Solutions To Chapter 3 Problems

3-1 One square meter converts to 10.764 square feet. So the area of the office building in square feet is 107,640 . Therefore the average annual cost of heating and cooling this area is $\left(107,640 \mathrm{ft}^{2}\right)\left(\$ 3.50 / \mathrm{ft}^{2}\right)=$ \$376,740.

3-2 A representative cost and revenue structure for construction, 10-years of ownership and use, and the sale of a home is:

Cost or Revenue Category	Typical Cost and Revenue Elements
Captial Investment	Real estate (lot) cost; architect/engineering fees; construction costs (labor, material, other); working capital (tools, initial operating supplies, etc.); landscaping costs.
Annual Operating and Maintenance Costs	Utilities (electricity, water, gas, telephone, garbage); cable TV; painting (interior and exterior); yard upkeep (labor and materials); routine maintenance (furnace, air conditioner, hot water heater, etc.); insurance; taxes.
Major Repair or Replacement Costs	Roof; furnace; air conditioner; plumbing fixtures; garage door opener; driveway and sidewalks; patio; and so on.
Real Estate Fees	Acquisition; selling.
Asset Sales	Sale of home (year 10).

3-3 The estimated cost is $\$ 12,000+\left(\$ 10 / \mathrm{ft}^{2}\right)(8.5 \mathrm{ft})(15 \mathrm{ft})(500)(1.8)=\$ 1,159,500$

3-4 (a) (62 million tons per year) $(0.05)=3.1$ million tons of greenhouse gas per year
$\frac{\$ 1.2 \text { billion }}{3.1 \text { million tons per year }}=\$ 387.10$ per ton
(b) (3 billion tons per year) $(0.03)=90$ million tons per year
$\begin{aligned} \frac{\$ 1.2 \text { billion }}{3.1 \text { million tons } / \mathrm{y} \text { ear }} & =\frac{\$ \mathrm{X} \text { billion }}{90 \text { million tons }} \\ \mathrm{X} & =\$ 34.84 \text { billion }\end{aligned}$

3-5 $\left(24,000 \mathrm{ft}^{2}\right)\left(60,000 \mathrm{Btu} / \mathrm{ft}^{2}\right)=1,440$ million Btu during the heating season. This is 1,440 thousand cubic feet of natural gas, and the cost would be $\left(1,440,000 \mathrm{ft}^{3}\right)\left(\$ 10.50 / 1000 \mathrm{ft}^{3}\right)=\$ 15,120$ for the heating season.

Side note: The building uses 0.3 million kWhr of electricity $\times \$ 0.10$ per $\mathrm{kWhr}=\$ 30,000$ to cool the area. The total bill will be about $\$ 45,000$. The owner must take this into account when she decides on a price to charge per square foot of leased space.

3-6 (a) Standard electric bill $=(400 \mathrm{kWhr})(12$ months $/$ year $)(\$ 0.10 / \mathrm{kWhr})=\$ 480$ per year. Green power bill $=(12$ months $/$ year $)(\$ 4 /$ month $)=\$ 48$ per year. Total electric bill $=\$ 528$ per year.
(b) $\$ 528 / 4,800 \mathrm{kWhr}=\$ 0.11$ per kWhr (a 10% increase due to green power usage)
(c) The technology used to capture energy from solar, wind power and methane is more expensive than traditional power generation methods (coal, natural gas, and so on).

3-7 The replacement cost in late 2017 can be estimated as follows:

$$
\begin{aligned}
\mathrm{C}_{2017} & =\mathrm{C}_{2006}\left(\mathrm{I}_{2017} / \mathrm{I}_{2006}\right) \\
& =\$ 30,000(265 / 149) \\
& =\$ 53,356
\end{aligned}
$$

3-8 The cost of the water filtration system in 2019 is:
$\mathrm{C}_{2019}=\mathrm{C}_{2014}\left(\bar{I}_{2019} / \bar{I}_{2014}\right)=\$ 250,000(298 / 220)=\$ 338,636$

