CHAPTER 2

ORGANIZING AND VISUALIZING DATA CHAPTER LEARNING OBJECTIVES

1. Organize categorical data into frequency tables, percent frequency tables, and cumulative frequency tables, and understand how two-variable data sets can be organized using a crosstabulation chart.
2. Describe and construct different types of categorical data graphs, including pie charts, bar charts, and Pareto charts, and explain when these graphs should be used.
3. Construct a frequency distribution from a set of data, and explain what the distribution represents.
4. Describe and construct different types of quantitative data graphs, including histograms, cumulative frequency histograms, and frequency polygons, and explain when these graphs should be used.

TRUE-FALSE STATEMENTS

1. A graphical representation of a frequency distribution is called a pie chart.

Answer: False
Difficulty: Easy
Learning Objective: Describe and construct different types of categorical data graphs, including pie charts, bar charts, and Pareto charts, and explain when these graphs should be used.
Section Reference: 2.2 Visualizing Categorical Data
AACSB: Communication
Bloomcode: Knowledge
2. In contrast to quantitative data graphs that are plotted along a numerical scale, categorical graphs are plotted using non-numerical categories.

Answer: False
Difficulty: Easy
Learning Objective: Describe and construct different types of categorical data graphs, including pie charts, bar charts, and Pareto charts, and explain when these graphs should be used.
Section Reference: 2.2 Visualizing Categorical Data
AACSB: Communication
Bloomcode: Knowledge
3. A Pareto chart and a pie chart are both types of categorical graphs.

Answer: True
Difficulty: Easy
Learning Objective: Describe and construct different types of categorical data graphs, including pie charts, bar charts, and Pareto charts, and explain when these graphs should be used.
Section Reference: 2.2 Visualizing Categorical Data
AACSB: Communication
Bloomcode: Knowledge
4. A summary of data in which raw data are grouped into different intervals and the number of items in each group is listed is called a frequency distribution.

Answer: True
Difficulty: Easy
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data
AACSB: Communication

Bloomcode: Knowledge
5. If the individual class frequency is divided by the total frequency, the result is the median frequency.

Answer: False
Difficulty: Medium
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data
AACSB: Reflective Thinking
Bloomcode: Comprehension
6. A cumulative frequency distribution provides a running total of the frequencies in the classes.

Answer: True
Difficulty: Medium
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data
AACSB: Communication
Bloomcode: Knowledge
7. The difference between the highest number and the lowest number in a set of data is called the differential frequency.

Answer: False
Difficulty: Medium
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data
AACSB: Communication
Bloomcode: Knowledge
8. For any given data set, a frequency distribution with a larger number of classes will always be better than the one with a smaller number of classes.

Answer: False
Difficulty: Medium
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data
AACSB: Reflective Thinking

Bloomcode: Comprehension

9. One rule that must always be followed in constructing frequency distributions is that the adjacent classes must overlap.

Answer: False
Difficulty: Medium
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data
AACSB: Communication
Bloomcode: Knowledge
10. A cumulative frequency polygon is also called an ogive.

Answer: True
Difficulty: Medium
Learning Objective: Describe and construct different types of quantitative data graphs, including histograms, cumulative frequency histograms, and frequency polygons, and explain when these graphs should be used.
Section Reference: 2.4 Visualizing Quantitative Data
AACSB: Communication
Bloomcode: Knowledge

11. A histogram can be described as a type of vertical bar chart.

Answer: True
Difficulty: Medium
Learning Objective: Describe and construct different types of quantitative data graphs, including histograms, cumulative frequency histograms, and frequency polygons, and explain when these graphs should be used.
Section Reference: 2.4 Visualizing Quantitative Data
AACSB: Communication
Bloomcode: Knowledge
12. In a histogram, the tallest bar represents the class with the highest cumulative frequency.

Answer: False
Difficulty: Medium
Learning Objective: Describe and construct different types of quantitative data graphs, including histograms, cumulative frequency histograms, and frequency polygons, and explain when these graphs should be used.
Section Reference: 2.4 Visualizing Quantitative Data

AACSB: Reflective Thinking
Bloomcode: Comprehension
13. A scatter plot shows how the numbers in a data set are scattered around their average.

Answer: False
Difficulty: Medium
Learning Objective: Describe and construct different types of quantitative data graphs, including histograms, cumulative frequency histograms, and frequency polygons, and explain when these graphs should be used.
Section Reference: 2.4 Visualizing Quantitative Data
AACSB: Communication
Bloomcode: Knowledge
14. A scatter plot is a two-dimensional graph plot of data containing pairs of observations on two numerical variables.

Answer: True
Difficulty: Medium
Learning Objective: Describe and construct different types of quantitative data graphs, including histograms, cumulative frequency histograms, and frequency polygons, and explain when these graphs should be used.
Section Reference: 2.4 Visualizing Quantitative Data
AACSB: Communication
Bloomcode: Knowledge

15. A scatter plot is useful for examining the relationship between two numerical variables.

Answer: True

Difficulty: Medium
Learning Objective: Describe and construct different types of quantitative data graphs, including histograms, cumulative frequency histograms, and frequency polygons, and explain when these graphs should be used.
Section Reference: 2.4 Visualizing Quantitative Data
AACSB: Communication
Bloomcode: Knowledge

MULTIPLE CHOICE QUESTIONS

16. A summary of data in which raw data are grouped into categories and the number of items in each category is listed is called a
a) frequency table.
b) summary statistics.
c) grouped frequency.
d) table of content.
e) none of the above

Answer: a
Difficulty: Easy
Learning Objective: Organize categorical data into frequency tables, percent frequency tables, and cumulative frequency tables, and understand how two variable data sets can be organized using a cross-tabulation chart.
Section Reference: 2.1 Organizing Categorical Data
AACSB: Communication
Bloomcode: Knowledge
17. Which of the following statements is/are true?
I. Cross tabulation is a two-dimensional table that displays the frequency for two categorical variables.
II. Cross tabulation can be referred to as a contingency table.
III. Excel calls contingency table as pivot table.
a) I only
b) II only
c) III only
d) I and III only
e) all of the above

Answer: e
Difficulty: Medium
Learning Objective: Organize categorical data into frequency tables, percent frequency tables, and cumulative frequency tables, and understand how two variable data sets can be organized using a cross-tabulation chart.
Section Reference: 2.1 Organizing Categorical Data
AACSB: Reflective Thinking
Bloomcode: Comprehension
18. The table below shows the number of students registered in Accounting 101, Finance 101, Marketing 101 and Statistics 101.

