\int COMPLETE SOLUTIONS MANUAL
 ρ
 for

Stewart's
ESSENTIAL CALCULUS
EARLY TRANSCENDENTALS

SECOND EDITION

- BROOKSSCOLE

CENGAGE Learning

© 2013 Brooks/Cole, Cengage Learning

ALL RIGHTS RESERVED. No part of this work covered by the copyright herein may be reproduced, transmitted, stored, or used in any form or by any means graphic, electronic, or mechanical, including but not limited to photocopying, recording, scanning, digitizing, taping, Web distribution, information networks, or information storage and retrieval systems, except as permitted under Section 107 or 108 of the 1976 United States Copyright Act, without the prior written permission of the publisher.

Cover image: Denise Davidson

For product information and technology assistance, contact us at Cengage Learning Customer \& Sales Support, 1-800-354-9706

For permission to use material from this text or product, submit all requests online at www.cengage.com/permissions. Further permissions questions can be e-mailed to permissionrequest@cengage.com.

ISBN-13: 978-1-133-36444-3
ISBN-10: 1-133-36444-6

Brooks/Cole
20 Davis Drive
Belmont, CA 94002-3098
USA

Cengage Learning is a leading provider of customized learning solutions with office locations around the globe, including Singapore, the United Kingdom, Australia, Mexico, Brazil, and Japan. Locate your local office at www.cengage.com/global

Cengage Learning products are represented in Canada by Nelson Education, Ltd.

To learn more about Brooks/Cole, visit www.cengage.com/brookscole

Purchase any of our products at your local college store or at our preferred online store
www.cengagebrain.com

NOTE: UNDER NO CIRCUMSTANCES MAY THIS MATERIAL OR ANY PORTION THEREOF BE SOLD, LICENSED, AUCTIONED, OR OTHERWISE REDISTRIBUTED EXCEPT AS MAY BE PERMITTED BY THE LICENSE TERMS HEREIN.

READ IMPORTANT LICENSE INFORMATION

Dear Professor or Other Supplement Recipient:

Cengage Learning has provided you with this product (the "Supplement") for your review and, to the extent that you adopt the associated textbook for use in connection with your course (the "Course"), you and your students who purchase the textbook may use the Supplement as described below. Cengage Learning has established these use limitations in response to concerns raised by authors, professors, and other users regarding the pedagogical problems stemming from unlimited distribution of Supplements.

Cengage Learning hereby grants you a nontransferable license to use the Supplement in connection with the Course, subject to the following conditions. The Supplement is for your personal, noncommercial use only and may not be reproduced, posted electronically or distributed, except that portions of the Supplement may be provided to your students IN PRINT FORM ONLY in connection with your instruction of the Course, so long as such students are advised that they may not copy or distribute any portion of the Supplement to any third
party. You may not sell, license, auction, or otherwise redistribute the Supplement in any form. We ask that you take reasonable steps to protect the Supplement from unauthorized use, reproduction, or distribution. Your use of the Supplement indicates your acceptance of the conditions set forth in this Agreement. If you do not accept these conditions, you must return the Supplement unused within 30 days of receipt.

All rights (including without limitation, copyrights, patents, and trade secrets) in the Supplement are and will remain the sole and exclusive property of Cengage Learning and/or its licensors. The Supplement is furnished by Cengage Learning on an "as is" basis without any warranties, express or implied. This Agreement will be governed by and construed pursuant to the laws of the State of New York, without regard to such State's conflict of law rules.

Thank you for your assistance in helping to safeguard the integrity of the content contained in this Supplement. We trust you find the Supplement a useful teaching tool.

Printed in the United States of America
$\begin{array}{lllllllllll}1 & 2 & 3 & 4 & 5 & 6 & 7 & 16 & 15 & 14 & 13 \\ 12\end{array}$

ABBREVIATIONS AND SYMBOLS

CD	concave downward
CU	concave upward
D	the domain of f
FDT	First Derivative Test
HA	horizontal asymptote(s)
I	interval of convergence
IP	inflection point(s)
R	radius of convergence
VA	vertical asymptote(s)
CAS	indicates the use of a computer algebra system.
$\stackrel{\text { H }}{=}$	indicates the use of l'Hospital's Rule.
$\stackrel{j}{=}$	indicates the use of Formula j in the Table of Integrals in the back endpapers.
$\stackrel{s}{=}$	indicates the use of the substitution $\{u=\sin x, d u=\cos x d x\}$.
$\stackrel{\text { c }}{=}$	indicates the use of the substitution $\{u=\cos x, d u=-\sin x d x\}$.