3-9 $\overline{\mathrm{I}}_{2014}=\frac{0.70\left(\frac{62}{41}\right)+0.05\left(\frac{57}{38}\right)+0.25\left(\frac{53}{33}\right)}{0.70+0.05+0.25} \times 100=153.5$

3-10 $\quad\left(\mathrm{C}_{\mathrm{A}} / \mathrm{C}_{\mathrm{B}}\right)=\left(\mathrm{S}_{\mathrm{A}} / \mathrm{S}_{\mathrm{B}}\right)^{\mathrm{X}}$
$\mathrm{C}_{\mathrm{A}}=\$ 800,000(30,000 / 20,000)^{0.83}=800,000(1.4)$
$C_{A}=\$ 1,120,000$ for the larger warehouse

3-11 Let $\quad \mathrm{C}_{\mathrm{A}}=$ cost of new boiler, $\quad \mathrm{S}_{\mathrm{A}}=1.42 \mathrm{X}$
$\mathrm{C}_{\mathrm{B}}=$ cost of old boiler, today $\quad \mathrm{S}_{\mathrm{B}}=\mathrm{X}$
$C_{B}=\$ 181,000\left(\frac{221}{162}\right)=\$ 246,920$
$C_{A}=\$ 246,920\left(\frac{1.42 X}{X}\right)^{0.8}=\$ 326,879$
Total cost with options $=\$ 326,879+\$ 28,000=\underline{\$ 354,879}$

3-12 The estimated capital investment of the seven MW solar farm in four years is:
$\$ 14$ million $(\mathrm{F} / \mathrm{P}, 8 \%, 4)=\$ 14$ million $(1.3605)=\$ 19.047$ million
Next, the capital investment (C) for the six MW solar farm in four years can be estimated by using Equation 3-4:

$$
\mathrm{C}=\$ 19.047 \text { million }(6 / 7)^{0.85}=\$ 16.708 \text { million }
$$

3-13 (a) $\quad \mathrm{C}_{\text {now }}(80-\mathrm{kW})=\$ 160,000\left(\frac{194}{187}\right)=\$ 165,989$

$$
\mathrm{C}_{\mathrm{now}}(120-\mathrm{kW})=\$ 165,989\left(\frac{120}{80}\right)^{0.6}=\$ 211,707
$$

Total Cost $=\$ 211,707+\$ 18,000=\$ 229,707$
(b) $\mathrm{C}_{\text {now }}(40-\mathrm{kW})=\$ 165,989\left(\frac{40}{80}\right)^{0.6}=\$ 109,512$

Total Cost $=\$ 109,512+\$ 18,000=\$ 127,512$

$$
\mathrm{S}_{\mathrm{A}}=450,000 \mathrm{gal} / \mathrm{yr}
$$

$$
\begin{aligned}
C_{B} & =\text { cost of similar plant } & & \mathrm{S}_{\mathrm{B}}=250,000 \mathrm{gal} / \mathrm{yr} \\
& =\$ 6,000,000 & & X=0.59
\end{aligned}
$$

$$
C_{A}=\$ 6,000,000\left(\frac{450,000}{250,000}\right)^{0.59}=\$ 8,487,153
$$

3-15 $\quad \$ 600,000=\$ 300,000(100,000 / 40,000)^{x}$

$$
2=2.5^{\mathrm{x}}
$$

$\log 2=x \log 2.5$

$$
x=0.756
$$

This is the cost-capacity factor for this technology.

