Solutions to end-of-chapter problems

Engineering Economy, $8^{\text {th }}$ edition
Leland Blank and Anthony Tarquin

Chapter 2
 Factors: How Time and Interest Affect Money

Determination of \mathbf{F}, \mathbf{P} and A

$$
\begin{array}{ll}
2.1 & \text { (1) }(\mathrm{F} / \mathrm{P}, 10 \%, 7)=1.9487 \\
\text { (2) }(\mathrm{A} / \mathrm{P}, 12 \%, 10)=0.17698 \\
\text { (3) }(\mathrm{P} / \mathrm{G}, 15 \%, 20)=33.5822 \\
\text { (4) }(\mathrm{F} / \mathrm{A}, 2 \%, 50)=84.5794 \\
\text { (5) }(\mathrm{A} / \mathrm{G}, 35 \%, 15)=2.6889
\end{array}
$$

$$
\begin{aligned}
2.2 \mathrm{~F} & =1,200,000(\mathrm{~F} / \mathrm{P}, 7 \%, 4) \\
& =1,200,000(1.3108) \\
& =\$ 1,572,960
\end{aligned}
$$

$$
\begin{aligned}
2.3 \mathrm{~F} & =200,000(\mathrm{~F} / \mathrm{P}, 10 \%, 3) \\
& =200,000(1.3310) \\
& =\$ 266,200 \\
2.4 \mathrm{P} & =7(120,000)(\mathrm{P} / \mathrm{F}, 10 \%, 2) \\
& =840,000(0.8264) \\
& =\$ 694,176
\end{aligned}
$$

$$
2.5 \mathrm{~F}=100,000,000 / 30(\mathrm{~F} / \mathrm{A}, 10 \%, 30)
$$

$$
=3,333,333(164.4940)
$$

$$
=\$ 548,313,333
$$

$$
\begin{aligned}
2.6 \quad \mathrm{P} & =25,000(\mathrm{P} / \mathrm{F}, 10 \%, 8) \\
& =25,000(0.4665) \\
& =\$ 11,662.50
\end{aligned}
$$

$$
\begin{aligned}
2.7 \mathrm{P} & =8000(\mathrm{P} / \mathrm{A}, 10 \%, 10) \\
& =8000(6.1446) \\
& =\$ 49,156.80
\end{aligned}
$$

$$
\begin{aligned}
2.8 \quad \mathrm{P} & =100,000((\mathrm{P} / \mathrm{A}, 12 \%, 2) \\
& =100,000(1.6901) \\
& =\$ 169,010
\end{aligned}
$$

$$
\begin{aligned}
2.9 \quad \mathrm{~F} & =12,000(\mathrm{~F} / \mathrm{A}, 10 \%, 30) \\
& =12,000(164.4940) \\
& =\$ 1,973,928
\end{aligned}
$$

$$
\begin{aligned}
2.10 \mathrm{~A} & =50,000,000(\mathrm{~A} / \mathrm{F}, 20 \%, 3) \\
& =50,000,000(0.27473) \\
& =\$ 13,736,500
\end{aligned}
$$

$$
\begin{aligned}
2.11 \mathrm{~F} & =150,000(\mathrm{~F} / \mathrm{P}, 18 \%, 5) \\
& =150,000(2.2878) \\
& =\$ 343,170 \\
2.12 \mathrm{P} & =75(\mathrm{P} / \mathrm{F}, 18 \%, 2) \\
& =75(0.7182) \\
& =\$ 53.865 \text { million }
\end{aligned}
$$

$$
\begin{aligned}
2.13 \mathrm{~A} & =450,000(\mathrm{~A} / \mathrm{P}, 10 \%, 3) \\
& =450,000(0.40211) \\
& =\$ 180,950
\end{aligned}
$$

$$
\begin{aligned}
2.14 \mathrm{P} & =30,000,000(\mathrm{P} / \mathrm{F}, 10 \%, 5)-15,000,000 \\
& =30,000,000(0.6209)-15,000,000 \\
& =\$ 3,627,000
\end{aligned}
$$

$$
2.15 \mathrm{~F}=280,000(\mathrm{~F} / \mathrm{P}, 12 \%, 2)
$$

$$
=280,000(1.2544)
$$

$$
=\$ 351,232
$$

$$
\begin{aligned}
2.16 \quad \mathrm{~F} & =(200-90)(\mathrm{F} / \mathrm{A}, 10 \%, 8) \\
& =110(11.4359) \\
& =\$ 1,257,949
\end{aligned}
$$

Copyright © 2018 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

$$
\begin{aligned}
& 2.17 \mathrm{~F}=125,000(\mathrm{~F} / \mathrm{A}, 10 \%, 4) \\
&=125,000(4.6410) \\
&=\$ 580,125 \\
& 2.18 \mathrm{~F}=600,000(0.04)(\mathrm{F} / \mathrm{A}, 10 \%, 3) \\
&=24,000(3.3100) \\
&=\$ 79,440 \\
& 2.19 \quad \mathrm{P}=90,000(\mathrm{P} / \mathrm{A}, 20 \%, 3) \\
&=90,000(2.1065) \\
&=\$ 189,585 \\
& 2.20 \mathrm{~A}=250,000(\mathrm{~A} / \mathrm{F}, 9 \%, 5) \\
&=250,000(0.16709) \\
&=\$ 41,772.50 \\
& 2.21 \mathrm{~A}=1,150,000(\mathrm{~A} / \mathrm{P}, 5 \%, 20) \\
&=1,150,000(0.08024) \\
&=\$ 92,276 \\
& 2.22 \mathrm{P}=(110,000 * 0.3)(\mathrm{P} / \mathrm{A}, 12 \%, 4) \\
&=(33,000)(3.0373) \\
&=\$ 100,231 \\
& 2.23 \mathrm{~A}=3,000,000(10)(\mathrm{A} / \mathrm{P}, 8 \%, 10) \\
&=30,000,000(0.14903) \\
&=\$ 4,470,900 \\
& 2.24 \mathrm{~A}=50,000(\mathrm{~A} / \mathrm{F}, 20 \%, 3) \\
&=50,000(0.27473) \\
&=\$ 13,736 \\
& \\
& \\
& \\
& \\
&
\end{aligned}
$$