\square	DIAGNOSTIC TESTS $\quad 1$

1	FUNCTIONS AND LIMITS 9			
	1.1	Functions and Their Representations 9		
	1.2	A Catalog of Essential Functions 17		
	1.3		30	
	1.4	Calculating Limits 38		
	1.5	Continuity 48		
	1.6	Limits Involving Infinity	56	
		Review 65		
2		77		

2.1 Derivatives and Rates of Change 77
2.2 The Derivative as a Function 87
2.3 Basic Differentiation Formulas 98
2.4 The Product and Quotient Rules 107
2.5 The Chain Rule 115
2.6 Implicit Differentiation 123
2.7 Related Rates 132
2.8 Linear Approximations and Differentials 139
Review 144
3 INVERSE FUNCTIONS: Exponential, Logarithmic, and Inverse Trigonometric Functions 155
3.1 Exponential Functions 155
3.2 Inverse Functions and Logarithms 159
3.3 Derivatives of Logarithmic and Exponential Functions 168
3.4 Exponential Growth and Decay 175
3.5 Inverse Trigonometric Functions 179
INSTRUCTOR US \square
3.6 Hyperbolic Functions 184
3.7 Indeterminate Forms and l'Hospital's Rule 191Review 199
4 APPLICATIONS OF DIFFERENTIATION 209
4.1 Maximum and Minimum Values 209
4.2 The Mean Value Theorem 218
4.3 Derivatives and the Shapes of Graphs 223
4.4 Curve Sketching 241
4.5 Optimization Problems 265
4.6 Newton's Method 279
4.7 Antiderivatives 287
Review 294
5 INTEGRALS 313
5.1 Areas and Distances 313
5.2 The Definite Integral 320
5.3 Evaluating Definite Integrals 329
5.4 The Fundamental Theorem of Calculus 335
5.5 The Substitution Rule 342
Review 348
6 TECHNIQUES OF INTEGRATION 357
6.1 Integration by Parts 357
6.2 Trigonometric Integrals and Substitutions 364
6.3 Partial Fractions 375
6.4 Integration with Tables and Computer Algebra Systems 385
6.5 Approximate Integration 393
6.6 Improper Integrals 405
Review 417
7 APPLICATIONS OF INTEGRATION 429
7.1 Areas Between Curves 429
7.2 Volumes 437
7.3 Volumes by Cylindrical Shells 452
7.4 Arc Length 461
7.5 Area of a Surface of Revolution 467
7.6 Applications to Physics and Engineering 473
7.7 Differential Equations 486
Review 499
INSTRUCTOR USE
(c) Cengage Learning, All Rights Reserved.

9 PARAMETRIC EQUATIONS AND POLAR COORDINATES 591
9.1 Parametric Curves 591
9.2 Calculus with Parametric Curves 604
9.3 Polar Coordinates 615
9.4 Areas and Lengths in Polar Coordinates 631
9.5 Conic Sections in Polar Coordinates 638

Review 643

10 VECTORS AND THE GEOMETRY OF SPACE 653
10.1 Three-Dimensional Coordinate Systems
653
10.2 Vectors 659
10.3 The Dot Product 667
10.4 The Cross Product 674
10.5 Equations of Lines and Planes 685
10.6 Cylinders and Quadric Surfaces 694
10.7 Vector Functions and Space Curves 701
10.8 Arc Length and Curvature 714
10.9 Motion in Space: Velocity and Acceleration 726

Review 733

11 PARTIAL DERIVATIVES 747
11.1 Functions of Several Variables 747
11.2 Limits and Continuity 758
11.3 Partial Derivatives 762
11.4 Tangent Planes and Linear Approximations 775
11.5 The Chain Rule 782
11.6 Directional Derivatives and the Gradient Vector 791

