Chapter 1 Line and Angle Relationships

SECTION 1.1: Sets, Statements, and Reasoning

1. a. Not a statement.
b. Statement; true
c. Statement; true
d. Statement; false
2. a. Statement; true
b. Not a statement.
c. Statement; false
d. Statement; false
3. a. Christopher Columbus did not cross the Atlantic Ocean.
b. Some jokes are not funny.
4. a. Someone likes me.
b. Angle 1 is not a right angle.
5. Conditional
6. Conjunction
7. Simple
8. Disjunction
9. Simple
10. Conditional
11. H: You go to the game.

C: You will have a great time.
12. H: Two chords of a circle have equal lengths.

C: The arcs of the chords are congruent.
13. H: The diagonals of a parallelogram are perpendicular.

C : The parallelogram is a rhombus.
14. $\mathrm{H}: \frac{a}{b}=\frac{c}{d} \quad(b \neq 0, d \neq 0)$

C: $a \cdot d=b \cdot c$
15. H: Two parallel lines are cut by a transversal.

C: Corresponding angles are congruent.
16. H: Two lines intersect.

C: Vertical angles are congruent.
17. First, write the statement in "If, then" form. If a figure is a square, then it is a rectangle.

H : A figure is a square.
C: It is a rectangle.
18. First, write the statement in "If, then" form. If angles are base angles, then they are congruent.

H : Angles are base angles of an isosceles triangle.
C: They are congruent.
19. True
20. True
21. True
22. False
23. False
24. True
25. Induction
26. Intuition
27. Deduction
28. Deduction
29. Intuition
30. Induction
31. None
32. Intuition
33. Angle 1 looks equal in measure to angle 2 .
34. $\overline{A M}$ has the same length as $\overline{M B}$.
35. Three angles in one triangle are equal in measure to the three angles in the other triangle.
36. The angles are not equal in measure.
37. A Prisoner of Society might be nominated for an Academy Award.
38. Andy is a rotten child.
39. The instructor is a math teacher.
40. Your friend likes fruit.
41. Angles 1 and 2 are complementary.
42. Kathy Jones will be a success in life.
43. Alex has a strange sense of humor.
44. None
45. None
46. None
47. June Jesse will be in the public eye.
48. None
49. Marilyn is a happy person.
50. None
51. Valid
52. Not valid
53. Not valid
54. Valid
55. a. True
b. True
c. False
56. a. False
b. False
57. a. True
b. True

SECTION 1.2: Informal Geometry and Measurement

1. $A B<C D$
2. $\mathrm{m} \angle A B C<\mathrm{m} \angle D E F$
3. Two; one
4. No
5. One; none
6. Three
7. $\angle A B C, \angle A B D, \angle D B C$
8. $23^{\circ}, 90^{\circ}, 110.5^{\circ}$
9. Yes; no; yes
10. $A-X-B$
11. $\angle A B C, \angle C B A$
12. Yes; yes
13. Yes; no
14. a, d
15. a, d
16. R; they are equal.
17. a. 3
b. $2 \frac{1}{2}$
18. a. 1.5
b. 5
19. a. 40°
b. 50°
20. a. 90°
b. 25°
21. Congruent; congruent
22. Equal; yes
23. Equal
24. 2 inches
25. No
26. Yes
27. Yes
28. No
29. Congruent
30. Congruent
31. $\overline{M N}$ and $\overline{Q P}$
32. Equal
33. $\overline{A B}$
34. $\angle A B D$
35. 22
36. 14
37. $x+x+3=21$

$$
2 x=18
$$

$$
x=9
$$

38. $x+y$
39. 124°
40. $2 x+x=180$

$$
3 x=180
$$

$$
x=60
$$

$$
\mathrm{m} \angle 1=120^{\circ}
$$

41. 71°
42. 34°
43. $x+2 x+3=72$
$3 x=69$
$x=23$
44. $x+y$
45. $32.7 \div 3=10.9$
46.

47. $x+y=180$

$$
\begin{aligned}
& \frac{x-y}{2 x \quad}=24 \\
& x=204 \\
& x=102 \\
& y=78
\end{aligned}
$$

48. $x+y=67$

$$
\begin{aligned}
& \frac{x-y}{}=17 \\
& \hline 2 x=84 \\
& x=42 \\
& y=25
\end{aligned}
$$

49. $\mathrm{N} 22^{\circ} \mathrm{E}$
50. $\mathrm{S} 66^{\circ} \mathrm{E}$

SECTION 1.3: Early Definitions and Postulates

1. $A C$
2. Midpoint
3. $6.25 \mathrm{ft} \cdot 12 \mathrm{in} . / \mathrm{ft}=75 \mathrm{in}$.
4. $52 \mathrm{in} . \div 12 \mathrm{in} . / \mathrm{ft}=4 \frac{1}{3} \mathrm{ft}$ or 4 ft 4 in .
5. $\frac{1}{2} \mathrm{~m} \cdot 3.28 \mathrm{ft} / \mathrm{m}=1.64$ feet
6. $16.4 \mathrm{ft} \div 3.28 \mathrm{ft} / \mathrm{m}=5 \mathrm{~m}$
7. $18-15=3 \mathrm{mi}$
8. $300+450+600=1350 \mathrm{ft}$
$1350 \mathrm{ft} \div 15 \mathrm{ft} / \mathrm{s}=90 \mathrm{~s}$ or 1 min 30 s
9. a. $A-C-D$
b. A, B, C or B, C, D or A, B, D
10. a. Infinite
b. One
c. None
d. None
11. $\overrightarrow{C D}$ means line $C D$;
$\overline{C D}$ means segment $C D$;
$C D$ means the measure or length of $\overline{C D}$;
$\overrightarrow{C D}$ means ray $C D$ with endpoint C.
12. a. No difference
b. No difference
c. No difference
d. $\overrightarrow{C D}$ is the ray starting at C and going to the right. $\overrightarrow{D C}$ is starting at D and going to the left.
13. a. m and t
b. m and p or p and t
14. a. False
b. False
c. True
d. True
e. False
15. $2 x+1=3 x-2$

