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SOLUTIONS MANUAL  
 
Engineering Materials I 
An Introduction to Properties, Applications and Design, Fourth Edition  
 
Solutions to Examples 
 

2. 1. (a) For commodity A A
A( ) = exp ,

100
rP t C t  

  and for commodity B B
B( ) = exp ,

100
rQ t C t  

where CA and CB are the current rates of consumption (t = t0) and P(t) and Q(t) are the 
values at t = t. Equating and solving for t gives  

 

A

B A B

100= ln .Ct
r r C

 
 −    

 
(b) The doubling time, tD, is calculated by setting C(t = t) = 2C0, giving  

 

D
100 70= ln 2 .t

r r
≈

 
 

Substitution of the values given for r in the table into this equation gives the doubling 
times as 35, 23 and 18 years respectively. 
 
(c) Using the equation of Answer (a) we find that aluminium overtakes steel in 201 

years; polymers overtake steel in 55 years. 
 
2.2. Principal conservation measures (see Section 2.7): 
 

Substitution 
 

Examples: aluminium for copper as a conductor; reinforced concrete for wood, stone 
or cast-iron in construction; plastics for glass or metals as containers. For many 
applications, substitutes are easily found at small penalty of cost. But in certain 
specific uses, most elements are not easily replaced. Examples: tungsten in cutting 
tools and lighting (a fluorescent tube contains more tungsten, as a starter filament, 
than an incandescent bulb!); lead in lead-acid batteries; platinum as a catalyst in 
chemical processing; etc. A long development time (up to 25 years) may be needed to 
find a replacement.  
 
Recycling 
 
The fraction of material recycled is obviously important. Products may be re-designed 
to make recycling easier, and new recycling processes developed, but development 
time is again important.  
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More Economic Design 
 
Design to use proportionally smaller amounts of scarce materials, for example, by 
building large plant (economy of scale); using high-strength materials; use of surface 
coatings to prevent metal loss by corrosion (e.g. in motor cars). 

 
2.3. (a) If the current rate of consumption in tonnes per year is C then exponential 

growth means that  
 

d = ,
d 100
C r C
t  

 
where r is the fractional rate of growth in % per year. Integrating gives  

 
0

0
( )= exp ,
100

r t tC C − 
 
   

 
where C0 was the consumption rate at time t = t0. 

(b) Set  

 
1/2

0
= d ,

2
tQ C t∫

 
 where  

 
0= exp .

100
rtC C  

 
   

 Then  

 

1/2

0
0

100 exp ,
2 100

t
Q rtC

r
  =       

 
which gives the desired result. 

 
2.4. See Chapter 2 for discussion with examples. 
 
3.1. Refer to the results at the end of Chapter 3 for the elastic buckling of struts (pp 52 and 

53), and second moments of area (pp 49 and 50). Appropriate situation is probably 
Case 2 (left hand side drawing). 

 

 

Fcr = 9.87 EI
l2

 
 
 

 
 
 ,  I =

πr 4

4
,

Fcr =
9.87πE

4
r
l

 
 
 

 
 
 

2

r 2 =
9.87π × 2 ×104  N mm–2

4
8.5 mm
750 mm

 
 
 

 
 
 

2

8.52  mm2

=1439 N =148 kgf.  
 

This gives a factor of safety of about 148/90 = 1.65, so he should be OK. 
 
3.2. Refer to the results at the end of Chapter 3 for the mode 1 natural vibration 

frequencies of beams (pp 50 and 51), and second moments of area (pp 49 and 50). 
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The appropriate situation is Case 2. 
 

 

f = 0.560
EI

Ml3 , I =
bd3

12
, M = ρlbd.

f = 0.560
Ed2

12ρl4

 

 
 

 

 
 

1/ 2

= 0.1617
d
l2

 
 
 

 
 
 

E
ρ

 
 
 

 
 
 

1/ 2

,

E =
f

0.1617
 
 
 

 
 
 

2 l2

d
 

 
 

 

 
 

2

ρ.
 

 
Because the frequency of natural vibration involves a force acting on a mass to give it 
an acceleration, it is crucial when real numbers are put into the governing equation 
that the basic SI units are used as follows 

 

 

E =
440

0.1617
 
 
 

 
 
 

2 0.0852

0.00386
 

 
 

 

 
 

2

× 7.85 ×103 = 204 ×109  N m–2 = 204 GN m–2.
 

