CHAPTER 2: The Way the Earth Works: Plate Tectonics

MULTIPLE CHOICE

1.	Wegener's evidence for a united Pangaea was so compelling that virtually all geologists agreed with								
	the idea of continental drift during his lifetime.								
	a. true b. false								
	ANS: B DIF: Easy REF: 2.1 TOP: I.B MSC: Applied								
2.	Without plate tectonics, we would not have								
	a. plates in constant motion c. formation of new oceans								
	b. mountain building d. All of the above are correct.								
	ANS: D DIF: Medium REF: 2.1 TOP: I MSC: Conceptual								
3.	Evidence for a united Pangaea comes from the fossil record of which type(s) of organisms?a. various plant typesc. freshwater animalsb. large terrestrial animalsd. All of the above are correct.								
	ANS: D DIF: Medium REF: 2.1 TOP: I.A MSC: Factual								
4.	 Currently, most geologists a. continue to reject continental drift b. agree that continental drift occurs, but they still do not understand why it occurs c. agree that continental drift occurs; the mechanisms that drive drift are at work in the ocean basins and upper mantle and were unknown in Wegener's time d. agree that continental drift occurs; the mechanisms that drive drift are at work in the lower mantle and outer core and were unknown in Wegener's time 								
	ANS: C DIF: Medium REF: 2.1 TOP: I.B MSC: Applied								

5. The term and concept of sea-floor spreading (see figure below) was developed by _

	a. Hess and Dietzb. Hess and Wegener		c. d.	Wegener and Wegener	Dietz	
	ANS: A DI MSC: Factual	IF: Medium	REF:	2.1	TOP:	I.C
6.	The theory of plate tecto	onics is a theory beca	use it _		_·	
	a. was discovered so lo	ong ago	c.	is not widely a	accepte	d
	b. is widely accepted		d.	is commonly i	regarde	d as correct
	ANS: D DI MSC: Conceptual	IF: Medium	REF:	2.1	TOP:	I.D
7.	According to Wegener, p	puzzle pieces are to	a jigsav	w puzzle as		is/are to Pangaea.
	a. continental drift		c.	faults		
	b. continents		d.	plate tectonics	5	
	ANS: B DI MSC: Factual	IF: Easy	REF:	2.2	TOP:	II.A

8. Late Paleozoic glacial deposits are NOT found in which of the following places?

9. Consult the figure below. Abundant swamps led to the formation of coal during the Late Paleozoic in which of the following places?

d. the apparent fit of continental coastlines is blurred when the margins are defined by the edges of continental shelves rather than sea level

ANS: B DIF: Medium REF: 2.2 TOP: II MSC: Applied

11. Wegener proposed continental drift after he observed evidence from fossils, glacial deposits, and the fit of the continents that suggested all of the continents were once _____.

- a. aligned north to south along the prime meridian during the Late Cenozoic
- b. aligned east to west along the equator during the Late Mesozoic through the Cenozoic
- c. combined to form a supercontinent (he termed Rodinia) in the Proterozoic
- d. combined to form a supercontinent (he termed *Pangaea*) in the Late Paleozoic through the Mesozoic

ANS: D DIF: Medium REF: 2.2 TOP: II MSC: Conceptual

12. In Wegener's evidence for continental drift, continents were proposed to fit together, such as the east coast of South America with the ______ and the upper west coast of Africa with the

a.	west coast of Europe; east coast	of South America
----	----------------------------------	------------------

- b. lower west coast of Africa; east coast of South America
- c. west coast of Europe; east coast of North America
- d. lower west coast of Africa; east coast of North America

ANS: DDIF: MediumREF: 2.2TOP: II.AMSC: Factual

13. Evidence that glaciers once covered an area might include ______.
a. till and striations
b. backwash and striations
c. till and grabens
b. backwash and striations
d. backwash and grabens
ANS: A DIF: Medium REF: 2.2 TOP: II.B MSC: Factual

14. If we mentally align the continents to fit Wegener's concept of Pangaea, evidence of Late Paleozoic glacial deposits ______.