$$
\begin{aligned}
-x & =-3 \\
x & =3 \\
A M & =7
\end{aligned}
$$

16. $2(x+1)=3(x-2)$
$2 x+2=3 x-6$ $-1 x=-8$

$$
x=8
$$

$$
A B=A M+M B
$$

$$
A B=18+18=36
$$

17. $2 x+1+3 x=6 x-4$

$$
5 x+3=6 x-4
$$

$$
-1 x=-7
$$

$$
x=7
$$

$$
A B=38
$$

18. No; Yes; Yes; No
19. a. $\overrightarrow{O A}$ and $\overrightarrow{O D}$
b. $\overrightarrow{O A}$ and $\overrightarrow{O B}$ (There are other possible answers.)
20. $\overrightarrow{C D}$ lies on plane X.
21. a.

b.

c.

22. a.

b.

c.

23. Planes M and N intersect at $\overrightarrow{A B}$.
24. B
25. A
26. a. One
b. Infinite
c. One
d. None
27. a. C
b. C
c. H
28. a. Equal
b. Equal
c. $A C$ is twice $D C$.
29. Given: $\overline{A B}$ and $\overline{C D}$ as shown $(A B>C D)$

Construct $\overline{M N}$ on line l so that $M N=A B+C D$

30. Given: $\overline{A B}$ and $\overline{C D}$ as shown $(A B>C D)$ Construct: $\overline{E F}$ so that $E F=A B-C D$.

31. Given: $\overline{A B}$ as shown

Construct: $\overline{P Q}$ on line n so that $P Q=3(A B)$

32. Given: $\overline{A B}$ as shown

Construct: $\overline{T V}$ on line n so that $T V=\frac{1}{2}(A B)$

33. a. No
b. Yes
c. No
d. Yes
34. A segment can be divided into 2^{n} congruent parts where $n \geq 1$.
35. Six
36. Four
37. Nothing
38. a. One
b. One
c. None
d. One
e. One
f. One
g. None
39. a. Yes
b. Yes
c. No
40. a. Yes
b. No
c. Yes
41. $\frac{1}{3} a+\frac{1}{2} b$ or $\frac{2 a+3 b}{6}$

SECTION 1.4: Angles and Their Relationships

1. a. Acute
b. Right
c. Obtuse
.
2. a. Obtuse
b. Straight
c. Acute
3. a. Complementary
b. Supplementary
4. a. Congruent
b. None
5. Adjacent
6. Vertical
7. Complementary (also adjacent)
8. Supplementary
9. Yes; No
10. a. True
b. False
c. False
d. False
e. True
11. a. Obtuse
b. Straight
c. Acute
d. Obtuse
12. B is not in the interior of $\angle F A E$; the AngleAddition Postulate does not apply.
13. $\mathrm{m} \angle F A C+\mathrm{m} \angle C A D=180$
$\angle F A C$ and $\angle C A D$ are supplementary.
14. a. $x+y=180$
b. $x=y$
15. a. $x+y=90$
b. $x=y$
16. 62°
17. 42°
18. $2 x+9+3 x-2=67$
$5 x+7=67$
$5 x=60$
$x=12$
19. $2 x-10+x+6=4(x-6)$

$$
\begin{aligned}
3 x-4 & =4 x-24 \\
20 & =x \\
x & =20
\end{aligned}
$$

$$
\mathrm{m} \angle R S V=4(20-6)=56^{\circ}
$$

20. $5(x+1)-3+4(x-2)+3=4(2 x+3)-7$

$$
\begin{aligned}
5 x+5-3+4 x-8+3 & =8 x+12-7 \\
9 x-3 & =8 x+5 \\
x & =8
\end{aligned}
$$

$\mathrm{m} \angle R S V=4(2 \cdot 8+3)-7=69^{\circ}$
21. $\frac{x}{2}+\frac{x}{4}=45$

Multiply by LCD, 4
$2 x+x=180$
$3 x=180$
$x=60 ; \mathrm{m} \angle R S T=30^{\circ}$
22. $\frac{2 x}{3}+\frac{x}{2}=49$

Multiply by LCD, 6
$4 x+3 x=294$
$7 x=294$

$$
x=42 ; \mathrm{m} \angle T S V=\frac{x}{2}=21^{\circ}
$$

23.

$$
\begin{aligned}
x+y & =2 x-2 y \\
x+y+2 x-2 y & =64 \\
-1 x+3 y & =0 \\
3 x-1 y & =64 \\
& \\
-3 x+9 y & =0 \\
3 x-y & =64 \\
\hline 8 y & =64 \\
y & =8 ; x=24
\end{aligned}
$$

24. $2 x+3 y=3 x-y+2$

$$
2 x+3 y+3 x-y+2=80
$$

$$
-1 x+4 y=2
$$

$$
5 x+2 y=78
$$

$$
-5 x+20 y=10
$$

$$
\begin{array}{r}
5 x+2 y=78 \\
\hline 22 y=88
\end{array}
$$

$$
y=4 ; x=14
$$

26. $x+y=90$

$$
x=12+y
$$

$$
\begin{aligned}
x+y & =90 \\
x-y & =12 \\
\frac{x x \quad}{2 x} & =102 \\
x & =51 \\
51+y & =90 \\
y & =39
\end{aligned}
$$

27. $x+y=180$

$$
x=24+2 y
$$

$$
\begin{aligned}
x+y & =180 \\
x-2 y & =24
\end{aligned}
$$

$$
\begin{aligned}
-2 x+2 y & =360 \\
x-2 y & =24 \\
\hline 3 x \quad & =384 \\
x & =128 ; \quad y=52
\end{aligned}
$$

\angle s are 128° and 52°.
28. a. $(90-x)^{\circ}$
b. $(90-(3 x-12))^{\circ}=(102-3 x)^{\circ}$
c. $90-(2 x+5 y)=(90-2 x-5 y)^{\circ}$
29. a. $(180-x)^{\circ}$
b. $180-(3 x-12)=(192-3 x)^{\circ}$
c. $180-(2 x+5 y)$

$$
(180-2 x-5 y)^{\circ}
$$

30. $x-92=92-53$
$x-92=39$
$x=131$
31. $x-92+(92-53)=90$

$$
\begin{aligned}
x-92+39 & =90 \\
x-53 & =90 \\
x & =143
\end{aligned}
$$

32. a. True
b. False
c. False
33. $\angle C A B \cong \angle D A B$
34. Given: Obtuse $\angle M R P$

Construct: With $\overrightarrow{O A}$ as one side, an angle $\cong \angle M R P$.