INSTRUCTOR USE ONLY
© Cengage LearningAll Rights Reserved.
viii \square CONTENTS
11.7 Maximum and Minimum Values 801
11.8 Lagrange Multipliers 817
Review 828
12 MULTIPLE INTEGRALS 843
12.1 Double Integrals over Rectangles 843
12.2 Double Integrals over General Regions 850
12.3 Double Integrals in Polar Coordinates 861
12.4 Applications of Double Integrals 866
12.5 Triple Integrals 872
12.6 Triple Integrals in Cylindrical Coordinates 887
12.7 Triple Integrals in Spherical Coordinates 893
12.8 Change of Variables in Multiple Integrals 903
Review 909
13 VECTOR CALCULUS 919
13.1 Vector Fields 919
13.2 Line Integrals 924
13.3 The Fundamental Theorem for Line Integrals 932
13.4 Green's Theorem 937
13.5 Curl and Divergence 943
13.6 Parametric Surfaces and Their Areas 952
13.7 Surface Integrals 964
13.8 Stokes' Theorem 975
13.9 The Divergence Theorem 979
Review 984
APPENDIXES 993
A Trigonometry 993
B Sigma Notation 1000
C The Logarithm Defined as an Integral 1004
INSTRUCTOR USE ONL

DIAGNOSTIC TESTS

Test A Algebra

1. (a) $(-3)^{4}=(-3)(-3)(-3)(-3)=81$
(b) $-3^{4}=-(3)(3)(3)(3)=-81$
(c) $3^{-4}=\frac{1}{3^{4}}=\frac{1}{81}$
(d) $\frac{5^{23}}{5^{21}}=5^{23-21}=5^{2}=25$
(e) $\left(\frac{2}{3}\right)^{-2}=\left(\frac{3}{2}\right)^{2}=\frac{9}{4}$
(f) $16^{-3 / 4}=\frac{1}{16^{3 / 4}}=\frac{1}{(\sqrt[4]{16})^{3}}=\frac{1}{2^{3}}=\frac{1}{8}$
2. (a) Note that $\sqrt{200}=\sqrt{100 \cdot 2}=10 \sqrt{2}$ and $\sqrt{32}=\sqrt{16 \cdot 2}=4 \sqrt{2}$. Thus $\sqrt{200}-\sqrt{32}=10 \sqrt{2}-4 \sqrt{2}=6 \sqrt{2}$.
(b) $\left(3 a^{3} b^{3}\right)\left(4 a b^{2}\right)^{2}=3 a^{3} b^{3} 16 a^{2} b^{4}=48 a^{5} b^{7}$
(c) $\left(\frac{3 x^{3 / 2} y^{3}}{x^{2} y^{-1 / 2}}\right)^{-2}=\left(\frac{x^{2} y^{-1 / 2}}{3 x^{3 / 2} y^{3}}\right)^{2}=\frac{\left(x^{2} y^{-1 / 2}\right)^{2}}{\left(3 x^{3 / 2} y^{3}\right)^{2}}=\frac{x^{4} y^{-1}}{9 x^{3} y^{6}}=\frac{x^{4}}{9 x^{3} y^{6} y}=\frac{x}{9 y^{7}}$
3. (a) $3(x+6)+4(2 x-5)=3 x+18+8 x-20=11 x-2$
(b) $(x+3)(4 x-5)=4 x^{2}-5 x+12 x-15=4 x^{2}+7 x-15$
(c) $(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})=(\sqrt{a})^{2}-\sqrt{a} \sqrt{b}+\sqrt{a} \sqrt{b}-(\sqrt{b})^{2}=a-b$

Or: Use the formula for the difference of two squares to see that $(\sqrt{a}+\sqrt{b})(\sqrt{a}-\sqrt{b})=(\sqrt{a})^{2}-(\sqrt{b})^{2}=a-b$.
(d) $(2 x+3)^{2}=(2 x+3)(2 x+3)=4 x^{2}+6 x+6 x+9=4 x^{2}+12 x+9$.

Note: A quicker way to expand this binomial is to use the formula $(a+b)^{2}=a^{2}+2 a b+b^{2}$ with $a=2 x$ and $b=3$: $(2 x+3)^{2}=(2 x)^{2}+2(2 x)(3)+3^{2}=4 x^{2}+12 x+9$
(e) See Reference Page 1 for the binomial formula $(a+b)^{3}=a^{3}+3 a^{2} b+3 a b^{2}+b^{3}$. Using it, we get $(x+2)^{3}=x^{3}+3 x^{2}(2)+3 x\left(2^{2}\right)+2^{3}=x^{3}+6 x^{2}+12 x+8$.
4. (a) Using the difference of two squares formula, $a^{2}-b^{2}=(a+b)(a-b)$, we have
$4 x^{2}-25=(2 x)^{2}-5^{2}=(2 x+5)(2 x-5)$.
(b) Factoring by trial and error, we get $2 x^{2}+5 x-12=(2 x-3)(x+4)$.
(c) Using factoring by grouping and the difference of two squares formula, we have
$x^{3}-3 x^{2}-4 x+12=x^{2}(x-3)-4(x-3)=\left(x^{2}-4\right)(x-3)=(x-2)(x+2)(x-3)$.
(d) $x^{4}+27 x=x\left(x^{3}+27\right)=x(x+3)\left(x^{2}-3 x+9\right)$