Course	Number of students
Accounting 101	240
Finance 101	160
Marketing 101	320

\section*{| Statistics 101 | 80 |
| :--- | :--- |}

What percent of the students is registered in Statistics 101?
a) 30%
b) 20%
c) 40%
d) 10%
e) 100%

Answer: d
Difficulty: Medium
Learning Objective: Organize categorical data into frequency tables, percent frequency tables, and cumulative frequency tables, and understand how two variable data sets can be organized using a cross-tabulation chart.
Section Reference: 2.1 Organizing Categorical Data
AACSB: Analytic
Bloomcode: Application
19. A sample of 188 workers were asked whether they bring bagged lunch to work or buy lunch. The contingency table below displays the results by job type and their lunch choice.

Job Type	Lunch Choice		Total
	Bagged Lunch	Buy Lunch	
Management	45	42	101
Non-management	57	44	188
Total	103	86	87

How many of the workers surveyed were non-management and brought a bagged lunch?
a) 45
b) 57
c) 86
d) 103
e) 188

Answer: b
Difficulty: Medium
Learning Objective: Organize categorical data into frequency tables, percent frequency tables, and cumulative frequency tables, and understand how two variable data sets can be organized using a cross-tabulation chart.
Section Reference: 2.1 Organizing Categorical Data
AACSB: Analytic
Bloomcode: Application
20. A sample of 188 workers were asked whether they bring bagged lunch to work or buy lunch. The contingency table below displays the results by gender and their lunch choice.

Gender	Lunch Choice		Total
	Bagged Lunch	Buy Lunch	
Management	45	42	101
Non-management	57	44	87

Total	103	86	188

What proportion of the workers surveyed were management and buy lunch?
a) 0.22
b) 0.24
c) 0.30
d) 0.46
e) 0.55

Answer: a
Difficulty: Medium
Learning Objective: Organize categorical data into frequency tables, percent frequency tables, and cumulative frequency tables, and understand how two variable data sets can be organized using a cross-tabulation chart.
Section Reference: 2.1 Organizing Categorical Data
AACSB: Analytic
Bloomcode: Application
21. Categorical data
a) are always nonnumeric.
b) may be either numeric or nonnumeric.
c) are always numeric.
d) indicate how many or how much.
e) none of the above

Answer: b
Difficulty: Medium
Learning Objective: Organize categorical data into frequency tables, percent frequency tables, and cumulative frequency tables, and understand how two variable data sets can be organized using a cross-tabulation chart.
Section Reference: 2.1 Organizing Categorical Data
AACSB: Communication
Bloomcode: Knowledge
22. Categorical data can be represented graphically by a(n)
a) histogram.
b) frequency polygon.
c) ogive.
d) bar chart.
e) none of the above

Answer: d
Difficulty: Easy
Learning Objective: Describe and construct different types of categorical data graphs, including pie charts, bar charts, and Pareto charts, and explain when these graphs should be used. Section Reference: 2.2 Visualizing Categorical Data

AACSB: Communication
Bloomcode: Knowledge
23. Categorical data can be represented graphically by a(n)
a) histogram.
b) frequency polygon.
c) ogive.
d) pie chart.
e) none of the above

Answer: d
Difficulty: Easy
Learning Objective: Describe and construct different types of categorical data graphs, including pie charts, bar charts, and Pareto charts, and explain when these graphs should be used.
Section Reference: 2.2 Visualizing Categorical Data
AACSB: Communication
Bloomcode: Knowledge
24. Which of the following would be most helpful in constructing a pie chart?
a) cumulative percent
b) relative frequency
c) ogive
d) frequency
e) none of the above

Answer: b
Difficulty: Medium
Learning Objective: Describe and construct different types of categorical data graphs, including pie charts, bar charts, and Pareto charts, and explain when these graphs should be used.
Section Reference: 2.2 Visualizing Categorical Data
AACSB: Reflective Thinking
Bloomcode: Comprehension
25. The relative frequency of a category is computed by
a) dividing the frequency of the category by the sample size.
b) multiplying the frequency of the category by the sample size.
c) dividing the sample size by the frequency of the category.
d) frequency of the category.
e) none of the above

Answer: a

Difficulty: Medium

Learning Objective: Describe and construct different types of categorical data graphs, including pie charts, bar charts, and Pareto charts, and explain when these graphs should be used.
Section Reference: 2.2 Visualizing Categorical Data

AACSB: Communication
Bloomcode: Knowledge
26. A graph that can be used to represent data on two categorical variables simultaneously is called a(n)
a) Pareto chart.
b) ogive.
c) two variable bar chart.
d) contingency table.
e) histogram.

Answer: c
Difficulty: Medium
Learning Objective: Describe and construct different types of categorical data graphs, including pie charts, bar charts, and Pareto charts, and explain when these graphs should be used.
Section Reference: 2.2 Visualizing Categorical Data
AACSB: Communication
Bloomcode: Knowledge
27. An instructor has decided to graphically represent the grades on a test. The instructor uses a plus/minus grading system (i.e. she gives grades of $A-$, B^{+}, etc.). Which of the following would provide the most information for the students?
a) a histogram
b) bar chart
c) a cumulative frequency distribution
d) a frequency distribution
e) a scatter plot

Answer: b
Difficulty: Medium
Learning Objective: Describe and construct different types of categorical data graphs, including pie charts, bar charts, and Pareto charts, and explain when these graphs should be used.
Section Reference: 2.2 Visualizing Categorical Data
AACSB: Reflective Thinking
Bloomcode: Comprehension
28. The staffs of the Accounting and the Quality Control departments rated their respective supervisor's leadership style as either (1) authoritarian or (2) participatory. Sixty-eight percent of the accounting staff rated their supervisor "authoritarian," and thirty-two percent rated him "participatory." Forty percent of the quality control staff rated their supervisor "authoritarian," and sixty percent rated her "participatory." The best graphic depiction of these data would be two
a) histograms
b) frequency polygons
c) ogives
d) pie charts
e) scatter plots

Answer: d
Difficulty: Hard
Learning Objective: Describe and construct different types of categorical data graphs, including pie charts, bar charts, and Pareto charts, and explain when these graphs should be used.
Section Reference: 2.2 Visualizing Categorical Data
AACSB: Analytic
Bloomcode: Application
29. The 2010 and 2012 market share data of the three competitors (Alston, Baren, and Clemson) in an oligopolistic industry are presented in the following pie charts.