3-16 (a) $\quad(500-425) / 500=0.15$
85% learning curve
(b) $\mathrm{n}=\log 0.85 / \log 2=-0.234$
$Z_{4}=500(4)^{-0.234}$
$=361.5$ hours
(c) $\mathrm{Z}_{1}=500 \mathrm{hrs}$
$\mathrm{Z}_{2}=425 \mathrm{hrs}$
$\mathrm{Z}_{3}=500(3)^{-0.234}=387 \mathrm{hrs}$
$\mathrm{Z}_{4}=361.5 \mathrm{hrs}$
$\Sigma Z_{i}=1,673.5$
Average $\$=(1673.5 / 4)(\$ 15)=\$ 6,275.63$

3-17 $n=\log (0.9) / \log 2=-0.152$

$$
\begin{aligned}
\mathrm{Z}_{6} & =10(6)^{\mathrm{n}} \\
& =10\left[(6)^{-0.152}\right]
\end{aligned}
$$

$=7.6$ hours
$n=\log (0.85) / \log 2=-0.2345$
$\mathrm{C}_{\mathrm{x}}=\mathrm{T}_{\mathrm{x}} / \mathrm{x} \quad$ so $\quad(\mathrm{x}) \mathrm{C}_{\mathrm{x}}=\mathrm{T}_{\mathrm{x}}$, or $\mathrm{T}_{\mathrm{x}}=5(15.882$ hrs. $)=79.41$ hours
We know that $\mathrm{T}_{\mathrm{x}}=\mathrm{K}\left[1^{-0.2345}+2^{-0.2345}+3^{-0.2345}+4^{-0.2345}+5^{-0.2345}\right]$
so $79.41=4.031 \mathrm{~K}$, or $\mathrm{K}=19.70$ hours
Now with equation 3-5 we can determine Z_{20} :

$$
\mathrm{Z}_{20}=19.70\left(20^{-0.2345}\right)=9.76 \text { hours }
$$

3-19 (a) $\quad \sum \mathrm{x}=687$

$$
\begin{aligned}
& \sum \mathrm{y}=2,559 \\
& \sum \mathrm{xy}=442,844 \\
& \sum \mathrm{x}^{2}=118,831 \\
& \bar{x}=687 / 4=171.75 \\
& \bar{y}=2,559 / 4=639.75 \\
& \hat{b}=[4(442,844)-687(2,559)] /\left[4(118,831)-687^{2}\right]=3.977 \\
& \hat{a}=[2,559-3.977(687)] / 4=-43.308 \\
& \therefore \hat{y}=-43.308+3.977(\mathrm{x}) \\
& \text { (b) } \hat{y}=-43.308+3.977(170) \\
& \hat{y}=\$ 632.78
\end{aligned}
$$

3-20 $\quad \sum \mathrm{x}=1,732$
$\sum \mathrm{y}=3,532$
$\sum x y=644,176$

$$
\begin{aligned}
& \sum \mathrm{x}^{2}=325,586 \\
& \\
& \quad \mathrm{~b}=[644,176-173.2(3,532)] /[325,586-173.2(1,732)]=1.2668 \\
& \quad \mathrm{a}=353.2-1.2668(173.2)=133.79
\end{aligned}
$$

So $\mathrm{y}=133.79+1.2668 \mathrm{x}$

When $\mathrm{x}=198$,

$$
y=133.79+1.2668(198)=384.6(\text { call it } 385 \text { units per quarter })
$$

3-21 The following table facilitates the intermediate calculations needed to compute the values of b_{0} and b_{1} using Equations (3-8) and (3-9).

I	x_{i}	y_{i}	x_{i}^{2}	$x_{i} y_{i}$
1	14,500	800,000	$210,250,000$	$11,600,000,000$
2	15,000	825,000	$225,000,000$	$12,375,000,000$
3	17,000	875,000	$289,000,000$	$14,875,000,000$
4	18,500	972,000	$342,250,000$	$17,982,000,000$
5	20,400	$1,074,000$	$416,160,000$	$21,909,600,000$
6	21,000	$1,250,000$	$441,000,000$	$26,250,000,000$
7	25,000	$1,307,000$	$625,000,000$	$32,675,000,000$
8	26,750	$1,534,000$	$715,562,500$	$41,034,500,000$
9	28,000	$1,475,500$	$784,000,000$	$41,314,000,000$
10	30,000	$1,525,000$	$900,000,000$	$45,750,000,000$
Totals	216,150	$11,637,500$	$4,948,222,500$	$265,765,100,000$

$$
\begin{aligned}
& b_{1}=\frac{(10)(265,765,100,000)-(216,150)(11,637,500)}{(10)(4,948,222,500)-(216,150)^{2}}=51.5 \\
& b_{0}=\frac{11,637,500-(51.5)(216,150)}{10}=50,631
\end{aligned}
$$