This last expression was obtained using the sum of two cubes formula, $a^{3}+b^{3}=(a+b)\left(a^{2}-a b+b^{2}\right)$ with $a=x$ and $b=3$. [See Reference Page 1 in the textbook.]
(e) The smallest exponent on x is $-\frac{1}{2}$, so we will factor out $x^{-1 / 2}$.
$3 x^{3 / 2}-9 x^{1 / 2}+6 x^{-1 / 2}=3 x^{-1 / 2}\left(x^{2}-3 x+2\right)=3 x^{-1 / 2}(x-1)(x-2)$
(f) $x^{3} y-4 x y=x y\left(x^{2}-4\right)=x y(x-2)(x+2)$

2
5. (a) $\frac{x^{2}+3 x+2}{x^{2}-x-2}=\frac{(x+1)(x+2)}{(x+1)(x-2)}=\frac{x+2}{x-2}$
(b) $\frac{2 x^{2}-x-1}{x^{2}-9} \cdot \frac{x+3}{2 x+1}=\frac{(2 x+1)(x-1)}{(x-3)(x+3)} \cdot \frac{x+3}{2 x+1}=\frac{x-1}{x-3}$
(c) $\frac{x^{2}}{x^{2}-4}-\frac{x+1}{x+2}=\frac{x^{2}}{(x-2)(x+2)}-\frac{x+1}{x+2}=\frac{x^{2}}{(x-2)(x+2)}-\frac{x+1}{x+2} \cdot \frac{x-2}{x-2}=\frac{x^{2}-(x+1)(x-2)}{(x-2)(x+2)}$

$$
=\frac{x^{2}-\left(x^{2}-x-2\right)}{(x+2)(x-2)}=\frac{x+2}{(x+2)(x-2)}=\frac{1}{x-2}
$$

(d) $\frac{\frac{y}{x}-\frac{x}{y}}{\frac{1}{y}-\frac{1}{x}}=\frac{\frac{y}{x}-\frac{x}{y}}{\frac{1}{y}-\frac{1}{x}} \cdot \frac{x y}{x y}=\frac{y^{2}-x^{2}}{x-y}=\frac{(y-x)(y+x)}{-(y-x)}=\frac{y+x}{-1}=-(x+y)$
6. (a) $\frac{\sqrt{10}}{\sqrt{5}-2}=\frac{\sqrt{10}}{\sqrt{5}-2} \cdot \frac{\sqrt{5}+2}{\sqrt{5}+2}=\frac{\sqrt{50}+2 \sqrt{10}}{(\sqrt{5})^{2}-2^{2}}=\frac{5 \sqrt{2}+2 \sqrt{10}}{5-4}=5 \sqrt{2}+2 \sqrt{10}$
(b) $\frac{\sqrt{4+h}-2}{h}=\frac{\sqrt{4+h}-2}{h} \cdot \frac{\sqrt{4+h}+2}{\sqrt{4+h}+2}=\frac{4+h-4}{h(\sqrt{4+h}+2)}=\frac{h}{h(\sqrt{4+h}+2)}=\frac{1}{\sqrt{4+h}+2}$
7. (a) $x^{2}+x+1=\left(x^{2}+x+\frac{1}{4}\right)+1-\frac{1}{4}=\left(x+\frac{1}{2}\right)^{2}+\frac{3}{4}$
(b) $2 x^{2}-12 x+11=2\left(x^{2}-6 x\right)+11=2\left(x^{2}-6 x+9-9\right)+11=2\left(x^{2}-6 x+9\right)-18+11=2(x-3)^{2}-7$
8. (a) $x+5=14-\frac{1}{2} x \quad \Leftrightarrow \quad x+\frac{1}{2} x=14-5 \quad \Leftrightarrow \quad \frac{3}{2} x=9 \quad \Leftrightarrow \quad x=\frac{2}{3} \cdot 9 \quad \Leftrightarrow \quad x=6$
(b) $\frac{2 x}{x+1}=\frac{2 x-1}{x} \Rightarrow 2 x^{2}=(2 x-1)(x+1) \quad \Leftrightarrow \quad 2 x^{2}=2 x^{2}+x-1 \quad \Leftrightarrow \quad x=1$
(c) $x^{2}-x-12=0 \Leftrightarrow(x+3)(x-4)=0 \quad \Leftrightarrow \quad x+3=0$ or $x-4=0 \quad \Leftrightarrow \quad x=-3$ or $x=4$
(d) By the quadratic formula, $2 x^{2}+4 x+1=0 \Leftrightarrow$