Copyright © 2018 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Factor Values

2.25 (a) 1. Interpolate between $\mathrm{i}=8 \%$ and $\mathrm{i}=9 \%$ at $\mathrm{n}=15$:

$$
\begin{aligned}
0.4 / 1 & =x /(0.3152-0.2745) \\
x & =0.0163 \\
(\mathrm{P} / \mathrm{F}, 8.4 \%, 15) & =0.3152-0.0163 \\
& =0.2989
\end{aligned}
$$

2. Interpolate between $\mathrm{i}=16 \%$ and $\mathrm{i}=18 \%$ at $\mathrm{n}=10$:

$$
\begin{aligned}
& 1 / 2=\mathrm{x} /(0.04690-0.04251) \\
& \mathrm{x}=0.00220 \\
& (\mathrm{~A} / \mathrm{F}, 17 \%, 10)=0.04690-0.00220 \\
& =0.04470
\end{aligned}
$$

(b) 1. $(\mathrm{P} / \mathrm{F}, 8.4 \%, 15)=1 /(1+0.084)^{15}$

$$
=0.2982
$$

2. $(\mathrm{A} / \mathrm{F}, 17 \%, 10)=0.17 /\left[(1+0.17)^{10}-1\right]$

$$
=0.04466
$$

(c) 1. $=-\mathrm{PV}(8.4 \%, 15,, 1)$ displays 0.29824
2. $=-\mathrm{PMT}(17 \%, 10,, 1)$ displays 0.04466
2.26 (a) 1. Interpolate between $\mathrm{i}=18 \%$ and $\mathrm{i}=20 \%$ at $\mathrm{n}=20$:

$$
\begin{aligned}
& 1 / 2=x / 40.06 \\
& x=20.03 \\
&(\mathrm{~F} / \mathrm{A}, 19 \%, 20)=146.6280+20.03 \\
&=166.658
\end{aligned}
$$

2. Interpolate between $\mathrm{i}=25 \%$ and $\mathrm{i}=30 \%$ at $\mathrm{n}=15$:

$$
\begin{aligned}
& 1 / 5=\mathrm{x} / 0.5911 \\
& \begin{aligned}
& \mathrm{x}=0.11822 \\
&(\mathrm{P} / \mathrm{A}, 26 \%, 15)=3.8593-0.11822 \\
&=3.7411
\end{aligned}
\end{aligned}
$$

(b) 1. $(\mathrm{F} / \mathrm{A}, 19 \%, 20)=\left[(1+0.19)^{20}-1\right] / 0.19$

$$
=165.418
$$

2. $(\mathrm{P} / \mathrm{A}, 26 \%, 15)=\left[(1+0.26)^{15}-1\right] /\left[0.26(1+0.26)^{15}\right]$

$$
=3.7261
$$

(c) 1. $=-\mathrm{FV}(19 \%, 20,1)$ displays 165.41802
2. $=-\mathrm{PV}(26 \%, 15,1)$ displays 3.72607
2.27 (a) 1. Interpolate between $\mathrm{n}=32$ and $\mathrm{n}=34$:

$$
\begin{aligned}
& 1 / 2=\mathrm{x} / 78.3345 \\
& \mathrm{x}=39.1673 \\
& \begin{aligned}
(\mathrm{F} / \mathrm{P}, 18 \%, 33) & =199.6293+39.1673 \\
& =238.7966
\end{aligned}
\end{aligned}
$$

2. Interpolate between $\mathrm{n}=50$ and $\mathrm{n}=55$:

$$
\left.\begin{array}{rl}
4 / 5=\mathrm{x} / 0.0654 \\
\mathrm{x}=0.05232
\end{array}\right] \begin{aligned}
(\mathrm{A} / \mathrm{G}, 12 \%, 54) & =8.1597+0.05232 \\
& =8.2120
\end{aligned}
$$

(b) 1. $(\mathrm{F} / \mathrm{P}, 18 \%, 33)=(1+0.18)^{33}$

$$
=235.5625
$$

$$
\text { 2. } \begin{aligned}
(\mathrm{A} / \mathrm{G}, 12 \%, 54) & =\left\{(1 / 0.12)-54 /(1+0.12)^{54}-1\right\} \\
& =8.2143
\end{aligned}
$$

2.28 Interpolated value: Interpolate between $n=40$ and $n=45$:

$$
\begin{aligned}
& 3 / 5=\mathrm{x} /(72.8905-45.2593) \\
& \mathrm{x}=16.5787 \\
& \begin{aligned}
(\mathrm{F} / \mathrm{P}, 10 \%, 43) & =45.2593+16.5787 \\
& =61.8380
\end{aligned}
\end{aligned}
$$