34. Given: Obtuse $\angle M R P$

Construct: $\overrightarrow{R S}$, the angle-bisector of $\angle M R P$.

35. Given: Obtuse $\angle M R P$

Construct: Rays $R S, R T$, and $R U$ so that $\angle M R P$ is divided into $4 \cong$ angles.

36. Given: Straight angle $D E F$

Construct: a right angle with vertex at E.

37. For the triangle shown, the angle bisectors are been constructed.

It appears that the angle bisectors meet at one point.
38. Given: Acute $\angle 1$

Construct: Triangle $A B C$ which has

39. It appears that the two sides opposite $\angle \mathrm{s} A$ and B are congruent.
40. Given: Straight angle $A B C$

Construct: Bisectors of $\angle A B D$ and $\angle D B C$.

It appears that a right angle is formed.
41. a. 90°
b. 90°
c. Equal
42. Let $\mathrm{m} \angle U S V=x$, then $\mathrm{m} \angle \mathrm{TSU}=38-x$
$38-x+40=61$
$78-x=61$
$78-61=x$
$x=17 ; \mathrm{m} \angle U S V=17^{\circ}$

$$
\text { 43. } \begin{aligned}
& x+2 z+x-z+2 x-z=60 \\
& 4 x=60 \\
& x=15 \\
& \text { If } x=15, \text { then } \mathrm{m} \angle U S V=15-z, \\
& \mathrm{~m} \angle V S W=30-z, \text { and } \\
& \mathrm{m} \angle U S W=3 x-6=3(15)-6=39 \\
& \text { So } 15-z+2(15)-z=39 \\
& 45-2 z=39 \\
& 6=2 z \\
& z=3
\end{aligned}
$$

44. a. 52°
b. 52°
c. Equal
45. $90+x+x=360$

$$
\begin{aligned}
2 x & =270 \\
x & =135^{\circ}
\end{aligned}
$$

46. 90

SECTION 1.5: Introduction to Geometric Proof

1. Division Property of Equality or Multiplication Property of Equality
2. Distributive Property $[x+x=(1+1) x=2 x]$
3. Subtraction Property of Equality
4. Addition Property of Equality
5. Multiplication Property of Equality
6. Addition Property of Equality
7. If 2 angles are supplementary, then the sum of their measures is 180°.
8. If the sum of the measures of 2 angles is 180°, then the angles are supplementary.
9. Angle-Addition Property
10. Definition of angle-bisector
11. $A M+M B=A B$
12. $A M=M B$
13. $\overrightarrow{E G}$ bisects $\angle D E F$
14. $\mathrm{m} \angle 1=\mathrm{m} \angle 2$ or $\angle 1 \cong \angle 2$
15. $\mathrm{m} \angle 1+\mathrm{m} \angle 2=90^{\circ}$
16. $\angle 1$ and $\angle 2$ are complementary
17. $2 x=10$
18. $x=7$
19. $7 x+2=30$
20. $\frac{1}{2}=50 \%$
21. $6 x-3=27$
22. $x=-20$
23. 24. Given
1. Distributive Property
2. Addition Property of Equality
3. Division Property of Equality
4. 5. Given
1. Subtraction Property of Equality
2. Division Property of Equality
3. 4. $2(x+3)-7=11$
1. $2 x+6-7=11$
2. $2 x-1=11$
3. $2 x=12$
4. $x=6$
5. 6. $\frac{x}{5}+3=9$
1. $\frac{x}{5}=6$
2. $x=30$
3. 4. Given
1. Segment-Addition Postulate
2. Subtraction Property of Equality
3. 4. Given
1. The midpoint forms 2 segments of equal measure.
2. Segment-Addition Postulate
3. Substitution
4. Distributive Property
5. Multiplication Property of Equality
6. 7. Given
1. If an angle is bisected, then the two angles formed are equal in measure.
2. Angle-Addition Postulate
3. Substitution
4. Distribution Property
5. Multiplication Property of Equality
6. 7. Given
1. Angle-Addition Postulate
2. Subtraction Property of Equality
3. S1. $M-N-P-Q$ on $\overline{M Q}$

R1. Given
2. Segment-Addition Postulate
3. Segment-Addition Postulate
4. $M N+N P+P Q=M Q$
32. 1. $\angle T S W$ with $\overrightarrow{S U}$ and $\overrightarrow{S V}$; Given
2. Angle-Addition Postulate
3. Angle-Addition Postulate
4. $\mathrm{m} \angle T S W=\mathrm{m} \angle T S U+\mathrm{m} \angle U S V+\mathrm{m} \angle V S W$
33. $5 \cdot x+5 \cdot y=5(x+y)$
34. $5 \cdot x+7 \cdot x=(5+7) x=12 x$
35. $(-7)(-2)>5(-2)$ or $14>-10$
36. $\frac{12}{-4}<\frac{-4}{-4}$ or $-3<1$
37. 1. Given
2. Addition Property of Equality
3. Given
4. Substitution
38. 1. $a=b$