$$
x=\frac{-4 \pm \sqrt{4^{2}-4(2)(1)}}{2(2)}=\frac{-4 \pm \sqrt{8}}{4}=\frac{-4 \pm 2 \sqrt{2}}{4}=\frac{2(-2 \pm \sqrt{2})}{4}=\frac{-2 \pm \sqrt{2}}{2}=-1 \pm \frac{1}{2} \sqrt{2} .
$$

(e) $x^{4}-3 x^{2}+2=0 \Leftrightarrow\left(x^{2}-1\right)\left(x^{2}-2\right)=0 \quad \Leftrightarrow \quad x^{2}-1=0$ or $x^{2}-2=0 \quad \Leftrightarrow \quad x^{2}=1$ or $x^{2}=2 \Leftrightarrow$ $x= \pm 1$ or $x= \pm \sqrt{2}$
(f) $3|x-4|=10 \quad \Leftrightarrow|x-4|=\frac{10}{3} \quad \Leftrightarrow \quad x-4=-\frac{10}{3}$ or $x-4=\frac{10}{3} \quad \Leftrightarrow \quad x=\frac{2}{3}$ or $x=\frac{22}{3}$
(g) Multiplying through $2 x(4-x)^{-1 / 2}-3 \sqrt{4-x}=0$ by $(4-x)^{1 / 2}$ gives $2 x-3(4-x)=0 \Leftrightarrow$ $2 x-12+3 x=0 \Leftrightarrow 5 x-12=0 \quad \Leftrightarrow \quad 5 x=12 \quad \Leftrightarrow \quad x=\frac{12}{5}$.
9. (a) $-4<5-3 x \leq 17 \Leftrightarrow-9<-3 x \leq 12 \Leftrightarrow 3>x \geq-4$ or $-4 \leq x<3$.

In interval notation, the answer is $[-4,3)$.
(b) $x^{2}<2 x+8 \Leftrightarrow x^{2}-2 x-8<0 \Leftrightarrow(x+2)(x-4)<0$. Now, $(x+2)(x-4)$ will change sign at the critical values $x=-2$ and $x=4$. Thus the possible intervals of solution are $(-\infty,-2),(-2,4)$, and $(4, \infty)$. By choosing a single test value from each interval, we see that $(-2,4)$ is the only interval that satisfies the inequality.
(c) The inequality $x(x-1)(x+2)>0$ has critical values of $-2,0$, and 1 . The corresponding possible intervals of solution are $(-\infty,-2),(-2,0),(0,1)$ and $(1, \infty)$. By choosing a single test value from each interval, we see that both intervals $(-2,0)$ and $(1, \infty)$ satisfy the inequality. Thus, the solution is the union of these two intervals: $(-2,0) \cup(1, \infty)$.
(d) $|x-4|<3 \Leftrightarrow-3<x-4<3 \Leftrightarrow 1<x<7$. In interval notation, the answer is $(1,7)$.
(e) $\frac{2 x-3}{x+1} \leq 1 \Leftrightarrow \frac{2 x-3}{x+1}-1 \leq 0 \Leftrightarrow \frac{2 x-3}{x+1}-\frac{x+1}{x+1} \leq 0 \quad \Leftrightarrow \quad \frac{2 x-3-x-1}{x+1} \leq 0 \quad \Leftrightarrow \quad \frac{x-4}{x+1} \leq 0$.