 
3.3. This is a consequence of the equations of static equilibrium. 
 
3.4. Principal planes have no components of shear stress acting on them. Principal 

directions are normal to principal planes. Principal stresses are normal stresses acting 
on principal planes. The shear stress components all vanish. 

 

3.5. (a) 
1 0 0

0 0 0
0 0 0

σ 
 
 
 

, (b) 
1

2

0 0
0 0
0 0 0

σ
σ

 
 
 
 

, (c) 
– 0 0
0 – 0
0 0 –

p
p

p

 
 
 
 

, (d) 
1

2

3

0 0
0 0
0 0

σ
σ

σ

 
 
 
 

. 

 

3.6. 
0 0

0 0
0 0 0

τ
τ

 
 
 
 

. No. 

 

3.7. 
1

1

0 0
0 0.5 0
0 0 0

σ
σ

 
 
 
 

. There are no shear stress components normal to these axes. 

 
3.8. Because the two shear strain terms on any given axis plane are defined so there is no 

rotation. 
 
3.9. Principal strains are axial strains. The shear strain components all vanish. 
 

3.10. (a) 
1

1

1

0 0
0 – 0
0 0 –

ε
υε

υε

 
 
 
 

. (b) 
0 0

0 0
0 0

ε
ε

ε

 
 
 
 

. 
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3.11. Compare the right hand diagram on p 44 with the centre diagram in Fig. 3.5. 
 

 

e13 = γ and e31 = 0.

ε13 = ε 31 =
1
2

(e13 + e31) =
γ
2

.
 

 

3.12. From the bottom diagram in Fig. 3.5, the dilatation is defined as .V
V
∆

∆ =  

 
Consider a cube of material of unit side. For each of the three principal (axial) strains, 
the increase in the volume of the cube is equal to the strain. For example, a strain ε1 
makes the cube longer in the 1 direction by  ε1. The increase in the volume of the cube 
is ε1 x 1 x 1 = ε1. The dilatation produced by ε1 is therefore (ε1 x 1 x 1)/(1 x 1 x 1) = 
ε1. Therefore, 

 
1 2 3.ε ε ε∆ = + +  

 
3.13. Take a cube of the material having its faces normal to the principal directions, and 

apply a stress σ1 along the 1 direction. Since 1 1
1

1

,  .E
E

σ σ
ε

ε
= =  Now apply a stress σ2 

along the 2 direction. This will produce a strain along the 2 direction of 2
2 .

E
σ

ε =  In 

turn, this strain will produce a strain along the 1 direction of 2
1 2– – .

E
σ

ε υε υ= =  The 

net strain along the 1 direction now becomes 1 2
1 – .

E E
σ σ

ε υ=  Next apply a stress σ3 

along the 3 direction, and repeat as before to find the total net value of ε1, as given by 
the first equation. Repeat this procedure to find the equations for ε2 and ε3. 

 
Sum the three principal strains using the three equations. It is then straightforward to 
show that 

 

1 2 3
(1– 2 ) ( ).

E
υ

σ σ σ∆ = + +  

 
The dilatation is zero when  υ = 1/2. 

 

3.14. For uniaxial tension, 1 1
(1– 2 ) (1– 2 ) .

E
υ

σ υ ε∆ = =  

 
The volume changes are therefore 0.4ε1, ε1, and 0. 

 

3.15. From Eqn (3.8), – .pK =
∆

 For hydrostatic pressure loading, the equation 

1 2 3
(1– 2 ) ( )

E
υ

σ σ σ∆ = + +  becomes (1– 2 )– (3 ).p
E

υ
∆ =  Then 
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– .
–(1– 2 )3 3(1– 2 )

E EK p
pυ υ

= × =  

 
This shows that K = E when υ = 1/3. 

 
3.16. The solid rubber sole is very resistant to being compressed, because it is restrained 

against lateral Poisson’s ratio expansion by being glued to the relatively stiff sole. 
However, the moulded surface has a much lower resistance to being compressed, 
because the lateral Poisson’s ratio expansion of each separate rubber cube can occur 
without constraint (provided the gaps between adjacent cubes do not close-us 
completely). So your colleague is correct. 

