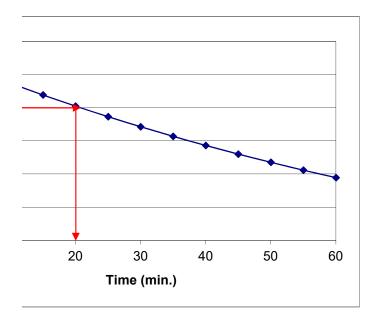

3.1 Stress-Strain Curve II

Stress	Strain		Modulus of Elasticity
(mm/mm)	(MPa)	Material	(GPa)
0.0000	0	Mg Alloy	45
0.0015	168	Al Alloy	70
0.0030	336	Ag	71
0.0045	504	Ti Alloy	110
0.0060	672	Pt	170
		SS	200

a)

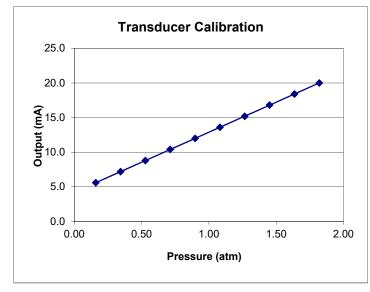

b) Modulusof elasticity is 112000 MPa, or 112 GPa.c) Looks like titantium alloy.

Visit TestBankDeal.com to get complete for all chapters

3.2 Tank Temperature During a Wash-Out

	T _{in} :	35 °I	F	ра	rt b)	
	V _{dot} :	30 lit	ters/min			
	V:	3000 lit	ters		120	
a)	Time (min) 0	Temp. (°F) 115			110 - 100 -	
	5		\$C\$3-(\$C\$3-\$C\$9)*EXP(-\$C\$4/\$C\$5*B10)	(°F)	00	
	10	107		Temp.	90 -	
	15	104		e	00	
	20	100		-	80 -	
	25	97				
	30	94			70 -	
	35	91				
	40	89			60 -	
	45	86			C) 10
	50	84				
	55	81				
	60	79				

- c) From the graph, it should take about 20 minutes to cool the hot tub to 100°F.
- d) If the tank is not well-mixed, it will depend on where the tank effluent comes out. The cold water flow If the effluent is at the top of the tank (as pictured), warm water will preferentially leave the tank, and will be shorter than 20 minutes.



ing in will tend to sink. the time to cool

3.3 Fluid Statics: Manometer

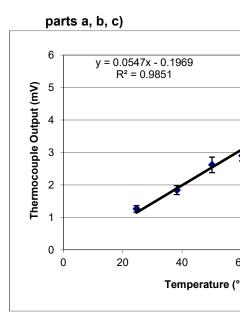
Mercury Density:	13600 kg/m ³
Oil Density:	880 kg/m ³
Grav. Accel.:	9.8 m/s ²

Calibration Data					
Piston	h∟	Manometer	Transducer		
Setting	Reading		Output		
	(mm Oil)	(mm Hg)	(mA)		
1	450	150	5.6		
2	600	300	7.2		
3	750	450	8.8		
4	900	600	10.4		
5	1050	750	12.0		
6	1200	900	13.6		
7	1350	1050	15.2		
8	1500	1200	16.8		
9	1650	1350	18.4		
10	1800	1500	20.0		

h∟	Manometer	Pressure
	Reading	
(m)	(m)	(Pa)
0.45	0.15	16111
0.60	0.30	34810
0.75	0.45	53508
0.90	0.60	72206
1.05	0.75	90905
1.20	0.90	109603
1.35	1.05	128302
1.50	1.20	147000
1.65	1.35	165698
1.80	1.50	184397

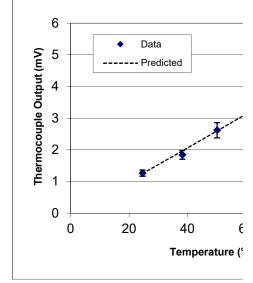
Formulas Used...