(a) The resulting CER relating supermarket building cost to building area (x) is:

$$
\text { Cost }=50,631+51.5 x
$$

So the estimated cost for the $23,000 \mathrm{ft}^{2}$ store is:

$$
\text { Cost }=\$ 50,631+\left(\$ 51.5 / \mathrm{ft}^{2}\right)\left(23,000 \mathrm{ft}^{2}\right)=\$ 1,235,131
$$

(b) The CER developed in part (a) relates the cost of building a supermarket to its planned area using the following equation:

$$
\text { Cost }=50,631+51.5 x
$$

Using this equation, we can predict the cost of the ten buildings given their areas.

i	x_{i}	y_{i}	Cost $_{i}$	$\left(y_{i}-\text { Cost }_{i}\right)^{2}$	$\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)$	$\left(x_{i}-\bar{x}\right)^{2}$	$\left(y_{i}-\bar{y}\right)^{2}$
1	14,500	800,000	797,345	$7,048,179$	$2,588,081,250$	$50,623,225$	$132,314,062,500$
2	15,000	825,000	823,094	$3,633,147$	$2,240,831,250$	$43,758,225$	$114,751,562,500$
3	17,000	875,000	926,089	$2,610,081,256$	$1,332,581,250$	$21,298,225$	$83,376,562,500$
4	18,500	972,000	$1,003,335$	$981,896,725$	$597,301,250$	$9,703,225$	$36,768,062,500$
5	20,400	$1,074,000$	$1,101,181$	$738,780,429$	$109,046,250$	$1,476,225$	$8,055,062,500$
6	21,000	$1,250,000$	$1,132,079$	$13,905,356,010$	$-53,043,750$	378,225	$7,439,062,500$
7	25,000	$1,307,000$	$1,338,069$	$965,288,881$	$484,901,250$	$11,458,225$	$20,520,562,500$
8	26,750	$1,534,000$	$1,428,190$	$11,195,807,942$	$1,901,233,750$	$26,368,225$	$137,085,062,500$
9	28,000	$1,475,500$	$1,492,562$	$291,099,988$	$1,990,523,750$	$40,768,225$	$97,188,062,500$
10	30,000	$1,525,000$	$1,595,557$	$4,978,246,304$	$3,029,081,250$	$70,308,225$	$130,501,562,500$
Totals	216,150	$11,637,500$	$11,637,500$	$35,677,238,861$	$14,220,537,500$	$276,140,250$	$767,999,625,000$

$\bar{x}=\frac{1}{10}(216,150)=21,615 \quad \bar{y}=\frac{1}{10}(11,637,500)=1,163,750$
Using Equations (3-10) and (3-11), we can compute the standard error and correlation coefficient for the CER.

$$
\begin{aligned}
& S E=\sqrt{\frac{35,677,238,861}{10-2}}=\underline{66,780} \\
& R=\frac{14,220,537,500}{\sqrt{(276,140,250)(767,999,625,000)}}=\underline{0.9765}
\end{aligned}
$$

3-22 $\quad x_{i}=$ weight of order (lbs)
$y_{i}=$ packaging and processing costs (\$)
(a) $y=b_{0}+b_{1} x$

$$
\begin{aligned}
& \sum x_{\mathrm{i}}=2530 \quad \bar{x}=253 \quad \sum x_{i}^{2}=658,900 \\
& \sum y_{\mathrm{i}}=1024 \quad \bar{y}=102.4 \quad \sum y_{i}^{2}=106,348 \\
& \sum x_{i} y_{i}=264,320 \\
& \mathrm{~b}_{1}=\frac{264,320-(253)(1024)}{658,900-(253)(2530)}=0.279 \\
& \mathrm{~b}_{0}=102.4-(0.279)(253)=31.813 ; \quad \mathrm{y}=\underline{31.813+0.279 \mathrm{x}}
\end{aligned}
$$

