication Property of Equality
- 6. Addition Property of Equality
- 7. If 2 angles are supplementary, then the sum of their measures is 180°.
- **8.** If the sum of the measures of 2 angles is 180°, then the angles are supplementary.
- 9. Angle-Addition Property
- 10. Definition of angle-bisector
- **11.** AM + MB = AB
- **12.** AM = MB
- 13. \overrightarrow{EG} bisects $\angle DEF$
- **14.** $m \angle 1 = m \angle 2$ or $\angle 1 \cong \angle 2$
- 15. $m\angle 1 + m\angle 2 = 90^{\circ}$
- **16.** $\angle 1$ and $\angle 2$ are complementary

17.
$$2x = 10$$

18.
$$x = 7$$

19.
$$7x + 2 = 30$$

20.
$$\frac{1}{2} = 50\%$$

21.
$$6x - 3 = 27$$

22.
$$x = -20$$

- **23. 1.** Given
 - 2. Distributive Property
 - 3. Addition Property of Equality
 - 4. Division Property of Equality
- **24. 1.** Given
 - 2. Subtraction Property of Equality
 - 3. Division Property of Equality
- **25.** 1. 2(x+3)-7=11
 - 2. 2x+6-7=11
 - 3. 2x-1=11
 - **4.** 2x = 12
 - **5.** x = 6
- **26. 1.** $\frac{x}{5} + 3 = 9$
 - **2.** $\frac{x}{5} = 6$
 - 3. x = 30
- **27. 1.** Given
 - 2. Segment-Addition Postulate
 - 3. Subtraction Property of Equality
- **28. 1.** Given
 - **2.** The midpoint forms 2 segments of equal measure.
 - 3. Segment-Addition Postulate
 - 4. Substitution
 - 5. Distributive Property
 - 6. Multiplication Property of Equality
- **29. 1.** Given
 - **2.** If an angle is bisected, then the two angles formed are equal in measure.
 - 3. Angle-Addition Postulate

- 4. Substitution
- 5. Distribution Property
- 6. Multiplication Property of Equality
- **30. 1.** Given
 - 2. Angle-Addition Postulate
 - 3. Subtraction Property of Equality
- **31. S1.** *M-N-P-Q* on \overline{MQ}
 - R1. Given
 - 2. Segment-Addition Postulate
 - 3. Segment-Addition Postulate
 - **4.** MN + NP + PQ = MQ
- **32.** 1. $\angle TSW$ with \overrightarrow{SU} and \overrightarrow{SV} ; Given
 - 2. Angle-Addition Postulate
 - 3. Angle-Addition Postulate
 - **4.** $m \angle TSW = m \angle TSU + m \angle USV + m \angle VSW$
- 33. $5 \cdot x + 5 \cdot y = 5(x + y)$
- **34.** $5 \cdot x + 7 \cdot x = (5+7)x = 12x$
- **35.** (-7)(-2) > 5(-2) or 14 > -10
- **36.** $\frac{12}{-4} < \frac{-4}{-4}$ or -3 < 1
- **37. 1**. Given
 - 2. Addition Property of Equality
 - 3. Given
 - 4. Substitution
- **38. 1**. a = b
- 1. Given
- **2.** a c = b c
- **2**. Subtraction Property of Equality
- **3.** *c* = *d*
- 3. Given
- **4.** a c = b d
- 4. Substitution

SECTION 1.6: Relationships: Perpendicular Lines

- **1. 1.** Given
 - 2. If $2 \angle s$ are \cong , then they are equal in measure.
 - 3. Angle-Addition Postulate
 - 4. Addition Property of Equality