1. Given
2. $a-c=b-c$
3. Subtraction Property of Equality
4. $c=d$
5. Given
6. $a-c=b-d$
7. Substitution

SECTION 1.6: Relationships: Perpendicular Lines

1. 2. Given
1. If $2 \angle \mathrm{~s}$ are \cong, then they are equal in measure.
2. Angle-Addition Postulate
3. Addition Property of Equality
4. Substitution
5. If $2 \angle \mathrm{~s}$ are $=$ in measure, then they are \cong.
6. 7. Given
1. The measure of a straight angle is 180°.
2. Angle-Addition Postulate
3. Substitution
4. Given
5. The measure of a right $\angle=90^{\circ}$.
6. Substitution
7. Subtraction Property of Equality
8. Angle-Addition Postulate
9. Substitution
10. If the sum of measures of 2 angles is 90°, then the angles are complementary.
11. 12. $\angle 1 \cong \angle 2$ and $\angle 2 \cong \angle 3$
1. $\angle 1 \cong \angle 3$
2. 3. $\mathrm{m} \angle A O B=\mathrm{m} \angle 1$ and $\mathrm{m} \angle B O C=\mathrm{m} \angle 1$
1. $\mathrm{m} \angle A O B=\mathrm{m} \angle B O C$
2. $\angle A O B \cong \angle B O C$
3. $\overrightarrow{O B}$ bisects $\angle A O C$
4. Given: Point N on line s.

Construct: Line m through N so that $m \perp s$.

6. Given: $\overrightarrow{O A}$

Construct: Right angle BOA (Hint: Use the straightedge to extend $\overrightarrow{O A}$ to the left.)

7. Given: Line ℓ containing point A Construct: A 45° angle with vertex at A

8. Given: $\overline{A B}$

Construct: The perpendicular bisector of $\overline{A B}$

9. Given: Triangle $A B C$

Construct: The perpendicular bisectors of each side, $\overline{A B}, \overline{A C}$, and $\overline{B C}$.

10. It appears that the perpendicular bisectors meet at one point.
11. 1. Given
3. Substitution
4. $\mathrm{m} \angle 1=\mathrm{m} \angle 2$
5. $\angle 1 \cong \angle 2$
12. 1. Given
2. $\mathrm{m} \angle 1=\mathrm{m} \angle 2$ and $\mathrm{m} \angle 3=\mathrm{m} \angle 4$
3. Given
4. $\mathrm{m} \angle 2+\mathrm{m} \angle 3=90$
5. Substitution
6. $\angle \mathrm{s} 1$ and 4 are comp.
13. No; Yes; No
14. No; No; Yes
15. No; Yes; No
16. No; No; Yes
17. No; Yes; Yes
18. No; No; No
19. a. perpendicular
b. angles
c. supplementary
d. right
e. measure of angle
20. a. postulate
b. union
c. empty set
d. less than
e. point
21. a. adjacent
b. complementary
c. ray AB
d. is congruent to
e. vertical
22. In space, there are an infinite number of lines perpendicular to a given line at a point on the line.
23.

STATEMENTS	REASONS
1. $M-N-P-Q$ on $\overline{M Q}$	1. Given

2. $M N+N Q=M Q$
3. Segment-Addition Postulate
4. $N P+P Q=N Q$
5. Segment-Addition Postulate
6. $M N+N P+P Q=M Q$
7. Substitution
8. $A E=A B+B C+C D+D E$
9.

STATEMENTS	REASONS
1. $\angle T S W$ with $\overline{\mathrm{SU}}$ and $\overline{\mathrm{SV}}$	1. Given
2. $\mathrm{m} \angle T S W$ $=\mathrm{m} \angle T S U+\mathrm{m} \angle U S W$ 3. $\mathrm{m} \angle U S W$ $=\mathrm{m} \angle U S V+\mathrm{m} \angle V S W$	2. Angle-Addition
Postulate	
4. Angle-Addition	
Postulate	
$\mathrm{m} \angle T S W=\mathrm{m} \angle T S U$	
$+\mathrm{m} \angle U S V+\mathrm{m} \angle V S W$	

26. $\mathrm{m} \angle G H K=\mathrm{m} \angle 1+\mathrm{m} \angle 2+\mathrm{m} \angle 3+\mathrm{m} \angle 4$
27. In space, there are an infinite number of lines that perpendicularly bisect a given line segment at its midpoint.
28. 29. Given
1. If $2 \angle \mathrm{~s}$ are comp., then the sum of their measures is 90°.
2. Given
3. The measure of an acute angle is between 0 and 90°.
4. Substitution
5. Subtraction Prop. of Eq.
6. Subtraction Prop. of Inequality
7. Addition Prop. of Inequality
8. Transitive Prop. of Inequality
9. Substitution
10. If the measure of an angle is between 0 and 90°, then the angle is an acute \angle.
11. Angles 1, 2, 3, and 4 are adjacent and form the straight angle $A O B$ which measures 180 . Therefore, $\mathrm{m} \angle 1+\mathrm{m} \angle 2+\mathrm{m} \angle 3+\mathrm{m} \angle 4=180$.
12. If $\angle 2$ and $\angle 3$ are complementary, then $\mathrm{m} \angle 2+\mathrm{m} \angle 3=90$. From Exercise 29, $\mathrm{m} \angle 1+\mathrm{m} \angle 2+\mathrm{m} \angle 3+\mathrm{m} \angle 4=180$. Therefore, $\mathrm{m} \angle 1+\mathrm{m} \angle 4=90$ and $\angle 1$ and $\angle 4$ are complementary.

SECTION 1.7: The Formal Proof of a Theorem

1. H: A line segment is bisected.

C: Each of the equal segments has half the length of the original segment.
2. H: Two sides of a triangle are congruent.

C: The triangle is isosceles.
3. First write the statement in the "If, then" form. If a figure is a square, then it is a quadrilateral.
H : A figure is a square.
C: It is a quadrilateral.
4. First write the statement in the "If, then" form. If a polygon is a regular polygon, then it has congruent interior angles.

H : A polygon is a regular polygon.
C : It has congruent interior angles.
5. H: Each is a right angle.

C: Two angles are congruent.
6. First write the statement in the "If, then" form. If polygons are similar, then the lengths of corresponding sides are proportional.