- a. is more difficult to explain than in the modern continental configuration
- b. is much more readily explained than in the modern continental configuration
- c. makes very little sense in either the Pangaea configuration or the modern configuration

ANS: B DIF: Medium REF: 2.2 TOP: II.B MSC: Conceptual

- 15. If a geologist discovered coal in a modern-day cold, snowy location, he or she could conclude that
 - a. a meteorite must have struck the area
 - b. the area was once covered with swamps and/or jungles
 - c. the area was once covered with an ocean
 - d. this discovery was anomalous

ANS: B DIF: Medium REF: 2.2 TOP: II.C MSC: Applied

- Limestone reefs and salt deposits are important rocks in the reconstruction of Earth history because they ______.
 - a. can be used to infer the ancient climate of the Earth; they are deposited in environments that are restricted to warm climate
 - b. automatically provide age information; all such deposits occurred between 200 and 400 million years ago
 - c. are deposited in warm climates today, but there is good reason to think that they were deposited in cold climates millions of years ago
 - d. imply that ancient human societies had access to good snorkeling and premium margaritas

ANS: C DIF: Medium REF: 2.2 TOP: II.E MSC: Applied

17. Distinctive rock sequences on South America terminate at the Atlantic Ocean but reappear on the continent of _____.

a.	Africa			с.	North Americ	ca
b.	Europe			d.	Australia	
AN MS	IS: A SC: Factual	DIF:	Difficult	REF:	2.2	TOP: II.E

18. Which plant genus dominated glaciated regions during the Late Paleozoic and Early Mesozoic?

a. <i>Ginkgo</i>			с.	Neuropteris		
b. Glossopteris			d.	Quercas		
ANS: B MSC: Factual	DIF:	Difficult	REF:	2.2	TOP:	II.D

19. What mineral is integral to paleomagnetism?

a.	magnetite	c.	quartz
b.	iron	d.	potassium feldspar

	ANS: A MSC: Factual	DIF:	Easy	REF:	2.3	TOP:	III
20.	Evidence of paleona. basalt that hasb. any rock with nc. sedimentary rod. All of the above	nagnetisi cooled fr magnetic cks when e are cor	n can be found om lava minerals prese re minerals forn rect.	in nt n from i	on-bearing gro	 undwat	er
	ANS: D MSC: Factual	DIF:	Easy	REF:	2.3	TOP:	III
21.	Without paleomagna. our compassesb. a compass 90 rc. we would not kd. All of the above	netism, _ today we nillion ye know that re are cor	ould not point t ears ago would t the continents rect.	 o what v point to themse	we think of as I the same Nort lves move, not	North h we kr the pol	now today es
	ANS: D MSC: Conceptual	DIF:	Medium	REF:	2.3	TOP:	III
22.	 The magnetic field a. unknown, but i b. known to have iron-rich miner c. known to have iron-rich miner d. known to have 	of Earth it is assur- been con- cals in roo experien- cals in roo been con-	in the geologic ned to have been nstant through g cks need numerous p cks nstant through t	e past is en ident geologic polarity ime, on	ical to today's time, due to re reversals, due the basis of the	emnant to remn eoretica	magnetization of nant magnetization of l calculations
	ANS: C MSC: Applied	DIF:	Easy	REF:	2.3	TOP:	III.A
23.	The apparent tende	ency of th	ne north (or sour	th) mag	netic pole to va	ry in po	osition over time is ter
	a. Dipoleb. magnetic decline	nation		с. d.	magnetic incl polar wander	ination	
	ANS: D	DIF:	Easy	REF:	2.3	TOP:	III.B

termed

MSC: Factual

24. Why does each continent below have a different polar wander path?

	180° No Ame Europe	rth- trica	rica	90° E	e apparent polar ander path of No nerica is not the at of Europe or A	r- orth same a frica.	S
	a. Wegener was rib. The poles move	ght: cont	inents move.	c.	Both the pole	s and co	ontinents move.
	ANS: A MSC: Applied	DIF:	Easy	REF:	2.3	TOP:	III.B
25.	The apparent polar continent is now int a. wandering of th b. drifting of the N	wander p erpreted e geoma North An	bath obtained fr to be the result gnetic North Po merican contine	rom mag t of ole nt	gnetite crystals	in basa	lts on the North American
	ANS: B MSC: Applied	DIF:	Easy	REF:	2.3	TOP:	III.B
26.	A compass today po	oints dire	ctly to geograp	hic nor	th.		
	a. true			b.	false		
	ANS: B MSC: Factual	DIF:	Medium	REF:	2.3	TOP:	III.A
27.	An average everyda	y compa	ss depicts incli	nation.			
	a. true			b.	false		
	ANS: B MSC: Factual	DIF:	Medium	REF:	2.3	TOP:	III.A

28. According to the figure below, Earth's magnetic poles move constantly, but don't seem to stray farther than about ______ from the geographic poles.