Formula value: $\begin{aligned}(\mathrm{F} / \mathrm{P}, 10 \%, 43) & =(1+0.10)^{43} \\ & =60.2401\end{aligned}$
$\%$ difference $=[(61.8380-60.2401) / 60.2401] * 100$

$$
=2.65 \%
$$

Arithmetic Gradient

2.29 (a) $\mathrm{G}=\$-300$
(b) $\mathrm{CF}_{5}=\$ 2800$
(c) $\mathrm{n}=9$

$$
\begin{aligned}
2.30 \quad \mathrm{P}_{0} & =500(\mathrm{P} / \mathrm{A}, 10 \%, 9)+100(\mathrm{P} / \mathrm{G}, 10 \%, 9) \\
& =500(5.7590)+100(19.4215) \\
& =2879.50+1942.15 \\
& =\$ 4821.65
\end{aligned}
$$

2.31 (a) Revenue $=390,000+2(15,000)$

$$
=\$ 420,000
$$

(b) $\mathrm{A}=390,000+15,000(\mathrm{~A} / \mathrm{G}, 10 \%, 5)$

$$
=390,000+15,000(1.8101)
$$

$$
=\$ 417,151.50
$$

$$
\begin{aligned}
2.32 \mathrm{~A} & =9000-560(\mathrm{~A} / \mathrm{G}, 10 \%, 5) \\
& =9000-560(1.8101) \\
& =\$ 7986
\end{aligned}
$$

$$
\begin{aligned}
2.33500 & =200+\mathrm{G}(\mathrm{~A} / \mathrm{G}, 10 \% .7) \\
500 & =200+\mathrm{G}(2.6216) \\
\mathrm{G} & =\$ 114.43
\end{aligned}
$$

$$
\begin{aligned}
2.34 \mathrm{~A} & =100,000+10,000(\mathrm{~A} / \mathrm{G}, 10 \%, 5) \\
& =100,000+10,000(1.8101) \\
& =\$ 118,101
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{F} & =118,101(\mathrm{~F} / \mathrm{A}, 10 \%, 5) \\
& =118,101(6.1051) \\
& =\$ 721,018
\end{aligned}
$$

$$
\begin{aligned}
2.353500 & =\mathrm{A}+40(\mathrm{~A} / \mathrm{G}, 10 \%, 9) \\
3500 & =\mathrm{A}+40(3.3724) \\
\mathrm{A} & =\$ 3365.10
\end{aligned}
$$

2.36 In $\$$ billion units,

$$
\begin{aligned}
\mathrm{P} & =2.1(\mathrm{P} / \mathrm{F}, 18 \%, 5) \\
& =2.1(0.4371) \\
& =0.91791=\$ 917,910,000
\end{aligned}
$$

$$
\begin{gathered}
917,910,000=100,000,000(\mathrm{P} / \mathrm{A}, 18 \%, 5)+\mathrm{G}(\mathrm{P} / \mathrm{G}, 18 \%, 5) \\
917,910,000=100,000,000(3.1272)+\mathrm{G}(5.2312) \\
\mathrm{G}=\$ 115,688,561
\end{gathered}
$$

$$
2.3795,000=55,000+\mathrm{G}(\mathrm{~A} / \mathrm{G}, 10 \%, 5)
$$

$$
95,000=55,000+\mathrm{G}(1.8101)
$$

$$
\mathrm{G}=\$ 22,098
$$

2.38 P in year $0=500,000(\mathrm{P} / \mathrm{F}, 10 \%, 10)$

$$
=500,000(0.3855)
$$

$$
=\$ 192,750
$$

$192,750=\mathrm{A}+3000(\mathrm{P} / \mathrm{G}, 10 \%, 10)$
$192,750=\mathrm{A}+3000(22.8913)$

$$
A=\$ 124,076
$$

Geometric Gradient

2.39 Find ($\mathrm{P} / \mathrm{A}, \mathrm{g}, \mathrm{i}, \mathrm{n}$) using Equation [2.32] and $\mathrm{A}_{1}=1$

For $n=1: P_{g}=1^{*}\left\{1-[(1+0.05) /(1+0.10)]^{1}\right\} /(0.10-0.05)$

$$
=0.90909
$$

For $\mathrm{n}=2: \mathrm{P}_{\mathrm{g}}=1^{*}\left\{1-[(1+0.05) /(1+0.10)]^{2}\right\} /(0.10-0.05)$

$$
=1.77686
$$

2.40 Decrease deposit in year 4 by 7% per year for three years to get back to year 1 .

First deposit $=5550 /(1+0.07)^{3}$
$=\$ 4530.45$
$2.41 \mathrm{P}_{\mathrm{g}}=35,000\left\{1-[(1+0.05) /(1+0.10)]^{6}\right\} /(0.10-0.05)$
$=\$ 170,486$
$2.42 \mathrm{P}_{\mathrm{g}}=200,000\left\{1-[(1+0.03) /(1+0.10)]^{5}\right\} /(0.10-0.03)$
$=\$ 800,520$
2.43 First find P_{g} and then convert to F in year 15

$$
\begin{aligned}
P_{g} & =(0.10)(160,000)\left\{1-[(1+0.03) /(1+0.07)]^{15} /(0.07-0.03)\right\} \\
& =16,000(10.883)=\$ 174,128.36
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{F} & =174,128.36(\mathrm{~F} / \mathrm{P}, 7 \%, 15) \\
& =174,128.36(2.7590) \\
& =\$ 480,420.15
\end{aligned}
$$