H: Polygons are similar.
C: The lengths of corresponding sides are proportional.
7. Statement, Drawing, Given, Prove, Proof
8. a. Hypothesis
b. Hypothesis
c. Conclusion
9. a. Given
b. Prove
10. a, c, d
11. After the theorem has been proved.
12. No
13. Given: $\overrightarrow{A B} \perp \overrightarrow{C D}$

Prove: $\angle A E C$ is a right angle.

Figure for exercises 13 and 14.
14. Given: $\angle A E C$ is a right angle

Prove: $\overrightarrow{A B} \perp \overleftrightarrow{C D}$
15. Given: $\angle 1$ is comp to $\angle 3$ $\angle 2$ is comp to $\angle 3$
Prove: $\angle 1 \cong \angle 2$

16. Given: $\angle 1$ is supp to $\angle 3$ $\angle 2$ is supp to $\angle 3$
Prove: $\angle 1 \cong \angle 2$

17. Given: Lines l and m

Prove: $\angle 1 \cong \angle 2$ and $\angle 3 \cong \angle 4$

18. Given: $\angle 1$ and $\angle 2$ are right angles Prove: $\angle 1 \cong \angle 2$

19. $\mathrm{m} \angle 2=55^{\circ}, \mathrm{m} \angle 3=125^{\circ}, \mathrm{m} \angle 4=55^{\circ}$
20. $\mathrm{m} \angle 1=133^{\circ}, \mathrm{m} \angle 3=133^{\circ}, \mathrm{m} \angle 4=47^{\circ}$
21. $\mathrm{m} \angle 1=\mathrm{m} \angle 3$

$$
\begin{aligned}
3 x+10 & =4 x-30 \\
x & =40 ; \mathrm{m} \angle 1=130^{\circ}
\end{aligned}
$$

22. $\mathrm{m} \angle 2=\mathrm{m} \angle 4$
$6 x+8=7 x$

$$
x=8 ; \mathrm{m} \angle 2=56^{\circ}
$$

23. $\mathrm{m} \angle 1+\mathrm{m} \angle 2=180^{\circ}$

$$
\begin{aligned}
2 x+x & =180 \\
3 x & =180 \\
x & =60 ; \mathrm{m} \angle 1=120^{\circ}
\end{aligned}
$$

24. $\mathrm{m} \angle 2+\mathrm{m} \angle 3=180^{\circ}$ $x+15+2 x=180$ $3 x=165$ $x=55 ; \mathrm{m} \angle 2=110^{\circ}$
25. $\frac{x}{2}-10+\frac{x}{3}+40=180$
$\frac{x}{2}+\frac{x}{3}+30=180$
$\frac{x}{2}+\frac{x}{3}=150$
Multiply by 6
$3 x+2 x=900$
$5 x=900$
$x=180 ; \mathrm{m} \angle 2=80^{\circ}$
26. $x+20+\frac{x}{3}=180$
$x+\frac{x}{3}=160$
Multiply by 3
$3 x+x=480$
$4 x=480$
$x=120 ; \mathrm{m} \angle 4=40^{\circ}$
27. 28. Given
1. If $2 \angle \mathrm{~s}$ are comp., then the sum of their measures is 90 .
2. Substitution
3. Subtraction Property of Equality
4. If $2 \angle \mathrm{~s}$ are $=$ in measure, then they are \cong.
5. Given: $\angle 1$ is supp to $\angle 2$ $\angle 3$ is supp to $\angle 2$
Prove: $\angle 1 \cong \angle 3$

STATEMENTS	REASONS
1. $\angle 1$ is supp to $\angle 2$	1. Given
$\angle 3$ is supp to $\angle 2$	

2. $\mathrm{m} \angle 1+\mathrm{m} \angle 2=180 \quad$ 2. If $2 \angle \mathrm{~s}$ are supp., $\mathrm{m} \angle 3+\mathrm{m} \angle 2=180$
3. $\mathrm{m} \angle 1+\mathrm{m} \angle 2$
$=m \angle 3+m \angle 2$
4. $\mathrm{m} \angle 1=\mathrm{m} \angle 3$
5. $\angle 1 \cong \angle 3$ then the sum of their measures is 180 .
6. Substitution
7. Subtraction Property of Equality
8. If $2 \angle \mathrm{~s}$ are $=$ in measure, then they are \cong.
9. If 2 lines intersect, the vertical angles formed are congruent.
Given: $\overrightarrow{A B}$ and $\overrightarrow{C D}$ intersect at E
Prove: $\angle 1 \cong \angle 2$

STATEMENTS	REASONS
1. $A B$ intersect at E $C D$	1. Given

2. $\angle 1$ is supp to $\angle A E D$ $\angle 2$ is supp to $\angle A E D$
3. $\angle 1 \cong \angle 2$
4. If the exterior sides of two adj. \angle s form a straight line, then these $\angle \mathrm{s}$ are supp.
5. If $2 \angle \mathrm{~s}$ are supp. to the same \angle, then these $\angle \mathrm{s}$ are \cong.
6. Any two right angles are congruent.

Given: $\angle 1$ is a rt. \angle $\angle 2$ is a rt. \angle
Prove: $\angle 1 \cong \angle 2$

STATEMENTS

1. $\angle 1$ is a rt. \angle $\angle 2$ is a rt. \angle
2. $\mathrm{m} \angle 1=90$
$\mathrm{m} \angle 2=90$
3. $\mathrm{m} \angle 1=\mathrm{m} \angle 2$
4. $\angle 1 \cong \angle 2$

REASONS

1. Given
2. Measure of a right $\angle=90$.
3. Substitution
4. If $2 \angle \mathrm{~s}$ are $=$ in measure, then they are \cong.
5. 6. Given
1. $\angle A B C$ is a right \angle.
2. The measure of a rt. $\angle=90$.
3. Angle-Addition Postulate
4. $\angle 1$ is comp. to $\angle 2$.
5. If 2 segments are congruent, then their midpoints separate these segments into four congruent segments.
Given: $\overline{A B} \cong \overline{D C}$
M is the midpoint of $\overline{A B}$
N is the midpoint of $\overline{D C}$
Prove: $\overline{A M} \cong \overline{M B} \cong \overline{D N} \cong \overline{N C}$

STATEMENTS	REASONS
1. $\overline{A B} \cong \overline{D C}$	1. Given
2. $A B=D C$	2. If 2 segments are
	\cong, then their
	lengths are $=$.