Which of the following is true?
a) Only Baren share.
b) Only Clemson lost market share.
c) Alston lost market share.
d) Baren lost market share.
e) All companies lost market share.

Answer: b
Difficulty: Medium
Learning Objective: Describe and construct different types of categorical data graphs, including pie charts, bar charts, and Pareto charts, and explain when these graphs should be used.
Section Reference: 2.2 Visualizing Categorical Data
AACSB: Analytic
Bloomcode: Application
30. The 2010 and 2012 market share data of the three competitors (Alston, Baren, and Clemson) in an oligopolistic industry are presented in the following pie charts. Total sales for this industry were $\$ 1.5$ billion in 2010 and $\$ 1.8$ billion in 2012. Clemson's sales in 2010 were
\qquad
.

a) $\$ 330$ million
b) $\$ 630$ million
c) $\$ 675$ million
d) $\$ 828$ million
e) $\$ 928$ million

Answer: a
Difficulty: Medium
Learning Objective: Describe and construct different types of categorical data graphs, including pie charts, bar charts, and Pareto charts, and explain when these graphs should be used.
Section Reference: 2.2 Visualizing Categorical Data
AACSB: Analytic
Bloomcode: Application
31. The 2010 and 2012 market share data of the three competitors (Alston, Baren, and Clemson) in an oligopolistic industry are presented in the following pie charts. Total sales for this industry were $\$ 1.5$ billion in 2010 and $\$ 1.8$ billion in 2012. Baren's sales in 2010 were \qquad .

2010

2012

a) $\$ 342$ million
b) $\$ 630$ million
c) $\$ 675$ million
d) $\$ 828$ million
e) $\$ 928$ million

Answer: c
Difficulty: Medium
Learning Objective: Describe and construct different types of categorical data graphs, including pie charts, bar charts, and Pareto charts, and explain when these graphs should be used.
Section Reference: 2.2 Visualizing Categorical Data
AACSB: Analytic
Bloomcode: Application
32. The 2010 and 2012 market share data of the three competitors (Alston, Baren, and Clemson) in an oligopolistic industry are presented in the following pie charts:

2010

2012

Which of the following may be a false statement?
a) Sales revenues declined at Clemson.
b) Only Clemson lost market share.
c) Alston gained market share.
d) Baren gained market share.
e) Both Alston and Baren gained market share.

Answer: a
Difficulty: Hard
Learning Objective: Describe and construct different types of categorical data graphs, including pie charts, bar charts, and Pareto charts, and explain when these graphs should be used.
Section Reference: 2.2 Visualizing Categorical Data
AACSB: Analytic
Bloomcode: Application
33. The following graphic of PCB Failures is a \qquad .

a) scatter plot
b) Pareto chart
c) pie chart
d) cumulative histogram chart
e) line diagram

Answer: b
Difficulty: Medium
Learning Objective: Describe and construct different types of categorical data graphs, including pie charts, bar charts, and Pareto charts, and explain when these graphs should be used.
Section Reference: 2.2 Visualizing Categorical Data
AACSB: Reflective Thinking
Bloomcode: Comprehension
34. According to the following graphic, the most common cause of PCB Failures is a \qquad .

a) cracked trace
b) bent pin
c) missing part
d) solder bridge
e) wrong Part

Answer: a

Difficulty: Medium

Learning Objective: Describe and construct different types of categorical data graphs, including pie charts, bar charts, and Pareto charts, and explain when these graphs should be used.
Section Reference: 2.2 Visualizing Categorical Data
AACSB: Analytic
Bloomcode: Application
35. According to the following graphic, "Bent Pins" account for \qquad \% of PCB Failures.

a) 10
b) 20
c) 30
d) 40
e) 50

Answer: b
Difficulty: Hard
Learning Objective: Describe and construct different types of categorical data graphs, including pie charts, bar charts, and Pareto charts, and explain when these graphs should be used.
Section Reference: 2.2 Visualizing Categorical Data
AACSB: Analytic
Bloomcode: Application
36. An instructor made a frequency table of the scores his students got on a test:

Score
30-under 40
40-under 50
50 -under 60
60-under 70
70 -under 80
80-under 90
90 -under 100
The midpoint of the last class interval is \qquad .
a) 90
b) 5
c) 95
d) 100
e) 50

Answer: c
Difficulty: Easy
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
37. An instructor made a frequency table of the scores his students got on a test:

Score Frequency
30-under $40 \quad 1$
40-under $50 \quad 4$
50-under 605
60-under $70 \quad 10$
70-under 8020
80-under $90 \quad 10$
90-under 1005
Approximately what percent of students got more than 70 ?
a) 36
b) 20
c) 50
d) 10
e) 64

Answer: e

Difficulty: Easy
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
38. Consider the following frequency distribution:

Class Interval Frequency
10-under 20
15
20-under 30
25
30-under $40 \quad 10$
What is the midpoint of the first class?
a) 10
b) 20
c) 15
d) 30
e) 40

Answer: c
Difficulty: Easy
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
39. Consider the following frequency distribution:

Class Interval Frequency
10-under $20 \quad 15$
20-under 3025
30-under $40 \quad 10$
What is the relative frequency of the first class?
a) 0.15
b) 0.30
c) 0.10
d) 0.20
e) 0.40

