Solutions Manual to

AN INTRODUCTION TO MATHEMATICAL FINANCE: OPTIONS AND OTHER TOPICS

Sheldon M. Ross

1.1 (a) $1-p_{0}-p_{1}-p_{2}-p_{3}=0.05$ (b) $p_{0}+p_{1}+p_{2}=0.80$
1.2 $P\{C \cup R\}=P\{C\}+P\{R\}-P\{C \cap R\}=0.4+0.3-0.2=0.5$
1.3 (a) $\frac{8}{14} \frac{7}{13}=\frac{56}{182}$ (b) $\frac{6}{14} \frac{5}{13}=\frac{30}{182}$ (c) $\frac{6}{14} \frac{8}{13}+\frac{8}{14} \frac{6}{13}=\frac{96}{182}$
1.4 (a) $27 / 58$ (b) $27 / 35$

1.5

1. The probability that their child will develop cystic fibrosis is the probability that the child receives a CF gene from each of his parents, which is $1 / 4$.
2. Given that his sibling died of the disease, each of the parents much have exactly one CF gene. Let A denote the event that he possesses one CF gene and B that he does not have the disease (since he is 30 years old). Then

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A)}{P(B)}=\frac{2 / 4}{3 / 4}=\frac{2}{3}
$$

1.6 Let A be the event that they are both aces and B the event they are of different suits. Then

$$
P(A \mid B)=\frac{P(A \cap B)}{P(B)}=\frac{P(A)}{P(B)}=\frac{\frac{4}{52} \frac{3}{51}}{\frac{39}{51}}=\frac{1}{169}
$$

1.7

$$
\text { (a) } \begin{aligned}
P\left(A B^{c}\right) & =P(A)-P(A B) \\
& =P(A)-P(A) P(B) \\
& =P(A)(1-P(B) \\
& =P(A) P\left(B^{c}\right)
\end{aligned}
$$

Part (b) follows from part (a) since from (a) A and B^{c} are independent, implying from (a) that so are A^{c} and B^{c}.
1.8 If the gambler loses both the bets, then $X=-3$. If he wins the first bet, or loses the first bet and wins the second bet, $X=1$. Therefore,

$$
\begin{aligned}
P\{X=-3\} & =\left(\frac{20}{38}\right)^{2}=\frac{100}{361} \\
P\{X=1\} & =\frac{18}{38}+\frac{20}{38} \frac{18}{38}=\frac{261}{361}
\end{aligned}
$$

1. $P\{X>0\}=P\{X=1\}=\frac{261}{361}$
2. $E[X]=1 \frac{261}{361}-3 \frac{100}{361}=\frac{-39}{361}$
3. $E[X]$ is larger since a bus with more students is more likely to be chosen than a bus with less students.
4.

$$
\begin{aligned}
E[X] & =\frac{1}{152}\left(39^{2}+33^{2}+46^{2}+34^{2}\right)=\frac{5882}{152} \approx 38.697 \\
E[Y] & =\frac{1}{4}(39+33+46+34)=38
\end{aligned}
$$

1.10 Let N denote the number of sets played. Then it is clear that $P\{N=2\}=$ $P\{N=3\}=1 / 2$.

1. $E[N]=2.5$
2. $\operatorname{Var}(N)=\frac{1}{2}(2-2.5)^{2}+\frac{1}{2}(3-2.5)^{2}=\frac{1}{4}$
1.11 Let $\mu=E[X]$.

$$
\begin{aligned}
\operatorname{Var}(X) & =E\left[(X-\mu)^{2}\right] \\
& =E\left[X^{2}-2 \mu X+\mu^{2}\right] \\
& =E\left[X^{2}\right]-2 \mu E[X]+\mu^{2} \\
& =E\left[X^{2}\right]-\mu^{2}
\end{aligned}
$$

1.12 Let F be her fee if she takes the fixed amount and X when she takes the contingency amount.

$$
\begin{gathered}
E[F]=5,000, \quad S D(F)=0 \\
E[X]=25,000(.3)+0(.7)=7,500 \\
E\left[X^{2}\right]=(25,000)^{2}(.3)+0(.7)=1.875 \times 10^{8}
\end{gathered}
$$

Therefore,

$$
S D(X)=\sqrt{\operatorname{Var}(X)}=\sqrt{1.875 \times 10^{8}-(7,500)^{2}}=\sqrt{1.3125} \times 10^{4}
$$

1.13

$$
\begin{aligned}
\text { (a) } E[\bar{X}] & =\frac{1}{n} \sum_{i=1}^{n} E\left[X_{i}\right] \\
& =\frac{1}{n} n \mu=\mu
\end{aligned}
$$

$$
\begin{aligned}
&(b) \operatorname{Var}(\bar{X})=\left(\frac{1}{n}\right)^{2} \sum_{i=1}^{n} \operatorname{Var}\left(X_{i}\right) \\
&=\left(\frac{1}{n}\right)^{2} n \sigma^{2}=\sigma^{2} / n \\
& \text { (c) } \begin{aligned}
\sum_{i=1}^{n}\left(X_{i}-\bar{X}\right)^{2} & \left.=\sum_{i=1}^{n}\left(X_{i}^{2}-2 X_{i} \bar{X}+\bar{X}\right)^{2}\right) \\
& =\sum_{i=1}^{n} X_{i}^{2}-2 \bar{X} \sum_{i=1}^{n} X_{i}+n \bar{X}^{2} \\
& =\sum_{i=1}^{n} X_{i}^{2}-2 \bar{X} n \bar{X}+n \bar{X}^{2} \\
& =\sum_{i=1}^{n} X_{i}^{2}-n \bar{X}^{2} \\
\text { (d) } E\left[(n-1) S^{2}\right] & =E\left[\sum_{i=1}^{n} X_{i}^{2}\right]-E\left[n \bar{X}^{2}\right] \\
& =n E\left[X_{1}^{2}\right]-n E\left[\bar{X}^{2}\right] \\
& =n\left(\operatorname{Var}\left(X_{1}\right)+E\left[X_{1}\right]^{2}\right)-n\left(\operatorname{Var}(\bar{X})+E[\bar{X}]^{2}\right) \\
& =n \sigma^{2}+n \mu^{2}-n\left(\sigma^{2} / n\right)-n \mu^{2} \\
& =(n-1) \sigma^{2}
\end{aligned}, l
\end{aligned}
$$

1.14

$$
\begin{aligned}
\operatorname{Cov}(X, Y) & =E[(X-E[X])(Y-E[Y])] \\
& =E[X Y-X E[Y]-E[X] Y+E[X] E[Y])] \\
& =E[X Y]-E[Y] E[X]-E[X] E[Y]+E[X] E[Y] \\
& =E[X Y]-E[Y] E[X]
\end{aligned}
$$

1.15

$$
\begin{aligned}
(a) \operatorname{Cov}(X, Y) & =E[(X-E[X])(Y-E[Y])] \\
& =E[(Y-E[Y])(X-E[X])] \\
(b) \operatorname{Cov}(X, X) & =E\left[(X-E[X])^{2}\right]=\operatorname{Var}(X) \\
(c) \operatorname{Cov}(c X, Y) & =E[(c X-E[c X])(Y-E[Y])] \\
& =c E[(X-E[X])(Y-E[Y])] \\
& =c \operatorname{Cov}(X, Y) \\
(d) \operatorname{Cov}(c, Y) & =E[(c-E[c])(Y-E[Y])]=0
\end{aligned}
$$