3. $A B=A M+M B$
$D C=D N+N C$
4. $A M+M B=D N+N C$
5. M is the midpt of $\overline{A B}$ N is the midpt of $\overline{D C}$
6. $A M=M B$ and $D N=N C$
7. $A M+A M=D N+D N$ or $2 \cdot A M=2 \cdot D N$
8. $A M=D N$
9. $A M=M B=D N=N C$
10. $\overline{A M} \cong \overline{M B} \cong \overline{D N} \cong \overline{N C}$
11. If 2 segments are \cong, then their lengths are $=$.
12. Segment-Addition Post.
13. Substitution
14. Given
15. If a pt. is the midpt of a segment, it forms 2 segments equal in measure.
16. Substitution
17. Division Prop. of Eq.
18. Substitution
19. If segments are $=$ in length, then they are \cong.
20. If 2 angles are congruent, then their bisectors separate these angles into four congruent angles. Given: $\angle A B C \cong \angle E F G$

$$
\begin{aligned}
& \overrightarrow{B D} \text { bisects } \angle A B C \\
& \overrightarrow{F H} \text { bisects } \angle E F G
\end{aligned}
$$

Prove: $\angle 1 \cong \angle 2 \cong \angle 3 \cong \angle 4$

STATEMENTS
REASONS
2. $\mathrm{m} \angle A B C=\mathrm{m} \angle E F G$
3. $\mathrm{m} \angle A B C=\mathrm{m} \angle 1+\mathrm{m} \angle 2$ $\mathrm{m} \angle E F G=\mathrm{m} \angle 3+\mathrm{m} \angle 4$
4. $\mathrm{m} \angle 1+\mathrm{m} \angle 2$ $=\mathrm{m} \angle 3+\mathrm{m} \angle 4$
5. $\overrightarrow{B D}$ bisects $\angle A B C$ $\overrightarrow{F H}$ bisects $\angle E F G$
6. $\mathrm{m} \angle 1=\mathrm{m} \angle 2$ and $\mathrm{m} \angle 3=\mathrm{m} \angle 4$
7. $\mathrm{m} \angle 1+\mathrm{m} \angle 1$ $=\mathrm{m} \angle 3+\mathrm{m} \angle 3$ or $2 \cdot \mathrm{~m} \angle 1=2 \cdot \mathrm{~m} \angle 3$
8. $\mathrm{m} \angle 1=\mathrm{m} \angle 3$
9. $\mathrm{m} \angle 1=\mathrm{m} \angle 2$ $=\mathrm{m} \angle 3=\mathrm{m} \angle 4$
10. $\angle 1 \cong \angle 2 \cong \angle 3 \cong \angle 4$

1. Given
2. If 2 angles are \cong, then their measures are $=$.
3. Angle-Addition Post.
4. Substitution
5. Given
6. If a ray bisects an \angle, then $2 \angle$ s of equal measure are formed.
7. Substitution
8. Division Prop. of Eq.
9. Substitution
10. If $\angle \mathrm{s}$ are $=$ in measure, then they are \cong.
11. The bisectors of two adjacent supplementary
angles form a right angle.
Given: $\angle A B C$ is supp. to $\angle C B D$
$\overrightarrow{B E}$ bisects $\angle A B C$
$\overrightarrow{B F}$ bisects $\angle C B D$
Prove: $\angle E B F$ is a rt. \angle

STATEMENTS	REASONS
1. $\angle A B C$ is supp to $\angle C B D$	1. Given

2. $\mathrm{m} \angle A B C+\mathrm{m} \angle C B D$ $=180$
3. $\mathrm{m} \angle A B C=\mathrm{m} \angle 1+\mathrm{m} \angle 2$ $\mathrm{m} \angle C B D=\mathrm{m} \angle 3+\mathrm{m} \angle 4$
4. $\mathrm{m} \angle 1+\mathrm{m} \angle 2+\mathrm{m} \angle 3$ $+\mathrm{m} \angle 4=180$
5. $\overrightarrow{B E}$ bisects $\angle A B C$ $\overrightarrow{B F}$ bisects $\angle C B D$
6. $\mathrm{m} \angle 1=\mathrm{m} \angle 2$ and $\mathrm{m} \angle 3=\mathrm{m} \angle 4$
7. $\mathrm{m} \angle 2+\mathrm{m} \angle 2+\mathrm{m} \angle 3$
$+\mathrm{m} \angle 3=180$ or
$2 \cdot \mathrm{~m} \angle 2+2 \cdot \mathrm{~m} \angle 3=180$
8. $\mathrm{m} \angle 2+\mathrm{m} \angle 3=90$
9. $\mathrm{m} \angle E B F=\mathrm{m} \angle 2+\mathrm{m} \angle 3$
10. $\mathrm{m} \angle E B F=90$
11. $\angle E B F$ is a rt. \angle
12. The sum of the measures of supp angles is 180 .
13. Angle-Addition Post.
14. Substitution
15. Given
16. If a ray bisects an \angle, then $2 \angle \mathrm{~s}$ of equal measure are formed.
17. Substitution
18. Division Prop. of Eq.
19. Angle-Addition Post.
20. Substitution
21. If the measure of an \angle is 90 , then the \angle is a rt. \angle.
22. The supplement of an acute angle is obtuse.