33. Sea-floor spreading is driven by volcanic activity							
	a. in the middle of abyssal plains				at the edges of	f contin	ental shelves
	b. along mid-ocean	ridges		d.	along fracture	zones	
	ANS: B MSC: Factual	DIF:	Easy	REF:	2.4	TOP:	IV.A.i
34.	Within the sea floor,	the rate	of geothermal	heat flo	ow is greatest		·
	a. along mid-ocean	ridges		c.	at the edges of	f ocean	basins
	b. along fracture zon	nes		d.	in the center of	of abyss	al plains
	ANS: A MSC: Applied	DIF:	Easy	REF:	2.4	TOP:	IV.A.i
35.	Volcanoes that have s	submer	ged beneath the	surface	e of the sea are	termed	·
	a. mid-ocean ridges			c.	fracture zones		
	b. guyots		d.	continental ris	ses		
	ANS: B MSC: Factual	DIF:	Easy	REF:	2.4	TOP:	IV.A.iii

36. According to the figure below, fracture zones lay roughly ______ to mid-ocean ridges.

a. perpendicular b. parallel			c. d.	adjace at an o	nt btuse angle
ANS: A MSC: Factual	DIF:	Easy	REF:	2.4	TOP: IV.A.iv

37. This map depicts earthquakes, which coincide with areas where _____

A 1953 map showing the distribution of earthquake locations in the ocean basins. Note that earthquakes occur in belts.

	ANS: B MSC: Factual	DIF:	Medium	REF:	2.4	TOP:	IV.A.ii
41.	Beneath a blanket of	sedime	ents, oceanic c	rust is pr	imarily compo	sed of t	wo rocks, and
	a. granite; diorite b. gabbro; basalt			c. d.	sandstone; sh slate; gneiss	ale	
	ANS: B MSC: Factual	DIF:	Medium	REF:	2.4	TOP:	IV.B
42.	The oldest basalts or a. 50 thousand b. 4 billion	n the oc	ean floor are a	bout c. d.	200 million 2.5 million	ars old.	
	ANS: C MSC: Factual	DIF:	Medium	REF:	2.4	TOP:	IV.B
43.	The thickness of clay a. along mid-ocear b. along fracture zo	y and pl ridges ones	anktonic micr	oskeletor c. d.	ns is greatest at the edges of in the center	of ocear of abys	
	ANS: C MSC: Applied	DIF:	Medium	REF:	2.4	TOP:	IV.B
44.	A layer of sediment away from mid-ocea accumulating since t a. plankton and she b. plankton and she c. the ocean floor i d. All of the above	compos in ridge: he form elled org elled org s young are cor	ed of tiny she s and covers n aation of Earth ganisms evolv ganisms do no ger toward the rect.	ll fragme nost of th a, suggest ed recent t often di mid-ocea	nts and dead p e ocean floor, s that ly e and sink to t an ridge	lankton but is to he botto	that gets thicker as it moves to thin to have been om of the ocean
	ANS: B MSC: Conceptual	DIF:	Medium	REF:	2.4	TOP:	IV.B
45.	 Why is preserved oc a. Magma primaril b. Oceanic bedrock c. Oceanic bedrock types. d. All of the above ANS: D MSC: Conceptual 	eanic be y cools does n does n are corr DIF:	edrock only co to form basalt ot experience ot experience rect. Medium	omposed c. changes changes REF:	of primarily ba in heat that pro in pressure tha 2.4	asalt? oduce di t produc TOP:	ifferent rock types. ce different rock IV.B
46.	All basalts younger t a. have normal ma	than 700 gnetic p),000 years ol olarity	d	·		

b. have reverse magnetic polarity

- c. are found on the ocean floor very far from mid-ocean ridges
- d. are found on the continents

ANS: A DIF: Difficult REF: 2.4 TOP: IV.B MSC: Applied

47. A "stripe" of a particular magnetic orientation that has a very large width could be indicative of

	·											
	a. a great deal of time spent in a particular magnetic regime											
	b. higher spreading rates than other points in time											
	c. Both a and b are correct.											
	d. None of the above are correct.											
	ANS: C MSC: Conceptual	DIF: Medium	REF: 2.5	TOP: V								
48.	Marine magnetic ano	maly belts run parallel	l to									
	a. mid-ocean ridges		c. continental c	oastlines								
	b. fracture zones		d. continental s	helves								
	ANS: A MSC: Factual	DIF: Easy	REF: 2.6	TOP: V.A								

49. Consult the figure below. Marine magnetic anomaly belts are widest when and where _____

- a. continents are joined to form supercontinents
- b. sea-floor spreading rates are relatively rapid
- c. sea-floor spreading rates are relatively slow

ANS:	В	DIF:	Easy	REF:	2.6	TOP:	V.A
MSC:	Applied						

50. Regions of the sea floor with positive magnetic anomalies were formed during times when Earth's magnetic field ______.

a. was exceptional	a. was exceptionally strong			had normal polarity			
b. was exceptional	d.	had reve	ersed polarity				
ANS: C MSC: Applied	DIF: Easy	REF:	2.6	TOP: V.A			

51. Regions of the sea floor with negative magnetic anomalies were formed during times when Earth's magnetic field ______.

a.	was exceptionally strong			с.	had not	rmal polarity	
b. was exceptionally weak			d.	had rev	ersed polarity		
AN MS	S: D C: Applied	DIF:	Easy	REF:	2.6	TOP: V	V.A

52. According to the figure below, the Earth's magnetic reversals are likely due to ______.

A ship towing a magnetometer detects changes in the strength of the magnetic field.