(b) $\mathrm{R}=\frac{S_{x y}}{\sqrt{S_{x x} S_{y y}}}$

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{xy}}=264,320-(2530)(1024) / 10=5,248 \\
& \mathrm{~S}_{\mathrm{xx}}=658,900-(2530)^{2} / 10=18,810 \\
& \mathrm{~S}_{\mathrm{yy}}=106,348-(1024)^{2} / 10=1,490.4 \\
& \mathrm{R}=\frac{5248}{\sqrt{(18,810)(1490.4)}}=\underline{0.99}
\end{aligned}
$$

(c) $\mathrm{y}=31.813+(0.279)(250)=\underline{\$ 101.56}$

3-23 $\quad \operatorname{Cost}_{150 \mathrm{ft}}=\$ 15,250\left(\frac{150}{250}\right)^{0.6}\left(\frac{1029}{830}\right)=\$ 13,915$

3-24 $\$ 127(1.19)^{5}=\$ 303$ per square foot in five years. The total estimated cost in five years is $(320,000$ $\left.\mathrm{ft}^{2}\right)\left(\$ 303 / \mathrm{ft}^{2}\right)=\$ 96,960,000$. It's a good idea to build this facility today and then, if needed, add on the additional space five years later.

3-25 The amount of the FICO score affected is $(0.35)(720)=252$. If this drops by 10%, the payment history score will be $(0.90)(252)=227$ and the overall FICO score will be 695 . This lower value could adversely affect the interest rate you'll be quoted on your next loan.

3-26 Boiler Cost $=\$ 300,000\left(\frac{10 m W}{6 m W}\right)^{0.8}=\$ 451,440$
Generator Cost $=\$ 400,000\left(\frac{9 m W}{6 m W}\right)^{0.6}=\$ 510,170$
Tank Cost $=\$ 106,000\left(\frac{91,500 \mathrm{gal}}{80,000 \mathrm{gal}}\right)^{0.66}=\$ 115,826$
Total Cost $=(2)(\$ 451,440)+(2)(\$ 510,170)+\$ 115,826+\$ 200,000=\$ 2,239,046$

3-27 The following spreadsheet was used to calculate a 2019 estimate of $\$ 320,274,240$ for the plant.

Element Code	Units/Factors	Price/Unit	Subtotal		Totals
1.1.1-2	600	\$2,000	\$ 1,200,000		
1.1.3			\$ 3,000,000		
1.1				\$	4,200,000
1.2-3	$2.3969{ }^{\text {a }}$	\$ 110,000,000	\$ 263,659,000	\$	263,659,000
1.4	$4.4727^{\text {b }}$	\$ 5,000,000	\$ 22,363,500	\$	22,363,500
1.5.1-3					
labor	$80,390{ }^{\text {c }}$	\$ 60	\$ 4,823,400		
materials			\$ 15,000,000		
1.5.4	600	\$ 1,500	\$ 900,000		
1.5				\$	20,723,400
1.9	3\%	\$ 310,944,672		\$	9,328,340
TOTAL ESTIMATED COST IN 1996				\$	320,274,240

${ }^{a}$ Factor value for boiler and support system (WBS elements 1.2 and 1.3):

$$
\left(\frac{492}{110}\right)\left(\frac{1}{2}\right)^{0.9}=2.3969
$$

${ }^{\mathrm{b}}$ Factor value for the coal storage facility (WBS element 1.4):

$$
\left(\frac{492}{110}\right)=4.4727
$$

${ }^{\text {c }}$ Labor time estimate for the 3rd facility (WBS elements 1.5.1, 1.5.2, and 1.5.3):

$$
\begin{aligned}
& \mathrm{K}=95,000 \text { hours, } \mathrm{s}=0.9, \mathrm{n}=\log (0.9) / \log (2)=-0.152 \\
& \mathrm{Z}_{3}=95,000(3)^{-0.152}=80,390 \text { hours }
\end{aligned}
$$