- 5. Substitution
- **6.** If $2 \angle s$ are = in measure, then they are \cong .
- 2. 1. Given
 - 2. The measure of a straight angle is 180°.
 - 3. Angle-Addition Postulate
 - 4. Substitution
 - 5. Given
 - **6.** The measure of a right $\angle = 90^{\circ}$.
 - 7. Substitution
 - 8. Subtraction Property of Equality
 - 9. Angle-Addition Postulate
 - 10. Substitution
 - **11.** If the sum of measures of 2 angles is 90°, then the angles are complementary.
- 3. 1. $\angle 1 \cong \angle 2$ and $\angle 2 \cong \angle 3$
 - 2. $\angle 1 \cong \angle 3$
- **4.** 1. $m\angle AOB = m\angle 1$ and $m\angle BOC = m\angle 1$
 - **2.** $m\angle AOB = m\angle BOC$
 - 3. $\angle AOB \cong \angle BOC$
 - **4.** \overrightarrow{OB} bisects $\angle AOC$
- **5.** Given: Point *N* on line *s*. Construct: Line *m* through *N* so that $m \perp s$.

6. Given: OA

Construct: Right angle BOA (Hint: Use the straightedge to extend \overrightarrow{OA} to the left.)

7. Given: Line ℓ containing point A Construct: A 45° angle with vertex at A

8. Given: \overline{AB}

Construct: The perpendicular bisector of \overline{AB}

9. Given: Triangle ABC Construct: The perpendicular bisectors of each side, \overline{AB} , \overline{AC} , and \overline{BC} .

- **10.** It appears that the perpendicular bisectors meet at one point.
- **11. 1.** Given
 - 3. Substitution
 - **4.** $m \angle 1 = m \angle 2$
 - **5.** ∠1 ≅ ∠2
- **12. 1.** Given
 - 2. $m\angle 1 = m\angle 2$ and $m\angle 3 = m\angle 4$
 - 3. Given
 - **4.** $m\angle 2 + m\angle 3 = 90$
 - 5. Substitution
 - **6.** \angle s 1 and 4 are comp.
- 13. No; Yes; No
- 14. No; No; Yes

- **15.** No; Yes; No
- 16. No; No; Yes
- 17. No; Yes; Yes
- 18. No; No; No
- 19. a. perpendicular
 - b. angles
 - c. supplementary
 - d. right
 - e. measure of angle
- 20. a. postulate
 - **b.** union
 - c. empty set
 - d. less than
 - e. point
- 21. a. adjacent
 - b. complementary
 - c. ray AB
 - d. is congruent to
 - e. vertical
- **22.** In space, there are an infinite number of lines perpendicular to a given line at a point on the line.

23.	STATEMENTS		REASONS
	1. $M-N-P-Q$ on \overline{MQ} 2. $MN+NQ=MQ$	1.	Given
	2. MN + NQ = MQ	2.	Segment-Addition Postulate Segment-Addition
			Postulate
	3. NP + PQ = NQ	3.	Segment-Addition
			Postulate
	4. MN + NP + PQ = MQ	4.	Substitution

- **24.** AE = AB + BC + CD + DE
- 25. **STATEMENTS** REASONS 1. $\angle TSW$ with \overline{SU} 1. Given and \overrightarrow{SV} **2.** m∠*TSW* 2. Angle-Addition $= m \angle TSU + m \angle USW$ Postulate **3.** m∠*USW* 3. Angle-Addition $= m \angle USV + m \angle VSW$ Postulate **4.** $m \angle TSW = m \angle TSU$ 4. Substitution $+m\angle USV + m\angle VSW$
- **26.** $m\angle GHK = m\angle 1 + m\angle 2 + m\angle 3 + m\angle 4$
- **27.** In space, there are an infinite number of lines that perpendicularly bisect a given line segment at its midpoint.