Sea floor Magnetometer Ship moves to the right.

- a. meteorite impacts
- b. lightning strikes
- c. changes in circulation patterns in the outer core
- d. changes in circulation patterns in the inner core

ANS: C	DIF:	Easy	REF: 2.6	TOP: V.A.i
MSC: Factual				

- 53. Marine magnetic anomalies result from sea-floor spreading in conjunction with ______.
 - a. global warming
 - b. magnetic storms on the surface of the Sun
 - c. magnetic polarity reversals
 - d. apparent wander of the magnetic poles

ANS: C DIF: Easy REF: 2.6 TOP: V.A.i MSC: Applied

54. By deep-sea drilling, the *Glomar Challenger* proved the theory that if the model of sea-floor spreading was correct, then sea-floor sediment should be ______ and _____ as one moves away from the spreading axis.

a. thicker; younger c. thinner; younger

	b. thicke	r; older			d.	thinner; older		
	ANS: B MSC: Fac	ctual	DIF:	Easy	REF:	2.6	TOP:	V.B
55.	Continent	al lithosphe	ere					
	a. is thic	ker than oc	eanic li	thosphere				
	b. contai	ns more ma	afic roc	ks than oceanic	lithosp	ohere		
	c. is den	ser than oc	eanic lit	hosphere		011.1.0.1		
	d. contai	ns no crust	al mate	rial, consisting	solely (of lithified uppe	er mant	le
	ANS: A MSC: Fac	ctual	DIF:	Easy	REF:	2.6	TOP:	VI.A
56.	All lithosp continenta	oheric plate Il crust.	s are ap	proximately the	e same	size and contai	n a com	bination of oceanic and
	a. true				b.	false		
	ANS: B MSC: Co	nceptual	DIF:	Easy	REF:	2.6	TOP:	VI.A
57.	Continent	al coastline	s that o	ccur within the	interio	r of a tectonic p	late are	called .
	a. intern	al margins			c.	active margin	s	
	b. passiv	e margins			d.	inert margins		
	ANS: B MSC: Fac	ctual	DIF:	Easy	REF:	2.6	TOP:	VI.B
58.	Broad, see	liment-cov	ered coi	ntinental shelve	s are fo	ound along		
	a. active	margins			c.	internal margi	ins	
	b. passiv	e margins			d.	inert margins		
	ANS: B MSC: Fac	ctual	DIF:	Easy	REF:	2.6	TOP:	VI.B
59.	Within the	e terminolo	gy of pl	ate tectonics, a	n active	e margin is		
	a. synon	ymous with	n "subd	uction zone"		<i>c</i>		
	b. a 5-m	ile radius su	urround	ing an active vo	olcano			
	c. a cont	inental coa	stline th	nat coincides wi	ith a pla	ate boundary		
	d. anywi	iere on Ear	th wher	e earthquakes a	ire espe	cially frequent		
	ANS: C MSC: Fa	ctual	DIF:	Easy	REF:	2.6	TOP:	VI.B
60.	Earthquak	tes are most	t freque	nt near coastlin	es that	are termed		·
	a. active	margins			c.	aseismic marg	gins	
	b. passiv	e margins			d.	geodesic marg	gins	
	ANS: A MSC: Ap	plied	DIF:	Easy	REF:	2.6	TOP:	VII