2.44 (a) $\mathrm{P}_{\mathrm{g}}=260\left\{1-[(1+0.04) /(1+0.06)]^{20}\right\} /(0.06-0.04)$
$=260(15.8399)$

$$
=\$ 4119.37
$$

(b) $\mathrm{P}_{\text {Total }}=(4119.37)(51,000)$
$=\$ 210,087,870$
2.45 Solve for P_{g} in geometric gradient equation and then convert to A

$$
\begin{aligned}
\mathrm{A}_{1} & =5,000,000(0.01)=50,000 \\
& \begin{aligned}
\mathrm{P}_{\mathrm{g}} & =50,000\left[1-(1.10 / 1.08)^{5}\right] /(0.08-0.10) \\
& =\$ 240,215 \\
\mathrm{~A} & =240,215(\mathrm{~A} / \mathrm{P}, 8 \%, 5) \\
& =240,215(0.25046) \\
& =\$ 60,164
\end{aligned}
\end{aligned}
$$

2.46 First find P_{g} and then convert to F

$$
\begin{aligned}
\mathrm{P}_{\mathrm{g}} & =5000\left[1-(0.95 / 1.08)^{5}\right] /(0.08+0.05) \\
& =\$ 18,207 \\
\mathrm{~F} & =18,207(\mathrm{~F} / \mathrm{P}, 8 \%, 5) \\
& =18,207(1.4693) \\
& =\$ 26,751
\end{aligned}
$$

Interest Rate and Rate of Return

$2.471,000,000=290,000(\mathrm{P} / \mathrm{A}, \mathrm{i}, 5)$
$(\mathrm{P} / \mathrm{A}, \mathrm{i}, 5)=3.44828$
Interpolate between 12% and 14% interest tables or use Excel's RATE function By RATE, $\mathrm{i}=13.8 \%$
$2.4850,000=10,000(\mathrm{~F} / \mathrm{P}, \mathrm{i}, 17)$

$$
5.0000=(\mathrm{F} / \mathrm{P}, \mathrm{i}, 17)
$$

$$
5.0000=(1+i)^{17}
$$

$$
i=9.93 \%
$$

2.49

$$
\begin{aligned}
\mathrm{F} & =\mathrm{A}(\mathrm{~F} / \mathrm{A}, \mathrm{i} \%, 5) \\
451,000 & =40,000(\mathrm{~F} / \mathrm{A}, \mathrm{i} \%, 5) \\
(\mathrm{F} / \mathrm{A}, \mathrm{i} \%, 5) & =11.2750
\end{aligned}
$$

Interpolate between 40% and 50% interest tables or use Excel's RATE function
By RATE, $\mathrm{i}=41.6 \%$
2.50 Bonus/year $=6(3000) / 0.05=\$ 360,000$

$$
1,200,000=360,000(\mathrm{P} / \mathrm{A}, \mathrm{i}, 10)
$$

$$
(\mathrm{P} / \mathrm{A}, \mathrm{i}, 10)=3.3333
$$

$$
\mathrm{i}=27.3 \%
$$

2.51 Set future values equal to each other

$$
\text { Simple: } F=P+P n i
$$

$$
=\mathrm{P}\left(1+5^{*} 0.15\right)
$$

$$
=1.75 \mathrm{P}
$$

$$
\text { Compound: } \begin{aligned}
\mathrm{F} & =\mathrm{P}(1+\mathrm{i})^{\mathrm{n}} \\
& =\mathrm{P}(1+\mathrm{i})^{5}
\end{aligned}
$$

$$
\begin{aligned}
1.75 \mathrm{P} & =\mathrm{P}(1+\mathrm{i})^{5} \\
\mathrm{i} & =11.84 \%
\end{aligned}
$$

$2.52100,000=190,325(\mathrm{P} / \mathrm{F}, \mathrm{i}, 30)$
$(\mathrm{P} / \mathrm{F}, \mathrm{i}, 30)=0.52542$
Find i by interpolation between 2% and 3%, or by solving P/F equation, or by Excel
By RATE function, $\mathrm{i}=2.17 \%$
Copyright © 2018 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
$2.53400,000=320,000+50,000(\mathrm{~A} / \mathrm{G}, \mathrm{i}, 5)$
$(\mathrm{A} / \mathrm{G}, \mathrm{i}, 5)=1.6000$
Interpolate between $\mathrm{i}=22 \%$ and $\mathrm{i}=24 \%$
$\mathrm{i}=22.6 \%$

Number of Years

$2.54160,000=30,000(\mathrm{P} / \mathrm{A}, 15 \%, \mathrm{n})$
$(\mathrm{P} / \mathrm{A}, 15 \%, \mathrm{n})=5.3333$
From 15% table, n is between 11 and 12 years; therefore, $\mathrm{n}=12$ years
By NPER, $\mathrm{n}=11.5$ years
2.55 (a)

$$
\begin{aligned}
2,000,000 & =100,000(\mathrm{P} / \mathrm{A}, 5 \%, \mathrm{n}) \\
(\mathrm{P} / \mathrm{A}, 5 \%, \mathrm{n}) & =20.000
\end{aligned}
$$

From 5% table, n is >100 years. In fact, at 5% per year, her account earns \$100,000 per year. Therefore, she will be able to withdraw $\$ 100,000$ forever; actually, n is ∞.
(b)

$$
\begin{aligned}
2,000,000 & =150,000(\mathrm{P} / \mathrm{A}, 5 \%, \mathrm{n}) \\
(\mathrm{P} / \mathrm{A}, 5 \%, \mathrm{n}) & =13.333 \\
\text { By NPER, } \mathrm{n} & =22.5 \text { years }
\end{aligned}
$$