3-28

K	100
u	5
s	Z_{u}
0.75	51.27
0.77	54.51
0.79	57.85
0.81	61.31
0.83	64.88
0.85	68.57
0.87	72.37
0.89	76.29
0.91	80.33
0.93	84.49
0.95	88.77

3-29 (a) Based on the constant reduction rate of 8% each time the number of homes constructed doubles, a 92% leanring curve applies to the situation. The cumulative average material cost per square foot for the first five homes is $\$ 24.12$.
(b) The estimated material cost per square foot for the $16^{\text {th }}$ home is $\$ 19.34$.

3-31 Other cost factors include maintenance, packaging, supervision, materials, among others. Also, the case solution presents a before-tax economic analysis.

3-32 Left as an exercise for the student. However, by observation, it appears that the factory overhead and factory labor are good candidates since they comprise the largest percentage contributions to the per unit demanufacuring cost.

3-33 A 50\% increase in labor costs equates to a factor of 15%; a 90% increase in Transportation equates to a factor of 38%. The corresponding demnaufacturing cost per unit is $\$ 5.19$. The per unit cost of using the outside contractor (i.e., the target cost) is $\$ 11.70$. Should the proposed demanufacturing method be adopted, the revised per unit cost savings is $\$ 6.51$ for a 55.6% reduction over the per unit cost for the outside contractor.

		Unit Elements		Factor Estimates			Row
	DE-MANUFACTURING COST ELEMENTS	Units	Cost/Unit	Factor	Row		Total
A:	Factory Labor	24.5 hrs	\$ 12.00/hr			\$	294.00
B:	Quality Costs - Training			15\%	A	\$	44.10
C:	TOTAL LABOR					\$	338.10
D:	Factory Overhead - Set up Costs			150\%	C	\$	507.15
E:	Transportation Cost			38\%	C	\$	192.72
F:	TOTAL DIRECT CHARGE					\$	699.87
G:	Facitily Rental						-
H:	TOTAL DE-MANUFACTURING COST					\$	1,037.97
I :	Quantity - Lot Size						200
J :	De-manufacturing Cost/Unit					\$	5.19
	Outside Cost/Unit - Target Cost	\$11.70					

3-34 The estimate of direct labor hours is based on the time to produce the 50th unit.

$$
\begin{aligned}
& \mathrm{K}=1.76 \text { hours } \\
& \mathrm{s}=0.8(80 \% \text { learning curve }) \\
& \mathrm{n}=(\log 0.80) /(\log 2)=-0.322 \\
& \mathrm{Z}_{50}=1.76(50)^{-0.322}=0.5 \text { hours }
\end{aligned}
$$

Factory Labor	$=(\$ 15 / \mathrm{hr})(0.5 \mathrm{hr} /$ widget $)$	$=\$ 7.50 /$ widget
Production Material	$=\$ 375 / 100 \mathrm{widgets}$	$=\$ 3.75 /$ widget
Factory Overhead	$=(1.25)(\$ 7.50 /$ widget $)$	$=\$ 9.375 /$ widget
Packing Costs	$=(0.75)(\$ 7.50 /$ widget $)$	$=\$ 5.625 /$ widget
Total Manufacturing Cost		$=\$ 26.25 /$ widget
Desired Profit	$=(0.20)(\$ 26.25 /$ widget $)$	$=\$ 5.25 /$ widget
Unit Selling Price		$=\$ 31.50 /$ widget

3-35 Profit $=$ Revenue - Cost
$\$ 25,000=(\$ 20.00 /$ unit $)(x)-[(\$ 21.00 /$ unit $)(.2$ hours/unit)(x) $+(\$ 4.00 /$ unit $)(x)$ $+(1.2)(\$ 21.00 /$ unit $)(.2$ hours/unit) $(\mathrm{x})+(\$ 1.20 /$ unit $)(\mathrm{x})]$
$\$ 25,000=5.56 x ; \quad x=\underline{4,497 \text { units }}$

