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iii

■ ABBREVIATIONS AND SYMBOLS

CD concave downward

CU concave upward

D the domain of

FDT First Derivative Test

HA horizontal asymptote(s)

I interval of convergence

IP inflection point(s)

R radius of convergence

VA vertical asymptote(s)   

=

CAS
indicates the use of a computer algebra system.

=

H
indicates the use of l’Hospital’s Rule.

=

j

indicates the use of Formula in the Table of Integrals in the back endpapers.

=

s
indicates the use of the substitution { }.

=

c
indicates the use of the substitution { }.

f

u � sin x, du � cos x dx

u � cos x, du � �sin x dx

j
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DIAGNOSTIC TESTS

Test A Algebra

1. (a) (−3)4 = (−3)(−3)(−3)(−3) = 81 (b) −34 = −(3)(3)(3)(3) = −81

(c) 3−4 =
1

34
=
1

81
(d)

523

521
= 523−21 = 52 = 25

(e)

2
3

−2
=

3
2

2
= 9

4
(f ) 16−34 =

1

1634
=

1
4
√
16
3 = 1

23
=
1

8

2. (a) Note that
√
200 =

√
100 · 2 = 10√2 and

√
32 =

√
16 · 2 = 4√2. Thus

√
200−√32 = 10√2− 4√2 = 6√2.

(b) (333)(42)2 = 3331624 = 4857

(c)


3323

2−12

−2
=


2−12

3323

2
=
(2−12)2

(3323)2
=

4−1

936
=

4

936
=



97

3. (a) 3(+ 6) + 4(2− 5) = 3+ 18 + 8− 20 = 11− 2

(b) (+ 3)(4− 5) = 42 − 5+ 12− 15 = 42 + 7− 15

(c)
√

+
√

√

−√

=
√


2
−
√

√
+

√

√
−

√

2
= − 

Or: Use the formula for the difference of two squares to see that
√

+
√

√

−√

=
√


2
−
√


2
= − .

(d) (2+ 3)2 = (2+ 3)(2+ 3) = 42 + 6+ 6+ 9 = 42 + 12+ 9.

Note: A quicker way to expand this binomial is to use the formula (+ )2 = 2 + 2+ 2 with  = 2 and  = 3:

(2+ 3)2 = (2)2 + 2(2)(3) + 32 = 42 + 12+ 9

(e) See Reference Page 1 for the binomial formula (+ )3 = 3 + 32+ 32 + 3. Using it, we get

(+ 2)3 = 3 + 32(2) + 3(22) + 23 = 3 + 62 + 12+ 8.

4. (a) Using the difference of two squares formula, 2 − 2 = ( + )( − ), we have

42 − 25 = (2)2 − 52 = (2+ 5)(2− 5).

(b) Factoring by trial and error, we get 22 + 5− 12 = (2− 3)(+ 4).
(c) Using factoring by grouping and the difference of two squares formula, we have

3 − 32 − 4+ 12 = 2(− 3)− 4(− 3) = (2 − 4)(− 3) = (− 2)(+ 2)(− 3).

(d) 4 + 27 = (3 + 27) = (+ 3)(2 − 3+ 9)
This last expression was obtained using the sum of two cubes formula, 3 + 3 = (+ )(2 − + 2) with  = 

and  = 3. [See Reference Page 1 in the textbook.]

(e) The smallest exponent on  is − 1
2

, so we will factor out −12.

332 − 912 + 6−12 = 3−12(2 − 3+ 2) = 3−12(− 1)(− 2)

(f ) 3 − 4 = (2 − 4) = (− 2)(+ 2)
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2 ¤ DIAGNOSTIC TESTS

5. (a)
2 + 3+ 2

2 − − 2 =
(+ 1)(+ 2)

(+ 1)(− 2) =
+ 2

− 2

(b)
22 − − 1

2 − 9 · + 3

2+ 1
=
(2+ 1)(− 1)
(− 3)(+ 3) ·

+ 3

2+ 1
=

− 1
− 3

(c)
2

2 − 4 −
+ 1

+ 2
=

2

(− 2)(+ 2) −
+ 1

+ 2
=

2

(− 2)(+ 2) −
+ 1

+ 2
· − 2
− 2 =

2 − (+ 1)(− 2)
(− 2)(+ 2)

=
2 − (2 − − 2)
(+ 2)(− 2) =

+ 2

(+ 2)(− 2) =
1

− 2

(d)




− 


1


− 1



=




− 


1


− 1



· 


=
2 − 2

− 
=
( − )( + )

−( − )
=

 + 

−1 = −(+ )

6. (a)

√
10√
5− 2 =

√
10√
5− 2 ·

√
5 + 2√
5 + 2

=

√
50 + 2

√
10√

5
2 − 22 =

5
√
2 + 2

√
10

5− 4 = 5
√
2 + 2

√
10

(b)