- 28. 1. Given
 - 2. If 2 ∠s are comp., then the sum of their measures is 90°.
 - 3. Given
 - The measure of an acute angle is between 0 and 90°.
 - 5. Substitution
 - 6. Subtraction Prop. of Eq.
 - 7. Subtraction Prop. of Inequality
 - 8. Addition Prop. of Inequality
 - 9. Transitive Prop. of Inequality
 - 10. Substitution
 - 11. If the measure of an angle is between 0 and 90°, then the angle is an acute \angle .
- **29.** Angles 1, 2, 3, and 4 are adjacent and form the straight angle AOB which measures 180. Therefore, $m\angle 1 + m\angle 2 + m\angle 3 + m\angle 4 = 180$.
- 30. If $\angle 2$ and $\angle 3$ are complementary, then $m\angle 2 + m\angle 3 = 90$. From Exercise 29, $m\angle 1 + m\angle 2 + m\angle 3 + m\angle 4 = 180$. Therefore, $m\angle 1 + m\angle 4 = 90$ and $\angle 1$ and $\angle 4$ are complementary.

SECTION 1.7: The Formal Proof of a Theorem

- 1. H: A line segment is bisected.
 - C: Each of the equal segments has half the length of the original segment.
- 2. H: Two sides of a triangle are congruent.
 - C: The triangle is isosceles.
- **3.** First write the statement in the "If, then" form. If a figure is a square, then it is a quadrilateral.
 - H: A figure is a square.
 - C: It is a quadrilateral.
- **4.** First write the statement in the "If, then" form. If a polygon is a regular polygon, then it has congruent interior angles.
 - H: A polygon is a regular polygon.
 - C: It has congruent interior angles.
- 5. H: Each is a right angle.
 - C: Two angles are congruent.

- **6.** First write the statement in the "If, then" form. If polygons are similar, then the lengths of corresponding sides are proportional.
 - H: Polygons are similar.
 - C: The lengths of corresponding sides are proportional.
- 7. Statement, Drawing, Given, Prove, Proof
- 8. a. Hypothesis
 - b. Hypothesis
 - c. Conclusion
- 9. a. Given
- **b**. Prove
- **10.** a, c, d
- 11. After the theorem has been proved.
- **12.** No
- **13.** Given: $\overrightarrow{AB} \perp \overrightarrow{CD}$

Prove: $\angle AEC$ is a right angle.

Figure for exercises 13 and 14.

14. Given: $\angle AEC$ is a right angle

Prove: $\overrightarrow{AB} \perp \overrightarrow{CD}$

15. Given: $\angle 1$ is comp to $\angle 3$

 $\angle 2$ is comp to $\angle 3$

Prove: $\angle 1 \cong \angle 2$

16. Given: $\angle 1$ is supp to $\angle 3$

 $\angle 2$ is supp to $\angle 3$

Prove: $\angle 1 \cong \angle 2$

17. Given: Lines l and m

Prove: $\angle 1 \cong \angle 2$ and $\angle 3 \cong \angle 4$

18. Given: $\angle 1$ and $\angle 2$ are right angles

Prove:
$$\angle 1 \cong \angle 2$$

- **19.** $m\angle 2 = 55^{\circ}$, $m\angle 3 = 125^{\circ}$, $m\angle 4 = 55^{\circ}$
- **20.** $m\angle 1 = 133^{\circ}$, $m\angle 3 = 133^{\circ}$, $m\angle 4 = 47^{\circ}$