 
3.17. The axial force applied to the cork to push it into the bottle results in a zero lateral 

Poisson’s ratio expansion, so it does not become any harder to push the cork into the 
neck of the bottle. However, the axial force applied to the rubber bung results in a 
large lateral Poisson’s ratio expansion, which can make it almost impossible to force 
the bung into the neck of the bottle. 

 
4. 1. Refer to Fig. 4.11.  

d Force  between atoms = .
d
UF
r

 

 
At the equilibrium distance, ro, the energy U is a minimum (i.e. F is zero, and U is the 
“dissociation energy” Uo). 

 

1 1

o

o o
o o

o

d = = 0,
d

or = .

1=

= 1 .

m n

n m

n m
m n

m

U mA nB
r r r

mB r A
n

A mU r A
r r n
A m
r n

+ +

−

−

−

− + ⋅

 − −  

 

 
Now, for ro = 0.3 nm, Uo = –4 eV. 

2 2

20 2

5= 4 (0.3) = 0.45eV nm
4

= 7.2 10 J nm .

A

−

⋅

×
 

 
8 5 10 25 101

5= (0.3) 0.45 = 0.59 10 eV nm = 9.4 10 J nmB − −× × × . Max force is at 
2

2

d = 0
d

U
r

. 

i.e. at value of r given by 
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1

1 1
8

2 2

o

( 1) ( 1) ( 1)= 0 which is =
( 1)
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1 3
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9

dand Force = = 1
d
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14.9 1.602 10= J m
10
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 ×
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4.2. The term –A/rm is an attractive potential which depends on the type of bonding. The 

B/rn term is a repulsive potential due to charge-cloud overlap and diminished 
screening of the nuclei (see Section 4.2).  

 
4.3. The values of A  are shown below. The mean is 88. The calculated values of the 

moduli are  
 

Material Calculated from 88 kTM/Ω Measured 
Ice 1.0 × 1010 N m–2 7.7 × 109 N m–2 
Diamond 9.0 × 1011 N m–2 1.0 × 1012 N m–2 

 
The calculated values, for these extremes of elastic behaviour, are close to the 
measured values. The important point is that the moduli are roughly propertional to 
absolute melting temperatures. 
A  values: Ni, 98; Cu, 78; Ag, 76; Al, 89; Pb, 51; Fe, 96; V, 61; Cr, 116; Nb, 48; Mo, 
138; Ta, 72; W, 127. 

 

4.4. From eqn (4.3), 
2

2 1
0

d –
d 4 n

U q nB
r r rπε += . 

Setting 
0

d 0
d r r

U
r =

  =  
 gives 

2

2 1
0 0 04 n

q nB
r rπε += . 

Therefore, 
2 –1

0

04

nq rB
nπ ε

=  as required. 

 

From eqn (4.8), 
0

2

0 2

d
d r r

US
r

=

 
=   

. 

From eqn (4.3) and the result derived above for B, 
2 –12

0
i

0 0

1( ) –
4 4

n

n

q rqU r U
r n rπε π ε

= + × . 
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2 –12
0

2 1
0 0

d –
d 4 4

n

n

q rU q
r r rπε πε += . 

2 –12 2
0

2 3 2
0 0

( 1)d 2–
d 4 4

n

n

q n rU q
r r rπε πε +

+
= + . 

Therefore, ( )
2 2 2

0 3 3 3
0 0 0 0 0 0

2 ( 1)– –2 1
4 4 4

q q n qS n
r r rπε πε πε

 +
= + = + +  

. 

Finally, 
2 2

0 3 3
0 0 0 0

( –1)
4 4
n q qS

r r
α

πε πε
= = . 

 
4.5. See Section 4.2, last paragraph. 
 
4.6. See Fig. 4.10. 
 
4.7. See Section 4.5, paragraphs 1 to 3. 
 
5. 1. (a) Let the spheres have a diameter of 1. Then (referring to Fig. 5.3) the unit cell has 

an edge length 2 , and a volume 2 2 . It contains 4 atoms, with a total volume 
4π/6. Hence the density, ρ , is given by  

4= = 0.740.
6.2 2

π
ρ  

 
(b) Glassy nickel is less dense than crystalline nickel by the factor 0.636/0.740. The 

density is therefore 38.90(0.636/0.740) = 7.65 Mg m− . 
 
5.2. (a) 
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