√
4 + − 2


=

√
4 + − 2


·
√
4 + + 2√
4 + + 2

=
4 + − 4


√
4 + + 2

 = 


√
4 + + 2

 = 1√
4 + + 2

7. (a) 2 + + 1 =

2 + + 1

4


+ 1− 1

4 =

+ 1

2

2
+ 3

4

(b) 22 − 12+ 11 = 2(2 − 6) + 11 = 2(2 − 6+ 9− 9) + 11 = 2(2 − 6+ 9)− 18 + 11 = 2(− 3)2 − 7

8. (a) + 5 = 14− 1
2
 ⇔ + 1

2
 = 14− 5 ⇔ 3

2
 = 9 ⇔  = 2

3
· 9 ⇔  = 6

(b)
2

+ 1
=
2− 1


⇒ 22 = (2− 1)(+ 1) ⇔ 22 = 22 + − 1 ⇔  = 1

(c) 2 − − 12 = 0 ⇔ (+ 3)(− 4) = 0 ⇔ + 3 = 0 or − 4 = 0 ⇔  = −3 or  = 4

(d) By the quadratic formula, 22 + 4+ 1 = 0 ⇔

 =
−4±42 − 4(2)(1)

2(2)
=
−4±√8

4
=
−4± 2√2

4
=
2
−2±√2 

4
=
−2± √

2

2
= −1± 1

2

√
2.

(e) 4 − 32 + 2 = 0 ⇔ (2 − 1)(2 − 2) = 0 ⇔ 2 − 1 = 0 or 2 − 2 = 0 ⇔ 2 = 1 or 2 = 2 ⇔
 = ±1 or  = ±√2

(f ) 3 |− 4| = 10 ⇔ |− 4| = 10
3 ⇔ − 4 = −10

3 or − 4 = 10
3 ⇔  = 2

3 or  = 22
3

(g) Multiplying through 2(4− )−12 − 3√4−  = 0 by (4− )12 gives 2− 3(4− ) = 0 ⇔
2− 12 + 3 = 0 ⇔ 5− 12 = 0 ⇔ 5 = 12 ⇔  = 12

5
.

9. (a) −4  5− 3 ≤ 17 ⇔ −9  −3 ≤ 12 ⇔ 3   ≥ −4 or −4 ≤   3.

In interval notation, the answer is [−4 3).

(b) 2  2+ 8 ⇔ 2 − 2− 8  0 ⇔ (+ 2)(− 4)  0. Now, (+ 2)(− 4) will change sign at the critical

values  = −2 and  = 4. Thus the possible intervals of solution are (−∞−2), (−2 4), and (4∞). By choosing a

single test value from each interval, we see that (−2 4) is the only interval that satisfies the inequality.
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TEST B ANALYTIC GEOMETRY ¤ 3

(c) The inequality (− 1)(+ 2)  0 has critical values of −2 0 and 1. The corresponding possible intervals of solution

are (−∞−2), (−2 0), (0 1) and (1∞). By choosing a single test value from each interval, we see that both intervals

(−2 0) and (1∞) satisfy the inequality. Thus, the solution is the union of these two intervals: (−2 0) ∪ (1∞).

(d) |− 4|  3 ⇔ −3  − 4  3 ⇔ 1    7. In interval notation, the answer is (1 7).

(e)
2− 3
+ 1

≤ 1 ⇔ 2− 3
+ 1

− 1 ≤ 0 ⇔ 2− 3
+ 1

− + 1

+ 1
≤ 0 ⇔ 2− 3− − 1

+ 1
≤ 0 ⇔ − 4

+ 1
≤ 0.

Now, the expression
− 4
+ 1

may change signs at the critical values  = −1 and  = 4, so the possible intervals of solution

are (−∞−1), (−1 4], and [4∞). By choosing a single test value from each interval, we see that (−1 4] is the only

interval that satisfies the inequality.

10. (a) False. In order for the statement to be true, it must hold for all real numbers, so, to show that the statement is false, pick

 = 1 and  = 2 and observe that (1 + 2)2 6= 12 + 22. In general, (+ )2 = 2 + 2 + 2.

(b) True as long as  and  are nonnegative real numbers. To see this, think in terms of the laws of exponents:
√
 = ()12 = 1212 =

√

√
.

(c) False. To see this, let  = 1 and  = 2, then
√
12 + 22 6= 1 + 2.

(d) False. To see this, let  = 1 and  = 2, then
1 + 1(2)

2
6= 1 + 1.

(e) False. To see this, let  = 2 and  = 3, then
1

2− 3 6=
1

2
− 1

3
.

(f ) True since
1

− 
· 

=

1

− 
, as long as  6= 0 and −  6= 0.