Answer: b
Difficulty: Medium
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
40. Consider the following frequency distribution:

Class Interval Frequency
10-under $20 \quad 15$
20-under 3025
30-under $40 \quad 10$
What is the cumulative frequency of the second class interval?
a) 25
b) 40
c) 15
d) 50

Answer: b
Difficulty: Medium
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data

AACSB: Analytic
Bloomcode: Application
41. The number of phone calls arriving at a switchboard each hour has been recorded, and the following frequency distribution has been developed.
Class Interval Frequency
20-under 4030
40 -under 6045
60-under $80 \quad 80$
80-under 10045
What is the midpoint of the last class?
a) 80
b) 100
c) 95
d) 90
e) 85

Answer: d
Difficulty: Easy
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
42. The number of phone calls arriving at a switchboard each hour has been recorded, and the following frequency distribution has been developed.
Class Interval Frequency
20-under 40 30
40 -under 6045
60-under $80 \quad 80$
80-under 10045
What is the relative frequency of the second class?
a) 0.455
b) 0.900
c) 0.225
d) 0.750
e) 0.725

Answer: c
Difficulty: Medium
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
43. The number of phone calls arriving at a switchboard each hour has been recorded, and the following frequency distribution has been developed.
Class Interval Frequency
20-under 4030
40 -under 6045
60-under $80 \quad 80$
80 -under 10045
What is the cumulative frequency of the third class?
a) 80
b) 0.40
c) 155
d) 75
e) 105

Answer: c
Difficulty: Medium
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
44. A person has decided to construct a frequency distribution for a set of data containing 60 numbers. The lowest number is 23 and the highest number is 68 . If 5 classes are used, the class width should be approximately \qquad .
a) 4
b) 12
c) 8
d) 5
e) 9

Answer: e
Difficulty: Easy
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
45. A person has decided to construct a frequency distribution for a set of data containing 60 numbers. The lowest number is 23 and the highest number is 68 . If 7 classes are used, the class width should be approximately \qquad .
a) 5
b) 7
c) 9
d) 11
e) 12

Answer: b

Difficulty: Medium

Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
46. A frequency distribution was developed. The lower endpoint of the first class is 9.30 , and the midpoint is 9.35 . What is the upper endpoint of this class?
a) 9.50
b) 9.60
c) 9.70
d) 9.40
e) 9.80

Answer: d
Difficulty: Medium
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
47. The cumulative frequency for a class is 27 . The cumulative frequency for the next (nonempty) class will be \qquad -.
a) less than 27
b) equal to 27
c) next class frequency minus 27
d) 27 minus the next class frequency
e) 27 plus the next class frequency

Answer: e

Difficulty: Hard
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
48. The following class intervals for a frequency distribution were developed to provide information regarding the starting salaries for students graduating from a particular school:

Salary \quad Number of Graduates
($\$ 1,000 \mathrm{~s}$)
28-under 31
31-under 35
34 -under 37
39-under 40
Before data was collected, someone questioned the validity of this arrangement. Which of the following represents a problem with this set of intervals?
a) There are too many intervals.
b) The class widths are too small.
c) Some numbers between 28,000 and 40,000 would fall into two different intervals.
d) The first and the second interval overlap.
e) There are too few intervals.

Answer: c
Difficulty: Medium
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data.
AACSB: Analytic
Bloomcode: Application
49. The following class intervals for a frequency distribution were developed to provide information regarding the starting salaries for students graduating from a particular school: Salary Number of Graduates (\$1,000s)
28-under 31
31-under 35
34 -under 37
39-under 40
Before data was collected, someone questioned the validity of this arrangement. Which of the following represents a problem with this set of intervals?
a) There are too many intervals.
b) The class widths are too small.
c) The class widths are too large.
d) The second and the third interval overlap.
e) There are too few intervals.

Answer: d

Difficulty: Medium

Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
50. Abel Alonzo, Director of Human Resources, is exploring employee absenteeism at the Harrison Haulers Plant during the last operating year. A review of all personnel records
indicated that absences ranged from zero to twenty-nine days per employee. The following class intervals were proposed for a frequency distribution of absences.
Absences Number of Employees
(Days)
0-under 5
5-under 10
10-under 15
20-under 25
25-under 30
Which of the following represents a problem with this set of intervals?
a) There are too few intervals.
b) Some numbers between 0 and 29, inclusively, would not fall into any interval.
c) The first and second interval overlaps.
d) There are too many intervals.
e) The second and the third interval overlap.

Answer: b
Difficulty: Medium
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
51. Abel Alonzo, Director of Human Resources, is exploring employee absenteeism at the Harrison Haulers Plant during the last operating year. A review of all personnel records indicated that absences ranged from zero to twenty-nine days per employee. The following class intervals were proposed for a frequency distribution of absences.
Absences Number of Employees
(Days)
0 -under 10
10-under 20
20-under 30
Which of the following might represent a problem with this set of intervals?
a) There are too few intervals.
b) Some numbers between 0 and 29 would not fall into any interval.
c) The first and second interval overlaps.
d) There are too many intervals.
e) The second and the third interval overlap.