61.	In a hot-spot volcanic island chain, such simultaneously and therefore the risks o	s the Hawaiian Islands, all islands p volcanic hazards are about the same	ossess active volcanoes for all islands.
	a. true	b. false	
	ANS: B DIF: Easy MSC: Applied	REF: 2.6 TOP: VII	
62.	Spreading rates along mid-ocean ridgesa. been remarkably constant through tib. changed through time, but are the sac. changed through time, and today vard. changed through time, and today var	we e e everywhere on Earth today between 1 and 10 m/yr between 1 and 10 cm/yr	
	ANS: D DIF: Medium MSC: Applied	REF: 2.6 TOP: V	
63.	 Under the theory of plate tectonics, the plate tectonics, the plate tectonics, the plate tectonics, the plate discrete pieces of lithosphere at the one another b. discrete layers of lithosphere that are c. composed only of continental rocks d. very thick (approximately one-quarter) 	ates themselves are rface of the solid Earth that move wertically stacked one atop the other at plow through the weaker oceanic of Earth's radius)	rith respect to
	ANS: A DIF: Medium MSC: Conceptual	REF: 2.6 TOP: VI	
64.	The theory of plate tectonicsa. incorporates continental drift but no b. incorporates sea-floor spreading but c. incorporates and explains both sea-fl d. does not incorporate sea-floor spread ANS: C DIF: Medium	 bea-floor spreading ot continental drift or spreading and continental drift ng or continental drift REF: 2.6 TOP: VI	
65	MSC: Conceptual	sphere is about	
05.	a. 30 kmb. 60 km	c. 150 km d. 10,000 km	
	ANS: A DIF: Medium MSC: Factual	REF: 2.6 TOP: VI	A
66.	Unlike the lithosphere, the asthenospher a. is able to flow over long periods of t	ne c. varies in thickness from p	lace to place
	b. has a density similar to the core	d. is relatively cool	
	ANS: A DIF: Medium MSC: Applied	REF: 2.6 TOP: VI	A

67.	 7. The lithosphere of Earth can be bent and broken, but wil a. is too old c. is to 	l not flow because it o cool
	b. is too dense d. cont ANS: C DIF: Medium REF: 2.6 MSC: Applied	ains radioactive elements TOP: VI.A
68.	 8. Tectonic plates might consist of a. continental lithosphere only b. oceanic lithosphere only c. oceanic or continental lithosphere, or a combination d. either oceanic or continental lithosphere, but not both 	of both h
	ANS: C DIF: Medium REF: 2.6 MSC: Applied	TOP: VI.A
69.	 P. The thickness of oceanic lithosphere is a. uniformly 100 km b. greatest at the geographic poles and least near the eq c. greatest near the mid-ocean ridges and thins out awa d. least near the mid-ocean ridges and thickens away fr 	uator y from the ridges om the ridges
	ANS: D DIF: Medium REF: 2.6 MSC: Applied	TOP: VI.A
70.	 The number of lithospheric plates on the Earth has been millions of years ago, there were plates that no longer ex a. true b. false 	variable through geologic time. Hundreds of ist today.
	ANS: A DIF: Medium REF: 2.6 MSC: Conceptual	TOP: VI.A

71. According to the figure below, every plate boundary can be recognized by _____

a. the presence of active volcanoes

	b. the presence of ac. a deep chasm thatd. None of the abox	n earth it can b ve are c	quake belt e seen from sp orrect	ace			
	ANS: B MSC: Factual	DIF:	Medium	REF:	2.6	TOP:	VI.B
72.	Tectonic plates move	e at rate	s that are appr	oximatel	v		
	a. 1 to 5 cm every 1	l,000 ye	ears	с.	1 to 15 m/	year	
	b. 1 to 15 cm/year			d.	10 to 100 i	m/year	
	ANS: B MSC: Factual	DIF:	Medium	REF:	2.6	TOP:	VI.B
73.	Deformed (bent, stre	tched, c	or cracked) lith	nosphere	occurs		<u>.</u> .
	a. randomly over th	ie surfa	ce of Earth	с.	on the mar	gins of tec	ctonic plates
	b. only at transform	n plate b	oundaries	d.	only at div	ergent pla	te boundaries
	ANS: C MSC: Applied	DIF:	Medium	REF:	2.6	TOP:	VI.B
74.	The pulling forces th a. mid-ocean ridges b. ocean trenches	at prod	uce the most r	apid plat c. d.	e velocities continenta stable cont	are concer l collision inental int	ntrated at zones eriors
	ANS: B MSC: Factual	DIF:	Medium	REF:	2.6	TOP:	VII
75.	Slab pull occurs beca a. less mafic, and th b. cooler, and there c. hotter, and there d. cooler, and there ANS: B	nuse sub nerefore fore mo fore mo fore les DIF [.]	oducting slabs e less dense, th ore dense, than re dense, than s dense, than s Medium	are nan surro surround surroundi REE	unding asthe ding astheno ling astheno ing asthenos	enosphere osphere osphere sphere TOP	VII
	MSC: Factual	$D\Pi^{*}$.	Medium	KEF.	2.0	IOF.	V 11
76.	The rate of motion of a. relative plate velo	f a litho ocity	spheric plate	with resp	ect to a stati	onary hot	spot is termed
	b. absolute plate ve	locity					
	c. lateral plate velo	city					
	d. Velocity of this r	notion	cannot be dete	ermined.			
	ANS: B MSC: Factual	DIF:	Medium	REF:	2.6	TOP:	VII
77.	The lithosphere of th	e Earth	is generally th	ninnest at	and near		plate boundaries.
	a. Convergent			с.	Transform		