21.
$$m \angle 1 = m \angle 3$$

 $3x + 10 = 4x - 30$
 $x = 40$; $m \angle 1 = 130^{\circ}$

22.
$$m \angle 2 = m \angle 4$$

 $6x + 8 = 7x$
 $x = 8; m \angle 2 = 56^{\circ}$

23.
$$m \angle 1 + m \angle 2 = 180^{\circ}$$

 $2x + x = 180$
 $3x = 180$
 $x = 60; m \angle 1 = 120^{\circ}$

24.
$$m\angle 2 + m\angle 3 = 180^{\circ}$$

 $x + 15 + 2x = 180$
 $3x = 165$
 $x = 55$; $m\angle 2 = 110^{\circ}$

25.
$$\frac{x}{2} - 10 + \frac{x}{3} + 40 = 180$$

$$\frac{x}{2} + \frac{x}{3} + 30 = 180$$

$$\frac{x}{2} + \frac{x}{3} = 150$$

Multiply by 6

$$3x + 2x = 900$$

$$5x = 900$$

$$x = 180$$
; m $\angle 2 = 80^{\circ}$

26.
$$x + 20 + \frac{x}{3} = 180$$

$$x + \frac{x}{3} = 160$$

Multiply by 3

$$3x + x = 480$$

$$4x = 480$$

$$x = 120$$
; m $\angle 4 = 40^{\circ}$

- 27. 1. Given
 - 2. If $2 \angle s$ are comp., then the sum of their measures is 90.
 - 3. Substitution
 - 4. Subtraction Property of Equality
 - 5. If $2 \angle s$ are = in measure, then they are \cong .
- **28.** Given: $\angle 1$ is supp to $\angle 2$ $\angle 3$ is supp to $\angle 2$

Prove: $\angle 1 \cong \angle 3$

- STATEMENTS

 /1 is supp to /2
- 1. $\angle 1$ is supp to $\angle 2$ $\angle 3$ is supp to $\angle 2$
- 2. $m\angle 1 + m\angle 2 = 180$ $m\angle 3 + m\angle 2 = 180$
- 3. $m\angle 1 + m\angle 2$ = $m\angle 3 + m\angle 2$
- 4. $m \angle 1 = m \angle 3$
- **5.** ∠1≅∠3

- REASONS
- 1. Given
- 2. If 2 ∠s are supp., then the sum of their measures is 180.
- 3. Substitution
- **4.** Subtraction Property of Equality
- 5. If $2 \angle s$ are = in measure, then they are \cong .
- **29.** If 2 lines intersect, the vertical angles formed are congruent.

Given: \overrightarrow{AB} and \overrightarrow{CD} intersect at E

Prove: $\angle 1 \cong \angle 2$

STATEMENTS

- 1. \overrightarrow{AB} and \overrightarrow{CD} intersect at E
- 2. $\angle 1$ is supp to $\angle AED$ $\angle 2$ is supp to $\angle AED$
- **3.** ∠1≅∠2

REASONS

- 1. Given
- 2. If the exterior sides of two adj. ∠s form a straight line, then these ∠s are supp.
- 3. If $2 \angle s$ are supp. to the same \angle , then these $\angle s$ are \cong .

Section 1.7 13

30. Any two right angles are congruent.

Given: $\angle 1$ is a rt. \angle $\angle 2$ is a rt. \angle

Prove: $\angle 1 \cong \angle 2$

STATEMENTS	REASONS
1. ∠1 is a rt. ∠	1. Given
∠2 is a rt. ∠	
2. $m \angle 1 = 90$	2. Measure of a right
$m\angle 2=90$	$\angle = 90.$
3. m∠1=m∠2	3. Substitution
4. ∠1≅∠2	4. If $2 \angle s$ are = in
	measure, then they
	are ≅.

- **31. 1.** Given
 - **2.** $\angle ABC$ is a right \angle .
 - 3. The measure of a rt. $\angle = 90$.
 - 4. Angle-Addition Postulate
 - **6.** $\angle 1$ is comp. to $\angle 2$.

32. If 2 segments are congruent, then their midpoints separate these segments into four congruent segments.

Given: $\overline{AB} \cong \overline{DC}$

M is the midpoint of \overline{AB} *N* is the midpoint of \overline{DC}

Prove: $\overline{AM} \cong \overline{MB} \cong \overline{DN} \cong \overline{NC}$

STATEMENTS	REASONS
1. $\overline{AB} \cong \overline{DC}$	1. Given
2. AB = DC	2. If 2 segments are
	≅, then their
	lengths are =.
3. AB = AM + MB	3. Segment-Addition
DC = DN + NC	Post.
4. AM + MB = DN + NC	4. Substitution
5. M is the midpt of \overline{AB}	5. Given

- **5.** M is the midpt of ABN is the midpt of DC
- **6.** AM = MB and DN = NC
- **6.** If a pt. is the midpt of a in measure.
- 7. AM + AM = DN + DNor $2 \cdot AM = 2 \cdot DN$
- **8.** AM = DN
- **9.** AM = MB = DN = NC
- **10.** $\overline{AM} \cong \overline{MB} \cong \overline{DN} \cong \overline{NC}$
- segment, it forms 2 segments equal
- 8. Division Prop. of Eq.