(c) The reduction is impressive from forever (n is infinity) to $\mathrm{n}=22.5$ years for a 50% increase in annual withdrawal. It is important to know how much can be withdrawn annually when a fixed amount and a specific rate of return are involved.
2.56

$$
10 \mathrm{~A}=\mathrm{A}(\mathrm{~F} / \mathrm{A}, 10 \%, \mathrm{n})
$$

$(\mathrm{F} / \mathrm{A}, 10 \%, \mathrm{n})=10.000$

From 10% factor table, n is between 7 and 8 years; therefore, $n=8$ years
2.57 (a) $\quad 500,000=85,000(\mathrm{P} / \mathrm{A}, 10 \%, \mathrm{n})$ $(\mathrm{P} / \mathrm{A}, 10 \%, \mathrm{n})=5.8824$

From 10% table, n is between 9 and 10 years.
(b) Using the function $=\operatorname{NPER}(10 \%,-85000,500000)$, the displayed $\mathrm{n}=9.3$ years.

Copyright © 2018 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
$2.58 \quad 1,500,000=6,000,000(\mathrm{P} / \mathrm{F}, 25 \%, \mathrm{n})$
$(\mathrm{P} / \mathrm{F}, 25 \%, \mathrm{n})=0.2500$

From 25% table, n is between 6 and 7 years; therefore, $n=7$ years
2.59

$$
\begin{aligned}
15,000 & =3000+2000(\mathrm{~A} / \mathrm{G}, 10 \%, \mathrm{n}) \\
(\mathrm{A} / \mathrm{G}, 10 \%, \mathrm{n}) & =6.0000
\end{aligned}
$$

From 10% table, n is between 17 and 18 years; therefore, $\mathrm{n}=18$ years. She is not correct; it takes longer.
2.60 First set up equation to find present worth of $\$ 2,000,000$ and set that equal to P in the geometric gradient equation. Then, solve for n.

$$
\mathrm{P}=2,000,000(\mathrm{P} / \mathrm{F}, 7 \%, \mathrm{n})
$$

$$
2,000,000(\mathrm{P} / \mathrm{F}, 7 \%, \mathrm{n})=10,000\left\{1-[(1+0.10) /(1+0.07)]^{\mathrm{n}}\right\} /(0.07-0.10)
$$

Solve for n using Goal Seek or trial and error.
By trial and error, $\mathrm{n}=$ is between 25 and 26 ; therefore, $\mathrm{n}=26$ years

Exercises for Spreadsheets

2.61

Part	Function	Answer
a	$=-\mathrm{FV}(10 \%, 30,100000000 / 30)$	$\$ 548,313,409$
b	$=-\mathrm{FV}(10 \%, 33,100000000 / 30)$	$\$ 740,838,481$
c	$=-\mathrm{FV}(10 \%, 33,100000000 / 30)+\mathrm{FV}\left(10 \%, 3,(100000000 / 30)^{*} 2\right)$	$\mathbf{\$ 7 1 8 , 7 7 1 , 8 1 4}$

Copyright © 2018 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

4	A	B	c	D	E	F
1	Part		Function	Result	Conclusion	
2	(a) \$12,000 for 30 years		$=-\mathrm{FV}(10 \%, 30,12000)$	\$1,973,928.27	Not quite reached	
3						
4	(a) \$8000 for $15 ; \$ 15,000$ for 15 years		$=-\mathrm{FV}(10 \%, 30,8000) \cdot \mathrm{FV}(10 \%, 15,7000)$	\$ 1,538,359.55	Not reached	
5						
6	(b) \$12,000 for n years		$=\operatorname{NPER}(10 \%,-12000, \ldots 2000000)$	30.13	Years	
7						
8	(c) $\$ 8000$ for $15 ; \$ 15000$ for 15 years					
	One solution: Continue the deposits beyond year 30 and determine the future worth year by year.	Year	Function	Accumulated		
10		31		\$ 1,707,195.51		
11		32	$=-$ FV $(10 \%, \$ 811,8000) \cdot$ FV $(10 \%, \$ 811-15,7000)$	\$ 1,892,915.06		
12		33	$=-\mathrm{FV}(10 \%, \$ 812,8000) \cdot \mathrm{FV}(10 \%, \$ 812-15,7000)$	\$ 2,097,206.57		ears
13		34	$=-\mathrm{FV}(10 \%, \$ 8131,8000) \cdot \mathrm{FV}(10 \%, \$ 813-15,7000)$	\$ 2,321,927.22		
14		35	$=-\mathrm{FV}(10 \%, \$ 814,8000) \cdot \mathrm{FV}(10 \%, \$ 814 \cdot 15,7000)$	\$ 2,569,119.94		

2.63 Goal Seek template before and result after with solution for $G=\$ 115.69$ million

4	A	B	C	D	E	F	G	H	I
1	Gradient amount is (\$1000)			\$ 50.00					
3	Year	Deposit	PV in year 0	FV in year 5					
4	0					Goal Seek	$8 \times$		
5	1	100.00	\$84.75			Setcell	園		
6	2	150.00	\$192.47			To galue: By changing cell:			
7	3	200.00	\$314.20			ok	Cancel		
8	4	250.00	\$443.15						
9	5	300.00	\$574.28	\$1,313.81					
10									

Copyright © 2018 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

,	A	B	C	D	E
1	Gradient amount is (\$1000)			\$ 115.69	
3	Year	Deposit	PV in year 0	FV in year 5	
4	0				
5	1	100.00	\$84.75		
6	2	215.69	\$239.65		
7	3	331.38	\$441.34		
8	4	447.08	\$671.94		
9	5	562.77	\$917.93	\$2,100.00	

Copyright © 2018 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
2.64 Here is one approach to the solution using NPV and FV functions with results (left) and formulas (right).