b.	Divergent
.	Divergent

ANS:	В	DIF:	Medium	REF:	2.6	TOP:	VII
MSC:	Factual						

78. Consult the figure below. Most of the pushing force driving plate motion is produced ______

79. Consult the figure below. Most of the pulling force driving plate motion is produced ______

a. at mid-ocean ridgesb. at subduction zonesc. at collision zonesd. in the interiors of continental plates

ANS: B DIF: Medium REF: 2.6 TOP: VII MSC: Applied

- 80. If mid-ocean spreading was to stop, but subduction continue, which of the following would occur?
 - a. Continents would begin moving toward each other.
 - b. The surface area of the Earth would decrease.

- c. Sea level would rise.
- d. Both a and b are correct.
- e. All of the above are correct.

ANS: E DIF: Difficult REF: 2.6 TOP: VI MSC: Conceptual

81. According to Archimedes' principle of buoyancy, an iceberg sinks until

- a. the total mass of the water displaced equals the total mass of the whole iceberg
- b. the total mass of the iceberg is underwater
- c. about 60% of the iceberg is underwater
- d. the total mass of the water displaced equals 80% of the mass of the iceberg

ANS: A DIF: Difficult REF: 2.6 TOP: VI.A MSC: Factual

- 82. The primary difference between lithospheric and asthenospheric mantle that gives rise to numerous divergent patterns of physical behavior is ______.
 - a. physical state (the lithosphere is solid; the asthenosphere is liquid)
 - b. chemical composition (the lithosphere is mafic; the asthenosphere is felsic)
 - c. temperature (the lithosphere is cooler than the asthenosphere)
 - d. chemical composition (the lithosphere is felsic; the asthenosphere is mafic)

ANS: C DIF: Difficult REF: 2.6 TOP: VI.A MSC: Conceptual

- 83. Why don't earthquakes occur everywhere?
 - a. Rocks break and slip most often along plate boundaries.
 - b. Plate interiors do not accommodate much movement.
 - c. Earthquake epicenters speckle the globe randomly.
 - d. Both a and b are correct.
 - e. All of the above are correct.

ANS: D DIF: Difficult REF: 2.6 TOP: VI.B MSC: Conceptual

84. At a divergent plate boundary (shown below), two opposed plates _____

			Mid-ocean ridge				
	Lithosphere						
	a. move toward oneb. move away from	e anothe	er other	c.	slide past one	e anothe	r
	ANS: B MSC: Factual	DIF:	Easy	REF:	2.7	TOP:	VII
85.	All rock produced at a. true	the mid	l-ocean ridges	consists b.	of basalt. false		
	ANS: B MSC: Factual	DIF:	Easy	REF:	2.7	TOP:	VII.A
86.	The youngest sea flo a. along passive ma b. along active mar	or occu argins gins	rs	 c. d.	along mid-oc randomly ove	ean ridg er the er	ges ntire ocean basin
	ANS: C MSC: Factual	DIF:	Easy	REF:	2.7	TOP:	VII.A
87.	The oldest oceanic cr	rust is a	pproximately _		years ol	d.	
	a. 1 billionb. 240 million			c. d.	120 million 90 million		
	ANS: B MSC: Factual	DIF:	Medium	REF:	2.7	TOP:	VII.A
88.	As compared to a slo	wly spi	reading mid-oc	ean ridg	ge, a rapidly spi	reading	ridge is

	Sediment Fault scarp Mid-ocean Pillow basalt ridge axis
	Dikes Gabbro Crystal mush Lithospheric mantle Zone of partial melting Asthenosphere
	a. wider c. more silicic in lava composition
	b. narrower
	ANS: ADIF: MediumREF: 2.7TOP: VII.AMSC: Applied
89.	 As compared to the density of the asthenosphere, the oceanic lithosphere is a. always more dense b. always less dense c. initially more dense at the age of formation but eventually becomes less dense d. initially less dense at the age of formation but eventually becomes more dense
	ANS: D DIF: Medium REF: 2.7 TOP: VII.A MSC: Applied
90.	As lithosphere cools to the sides of a mid-ocean ridge, it begins toa. rise with respect to material located closer to the ridge axisb. sink with respect to material located closer to the ridge axis
	ANS: B DIF: Medium REF: 2.7 TOP: VII.B MSC: Applied
91.	Oceanic lithosphere thickens away from the mid-ocean ridge primarily due to a. the addition of new crust due to hot-spot volcanism b. the addition of new crust due to sedimentation c. the addition of new lithospheric mantle as a result of cooling d. reasons that geologists cannot determine at present
	ANS: C DIF: Medium REF: 2.7 TOP: VII.B MSC: Applied
92.	Summed over the entire surface of Earth,