Answer: a
Difficulty: Medium
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
52. Consider the relative frequency distribution given below:

Class Interval Relative Frequency
20-under 40
0.2

40-under 60
0.3

60-under 80
0.4

80-under 100
0.1

There were 60 numbers in the data set. How many numbers were in the interval 20 -under 40 ?
a) 12
b) 20
c) 40
d) 10
e) 15

Answer: a
Difficulty: Easy
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
53. Consider the relative frequency distribution given below:

Class Interval Relative Frequency
20-under $40 \quad 0.2$
40-under $60 \quad 0.3$
60 -under $80 \quad 0.4$
80 -under $100 \quad 0.1$
There were 60 numbers in the data set. How many numbers were in the interval 40 -under 60 ?
a) 30
b) 50
c) 18
d) 12
e) 15

Answer: c

Difficulty: Easy
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
54. Consider the relative frequency distribution given below:

Class Interval Relative Frequency
20-under 40
40-under 60

60-under 80
 0.4

80-under $100 \quad 0.1$
There were 60 numbers in the data set. How many of the number were less than 80 ?
a) 90
b) 80
c) 0.9
d) 54
e) 100

Answer: d
Difficulty: Medium
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
55. Consider the following frequency distribution:

Class Interval Frequency
100-under 20025
200-under 30045
300-under 40030
What is the midpoint of the first class?
a) 100
b) 150
c) 25
d) 250
e) 200

Answer: b
Difficulty: Easy
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data.
AACSB: Analytic
Bloomcode: Application
56. Consider the following frequency distribution:

Class Interval Frequency
100-under 200
25
200-under 300
45
300 -under 400
30
What is the relative frequency of the second class interval?
a) 0.45
b) 0.70
c) 0.30
d) 0.33
e) 0.50

Answer: a
Difficulty: Medium
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data.
AACSB: Analytic
Bloomcode: Application
57. Consider the following frequency distribution:

Class Interval Frequency
100-under 20025
200-under 300
45
300 -under 40030
What is the cumulative frequency of the second class interval?
a) 25
b) 45
c) 70
d) 100
e) 250

Answer: c
Difficulty: Medium
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
58. Consider the following frequency distribution:

Class Interval Frequency
100-under $200 \quad 25$
200-under 30045
300 -under 40030
What is the midpoint of the last class interval?
a) 15
b) 350
c) 300
d) 200
e) 400

Answer: b
Difficulty: Easy
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.

Section Reference: 2.3 Organizing Quantitative Data
AACSB: Analytic
Bloomcode: Application

59. Pinky Bauer, Chief Financial Officer of Harrison Haulers, Inc., suspects irregularities in the payroll system and orders an inspection of "each and every payroll voucher issued since January 1, 2000." Each payroll voucher was inspected and the following frequency distribution was compiled.

Errors per Voucher	
0-under 2	Number of Vouchers
2-under 4	500
4-under 6	400
6-under 8	300
8-under 10	200
The	100

The relative frequency of the first class interval is \qquad .
a) 0.50
b) 0.33
c) 0.40
d) 0.27
e) 0.67

Answer: b
Difficulty: Medium
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
60. Pinky Bauer, Chief Financial Officer of Harrison Haulers, Inc., suspects irregularities in the payroll system and orders an inspection of "each and every payroll voucher issued since January 1, 2000." Each payroll voucher was inspected and the following frequency distribution was compiled.

Errors per Voucher		Number of Vouchers
0-under 2	500	
2-under 4	400	
4-under 6	300	
6-under 8	200	
8-under 10	100	

The cumulative frequency of the second class interval is \qquad .
a) 1,500
b) 500
c) 900
d) 1,000
e) 1,200

Answer: c

Difficulty: Medium
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
61. Pinky Bauer, Chief Financial Officer of Harrison Haulers, Inc., suspects irregularities in the payroll system and orders an inspection of "each and every payroll voucher issued since January 1, 2000." Each payroll voucher was inspected and the following frequency distribution was compiled.

Errors per Voucher	
O-under 2	500
2-under 4	400
4-under 6	300
6-under 8	200
8-under 10	100
The midpoint of the first class interval is ___.	

a) 500
b) 2
c) 1.5
d) 1
e) 250

Answer: d
Difficulty: Easy
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
62. Scott Brim, Chief Financial Officer of Space Mall, Inc., wants to better understand the biest business hours during the weekend. There are door sensors that approximately count the number of people who enter the mall. The table below presents the average number of people coming in during the weekend, for the last month:

Hour 9-under 10	Number of People
10-under 11	350
11-under 12	400
12-under 1	300
1-under 2	650
2-under 3	550
3-under 4	400
4-under 5	350
5-under 6	450
6-under 7	250
7-under 8	300
	200

8-under 9
300
The relative frequency of the fourth class interval is \qquad .
a) 0.07
b) 0.08
c) 0.14
d) 0.15
e) 0.38

Answer: c
Difficulty: Medium
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data
AACSB: Reflective Thinking
Bloomcode: Application
63. In a frequency distribution, the first class interval begins at 18. The midpoint of the first class interval is 19.5 , and the last class interval ends at 51 . How many class intervals are there?
a) 11
b) 17
c) 22
d) 33
e) 34

Answer: a
Difficulty: Medium
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data
AACSB: Reflective Thinking
Bloomcode: Application
64. In a frequency distribution, the first class interval begins at 18. The midpoint of the first class interval is 19.5 , and the midpoint of the last class interval is 49.5 . How many class intervals are there?
a) 11
b) 17
c) 22
d) 33
e) 34

Answer: a
Difficulty: Medium
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data

AACSB: Reflective Thinking
Bloomcode: Application
65. The class mark is the \qquad , and it is \qquad .
a) total number of class intervals in a frequency distribution; usually between 5 and 15
b) range of the observed values; the difference between the max and min values
c) width of the class intervals; approximately equal to the range divided by the number of classes
d) midpoint of each class interval; geometric mean of the class interval endpoints
e) midpoint of each class interval; arithmetic mean of the class interval endpoints

Answer: e
Difficulty: Medium
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data
AACSB: Reflective Thinking
Bloomcode: Knowledge
66. Your company is doing market research to assess the feasibility of a new product. The market research team gathers pricing information of all the existing products that would compete with your company's product. The most expensive brand is priced at $\$ 22.95$, and the least expensive one at $\$ 20.59$. If a class width of 0.25 is used, then the class mark of the first class interval will be
a) 20.50 .
b) 20.59 .
c) 20.63 .
d) 21.75 .
e) 23.09 .

Answer: c
Difficulty: Hard
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data
AACSB: Reflective Thinking
Bloomcode: Application
67. Your company is doing market research to assess the feasibility of a new product. The market research team gathers pricing information of all the existing products that would compete with your company's product. The most expensive brand is priced at $\$ 22.95$, and the least expensive one at $\$ 20.59$. If a class width of 0.25 is used, then the number of classes will be
a) 9 .
b) 9.4 .
c) undetermined, so you can choose either 9 or 10 .
d) undetermined, so you must choose another class width.
e) 10 .