Year,		Present worth	Future worth	Year,		Present worth	Future worth
n	Deposit	in year 0	in year n	n	Deposit	in year 0	in year n
0				0			
1	10,000	9,346	10,000	= \$ ${ }^{\text {a }}$ +1	10000	=NPV(7\%,\$B\$4:\$B4)	$=-\mathrm{FV}\left(7 \%, \$ 44\right.$, , ${ }^{\text {c }}$ (4)
2	11,000	18,954	21,700	= \$A4+1	$=\$ 84 * 1.1$	=NPV(7\%,\$B\$4:\$B5)	$=-\mathrm{FV}(7 \%, \$ \mathrm{~S} 5$, , $\mathrm{SC5}$)
3	12,100	28,831	35,319	= \$A5+1	= \$85*1.1	=NPV(7\%,\$B\$4:\$B6)	$=-F V(7 \%, \$ A 6, \$$ S6 $)$
4	13,310	38,985	51,101	= \$A6+1	$=\$ 86 * 1.1$	=NPV(7\%,\$B\$4:\$B7)	$=-\mathrm{FV}(7 \%, \$ 47$, ,SC7 $)$
5	14,641	49,424	69,319	= \$A7+1	= \$B7*1.1	=NPV(7\%,\$B\$4:\$B8)	$=-\mathrm{FV}(7 \%, \$ 48$, , $¢$ C8)
6	16,105	60,155	90,277	= \$A8+1	= \$88*1.1	=NPV(7\%,\$B\$4:\$B9)	$=-\mathrm{FV}(7 \%, \$ \mathrm{~S} 9$, , $\$$ C9 $)$
7	17,716	71,188	114,312	= \$A9+1	= \$89*1.1	=NPV(7\%,\$B\$4:\$B10)	$=-\mathrm{FV}(7 \%, \$ \mathrm{~S} 10, \$ \mathrm{~S} 10)$
8	19,487	82,529	141,801	= \$A10+1 $=$	= \$B10*1.1	=NPV(7\%,\$B\$4:\$B11)	$=-\mathrm{FV}(7 \%, \$ \mathrm{~A} 11, \$ \mathrm{~S} 11)$
9	21,436	94,189	173,163	= \$A11+1 =	= \$B11*1.1	=NPV(7\%,\$B\$4:\$B12)	$=-\mathrm{FV}(7 \%, \$ \mathrm{~S} 12, \$ \mathrm{~S} 12)$
10	23,579	106,176	208,864	= \$A12+1 $=$	= \$B12*1.1	=NPV(7\%,\$B\$4:\$B13)	$=-\mathrm{FV}(7 \%, \$ \mathrm{~A} 33, \$ \mathrm{~S} 13)$
11	25,937	118,498	249,422	= \$ A13 $^{\text {+ }}$ - $=$	$=\$ B 13 * 1.1$	=NPV(7\%,\$B\$4:\$B14)	$=-\mathrm{FV}(7 \%, \$ A 14, \$ \mathrm{C} 14)$
12	28,531	131,167	295,412	= \$A14+1 $=$	= \$B14*1.1	=NPV(7\%,\$B\$4:\$B15)	$=-\mathrm{FV}(7 \%, \$ \mathrm{~S} 15, \$ \mathrm{~S} 15)$
13	31,384	144,190	347,475	= \$A15+1 $=$	= \$B15*1.1	=NPV(7\%,\$B\$4:\$B16)	$=-\mathrm{FV}(7 \%, \$ \mathrm{~S} 16, \$ \mathrm{Sc} 16)$
14	34,523	157,578	406,321	= \$A16+1 $=$	= \$B16*1.1	=NPV(7\%,\$B\$4:\$B17)	$=-\mathrm{FV}(7 \%, \$ A 17, \$ \mathrm{~S} 17)$
15	37,975	171,342	472,739	= \$A17+1 =	= \$B17*1.1	=NPV(7\%,\$B\$4:\$B18)	$=-\mathrm{FV}(7 \%, \$ \mathrm{~A} 18, \$ \mathrm{~S} 18)$
16	41,772	185,492	547,603	= \$A18+1 $=$	= \$B18*1.1	=NPV(7\%,\$B\$4:\$B19)	$=-\mathrm{FV}(7 \%, \$ \mathrm{~S} 19, \$ \mathrm{SC19})$
17	45,950	200,039	631,885	= \$A19+1 $=$	= \$B19*1.1	=NPV(7\%,\$B\$4:\$B20)	$=-\mathrm{FV}(7 \%, \$ \mathrm{~S} 20, \$ \mathrm{SC20})$
18	50,545	214,993	726,662	= \$ $220+1$ =	= \$B20*1.1	=NPV(7\%,\$B\$4:\$B21)	$=-\mathrm{FV}(7 \%, \$ \mathrm{~S} 21, \$ \mathrm{~S} 21)$
19	55,599	230,367	833,127	= \$ $221+1$ =	= \$B21*1.1	=NPV(7\%,\$B\$4:\$B22)	$=-\mathrm{FV}(7 \%, \$ \mathrm{~S} 22, \$ \mathrm{~S} 22)$
20	61,159	246,171	952,605	= \$A22+1 $=$	= \$B22*1.1	=NPV(7\%,\$B\$4:\$B23)	$=-\mathrm{FV}(7 \%, \$ A 23, \$ \mathrm{C} 23)$
21	67,275	262,419	1,086,563	= \$ $223+1=$	$=\$ B 23 * 1.1$	=NPV(7\%,\$B\$4:\$B24)	$=-\mathrm{FV}(7 \%, \$ \mathrm{~A} 24, \$$ S24)
22	74,002	279,122	1,236,624	= \$ $224+1=$	= \$B24*1.1	$=N P V(7 \%, \$ B \$ 4: \$ B 25)$	$=-\mathrm{FV}(7 \%, \$ \mathrm{~A} 25, \$ \mathrm{~S} 25)$
23	81,403	296,294	1,404,591	= \$ $225+1=$	= \$B25*1.1	=NPV(7\%,\$B\$4:\$B26)	$=-\mathrm{FV}(7 \%, \$ A 26, \$ \mathrm{~S} 26)$
24	89,543	313,947	1,592,455	= \$ $226+1$ =	= \$B26*1.1	=NPV(7\%,\$B\$4:\$B27)	$=-\mathrm{FV}(7 \%, \$ A 27, \$ \mathrm{C} 27)$
25	98,497	332,095	1,802,424	= \$A27+1 $=$	= \$B27*1.1	=NPV(7\%,\$B\$4:\$B28)	$=-\mathrm{FV}(7 \%, \$ \mathrm{~A} 28, \$ \mathrm{SC28)}$
26	108,347	350,752	2,036,941	= \$ $228+1=$	= \$B28*1.1	=NPV(7\%,\$B\$4:\$B29)	$=-\mathrm{FV}(7 \%, \$ \mathrm{~S} 29$, ,\$C29)
27	119,182	369,932	2,298,709	= \$A29+1 $=$	$=\$ B 29 * 1.1$	=NPV(7\%,\$B\$4:\$B30)	$=-\mathrm{FV}(7 \%, \$ A 30, \$ \mathrm{~S} 30)$
28	131,100	389,650	2,590,718	= \$A30+1 $=$	= \$B30*1.1	$=N P V(7 \%, \$ B \$ 4: \$ B 31)$	$=-\mathrm{FV}(7 \%, \$ A 31, \$ \mathrm{~S} 31)$
29	144,210	409,920	2,916,279	= \$A31+1 $=$	= \$B31*1.1	=NPV(7\%,\$B\$4:\$B32)	$=-\mathrm{FV}(7 \%, \$ A 32, \$ \mathrm{C} 22)$
30	158,631	430,759	3,279,049	= \$A32+1 =	= \$B32*1.1	=NPV(7\%,\$B\$4:\$B33)	$=-\mathrm{FV}(7 \%, \$ \mathrm{~S} 33, \$ \mathrm{~S} 33)$