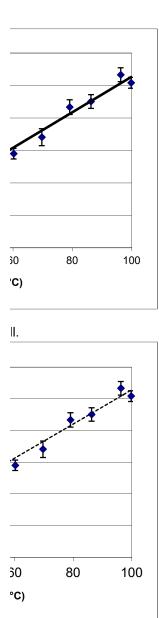
h∟	Manometer	,
	Reading	
(m)	(m)	
=C11/100	C=D11/1000	=(\$C\$3*
=C12/100	C=D12/1000	=(\$C\$3*
=C13/100	C=D13/1000	=(\$C\$3*
=C14/100	C=D14/1000	=(\$C\$3*
=C15/100	C=D15/1000	=(\$C\$3*
=C16/100	C=D16/1000	=(\$C\$3*
=C17/100	C=D17/1000	=(\$C\$3*
=C18/100	C=D18/1000	=(\$C\$3*
=C19/100	C=D19/1000	=(\$C\$3*
=C20/100	C=D20/1000	=(\$C\$3*

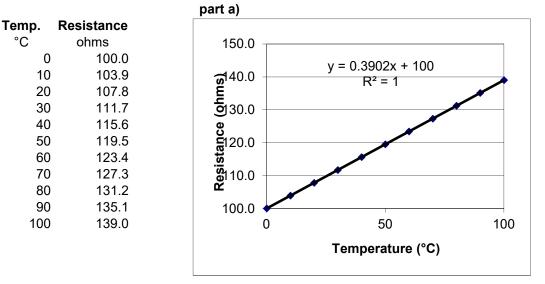

Pressure

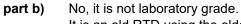
(atm) 0.16 0.34 0.53 0.71 0.90 1.08 1.27 1.45 1.64 1.82


3.4 Thermocouple Calibration Curve

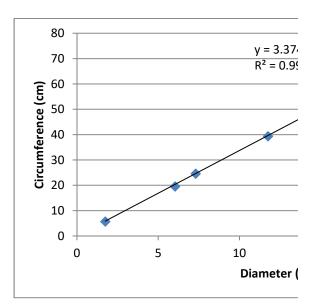

a:	19.741
b:	0.9742

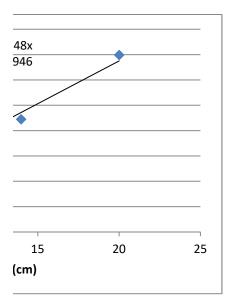

Power		Thermo	couple	
Setting	Thermometer	Average	Stdev	Predicted
	(°C)	(mV)	(mV)	(mV)
0	24.6	1.264	0.100	1.253
1	38.2	1.841	0.138	1.969
2	50.1	2.618	0.240	2.601
3	60.2	2.900	0.164	3.141
4	69.7	3.407	0.260	3.651
5	79.1	4.334	0.225	4.157
6	86.3	4.506	0.212	4.546
7	96.3	5.332	0.216	5.087
8	99.8	5.084	0.168	5.277


part d)



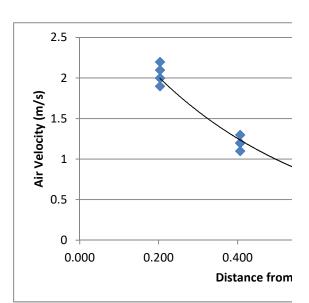
3.5 Resistance Temperature Detector

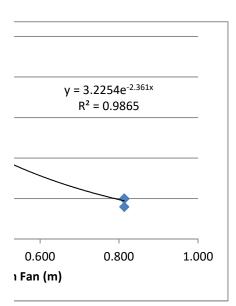



It is an old RTD using the older grade of platinum.

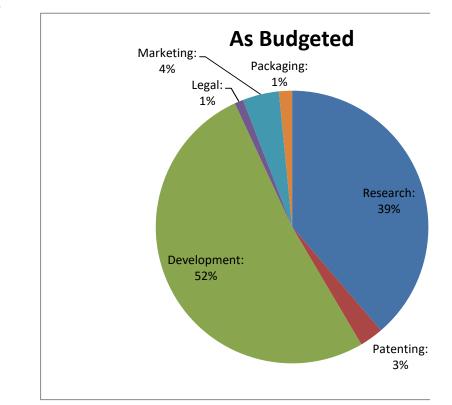
3.6 Experimentally Determining a Value for π

	Diam. (cm)	Circ. (cm)
cup	11.7	39.4
mug	7.3	24.6
pen	1.7	5.7
coffee maker	14.0	44.5
silicon wafer	20.0	69.9
pencil holder	6.0	19.5
Exp. Value: Percent Error:	3.375 7 4%	
r crocht Enor.	1.470	


Note: There was a conscious effort not to be precise in the measurement of circumference.