Given: $\angle 1$ is supp to $\angle 2$

$$
\angle 2 \text { is an acute } \angle
$$

Prove: $\angle 1$ is an obtuse \angle

STATEMENTS	REASONS
1. $\angle 1$ is supp to $\angle 2$	1. Given

2. $\mathrm{m} \angle 1+\mathrm{m} \angle 2=180$
3. $\angle 2$ is an acute \angle
4. $\mathrm{m} \angle 2=x$ where $0<x<90$
5. $\mathrm{m} \angle 1+x=180$
6. x is positive $\therefore \mathrm{m} \angle 1<\angle 180$
7. $\mathrm{m} \angle 1=180-x$
8. $-x<0<90-x$
9. $90-x<90<180-x$
10. $90-x<90<\mathrm{m} \angle 1$
11. $90<\mathrm{m} \angle 1<180$
12. $\angle 1$ is an obtuse \angle
13. If $2 \angle \mathrm{~s}$ are supp., the sum of their measures is 180 .
14. Given
15. The measure of an acute \angle is between 0 and 90 .
16. Substitution (\#4 into \#3)
17. If $a+p_{1}=b$ and p_{1} is positive, then $a<b$.
18. Substitution Prop of Eq. (\#5)
19. Subtraction Prop of Ineq. (\#4)
20. Addition Prop. or Ineq. (\#8)
21. Substitution (\#7 into \#9)
22. Transitive Prop. of Ineq ($\# 6$ \& \#10)
23. If the measure of an angle is between 90 and 180 , then the \angle is obtuse.

CHAPTER REVIEW

1. Undefined terms, defined terms, axioms or postulates, theorems
2. Induction, deduction, intuition
3. 4. Names the term being defined.
1. Places the term into a set or category.
2. Distinguishes the term from other terms in the same category.
3. Reversible
4. Intuition
5. Induction
6. Deduction
7. H : The diagonals of a trapezoid are equal in length.

C: The trapezoid is isosceles.
8. H: The parallelogram is a rectangle.

C: The diagonals of a parallelogram are congruent.
9. No conclusion
10. Jody Smithers has a college degree.
11. Angle A is a right angle.
12. C
13. $\angle R S T, \angle S$, more than 90°.
14. Diagonals are \perp and they bisect each other.
15.

16.

17.

18. a. Obtuse
b. Right
19. a. Acute
b. Reflex
20. $2 x+15=3 x+5$

$$
\begin{aligned}
10 & =x \\
x & =10 ; \mathrm{m} \angle A B C=70^{\circ}
\end{aligned}
$$

21. $2 x+5+3 x-4=86$

$$
\begin{aligned}
5 x+1 & =86 \\
5 x & =85 \\
x & =17 ; \mathrm{m} \angle D B C=47^{\circ}
\end{aligned}
$$

22. $3 x-1=4 x-5$

$$
\begin{aligned}
& 4=x \\
& x=4 ; A B=22
\end{aligned}
$$

23. $4 x-4+5 x+2=25$

$$
\begin{aligned}
9 x-2 & =25 \\
9 x & =27 \\
x & =3 ; M B=17
\end{aligned}
$$

24. $2 \cdot C D=B C$

$$
\begin{aligned}
2(2 x+5) & =x+28 \\
4 x+10 & =x+28 \\
3 x & =18 \\
x & =6 ; A C=B C=6+28=34
\end{aligned}
$$

25. $7 x-21=3 x+7$

$$
\begin{aligned}
4 x & =28 \\
x & =7
\end{aligned}
$$

$\mathrm{m} \angle 3=49-21=28^{\circ}$
$\therefore \mathrm{m} \angle F M H=180-28=152^{\circ}$
26. $4 x+1+x+4=180$

$$
5 x+5=180
$$

$$
5 x=175
$$

$$
x=35
$$

$\mathrm{m} \angle 4=35+4=39^{\circ}$
27. a. Point M
b. $\angle J M H$
c. $\overrightarrow{M J}$
d. $\overrightarrow{K H}$
28. $2 x-6+3(2 x-6)=90$
$2 x-6+6 x-18=90$ $8 x-24=90$ $8 x=114$ $x=14 \frac{1}{4}$
$\mathrm{m} \angle E F H=3(2 x-6)=3\left(28 \frac{1}{2}-6\right)$
$=3 \cdot 22 \frac{1}{2}$
$=67 \frac{1}{2}^{\circ}$
29. $x+(40+4 x)=180$
$5 x+40=180$
$5 x=140$
$x=28^{\circ}$
$40+4 x=152^{\circ}$
30. a. $2 x+3+3 x-2+x+7=6 x+8$
b. $6 x+8=32$
$6 x=24$
$x=4$
c. $2 x+3=2(4)+3=11$
$3 x-2=3(4)-2=10$ $x+7=4+7=11$
31. The measure of angle 3 is less than 50 .
32. The four foot board is 48 inches. Subtract 6 inches on each end leaving 36 inches.

$$
\begin{aligned}
4(n-1) & =36 \\
4 n-4 & =36 \\
4 n & =40 \\
n & =10
\end{aligned}
$$

$\therefore 10$ pegs will fit on the board.
33. S
34. S
35. A
36. S
37. N
38. 2. $\angle 4 \cong \angle P$
3. $\angle 1 \cong \angle 4$
4. If $2 \angle \mathrm{~s}$ are \cong, then their measures are $=$.
5. Given
6. $\mathrm{m} \angle 2=\mathrm{m} \angle 3$
7. $\mathrm{m} \angle 1+\mathrm{m} \angle 2=\mathrm{m} \angle 4+\mathrm{m} \angle 3$
8. Angle-Addition Postulate
9. Substitution
10. $\angle T V P \cong \angle M V P$
39. Given: $\overline{K F} \perp \overline{F H}$

$$
\angle J H K \text { is a right } \angle
$$

Prove: $\angle K F H \cong \angle J H F$

STATEMENTS	REASONS	
1. $\overline{K F} \perp \overline{F H}$	1. Given	
2. $\angle K F H$ is a right \angle	2. If 2 segments are \perp, then they	

3. $\angle J H F$ is a right \angle form a right \angle.
4. $\angle K F H \cong \angle J H F$
5. Given
6. Any two right $\angle \mathrm{s}$ are \cong.
7. Given: $\overline{K H} \cong \overline{F J}$
G is the midpoint of both $\overline{K H}$ and $\overline{F J}$
Prove: $\overline{K G} \cong \overline{G J}$

STATEMENTS	REASONS
1. $\overline{K H} \cong \overline{F J}$	1. Given
G is the midpoint of both $\overline{K H}$ and $\overline{F J}$	2. If 2 segments are \cong, then their midpoints 2. separate these segments into $4 \cong$ segments.