7. Substitution

9. Substitution **10.** If segments are = in length, then they are \cong .

33. If 2 angles are congruent, then their bisectors separate these angles into four congruent angles. Given: $\angle ABC \cong \angle EFG$

 \overrightarrow{BD} bisects $\angle ABC$

 \overrightarrow{FH} bisects $\angle EFG$

Prove: $\angle 1 \cong \angle 2 \cong \angle 3 \cong \angle 4$

STATEMENTS

- **1.** ∠*ABC*≅∠*EFG*
- **2.** $m\angle ABC = m\angle EFG$
- 3. $m\angle ABC = m\angle 1 + m\angle 2$ $m\angle EFG = m\angle 3 + m\angle 4$
- 4. $m \angle 1 + m \angle 2$ $=m\angle 3+m\angle 4$
- 5. \overrightarrow{BD} bisects $\angle ABC$ \overrightarrow{FH} bisects $\angle EFG$
- 6. $m\angle 1=m\angle 2$ and $m \angle 3 = m \angle 4$
- 7. $m \angle 1 + m \angle 1$ $=m\angle 3+m\angle 3$ or $2 \cdot m \angle 1 = 2 \cdot m \angle 3$
- **8.** $m \angle 1 = m \angle 3$
- **9.** $m \angle 1 = m \angle 2$ $=m\angle 3=m\angle 4$
- **10.** ∠1≅∠2≅∠3≅∠4

REASONS

- 1. Given
- 2. If 2 angles are ≅, then their measures are =.
- **3.** Angle-Addition Post.
- 4. Substitution
- 5. Given
- **6.** If a ray bisects an \angle , then $2 \angle s$ of equal measure are formed.
- 7. Substitution
- 8. Division Prop. of Eq.
- **9.** Substitution
- 10. If \angle s are = in measure, then they are \cong .

34. The bisectors of two adjacent supplementary angles form a right angle.

Given: $\angle ABC$ is supp. to $\angle CBD$

 \overrightarrow{BE} bisects $\angle ABC$

 \overrightarrow{BF} bisects $\angle CBD$

Prove: $\angle EBF$ is a rt. \angle

STATEMENTS

- **1.** $\angle ABC$ is supp to $\angle CBD$
- **2.** $m\angle ABC + m\angle CBD$ =180
- 3. $m\angle ABC = m\angle 1 + m\angle 2$ $m\angle CBD = m\angle 3 + m\angle 4$
- **4.** $m \angle 1 + m \angle 2 + m \angle 3$ $+m\angle 4=180$
- 5. \overrightarrow{BE} bisects $\angle ABC$ \overrightarrow{BF} bisects $\angle CBD$
- 6. $m\angle 1=m\angle 2$ and $m \angle 3 = m \angle 4$
- 7. $m\angle 2+m\angle 2+m\angle 3$ $+m\angle 3=180 \text{ or }$ $2 \cdot m \angle 2 + 2 \cdot m \angle 3 = 180$
- **8.** $m \angle 2 + m \angle 3 = 90$
- 9. $m\angle EBF = m\angle 2 + m\angle 3$
- **10.** m $\angle EBF = 90$
- **11.** $\angle EBF$ is a rt. \angle

REASONS

- 1. Given
- 2. The sum of the measures of supp angles is 180.
- 3. Angle-Addition Post.
- 4. Substitution
- 5. Given
- 6. If a ray bisects an \angle , then $2 \angle s$ of equal measure are formed.
- 7. Substitution
- 8. Division Prop. of Eq.
- 9. Angle-Addition Post.
- 10. Substitution
- 11. If the measure of an \angle is 90, then the \angle is a rt. \angle .