Answers: (a) 26 years; (b) 30 years, only 4 years more than the $\$ 2$ million milestone.

Copyright © 2018 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
2.65 (a) Present worth is the value of the savings for each bid

Bid 1: Savings $=\$ 10,000$
Bid 2: Savings $=\$ 17,000$
Bid 3: Savings $=\$ 25,000$
(b) and (c) Spreadsheet for A values and column chart

ADDITIONAL PROBLEMS AND FE REVIEW QUESTIONS

2.66 Answer is (a)

$$
\begin{aligned}
2.67 \mathrm{P} & =840,000(\mathrm{P} / \mathrm{F}, 10 \%, 2) \\
& =840,000(0.8264) \\
& =\$ 694,176
\end{aligned}
$$

Answer is (a)

$$
2.68 \quad \begin{aligned}
\mathrm{P} & =81,000(\mathrm{P} / \mathrm{F}, 6 \%, 4) \\
& =81,000(0.7921) \\
& =\$ 64,160
\end{aligned}
$$

Answer is (d)

$$
\begin{aligned}
2.69 \mathrm{~F} & =25,000(\mathrm{~F} / \mathrm{P}, 10 \%, 25) \\
& =25,000(10.8347) \\
& =\$ 270,868
\end{aligned}
$$

Answer is (c)
$2.70 \mathrm{~A}=10,000,000(\mathrm{~A} / \mathrm{F}, 10 \%, 5)$

$$
=10,000,000(0.16380)
$$

$$
=\$ 1,638,000
$$

Answer is (a)
Copyright © 2018 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

$$
\begin{aligned}
2.71 \mathrm{~A} & =2,000,000(\mathrm{~A} / \mathrm{F}, 8 \%, 30) \\
& =2,000,000(0.00883) \\
& =\$ 17,660
\end{aligned}
$$

Answer is (a)
$2.72 \quad 390=585(\mathrm{P} / \mathrm{F}, \mathrm{i}, 5)$
$(\mathrm{P} / \mathrm{F}, \mathrm{i}, 5)=0.6667$
From tables, i is between 8% and 9%
Answer is (c)

$$
\begin{aligned}
\mathrm{AW} & =26,000+1500(\mathrm{~A} / \mathrm{G}, 8 \%, 5) \\
& =\$ 28,770
\end{aligned}
$$

Answer is (b)
$2.74 \quad 30,000=4202(\mathrm{P} / \mathrm{A}, 8 \%, \mathrm{n})$
$(\mathrm{P} / \mathrm{A}, 8 \%, 5)=7.1395$
$\mathrm{n}=11$ years
Answer is (d)
2.75
$23,632=3000\left\{1-\left[(1+0.04)^{n} /(1+0.06)^{n}\right]\right\} /(0.06-0.04)$
$[(23,632 * 0.02) / 3000]-1=(0.98113)^{\mathrm{n}}$
$\log 0.84245=n \log 0.98113$
$\mathrm{n}=9$
Answer is (b)
2.76

$$
\begin{aligned}
& \mathrm{A}=800-100(\mathrm{~A} / \mathrm{G}, 8 \%, 6) \\
& =800-100(2.2763) \\
& =\$ 572.37
\end{aligned}
$$