Now, the expression $\frac{x-4}{x+1}$ may change signs at the critical values $x=-1$ and $x=4$, so the possible intervals of solution are $(-\infty,-1),(-1,4]$, and $[4, \infty)$. By choosing a single test value from each interval, we see that $(-1,4]$ is the only interval that satisfies the inequality.
10. (a) False. In order for the statement to be true, it must hold for all real numbers, so, to show that the statement is false, pick $p=1$ and $q=2$ and observe that $(1+2)^{2} \neq 1^{2}+2^{2}$. In general, $(p+q)^{2}=p^{2}+2 p q+q^{2}$.
(b) True as long as a and b are nonnegative real numbers. To see this, think in terms of the laws of exponents: $\sqrt{a b}=(a b)^{1 / 2}=a^{1 / 2} b^{1 / 2}=\sqrt{a} \sqrt{b}$.
(c) False. To see this, let $p=1$ and $q=2$, then $\sqrt{1^{2}+2^{2}} \neq 1+2$.
(d) False. To see this, let $T=1$ and $C=2$, then $\frac{1+1(2)}{2} \neq 1+1$.
(e) False. To see this, let $x=2$ and $y=3$, then $\frac{1}{2-3} \neq \frac{1}{2}-\frac{1}{3}$.
(f) True since $\frac{1 / x}{a / x-b / x} \cdot \frac{x}{x}=\frac{1}{a-b}$, as long as $x \neq 0$ and $a-b \neq 0$.

Test B Analytic Geometry

1. (a) Using the point $(2,-5)$ and $m=-3$ in the point-slope equation of a line, $y-y_{1}=m\left(x-x_{1}\right)$, we get $y-(-5)=-3(x-2) \quad \Rightarrow \quad y+5=-3 x+6 \quad \Rightarrow \quad y=-3 x+1$.
(b) A line parallel to the x-axis must be horizontal and thus have a slope of 0 . Since the line passes through the point $(2,-5)$, the y-coordinate of every point on the line is -5 , so the equation is $y=-5$.
(c) A line parallel to the y-axis is vertical with undefined slope. So the x-coordinate of every point on the line is 2 and so the equation is $x=2$.
(d) Note that $2 x-4 y=3 \Rightarrow-4 y=-2 x+3 \Rightarrow y=\frac{1}{2} x-\frac{3}{4}$. Thus the slope of the given line is $m=\frac{1}{2}$. Hence, the slope of the line we're looking for is also $\frac{1}{2}$ (since the line we're looking for is required to be parallel to the given line). So the equation of the line is $y-(-5)=\frac{1}{2}(x-2) \Rightarrow y+5=\frac{1}{2} x-1 \Rightarrow y=\frac{1}{2} x-6$.
2. First we'll find the distance between the two given points in order to obtain the radius, r, of the circle: $r=\sqrt{[3-(-1)]^{2}+(-2-4)^{2}}=\sqrt{4^{2}+(-6)^{2}}=\sqrt{52}$. Next use the standard equation of a circle, $(x-h)^{2}+(y-k)^{2}=r^{2}$, where (h, k) is the center, to get $(x+1)^{2}+(y-4)^{2}=52$.
3. We must rewrite the equation in standard form in order to identify the center and radius. Note that $x^{2}+y^{2}-6 x+10 y+9=0 \Rightarrow x^{2}-6 x+9+y^{2}+10 y=0$. For the left-hand side of the latter equation, we factor the first three terms and complete the square on the last two terms as follows: $x^{2}-6 x+9+y^{2}+10 y=0 \Rightarrow$ $(x-3)^{2}+y^{2}+10 y+25=25 \Rightarrow(x-3)^{2}+(y+5)^{2}=25$. Thus, the center of the circle is $(3,-5)$ and the radius is 5 .
4. (a) $A(-7,4)$ and $B(5,-12) \Rightarrow m_{A B}=\frac{-12-4}{5-(-7)}=\frac{-16}{12}=-\frac{4}{3}$
(b) $y-4=-\frac{4}{3}[x-(-7)] \Rightarrow y-4=-\frac{4}{3} x-\frac{28}{3} \Rightarrow 3 y-12=-4 x-28 \quad \Rightarrow \quad 4 x+3 y+16=0$. Putting $y=0$, we get $4 x+16=0$, so the x-intercept is -4 , and substituting 0 for x results in a y-intercept of $-\frac{16}{3}$.
(c) The midpoint is obtained by averaging the corresponding coordinates of both points: $\left(\frac{-7+5}{2}, \frac{4+(-12)}{2}\right)=(-1,-4)$.
(d) $d=\sqrt{[5-(-7)]^{2}+(-12-4)^{2}}=\sqrt{12^{2}+(-16)^{2}}=\sqrt{144+256}=\sqrt{400}=20$
(e) The perpendicular bisector is the line that intersects the line segment $\overline{A B}$ at a right angle through its midpoint. Thus the perpendicular bisector passes through $(-1,-4)$ and has slope $\frac{3}{4}$ [the slope is obtained by taking the negative reciprocal of the answer from part (a)]. So the perpendicular bisector is given by $y+4=\frac{3}{4}[x-(-1)]$ or $3 x-4 y=13$.
(f) The center of the required circle is the midpoint of $\overline{A B}$, and the radius is half the length of $\overline{A B}$, which is 10 . Thus, the equation is $(x+1)^{2}+(y+4)^{2}=100$.
5. (a) Graph the corresponding horizontal lines (given by the equations $y=-1$ and $y=3$) as solid lines. The inequality $y \geq-1$ describes the points (x, y) that lie on or above the line $y=-1$. The inequality $y \leq 3$ describes the points (x, y) that lie on or below the line $y=3$. So the pair of inequalities $-1 \leq y \leq 3$ describes the points that lie on or between the lines $y=-1$ and $y=3$.
(b) Note that the given inequalities can be written as $-4<x<4$ and $-2<y<2$, respectively. So the region lies between the vertical lines $x=-4$ and $x=4$ and between the horizontal lines $y=-2$ and $y=2$. As shown in the graph, the region common to both graphs is a rectangle (minus its edges) centered at the origin.
(c) We first graph $y=1-\frac{1}{2} x$ as a dotted line. Since $y<1-\frac{1}{2} x$, the points in the region lie below this line.