Answer: e

Difficulty: Medium
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data
AACSB: Reflective Thinking
Bloomcode: Knowledge
68. Your company is doing market research to assess the feasibility of a new product. The market research team gathers pricing information of the 60 existing products in the market that would compete with your company's product. The most expensive brand is priced at $\$ 22.95$, and the least expensive one at $\$ 20.59$. If the relative frequency of the first class is 0.05 and the cumulative frequency for the second class is 10 , then the relative frequency for the second class is
a) 0.05 .
b) 0.11 .
c) 0.12 .
d) 0.17 .
e) 1.67 .

Answer: c

Difficulty: Medium
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data
AACSB: Reflective Thinking
Bloomcode: Application
69. Given two class intervals and their respective frequencies and relative frequencies, the ratio of the frequencies \qquad the ratio of the relative frequencies.
a) is less than
b) is the same as
c) is larger than
d) could be less, equal, or larger than
e) less than or equal to

Answer: b
Difficulty: Medium
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data
AACSB: Reflective Thinking
Bloomcode: Knowledge
70. Each day, the office staff at Oasis Quick Shop prepares a frequency distribution and an ogive of sales transactions by dollar value of the transactions. Saturday's cumulative frequency ogive follows:

The total number of sales transactions on Saturday was \qquad .
a) 200
b) 500
c) 300
d) 100
e) 400

Answer: b

Difficulty: Medium

Learning Objective: Describe and construct different types of quantitative data graphs, including histograms, cumulative frequency histograms, and frequency polygons, and explain when these graphs should be used.
Section Reference: 2.4 Visualizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
71. Each day, the office staff at Oasis Quick Shop prepares a frequency distribution and an ogive of sales transactions by dollar value of the transactions. Saturday's cumulative frequency ogive follows:

The percentage of sales transactions on Saturday that were under $\$ 100$ each was \qquad .
a) 100
b) 10
c) 80
d) 20
e) 15

Answer: d
Difficulty: Medium
Learning Objective: Describe and construct different types of quantitative data graphs, including histograms, cumulative frequency histograms, and frequency polygons, and explain when these graphs should be used.
Section Reference: 2.4 Visualizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
72. Each day, the office staff at Oasis Quick Shop prepares a frequency distribution and an ogive of sales transactions by dollar value of the transactions. Saturday's cumulative frequency ogive follows:

The percentage of sales transactions on Saturday that were at least $\$ 100$ each was \qquad .
a) 100
b) 10
c) 80
d) 20
e) 15

Answer: c

Difficulty: Medium

Learning Objective: Describe and construct different types of quantitative data graphs, including histograms, cumulative frequency histograms, and frequency polygons, and explain when these graphs should be used.
Section Reference: 2.4 Visualizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
73. Each day, the office staff at Oasis Quick Shop prepares a frequency distribution and an
ogive of sales transactions by dollar value of the transactions. Saturday's cumulative frequency ogive follows:

The percentage of sales transactions on Saturday that were between $\$ 100$ and $\$ 150$ was \qquad .
a) 20%
b) 40%
c) 60%
d) 80%
e) 10%

Answer: c
Difficulty: Hard
Learning Objective: Describe and construct different types of quantitative data graphs, including histograms, cumulative frequency histograms, and frequency polygons, and explain when these graphs should be used.
Section Reference: 2.4 Visualizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
74. Each day, the manager at Jamie's Auto Care Shop prepares a frequency distribution and a histogram of sales transactions by dollar value of the transactions. Friday's histogram follows:

On Friday, the approximate number of sales transactions in the 75-under 100 category was \qquad .
a) 50
b) 100
c) 150
d) 200
e) 60

Answer: e

Difficulty: Medium

Learning Objective: Describe and construct different types of quantitative data graphs, including histograms, cumulative frequency histograms, and frequency polygons, and explain when these graphs should be used.
Section Reference: 2.4 Visualizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
75. Each day, the manager at Jamie's Auto Care prepares a frequency distribution and a histogram of sales transactions by dollar value of the transactions. Friday's histogram follows:

On Friday, the approximate number of sales transactions between $\$ 150$ and $\$ 175$ was \qquad .
a) 75
b) 200
c) 300
d) 400
e) 500

Answer: a
Difficulty: Medium
Learning Objective: Describe and construct different types of quantitative data graphs, including histograms, cumulative frequency histograms, and frequency polygons, and explain when these graphs should be used.
Section Reference: 2.4 Visualizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
76. The staff of Mr. Wayne Wertz, VP of Operations at Portland Peoples Bank, prepared a cumulative frequency ogive of waiting time for walk-in customers.

The total number of walk-in customers included in the study was \qquad .
a) 100
b) 250
c) 300
d) 450
e) 500

Answer: d

Difficulty: Medium

Learning Objective: Describe and construct different types of quantitative data graphs, including histograms, cumulative frequency histograms, and frequency polygons, and explain when these graphs should be used.
Section Reference: 2.4 Visualizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
77. The staff of Mr. Wayne Wertz, VP of Operations at Portland Peoples Bank, prepared a cumulative frequency ogive of waiting time for walk-in customers.

The percentage of walk-in customers waiting one minute or less was \qquad .
a) 22%
b) 11%
c) 67%
d) 10%
e) 5%

Answer: a

Difficulty: Medium

Learning Objective: Describe and construct different types of quantitative data graphs, including histograms, cumulative frequency histograms, and frequency polygons, and explain when these graphs should be used.
Section Reference: 2.4 Visualizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
78. The staff of Mr. Wayne Wertz, VP of Operations at Portland Peoples Bank, prepared a cumulative frequency ogive of waiting time for walk-in customers.