35. The supplement of an acute angle is obtuse.

Given: $\angle 1$ is supp to $\angle 2$

 $\angle 2$ is an acute \angle

STATEMENTS

- 1. $\angle 1$ is supp to $\angle 2$
- 2. $m\angle 1 + m\angle 2 = 180$
- 3. $\angle 2$ is an acute \angle
- **4.** $m \angle 2 = x$ where 0 < x < 90
- 5. $m\angle 1 + x = 180$
- **6.** x is positive \therefore m $\angle 1 < \angle 180$
- 7. $m \angle 1 = 180 x$
- 8. -x < 0 < 90 x
- 9. 90 x < 90 < 180 x
- 10. $90 x < 90 < m \angle 1$
- 11. $90 < m \angle 1 < 180$
- 12. $\angle 1$ is an obtuse \angle

REASONS

- 1. Given
- 2. If 2 ∠s are supp., the sum of their measures is 180.
- 3. Given
- **4.** The measure of an acute \angle is between 0 and 90.
- **5.** Substitution (#4 into #3)
- **6.** If $a + p_1 = b$ and p_1 is positive, then a < b.
- 7. Substitution Prop of Eq. (#5)
- **8.** Subtraction Prop of Ineq. (#4)
- **9.** Addition Prop. or Ineq. (#8)
- **10.** Substitution (#7 into #9)
- **11.** Transitive Prop. of Ineq (#6 & #10)
- 12. If the measure of an angle is between 90 and 180, then the \angle is obtuse.

CHAPTER REVIEW

- **1.** Undefined terms, defined terms, axioms or postulates, theorems
- 2. Induction, deduction, intuition
- **3. 1.** Names the term being defined.
 - 2. Places the term into a set or category.
 - **3.** Distinguishes the term from other terms in the same category.
 - 4. Reversible
- 4. Intuition
- 5. Induction
- 6. Deduction
- **7.** H: The diagonals of a trapezoid are equal in length.
 - C: The trapezoid is isosceles.
- **8.** H: The parallelogram is a rectangle.
 - C: The diagonals of a parallelogram are congruent.

- 9. No conclusion
- 10. Jody Smithers has a college degree.
- **11.** Angle *A* is a right angle.
- **12.** *C*
- 13. $\angle RST$, $\angle S$, more than 90°.
- **14.** Diagonals are \perp and they bisect each other.

15.

 A_{ullet}

 $B \bullet$

17.

- 18. a. Obtuse
- b. Right
- **19.** a. Acute
- b. Reflex
- 20. 2x+15 = 3x+5 10 = xx = 10; m $\angle ABC = 70^{\circ}$
- 21. 2x+5+3x-4=86 5x+1=86 5x=85 $x=17; \text{ m} \angle DBC = 47^{\circ}$
- 22. 3x-1=4x-5 4=xx=4; AB=22
- 23. 4x-4+5x+2=25 9x-2=25 9x=27x=3; MB=17
- 24. $2 \cdot CD = BC$ 2(2x+5) = x+28 4x+10 = x+28 3x = 18x = 6; AC = BC = 6+28=34
- 25. 7x-21 = 3x + 7 4x = 28 x = 7 $m \angle 3 = 49 - 21 = 28^{\circ}$ $\therefore m \angle FMH = 180 - 28 = 152^{\circ}$
- 26. 4x+1+x+4=180 5x+5=180 5x=175 x=35 $m\angle 4=35+4=39^{\circ}$
 - $111\angle 4 = 33 + 4 = 39$
- **27. a.** Point *M*
 - **b.** ∠*JMH*
 - c. \overrightarrow{MJ}
 - **d.** \overrightarrow{KH}