3.7 Predicting Wind Speed

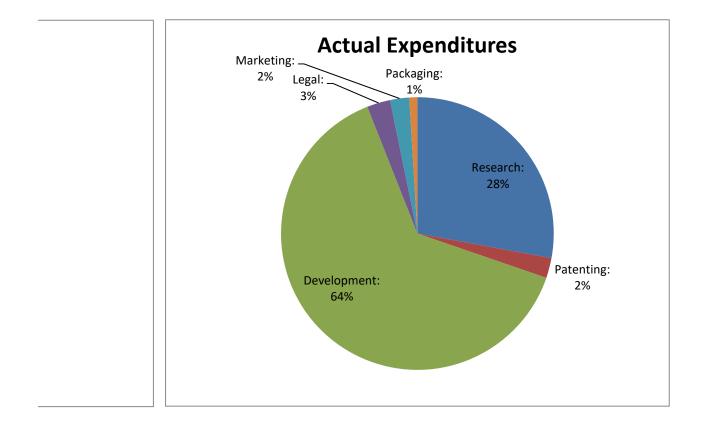
Distance (in)	Distance (m)	Air Vel. (m/s)
8	0.203	2
8	0.203	1.9
8	0.203	2
8	0.203	2.2
8	0.203	2.1
16	0.406	1.3
16	0.406	1.2
16	0.406	1.1
16	0.406	1.2
16	0.406	1.2
32	0.813	0.5
32	0.813	0.4
32	0.813	0.5
32	0.813	0.5
32	0.813	0.5



Predicted Values

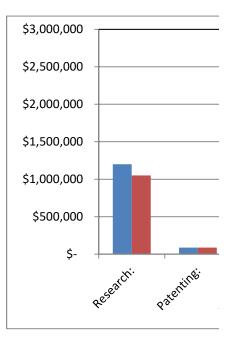
Distance (m)	Air Vel. (m/s)
0.3	1.59
0.6	0.78

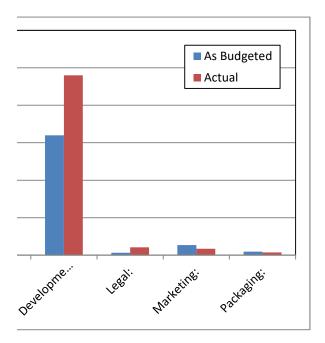
3.8 New Product Development Costs

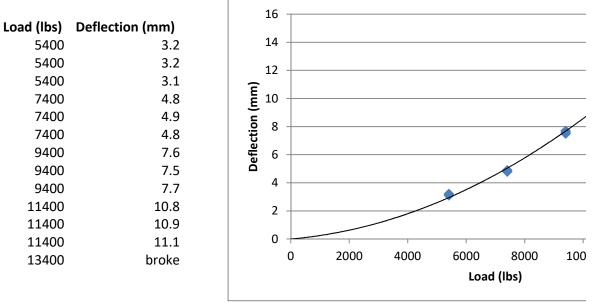


As Budgeted							
Research:	\$	1,200,000					
Patenting:	\$	87,000					
Development:	\$	1,600,000					
Legal:	\$	32,000					
Marketing:	\$	134,000					
Packaging:	\$	48,000					
TOTAL:	\$	3,101,000					
Actual							
Research:	\$	1,050,000					
Patenting:	\$	89,000					
Development:	\$	2,400,000					
Legal:	\$	104,000					
Marketing:	\$	85,000					

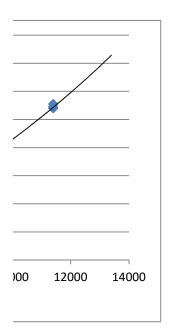
TOTAL: \$ 3,764,000


36,000


Packaging: \$


3.9 New Product Development Costs

	A	s Budgeted		Actual	% Over
Research:	\$	1,200,000	\$	1,050,000	-12.5%
Patenting:	\$	87,000	\$	89,000	2.3%
Development:	\$	1,600,000	\$	2,400,000	50.0%
Legal:	\$	32,000	\$	104,000	225.0%
Marketing:	\$	134,000	\$	85,000	-36.6%
Packaging:	\$	48,000	\$	36,000	-25.0%
TOTAL:	Ş	3,101,000	Ş	3,764,000	



3.10 Bridge Testing

- a) Exponential trendline will not allow line to pass through 0 deflection at 0 load.
 Linear trendline works, but does not fit data set.
 Logarithmic trendline does not fit data set.
 Power trendline fits data set well.
 Polynomial trendline (order = 2) fits data well and does allow line to pass through 0 det
- b) Power and polynomial seem to fit best.
- c) Using the Power trendline and forecasting forward 2000 periods to 13400 lb load, the
- d) Using a second order polynomial trendline, the predicted deflection at 13400 lb load w The predicted deflection at 13400 lb load varies quite a bit with type of trendline used.

flection at 0 load.

deflection would have been 14 mr

ould be 14.7 mm.