The percentage of walk-in customers waiting more than 6 minutes was \qquad .
a) 22%
b) 11%
c) 67%
d) 10%
e) 75%

Answer: b
Difficulty: Medium
Learning Objective: Describe and construct different types of quantitative data graphs, including histograms, cumulative frequency histograms, and frequency polygons, and explain when these graphs should be used.
Section Reference: 2.4 Visualizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
79. The staff of Mr. Wayne Wertz, VP of Operations at Portland Peoples Bank, prepared a cumulative frequency ogive of waiting time for walk-in customers.

The percentage of walk-in customers waiting between 1 and 6 minutes was \qquad .
a) 22%
b) 11%
c) 37%
d) 10%
e) 67%

Answer: e
Difficulty: Medium
Learning Objective: Describe and construct different types of quantitative data graphs, including histograms, cumulative frequency histograms, and frequency polygons, and explain when these graphs should be used.
Section Reference: 2.4 Visualizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
80. The staff of Mr. Wayne Wertz, VP of Operations at Portland Peoples Bank, prepared a frequency histogram of waiting time for drive up ATM customers.

Approximately \qquad drive up ATM customers waited less than 2 minutes.
a) 20
b) 30
c) 100
d) 180
e) 200

Answer: d
Difficulty: Medium
Learning Objective: Describe and construct different types of quantitative data graphs, including histograms, cumulative frequency histograms, and frequency polygons, and explain when these graphs should be used.
Section Reference: 2.4 Visualizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
81. The staff of Mr. Wayne Wertz, VP of Operations at Portland Peoples Bank, prepared a frequency histogram of waiting time for drive up ATM customers.

Approximately \qquad drive up ATM customers waited at least 7 minutes.
a) 20
b) 30
c) 100
d) 180
e) 200

Answer: b
Difficulty: Medium
Learning Objective: Describe and construct different types of quantitative data graphs, including histograms, cumulative frequency histograms, and frequency polygons, and explain when these graphs should be used.
Section Reference: 2.4 Visualizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
82. The staff of Ms. Tamara Hill, VP of Technical Analysis at Blue Sky Brokerage, prepared a frequency histogram of market capitalization of the 937 corporations listed on the American Stock Exchange in January 2013.

Approximately \qquad corporations had capitalization exceeding \$200,000,000.
a) 50
b) 100
c) 700
d) 800
e) 890

Answer: b
Difficulty: Medium
Learning Objective: Describe and construct different types of quantitative data graphs, including histograms, cumulative frequency histograms, and frequency polygons, and explain when these graphs should be used.
Section Reference: 2.4 Visualizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
83. The staff of Ms. Tamara Hill, VP of Technical Analysis at Blue Sky Brokerage, prepared a frequency histogram of market capitalization of the 937 corporations listed on the American Stock Exchange in January 2013.

Approximately \qquad corporations had capitalizations of $\$ 200,000,000$ or less.
a) 50
b) 100
c) 700
d) 800
e) 900

Answer: d
Difficulty: Medium
Learning Objective: Describe and construct different types of quantitative data graphs, including histograms, cumulative frequency histograms, and frequency polygons, and explain when these graphs should be used.
Section Reference: 2.4 Visualizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
84. The following graphic of residential housing data (selling price and size in square feet) is a

a) scatter plot
b) Pareto chart
c) pie chart
d) cumulative histogram
e) cumulative frequency distribuion

Answer: a
Difficulty: Medium
Learning Objective: Describe and construct different types of quantitative data graphs, including histograms, cumulative frequency histograms, and frequency polygons, and explain when these graphs should be used.
Section Reference: 2.4 Visualizing Quantitative Data
AACSB: Reflective Thinking
Bloomcode: Comprehension
85. The following graphic of residential housing data (selling price and size in square feet) indicates \qquad .

a) an inverse relation between the two variables
b) no relation between the two variables
c) a direct relation between the two variables
d) a negative exponential relation between the two variables
e) a sinusoidal relationship between the two variables

Answer: c

Difficulty: Medium

Learning Objective: Describe and construct different types of quantitative data graphs, including histograms, cumulative frequency histograms, and frequency polygons, and explain when these graphs should be used.
Section Reference: 2.4 Visualizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
86. The following graphic of cigarettes smoked (sold) per capita (CIG) and deaths per 100K population from lung cancer (LUNG) indicates

Scatterplot of LUNG vs CIG

a) a weak relation between the two variables
b) a pretty strong relation between the two variables
c) when the number of cigarettes smoked (sold) per capita (CIG) increases the deaths per 100K population from lung cancer (LUNG)decreases
d) a negative relation between the two variables
e) no relation between the two variables

Answer: b

Difficulty: Medium

Learning Objective: Describe and construct different types of quantitative data graphs, including histograms, cumulative frequency histograms, and frequency polygons, and explain when these graphs should be used.
Section Reference: 2.4 Visualizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
87. The United Nations Development Programme website provides comparative data by country on key metrics, such metrics as life expectancy over time. The chart below shows data on life expectancy over time in the United States.

Which of the following statements are not true based on the scatterplot of U.S. Life Expectancy over time?
a) The life expectancy in the U.S. is increasing over time.
b) U.S. citizens lived fewer years in 2010 than they did in in 2008.
c) The scatterplot shows an increasing trend in life expectancy in the U.S.
d) Based on the scatterplot, one can assume the life expectancy in 2014 will be higher than 78 years.
e) Three of these statements are true.

Answer: b
Difficulty: Medium
Learning Objective: Describe and construct different types of quantitative data graphs, including histograms, cumulative frequency histograms, and frequency polygons, and explain when these graphs should be used.
Section Reference: 2.4 Visualizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
88. The United Nations Development Programme website provides comparative data by country on key metrics. Two such metrics are life expectancy and expenditures on health as a percent of GDP. The table below shows data on life expectancy and health expenditures in the United States.