 a. the rate of lithospheric production at ridges is greater than the rate of lithospheric consumption at subduction zones b. the rate of lithospheric consumption at subduction zones is greater than the rate of 								
	an the rate of							
	ANS: C DIF: MSC: Conceptual	Medium	REF: 2.7	TOP:	VII.B			
93.	 Why is the ocean deeper over older ocean floor than younger ocean floor? a. The deeper ocean floor is below 1,280°C. b. The deeper ocean floor is older than 80 million years old. c. The deeper ocean floor is thick and dense. d. All of the above are correct. 							
	ANS: D DIF: MSC: Conceptual	Medium	REF: 2.7	TOP:	VII.B			
94.	Iceland is one of the few places in the world that is both above sea level and situated atop a plate boundary.							
	a. convergentb. divergent		c. tran	sform				

ANS: B DIF: Difficult REF: 2.7 TOP: VII.B MSC: Applied

95. At a convergent-plate boundary (shown below), two opposed plates ______.

- a. move toward one another c. slide past one another
- b. move away from one another

ANS: A DIF: Easy REF: 2.8 TOP: VIII MSC: Factual

- 96. Deep-oceanic trenches are features of _____-plate boundaries.
 - a. convergent c. transform
 - b. divergent

	ANS: A MSC: Factual	DIF:	Easy	REF:	2.8	TOP:	VIII		
97.	Large, thick, nonvolcanic mountain belts, like the Himalayas, have features associated with								
	a. convergent b. divergent	oounu		c.	transform				
	ANS: A MSC: Applied	DIF:	Easy	REF:	2.8	TOP:	VIII		
98.	The volcanoes of the Cascades Mountains are related to melting of rock associated with a								
	a. convergentb. divergent			c.	transform				
	ANS: A MSC: Applied	DIF:	Easy	REF:	2.8	TOP:	VIII		
99.	Mid-ocean ridges are a. convergent-plate b. divergent-plate b	e bound boundar	aries ies	c.	transform-pla	te boun	daries		
	ANS: B MSC: Applied	DIF:	Easy	REF:	2.8	TOP:	VIII		
100.	At a subduction zonea. is always compob. is always compoc. may be compose	e, the do sed of o sed of o d or eit	owngoing (subc continental lithe oceanic lithosph her oceanic or o	lucting) osphere nere contine	plate				
	ANS: B MSC: Factual	DIF:	Easy	REF:	2.8	TOP:	VIII.A		
101.	At a subduction zonea. is always compob. is always compoc. may be compose	e, the ov sed of a sed of a d of eit	verriding plate continental litho oceanic lithosph her oceanic or o	osphere here contine					
	ANS: C MSC: Factual	DIF:	Easy	REF:	2.8	TOP:	VIII.A		
102.	Consult the figure be	low. Si	ubduction zones	s are					

a. convergent-plate boundaries

c. transform-plate boundaries

b. divergent-plate boundaries

	ANS: A MSC: Applied	DIF:	Easy	REF:	2.8	TOP:	VIII.A
103.	Virtually all of the se plate.	diment	atop a downgo	oing pla	te becomes sub	oducted	into the mantle along with the
	a. true			b.	false		
	ANS: B MSC: Applied	DIF:	Easy	REF:	2.8	TOP:	VIII.A.ii
104.	The lithosphere of the	e Earth	is generally thi	ickest a	t and near		plate boundaries.
	a. convergentb. divergent			c.	transform		
	ANS: A MSC: Factual	DIF:	Medium	REF:	2.8	TOP:	VIII
105.	 5. Why does the surface area of Earth remain constant throughout time? a. Subduction occurs. b. Rates of sea-floor spreading are equal to sea-floor consumption. c. Plates slip past each other. d. Both a and b are correct. e. Both b and c are correct. 						
	ANS: D MSC: Conceptual	DIF:	Medium	REF:	2.8	TOP:	VIII
106.	Subducted slabs have	e never	been detected b	below th	ne Wadati-Ben	ioff zon	e.
	a. true			b.	false		
	ANS: B MSC: Factual	DIF:	Medium	REF:	2.8	TOP:	VIII.A
107.	The Wadati-Benioff	zone ex	tends down wi	thin the	mantle to a mathematic	aximum	depth of
	a. 30 km			c.	670 km		
	b. 150 km			d.	990 km		
	ANS: C MSC: Factual	DIF:	Medium	REF:	2.8	TOP:	VIII.A