Test B Analytic Geometry

1. (a) Using the point (2−5) and  = −3 in the point-slope equation of a line,  − 1 = (− 1), we get

 − (−5) = −3(− 2) ⇒  + 5 = −3+ 6 ⇒  = −3+ 1.

(b) A line parallel to the -axis must be horizontal and thus have a slope of 0. Since the line passes through the point (2−5),
the -coordinate of every point on the line is−5, so the equation is  = −5.

(c) A line parallel to the -axis is vertical with undefined slope. So the -coordinate of every point on the line is 2 and so the

equation is  = 2.

(d) Note that 2− 4 = 3 ⇒ −4 = −2+ 3 ⇒  = 1
2
− 3

4
. Thus the slope of the given line is  = 1

2
. Hence, the

slope of the line we’re looking for is also 1
2

(since the line we’re looking for is required to be parallel to the given line).

So the equation of the line is  − (−5) = 1
2 (− 2) ⇒  + 5 = 1

2− 1 ⇒  = 1
2− 6.

2. First we’ll find the distance between the two given points in order to obtain the radius, , of the circle:

 =

[3− (−1)]2 + (−2− 4)2 =42 + (−6)2 = √52. Next use the standard equation of a circle,

(− )2 + ( − )2 = 2, where ( ) is the center, to get (+ 1)2 + ( − 4)2 = 52.
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4 ¤ DIAGNOSTIC TESTS

3. We must rewrite the equation in standard form in order to identify the center and radius. Note that

2 + 2 − 6+ 10 + 9 = 0 ⇒ 2 − 6+ 9 + 2 + 10 = 0. For the left-hand side of the latter equation, we

factor the first three terms and complete the square on the last two terms as follows: 2 − 6+ 9 + 2 + 10 = 0 ⇒
(− 3)2 + 2 +10+25 = 25 ⇒ (− 3)2 + (+5)2 = 25. Thus, the center of the circle is (3−5) and the radius is 5.

4. (a) (−7 4) and (5−12) ⇒  =
−12− 4
5− (−7) =

−16
12

= −4
3

(b) − 4 = − 4
3 [− (−7)] ⇒ − 4 = −4

3− 28
3 ⇒ 3− 12 = −4− 28 ⇒ 4+3+16 = 0. Putting  = 0,

we get 4+ 16 = 0, so the -intercept is −4, and substituting 0 for  results in a -intercept of −16
3

.

(c) The midpoint is obtained by averaging the corresponding coordinates of both points:

−7+5
2 

4+(−12)
2


= (−1−4).

(d)  =

[5− (−7)]2 + (−12− 4)2 =122 + (−16)2 = √144 + 256 = √400 = 20

(e) The perpendicular bisector is the line that intersects the line segment  at a right angle through its midpoint. Thus the

perpendicular bisector passes through (−1−4) and has slope 3
4

[the slope is obtained by taking the negative reciprocal of

the answer from part (a)]. So the perpendicular bisector is given by  + 4 = 3
4 [− (−1)] or 3− 4 = 13.

(f ) The center of the required circle is the midpoint of , and the radius is half the length of , which is 10. Thus, the

equation is (+ 1)2 + ( + 4)2 = 100.

5. (a) Graph the corresponding horizontal lines (given by the equations  = −1 and

 = 3) as solid lines. The inequality  ≥ −1 describes the points ( ) that lie

on or above the line  = −1. The inequality  ≤ 3 describes the points ( )

that lie on or below the line  = 3. So the pair of inequalities−1 ≤  ≤ 3
describes the points that lie on or between the lines  = −1 and  = 3.

(b) Note that the given inequalities can be written as−4    4 and −2    2,

respectively. So the region lies between the vertical lines  = −4 and  = 4 and

between the horizontal lines  = −2 and  = 2. As shown in the graph, the

region common to both graphs is a rectangle (minus its edges) centered at the

origin.

(c) We first graph  = 1− 1
2 as a dotted line. Since   1− 1

2, the points in the

region lie below this line.
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TEST C FUNCTIONS ¤ 5

(d) We first graph the parabola  = 2 − 1 using a solid curve. Since  ≥ 2 − 1,

the points in the region lie on or above the parabola.

(e) We graph the circle 2 + 2 = 4 using a dotted curve. Since

2 + 2  2, the

region consists of points whose distance from the origin is less than 2, that is,

the points that lie inside the circle.

(f ) The equation 92 + 162 = 144 is an ellipse centered at (0 0). We put it in

standard form by dividing by 144 and get
2

16
+

2

9
= 1. The -intercepts are

located at a distance of
√
16 = 4 from the center while the -intercepts are a

distance of
√
9 = 3 from the center (see the graph).

Test C Functions

1. (a) Locate −1 on the -axis and then go down to the point on the graph with an -coordinate of −1. The corresponding

-coordinate is the value of the function at  = −1, which is−2. So, (−1) = −2.