3-36 $K=460$ hours; $s=0.92$ (91% learning curve); $n=(\log 0.92) /(\log 2)=-0.120$
$\mathrm{C}_{30}=\mathrm{T}_{30} / 30 ; \quad \mathrm{T}_{30}=460 \sum_{\mathrm{u}=1}^{30} \mathrm{u}^{-0.120}=10,419.63 \mathrm{hrs} ;$
$\mathrm{C}_{30}=10,419.63 / 30=347.3211$
Select (d)

$$
-1,500+800+(0.07-0.05)(4.00)(10) \mathrm{x}=0
$$

$$
-700+0.80 x=0
$$

$$
x=700 / 0.80=875 \mathrm{miles} / \text { year }
$$

Select (a)

3-38 $\quad \mathrm{AC}_{\text {current }}=\$ 4,000$
Proposed: $\mathrm{N}=13$ years, $\mathrm{SV}=11 \%$ of first cost
$\$ 4,000=\mathrm{I}(\mathrm{A} / \mathrm{P}, 12 \%, 13)-(0.11) \mathrm{I}(\mathrm{A} / \mathrm{F}, 12 \%, 13)$
$\$ 4,000=\mathrm{I}(0.1557)-(0.003927) \mathrm{I}$
$\$ 4,000=\mathrm{I}(0.1517)$
$I=\$ 26,358$
Select (c)

3-39 Let $X=$ average time spent supervising the average employee. Then the time spent supervising employee $\mathrm{A}=2 \mathrm{X}$ and the time spent supervising employee $\mathrm{B}=0.5 \mathrm{X}$. The total time units spent by the supervisor is then $2 \mathrm{X}+0.5 \mathrm{X}+(8) \mathrm{X}=10.5 \mathrm{X}$. The monthly cost of the supervisor is $\$ 3,800$ and can be allocated among the employees in the following manner:

$$
\$ 3,800 / 10.5 \mathrm{X}=\$ 361.90 / \mathrm{X} \text { time units. }
$$

Employee A (when compared to employee B) costs $(2 X-0.5 X)(\$ 361.90 / X)=\$ 542.85$ more for the same units of production. If employee B is compensated accordingly, the monthly salary for employee B should be $\$ 3,000+\$ 542.85=\$ 3,542.85$.

Select (a)

3-40 Type X filter: cost $=\$ 5$, changed every 7,000 miles along with 5 quarts oil between each oil change 1 quart of oil must be added after each 1,000 miles

Type Y filter: cost $=$?, changed every 5,000 miles along with 5 quarts of oil no additional oil between filter changes
oil $=\$ 1.08 /$ quart
Common multiple $=35,000$ miles
For filter $\mathrm{X}=5$ oil changes: $5(\$ 5+5(\$ 1.08)+6(\$ 1.08))=(5) \$ 16.88=\$ 84.40$
For filter $Y=7$ oil changes: $7 \mathrm{C}_{\mathrm{Y}}+7(5)(\$ 1.08)=7 \mathrm{X}+\$ 37.8$

$$
\begin{aligned}
& \$ 84.40=7 C_{Y}+\$ 37.8 \\
& \$ 46.60=7 C_{Y} \\
& C_{Y}=\$ 6.66
\end{aligned}
$$

Select (d)

$$
\begin{aligned}
& \text { 3-41 } \mathrm{C}_{2008}(\text { new design })=\$ 900,000\left(\frac{200}{150}\right)^{0.92}+\$ 1,125,000\left(\frac{450}{200}\right)^{0.87}+\$ 750,000\left(\frac{175}{100}\right)^{0.79}=\$ 4,617,660 \\
& \mathrm{C}_{2018}=\$ 4,617,660(1.12)^{10}=\$ 14,341,751
\end{aligned}
$$

Select (c)