(d) We first graph the parabola $y=x^{2}-1$ using a solid curve. Since $y \geq x^{2}-1$, the points in the region lie on or above the parabola.

(e) We graph the circle $x^{2}+y^{2}=4$ using a dotted curve. Since $\sqrt{x^{2}+y^{2}}<2$, the region consists of points whose distance from the origin is less than 2, that is, the points that lie inside the circle.

(f) The equation $9 x^{2}+16 y^{2}=144$ is an ellipse centered at $(0,0)$. We put it in standard form by dividing by 144 and get $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$. The x-intercepts are located at a distance of $\sqrt{16}=4$ from the center while the y-intercepts are a distance of $\sqrt{9}=3$ from the center (see the graph).

Test C Functions

1. (a) Locate -1 on the x-axis and then go down to the point on the graph with an x-coordinate of -1 . The corresponding y-coordinate is the value of the function at $x=-1$, which is -2 . So, $f(-1)=-2$.
(b) Using the same technique as in part (a), we get $f(2) \approx 2.8$.
(c) Locate 2 on the y-axis and then go left and right to find all points on the graph with a y-coordinate of 2 . The corresponding x-coordinates are the x-values we are searching for. So $x=-3$ and $x=1$.
(d) Using the same technique as in part (c), we get $x \approx-2.5$ and $x \approx 0.3$.
(e) The domain is all the x-values for which the graph exists, and the range is all the y-values for which the graph exists. Thus, the domain is $[-3,3]$, and the range is $[-2,3]$.
2. Note that $f(2+h)=(2+h)^{3}$ and $f(2)=2^{3}=8$. So the difference quotient becomes $\frac{f(2+h)-f(2)}{h}=\frac{(2+h)^{3}-8}{h}=\frac{8+12 h+6 h^{2}+h^{3}-8}{h}=\frac{12 h+6 h^{2}+h^{3}}{h}=\frac{h\left(12+6 h+h^{2}\right)}{h}=12+6 h+h^{2}$.
3. (a) Set the denominator equal to 0 and solve to find restrictions on the domain: $x^{2}+x-2=0 \Rightarrow$ $(x-1)(x+2)=0 \Rightarrow x=1$ or $x=-2$. Thus, the domain is all real numbers except 1 or -2 or, in interval notation, $(-\infty,-2) \cup(-2,1) \cup(1, \infty)$.
(b) Note that the denominator is always greater than or equal to 1 , and the numerator is defined for all real numbers. Thus, the domain is $(-\infty, \infty)$.
(c) Note that the function h is the sum of two root functions. So h is defined on the intersection of the domains of these two root functions. The domain of a square root function is found by setting its radicand greater than or equal to 0 . Now,
$4-x \geq 0 \Rightarrow x \leq 4$ and $x^{2}-1 \geq 0 \Rightarrow(x-1)(x+1) \geq 0 \quad \Rightarrow \quad x \leq-1$ or $x \geq 1$. Thus, the domain of h is $(-\infty,-1] \cup[1,4]$.
4. (a) Reflect the graph of f about the x-axis.
(b) Stretch the graph of f vertically by a factor of 2 , then shift 1 unit downward.
(c) Shift the graph of f right 3 units, then up 2 units.
5. (a) Make a table and then connect the points with a smooth curve:

x	-2	-1	0	1	2
y	-8	-1	0	1	8

(b) Shift the graph from part (a) left 1 unit.
(c) Shift the graph from part (a) right 2 units and up 3 units.

(d) First plot $y=x^{2}$. Next, to get the graph of $f(x)=4-x^{2}$, reflect f about the x-axis and then shift it upward 4 units.

(e) Make a table and then connect the points with a smooth curve:

x	0	1	4	9
y	0	1	2	3

(f) Stretch the graph from part (e) vertically by a factor of two.

(g) First plot $y=2^{x}$. Next, get the graph of $y=-2^{x}$ by reflecting the graph of $y=2^{x}$ about the x-axis.

(h) Note that $y=1+x^{-1}=1+1 / x$. So first plot $y=1 / x$ and then shift it upward 1 unit.

6. (a) $f(-2)=1-(-2)^{2}=-3$ and $f(1)=2(1)+1=3$
(b) For $x \leq 0$ plot $f(x)=1-x^{2}$ and, on the same plane, for $x>0$ plot the graph of $f(x)=2 x+1$.

7. (a) $(f \circ g)(x)=f(g(x))=f(2 x-3)=(2 x-3)^{2}+2(2 x-3)-1=4 x^{2}-12 x+9+4 x-6-1=4 x^{2}-8 x+2$
(b) $(g \circ f)(x)=g(f(x))=g\left(x^{2}+2 x-1\right)=2\left(x^{2}+2 x-1\right)-3=2 x^{2}+4 x-2-3=2 x^{2}+4 x-5$
(c) $(g \circ g \circ g)(x)=g(g(g(x)))=g(g(2 x-3))=g(2(2 x-3)-3)=g(4 x-9)=2(4 x-9)-3$

$$
=8 x-18-3=8 x-21
$$

Test D Trigonometry

1. (a) $300^{\circ}=300^{\circ}\left(\frac{\pi}{180^{\circ}}\right)=\frac{300 \pi}{180}=\frac{5 \pi}{3}$
(b) $-18^{\circ}=-18^{\circ}\left(\frac{\pi}{180^{\circ}}\right)=-\frac{18 \pi}{180}=-\frac{\pi}{10}$
2. (a) $\frac{5 \pi}{6}=\frac{5 \pi}{6}\left(\frac{180}{\pi}\right)^{\circ}=150^{\circ}$
(b) $2=2\left(\frac{180}{\pi}\right)^{\circ}=\left(\frac{360}{\pi}\right)^{\circ} \approx 114.6^{\circ}$
3. We will use the arc length formula, $s=r \theta$, where s is arc length, r is the radius of the circle, and θ is the measure of the central angle in radians. First, note that $30^{\circ}=30^{\circ}\left(\frac{\pi}{180^{\circ}}\right)=\frac{\pi}{6}$. So $s=(12)\left(\frac{\pi}{6}\right)=2 \pi \mathrm{~cm}$.
4. (a) $\tan (\pi / 3)=\sqrt{3} \quad$ [You can read the value from a right triangle with sides 1,2 , and $\sqrt{3}$.]
(b) Note that $7 \pi / 6$ can be thought of as an angle in the third quadrant with reference angle $\pi / 6$. Thus, $\sin (7 \pi / 6)=-\frac{1}{2}$, since the sine function is negative in the third quadrant.
(c) Note that $5 \pi / 3$ can be thought of as an angle in the fourth quadrant with reference angle $\pi / 3$. Thus, $\sec (5 \pi / 3)=\frac{1}{\cos (5 \pi / 3)}=\frac{1}{1 / 2}=2$, since the cosine function is positive in the fourth quadrant.