Answer is (c)
2.77
$\mathrm{P}=100,000(\mathrm{P} / \mathrm{A}, 10 \%, 5)-5000(\mathrm{P} / \mathrm{G}, 10 \%, 5)$
$=100,000(3.7908)-5000(6.8618)$

$$
=\$ 344,771
$$

Answer is (a)
$2.78 \quad 109.355=7(\mathrm{P} / \mathrm{A}, \mathrm{i}, 25)$
$(\mathrm{P} / \mathrm{A}, \mathrm{i}, 25)=15.6221$
Copyright © 2018 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

From tables, $\mathrm{i}=4 \%$
Answer is (a)
$2.79 \begin{aligned} 28,800 & =7000(\mathrm{P} / \mathrm{A}, 10 \%, 5)+\mathrm{G}(\mathrm{P} / \mathrm{G}, 10 \%, 5) \\ 28,800 & =7000(3.7908)+\mathrm{G}(6.8618) \\ \mathrm{G} & =\$ 330\end{aligned}$
Answer is (d)
$2.80 \quad 40,000=11,096(\mathrm{P} / \mathrm{A}, \mathrm{i}, 5)$
$(\mathrm{P} / \mathrm{A}, \mathrm{i}, 5)=3.6049$
$\mathrm{i}=12 \%$
Answer is (c)

Copyright © 2018 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.

Solution to Case Study, Chapter 2

The Amazing Impact of Compound Interest

1. Ford Model T and a New Car

(a) Inflation rate is substituted for $\mathrm{i}=3.10 \%$ per year
(b) Model T: \quad Beginning cost in 1909: $\mathrm{P}=\$ 825$

Ending cost: $\mathrm{n}=1909$ to $2015+50$ years $=156$ years; $\mathrm{F}=\$ 96,562$

$$
\begin{aligned}
\mathrm{F} & =\mathrm{P}(1+\mathrm{i})^{\mathrm{n}}=825(1.031)^{156} \\
& =825(117.0447) \\
& =\$ 96,562
\end{aligned}
$$

New car: \quad Beginning cost: $\mathrm{P}=\$ 28,000$
Ending cost: $\mathrm{n}=50$ years; $\mathrm{F}=\$ 128,853$

$$
\begin{aligned}
\mathrm{F} & =\mathrm{P}(1+\mathrm{i})^{\mathrm{n}}=28,000(1.031)^{50} \\
& =28,000(4.6019) \\
& =\$ 128,853
\end{aligned}
$$

2. Manhattan Island
(a) $i=6.0 \%$ per year
(b) Beginning amount in 1626: $\mathrm{P}=\$ 24$

Ending value: $\mathrm{n}=391 ; \mathrm{F}=\$ 188.3$ billion

$$
\begin{aligned}
\mathrm{F} & =24(1.06)^{391} \\
& =24(7,845,006.7) \\
& =\$ 188,280,161 \quad(\$ 188.3 \text { billion })
\end{aligned}
$$

3. Pawn Shop Loan

(a) i per week $=(30 / 200)^{*} 100=15 \%$ per week

Copyright © 2018 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
i per year $=\left[(1.15)^{52}-1\right]^{*} 100=143,214 \%$ per year

Subtraction of 1 considers repayment of the original loan of $\$ 200$ when the interest rate is calculated (see Chapter 4 for details.)
(b) Beginning amount: $\mathrm{P}=\$ 200$

Ending owed: 1 year later, $\mathrm{F}=\$ 286,627$

$$
\begin{aligned}
& \mathrm{F}=\mathrm{P}(\mathrm{~F} / \mathrm{P}, 15 \%, 52) \\
&=200(1.15)^{52} \\
&=200(1433.1370) \\
&=\$ 286,627
\end{aligned}
$$

4. Capital Investment

(a) $i=15^{+} \%$ per year

$$
\begin{aligned}
1,000,000 & =150,000(\mathrm{P} / \mathrm{A}, \mathrm{i} \%, 60) \\
(\mathrm{P} / \mathrm{A}, \mathrm{i} \%, 60) & =6.6667 \\
\mathrm{i} & =15^{+} \%
\end{aligned}
$$

(b) Beginning amount: $\mathrm{P}=\$ 1,000,000$ invested Ending total amount over 60 years: $150,000(60)=\$ 9$ million

$$
\text { Value: } \begin{aligned}
\mathrm{F}_{60} & =150,000(\mathrm{~F} / \mathrm{A}, 15 \%, 60) \\
& =150,000(29220.0) \\
& =\$ 4,383,000,000 \quad(\$ 4.38 \text { billon })
\end{aligned}
$$

5. Diamond Ring

(a) $i=4 \%$ per year
(b)

$$
\text { Beginning price: } \mathrm{P}=\$ 50
$$

Ending value after 179 years: $\mathrm{F}=\$ 55,968$
$\mathrm{n}=$ great grandmother + grandmother + mother + girl $=65+60+30+24$

Copyright © 2018 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education.
$=179$ years

$$
\begin{aligned}
\mathrm{F} & =50(\mathrm{~F} / \mathrm{P}, 4 \%, 179) \\
& =50(1119.35) \\
& =\$ 55,968
\end{aligned}
$$