41. Given: $\overline{K F} \perp \overline{F H}$

Prove: $\angle K F H$ is comp to $\angle J H F$

STATEMENTS	REASONS	
1. $\overline{K F} \perp \overline{F H}$	1. Given	
2. $\angle K F H$ is comp. to $\angle J F H$	2. If the exterior sides of 2 adjacent \angle s form	

42. Given: $\angle 1$ is comp. to $\angle M$

$$
\angle 2 \text { is comp. to } \angle M
$$

Prove: $\angle 1 \cong \angle 2$

STATEMENTS		REASONS	
1. $\angle 1$ is comp. to $\angle M$	1.	Given	
2. $\angle 2$ is comp. to $\angle M$	2. Given		
3. $\angle 1 \cong \angle 2$	3. If $2 \angle$ s are comp. to the same \angle, then these		
	angles are \cong.		

43. Given: $\angle M O P \cong \angle M P O$
$\overrightarrow{O R}$ bisects $\angle M O P$
$\overrightarrow{P R}$ bisects $\angle M P O$
Prove: $\angle 1 \cong \angle 2$

STATEMENTS		REASONS	
1. $\angle M O P \cong \angle M P O$	1.	Given	
2.	$\overrightarrow{O R}$ bisects $\angle M O P$	2.	Given

$\overrightarrow{P R}$ bisects $\angle M P O$
3. $\angle 1 \cong \angle 2$
3. If $2 \angle \mathrm{~s}$ are \cong, then their bisectors separate these $\angle \mathrm{s}$ into four $\cong \angle \mathrm{s}$.
44. Given: $\angle 4 \cong \angle 6$

Prove: $\angle 5 \cong \angle 6$

	STATEMENTS	REASONS
1. $\angle 4 \cong \angle 6$	1.	Given
2. $\angle 4 \cong \angle 5$	2.	If 2 angles are vertical $\angle \mathrm{s}$
		then they are \cong.

3. $\angle 5 \cong \angle 6$
4. Transitive Prop.
5. Given: Figure as shown

Prove: $\angle 4$ is supp. to $\angle 2$

STATEMENTS	REASONS	
1.	Figure as shown	1.
Given		
2. $\angle 4$ is supp. to $\angle 2$	2.If the exterior sides of 2 adjacent $\angle \mathrm{s}$ 	
form a line, then the $\angle \mathrm{s}$ are supp.		

46. Given: $\angle 3$ is supp. to $\angle 5$
$\angle 4$ is supp. to $\angle 6$
Prove: $\angle 3 \cong \angle 6$

STATEMENTS	REASONS	
1. $\angle 3$ is supp to $\angle 5$	1.	Given
$\angle 4$ is supp to $\angle 6$		
2. $\angle 4 \cong \angle 5$	2.If 2 lines intersect, the vertical angles formed are \cong.	

3. $\angle 3 \cong \angle 6$
4. If $2 \angle \mathrm{~s}$ are supp to congruent angles, then these angles are \cong.
5. Given: $\overline{V P}$

Construct: $\overline{V W}$ such that $V W=4 \cdot V P$

48. Construct a 135° angle.

49. Given: Triangle $P Q R$

Construct: The three angle bisectors.

It appears that the three angle bisectors meet at one point inside the triangle.
50. Given: $\overline{A B}, \overline{B C}$, and $\angle B$ as shown

51. Given: $\mathrm{m} \angle B=50^{\circ}$

Construct: An angle whose measure is 20°.

52. $\mathrm{m} \angle 2=270^{\circ}$

CHAPTER TEST

1. Induction
2. $\angle C B A$ or $\angle B$
3. $\overline{A P}+\overline{P B}=\overline{A B}$
4. a. Point
b. Line
5. a. Right
b. Obtuse
6. a. Supplementary
b. Congruent
7. $\mathrm{m} \angle M N P=\mathrm{m} \angle P N Q$
8. a. Right
b. Supplementary
9. Kianna will develop reasoning skills.
10. $3.2+7.2=10.4 \mathrm{in}$.
11. a. $x+x+5=27$

$$
\begin{aligned}
2 x+5 & =27 \\
2 x & =22 \\
x & =11
\end{aligned}
$$

b. $x+5=11+5=16$
12. $\mathrm{m} \angle 4=35^{\circ}$
13. a. $x+2 x-3=69$

$$
\begin{array}{r}
3 x-3=69 \\
3 x=72
\end{array}
$$

$$
x=24^{\circ}
$$

b. $\mathrm{m} \angle 4=2(24)-3=45^{\circ}$
14. a. $\mathrm{m} \angle 2=137^{\circ}$
b. $\mathrm{m} \angle 2=43^{\circ}$
15. a. $2 x-3=3 x-28$

$$
x=25^{\circ}
$$

b. $\mathrm{m} \angle 1=3(25)-28=47^{\circ}$
16. a. $2 x-3+6 x-1=180$

$$
\begin{aligned}
8 x-4 & =180 \\
8 x & =184
\end{aligned}
$$

$$
x=23^{\circ}
$$

b. $\mathrm{m} \angle 2=6(23)-1=137^{\circ}$
17. $x+y=90$
18.

19.

20. 1. Given
2. Segment-Addition Postulate
3. Segment-Addition Postulate
4. Substitution
21. 1. $2 x-3=17$
2. $2 x=20$
3. $x=10$
22. 1. Given
2. 90°
3. Angle-Addition Postulate
4. 90°
5. Given
6. Definition of Angle-Bisector
7. Substitution
8. $\mathrm{m} \angle 1=45^{\circ}$
23. 108°