(b) Using the same technique as in part (a), we get (2) ≈ 28.

(c) Locate 2 on the -axis and then go left and right to find all points on the graph with a -coordinate of 2. The corresponding

-coordinates are the -values we are searching for. So  = −3 and  = 1.

(d) Using the same technique as in part (c), we get  ≈ −25 and  ≈ 03.

(e) The domain is all the -values for which the graph exists, and the range is all the -values for which the graph exists.

Thus, the domain is [−3 3], and the range is [−2 3].

2. Note that (2 + ) = (2 + )3 and (2) = 23 = 8. So the difference quotient becomes

(2 + )− (2)


=
(2 + )3 − 8


=
8 + 12+ 62 + 3 − 8


=
12+ 62 + 3


=

(12 + 6+ 2)


= 12 + 6+ 2.

3. (a) Set the denominator equal to 0 and solve to find restrictions on the domain: 2 + − 2 = 0 ⇒
(− 1)(+ 2) = 0 ⇒  = 1 or  = −2. Thus, the domain is all real numbers except 1 or −2 or, in interval

notation, (−∞−2) ∪ (−2 1) ∪ (1∞).
(b) Note that the denominator is always greater than or equal to 1, and the numerator is defined for all real numbers. Thus, the

domain is (−∞∞).
(c) Note that the function  is the sum of two root functions. So  is defined on the intersection of the domains of these two

root functions. The domain of a square root function is found by setting its radicand greater than or equal to 0. Now,
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6 ¤ DIAGNOSTIC TESTS

4−  ≥ 0 ⇒  ≤ 4 and 2 − 1 ≥ 0 ⇒ (− 1)(+ 1) ≥ 0 ⇒  ≤ −1 or  ≥ 1. Thus, the domain of

 is (−∞−1] ∪ [1 4].

4. (a) Reflect the graph of  about the -axis.

(b) Stretch the graph of  vertically by a factor of 2, then shift 1 unit downward.

(c) Shift the graph of  right 3 units, then up 2 units.

5. (a) Make a table and then connect the points with a smooth curve:

 −2 −1 0 1 2

 −8 −1 0 1 8

(b) Shift the graph from part (a) left 1 unit.

(c) Shift the graph from part (a) right 2 units and up 3 units.

(d) First plot  = 2. Next, to get the graph of () = 4− 2,

reflect  about the x-axis and then shift it upward 4 units.

(e) Make a table and then connect the points with a smooth curve:

 0 1 4 9

 0 1 2 3

(f ) Stretch the graph from part (e) vertically by a factor of two.
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TEST D TRIGONOMETRY ¤ 7

(g) First plot  = 2. Next, get the graph of  = −2 by reflecting the graph of

 = 2 about the x-axis.

(h) Note that  = 1 + −1 = 1 + 1. So first plot  = 1 and then shift it

upward 1 unit.

6. (a) (−2) = 1− (−2)2 = −3 and (1) = 2(1) + 1 = 3

(b) For  ≤ 0 plot () = 1− 2 and, on the same plane, for   0 plot the graph

of () = 2+ 1.

7. (a) ( ◦ )() = (()) = (2− 3) = (2− 3)2 + 2(2− 3)− 1 = 42 − 12+ 9 + 4− 6− 1 = 42 − 8+ 2

(b) ( ◦ )() = (()) = (2 + 2− 1) = 2(2 + 2− 1)− 3 = 22 + 4− 2− 3 = 22 + 4− 5

(c) ( ◦  ◦ )() = ((())) = ((2− 3)) = (2(2− 3)− 3) = (4− 9) = 2(4− 9)− 3
= 8− 18− 3 = 8− 21

Test D Trigonometry

1. (a) 300◦ = 300◦
 

180◦


=
300

180
=
5

3
(b) −18◦ = −18◦

 

180◦


= −18

180
= − 

10

2. (a)
5

6
=
5

6


180



◦
= 150◦ (b) 2 = 2


180



◦
=


360



◦
≈ 1146◦

3. We will use the arc length formula,  = , where  is arc length,  is the radius of the circle, and  is the measure of the

central angle in radians. First, note that 30◦ = 30◦
 

180◦


=



6
. So  = (12)


6


= 2 cm.

4. (a) tan(3) =
√
3

You can read the value from a right triangle with sides 1, 2, and

√
3.


(b) Note that 76 can be thought of as an angle in the third quadrant with reference angle 6. Thus, sin(76) = − 1
2 ,

since the sine function is negative in the third quadrant.

(c) Note that 53 can be thought of as an angle in the fourth quadrant with reference angle 3. Thus,

sec(53) =
1

cos(53)
=

1

12
= 2, since the cosine function is positive in the fourth quadrant.
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