Year	U.S. Life Expectancy	$\frac{\text { Expenditure }}{\text { on Health }}$ $\frac{(\% \mathrm{GDP})}{}$
2000	76.8	$\frac{5.8}{}$
2005	77.6	6.7
2006	77.7	7.1
2007	77.9	7.2
2008	78.1	7.6
2009	78.2	8.4
2010	78.4	9.5

Which of the following scatterplots best depicts the relationship between life expectancy and expenditures on health as a percent of GDP?
a)

b)

c)

d)

Answer: c

Difficulty: Medium
Learning Objective: Describe and construct different types of quantitative data graphs, including histograms, cumulative frequency histograms, and frequency polygons, and explain when these graphs should be used.
Section Reference: 2.4 Visualizing Quantitative Data
AACSB: Analytic
Bloomcode: Application
89. The customer help center in your company receives calls from customers who need help with some of the customized software solutions your company provides. The staff prepare the following cumulative frequency polygon (ogive) for waiting times during the last three months. What percentage of customers had waiting times exceeding 6 minutes?

a) 7%
b) 8%
c) 11%
d) 12%
e) 89%

Answer: c
Difficulty: Medium
Learning Objective: Describe and construct different types of quantitative data graphs, including histograms, cumulative frequency histograms, and frequency polygons, and explain when these graphs should be used.
Section Reference: 2.4 Visualizing Quantitative Data
AACSB: Reflective Thinking
Bloomcode: Application
90. The staff of Ms. Tamara Hill, VP of technical analysis at Blue Sky Brokerage, prepared a frequency histogram of market capitalization of the 937 corporations listed on the American Stock Exchange in January 2016.

Approximately ___\% of corporations had capitalization not exceeding \$200,000,000.
a) 15
b) 20
c) 75
d) 80
e) 85

Answer: e
Difficulty: Medium
Learning Objective: Describe and construct different types of quantitative data graphs, including histograms, cumulative frequency histograms, and frequency polygons, and explain when these graphs should be used.
Section Reference: 2.4 Visualizing Quantitative Data
AACSB: Reflective Thinking
Bloomcode: Application
91. Consider a scatterplot showing the relationship between years of formal education and life expectancy. Which of the following statements is false?
a) If more years of formal education are correlated with higher life expectancy, then the scatterplot would exhibit a positive slope.
b) If more years of formal education are not correlated with higher life expectancy, then the scatterplot would exhibit a flat slope.
c) If more years of formal education are not correlated with higher life expectancy, then the scatterplot would exhibit a flat or negative slope.
d) If more years of formal education are negatively correlated with higher life expectancy, then the scatterplot would exhibit a negative slope.
e) If other research shows a causal effect between years of formal education and higher life expectancy (additional years of formal education cause a higher life expectancy), then the scatterplot could not be flat.

Answer: c
Difficulty: Medium
Learning Objective: Describe and construct different types of quantitative data graphs, including histograms, cumulative frequency histograms, and frequency polygons, and explain when these graphs should be used.
Section Reference: 2.4 Visualizing Quantitative Data
AACSB: Reflective Thinking
Bloomcode: Application

SHORT ANSWER QUESTIONS

92. There are four majors in the School of Business at your local university, Accounting, Finance, Marketing and Management. 240 students are in Accounting major, 160 in Finance major, 80 in marketing major and 320 are in Management major. Develop a relative frequency table for the data.

Answer:

Major	Number of Students	Relative Frequency
Accounting	240	0.3
Finance	160	0.2
Management	320	0.4
Marketing	80	0.1
Total	800	1.0

Difficulty: Medium

Learning Objective: Organize categorical data into frequency tables, percent frequency tables, and cumulative frequency tables, and understand how two variable data sets can be organized using a cross-tabulation chart.
Section Reference: 2.1 Organizing Categorical Data
AACSB: Analytic
Bloomcode: Analysis
93. There are four majors in the School of Business Administration at UDS, Accounting, Finance, Marketing and Management. 240 students are in Accounting major, 160 in Finance major, 80 in marketing major and 320 are in Management major. Develop a relative pie chart for the data.

Answer:

Difficulty: Medium
Learning Objective: Describe and construct different types of categorical data graphs, including pie charts, bar charts, and Pareto charts, and explain when these graphs should be used.
Section Reference: 2.2 Visualizing Categorical Data

AACSB: Analytic
Bloomcode: Analysis
94. The total energy consumption (in kWh) for the month of July 2017 for a sample of 28 houses in a certain city is shown below:
573466622539480653512784438841592482605553492733536428545477624510 672434581506570487 . Beginning the first class at 400 and using a class with of 50, develop a cumulative frequency distribution for the data.

Answer:

Class	Frequency	Cummulative Frequency
$400-450$	3	3
$450-500$	6	9
$500-550$	7	16
$550-600$	5	21
$600-650$	3	24
$650-700$	2	26
$700-750$	1	27
$750-800$	1	28

Difficulty: Medium
Learning Objective: Construct a frequency distribution from a set of data, and explain what the distribution represents.
Section Reference: 2.3 Organizing Quantitative Data
AACSB: Analytic
Bloomcode: Analysis
95. The total energy consumption (in kWh) for the month of July 2017 for a sample of 28 houses in a certain city is shown below:
573466622539480653512784438841592482605553492733536428545477624510 672434581506570487.
a) Beginning the first class at 400 and using a class with of 50 , construct a cumulative frequency polygon (ogive) for the data.
b) What percentage of houses consumed at least 625 kWh in July 2017?

Answer:
a)

b) approximately 18%

Difficulty: Medium
Learning Objective: Describe and construct different types of quantitative data graphs, including histograms, cumulative frequency histograms, and frequency polygons, and explain when these graphs should be used.
Section Reference: 2.4 Visualizing Quantitative Data
AACSB: Analytic
Bloomcode: Analysis

LEGAL NOTICE

Copyright © 2018 by John Wiley \& Sons Canada, Ltd. or related companies. All rights reserved.

WILEY

The data contained in these files are protected by copyright. This manual is furnished under licence and may be used only in accordance with the terms of such licence.

The material provided herein may not be downloaded, reproduced, stored in a retrieval system, modified, made available on a network, used to create derivative works, or transmitted in any form or by any means, electronic, mechanical, photocopying, recording, scanning, or otherwise without the prior written permission of John Wiley \& Sons Canada, Ltd.