28.
$$2x-6+3(2x-6) = 90$$

 $2x-6+6x-18 = 90$
 $8x-24 = 90$
 $8x = 114$
 $x = 14\frac{1}{4}$

m∠EFH =
$$3(2x - 6) = 3\left(28\frac{1}{2} - 6\right)$$

= $3 \cdot 22\frac{1}{2}$
= $67\frac{1}{2}^{\circ}$

- 29. x + (40 + 4x) = 180 5x + 40 = 180 5x = 140 $x = 28^{\circ}$ $40 + 4x = 152^{\circ}$
- **30. a.** 2x + 3 + 3x 2 + x + 7 = 6x + 8
 - **b.** 6x + 8 = 326x = 24x = 4
 - c. 2x+3=2(4)+3=11 3x-2=3(4)-2=10x+7=4+7=11
- **31.** The measure of angle 3 is less than 50.
- **32.** The four foot board is 48 inches. Subtract 6 inches on each end leaving 36 inches.

$$4(n-1) = 36$$

$$4n-4 = 36$$

$$4n = 40$$

$$n = 10$$

- ∴ 10 pegs will fit on the board.
- **33.** S
- **34.** S
- **35.** A
- **36.** S
- **37.** N
- **38. 2.** $\angle 4 \cong \angle P$
 - **3.** ∠1 ≅ ∠4
 - **4.** If $2 \angle s$ are \cong , then their measures are =.
 - 5. Given
 - **6.** $m\angle 2 = m\angle 3$
 - 7. $m \angle 1 + m \angle 2 = m \angle 4 + m \angle 3$
 - 8. Angle-Addition Postulate
 - 9. Substitution
 - **10.** ∠*TVP* ≅ ∠*MVP*

Chapter Review 17

39. Given: $\overline{KF} \perp \overline{FH}$

 $\angle JHK$ is a right \angle

Prove: $\angle KFH \cong \angle JHF$

	STATEMENTS		REASONS
	$\overline{KF} \perp \overline{FH}$		Given
2.	$\angle KFH$ is a right \angle	2.	If 2 segments are \perp , then they
			form a right ∠.
3.	$\angle JHF$ is a right \angle		
4.	$\angle KFH \cong \angle JHF$	4.	Any two right \angle s are \cong .

40. Given: $\overline{KH} \cong \overline{FJ}$

G is the midpoint of both \overline{KH} and \overline{FJ}

Prove: $\overline{KG} \cong \overline{GJ}$

	STATEMENTS		REASONS
1.	$\overline{KH} \cong \overline{FJ}$	1.	Given
	G is the midpoint of both		
	\overline{KH} and \overline{FJ}		
2	$\overline{KG} \cong \overline{GJ}$	2.	If 2 segments are \cong , then their midpoints
			separate these segments into $4 \cong$ segments

41. Given: $\overline{KF} \perp \overline{FH}$

Prove: $\angle KFH$ is comp to $\angle JHF$

	STATEMENTS		REASONS
1.	$\overline{KF} \perp \overline{FH}$	1.	Given
2.	$\angle KFH$ is comp. to $\angle JFH$	2.	If the exterior sides of 2 adjacent ∠s form
			\perp rays, then these \angle s are comp.

42. Given: $\angle 1$ is comp. to $\angle M$ \angle 2 is comp. to \angle M

Prove: $\angle 1 \cong \angle 2$

STATEMENTS

REASONS

- 1. $\angle 1$ is comp. to $\angle M$
- 1. Given
- **2.** $\angle 2$ is comp. to $\angle M$
- 2. Given
- 3. $\angle 1 \cong \angle 2$
- 3. If $2 \angle s$ are comp. to the same \angle , then these angles are \cong .
- **43.** Given: $\angle MOP \cong \angle MPO$

 \overrightarrow{OR} bisects $\angle MOP$

 \overrightarrow{PR} bisects $\angle MPO$

Prove: $\angle 1 \cong \angle 2$

STATEMENTS

REASONS

- 1. $\angle MOP \cong \angle MPO$
- Given
- 2. \overrightarrow{OR} bisects $\angle MOP$ \overrightarrow{PR} bisects $\angle MPO$
- 2. Given
- 3. $\angle 1 \cong \angle 2$
- 3. If $2 \angle s$ are \cong , then their bisectors separate these $\angle s$ into four $\cong \angle s$.
- **44.** Given: $\angle 4 \cong \angle 6$

Prove: $\angle 5 \cong \angle 6$

STATEMENTS

REASONS

- **1.** ∠4 ≅ ∠6
 - **1.** Given
- 2. $\angle 4 \cong \angle 5$
- 2. If 2 angles are vertical \angle s then they are \cong .
- **3.** ∠5 ≅ ∠6
- 3. Transitive Prop.

19

45. Given: Figure as shown

STATEMENTS

REASONS

- 1. Figure as shown
- 2. $\angle 4$ is supp. to $\angle 2$
- 1. Given
- 2. If the exterior sides of 2 adjacent \angle s form a line, then the \angle s are supp.
- **46.** Given: $\angle 3$ is supp. to $\angle 5$

 $\angle 4$ is supp. to $\angle 6$

Prove: $\angle 3 \cong \angle 6$

STATEMENTS

REASONS

- 1. $\angle 3$ is supp to $\angle 5$
 - $\angle 4$ is supp to $\angle 6$

1. Given

- **2.** ∠4 ≅ ∠5
- 2. If 2 lines intersect, the vertical angles formed are \cong .
- **3.** ∠3 ≅ ∠6
- 3. If $2 \angle s$ are supp to congruent angles, then these angles are \cong .
- **47.** Given: \overline{VP}

Construct: \overline{VW} such that $VW = 4 \cdot VP$

48. Construct a 135° angle.

49. Given: Triangle *PQR*

Construct: The three angle bisectors.

It appears that the three angle bisectors meet at one point inside the triangle.

50. Given: \overline{AB} , \overline{BC} , and $\angle B$ as shown

Construct: Triangle ABC

51. Given: $m\angle B = 50^{\circ}$

52. $m\angle 2 = 270^{\circ}$

CHAPTER TEST

- 1. Induction
- **2.** $\angle CBA$ or $\angle B$
- 3. $\overline{AP} + \overline{PB} = \overline{AB}$
- 4. a. Point
 - **b.** Line
- 5. a. Right
 - **b.** Obtuse
- 6. a. Supplementary
 - b. Congruent
- 7. $m \angle MNP = m \angle PNQ$

- 8. a. Right
 - **b.** Supplementary
- 9. Kianna will develop reasoning skills.
- **10.** 3.2 + 7.2 = 10.4 in.

11. a.
$$x+x+5=27$$

 $2x+5=27$
 $2x=22$
 $x=11$

b.
$$x+5=11+5=16$$

12. $m\angle 4 = 35^{\circ}$

13. a.
$$x+2x-3=69$$

 $3x-3=69$
 $3x=72$
 $x=24^{\circ}$

b.
$$m \angle 4 = 2(24) - 3 = 45^{\circ}$$

- **14.** a. $m\angle 2 = 137^{\circ}$
 - **b.** $m\angle 2 = 43^{\circ}$

15. a.
$$2x - 3 = 3x - 28$$

 $x = 25^{\circ}$

b.
$$m \angle 1 = 3(25) - 28 = 47^{\circ}$$

16. a.
$$2x-3+6x-1=180$$

 $8x-4=180$
 $8x=184$
 $x=23^{\circ}$

b.
$$m \angle 2 = 6(23) - 1 = 137^{\circ}$$

17.
$$x + y = 90$$

Chapter Test 21

- **20. 1.** Given
 - 2. Segment-Addition Postulate
 - 3. Segment-Addition Postulate
 - 4. Substitution
- **21.** 1. 2x-3=17
 - **2.** 2x = 20
 - 3. x = 10
- **22. 1.** Given
 - **2.** 90°
 - 3. Angle-Addition Postulate
 - **4.** 90°
 - 5. Given
 - 6. Definition of Angle-Bisector
 - 7. Substitution
 - **8.** $m \angle 1 = 45^{\circ}$
- **23.** 108°