108. Consult the figure below. The Wadati-Benioff zone is a belt of earthquakes found ______.

MSC: Factual

110. At a transform-plate boundary (shown below), two opposed plates ______.

	Overriding plate	Vol	canic arc	nch					
		Down	ngoing late						
	a. move toward ofb. move away from	ne anothe m one an	er other	с.	slide	past one anothe	r		
	ANS: C MSC: Factual	DIF:	Easy	REF:	2.9	TOP:	IX		
111.	At transform-plate a. earthquakes are b. volcanoes are c c. both earthquake	boundarie common common b es and vo	es 1 but volca put earthqu lcanoes are	noes are abs akes do not common	ent occur				
	ANS: A MSC: Applied	DIF:	Easy	REF:	2.9	TOP:	IX		
112.	Segments of the mi	d-ocean 1	ridge syste	m are offset	. Betwe	een the offset se	gments v	we observe	
	 a. a second series b. deep-ocean tren c. transform faults d. None of the above 	of ridges nches s ove are co	, perpendio prrect.	cular to the r	nain se	et			
	ANS: C MSC: Applied	DIF:	Easy	REF:	2.9	TOP:	IX		
113.	The San Andreas F a. convergent b. divergent	ault zone	in souther	n California c.	is an e transf	xample of a form		plate bounda	ary.
	ANS: C MSC: Applied	DIF:	Easy	REF:	2.9	TOP:	IX		
114.	All portions of the a. true	mid-ocea	n ridge sys	stem have a b.	well-de false	fined axial trou	igh (centr	ral rift).	
	ANS: B MSC: Factual	DIF:	Medium	REF:	2.9	TOP:	IX.A		

115. A triple junction, like the one shown below, is a place on Earth's surface where _____.

- a. three volcanoes form a tight, triangular cluster
- b. glacial ice, continental rocks, and the ocean can be found together
- c. the boundaries of three lithospheric plates meet at a single point
- d. the boundaries of three lithospheric plates meet to form an elongate surface

ANS: C DIF: Easy REF: 2.10 TOP: X.A MSC: Factual

116. A guyot is _____.

- a. any portion of the ocean floor that is topographically higher than surrounding sea floor
- b. an extinct oceanic hot-spot volcano that has not yet subsided below sea level
- c. an extinct oceanic hot-spot volcano that has subsided below sea level
- d. synonymous with the term hot spot

ANS:	С	DIF:	Easy	REF:	2.10	TOP:	X.B
MSC:	Factual						

117. Consult the figure below. Hawaii is an example of ______.

- b. only within oceanic plates
- c. within either continental or oceanic plates
- d. only when the thickness of the crust is less than 10 km

ANS: C DIF: Medium REF: 2.10 TOP: X.B MSC: Applied

121. Which of the following would NOT render the volcanoes on Hawaii's big island inactive?

- a. the Pacific plate moving farther to the northwest
- b. the mantle plume below Hawaii moving farther to the northwest
- c. the mantle plume below Hawaii decreasing in temperature
- d. All of the other choices would render the volcanoes on Hawaii's big island inactive.

ANS: B DIF: Medium REF: 2.10 TOP: X.B MSC: Conceptual

122. The mid-ocean ridges are elevated above the surrounding sea floor because ______.

- a. ridge rocks are hot and therefore of relatively low density
- b. the lithospheric plates are thickest at the ridges so that they stand up taller
- c. rising ocean currents leave a vacuum above the ridge
- d. ridge rocks are mafic, whereas the ocean basin crust consists of ultramafic rock

ANS: A DIF: Difficult REF: 2.10 TOP: X.B.i MSC: Conceptual

123. When two bodies of continental lithosphere are pulled together at a convergent boundary, the result is

a. subduction			b.	collision and r	nountain formation
ANS: B MSC: Applied	DIF:	Easy	REF:	2.11	TOP: XI

124. ______ is an example of a continental rift and the ______ is/are the result of collision.

- a. The Basin and Range Province; mid-ocean ridge
- b. A mid-ocean ridge; Himalayan Mountains
- c. The Basin and Range Province; Himalayan Mountains
- d. The San Andreas Fault; Himalayan Mountains

ANS: C DIF: Medium REF: 2.11 TOP: XI MSC: Applied

125. Without which of the following principles would it be impossible to drive plate motion?

- a. Plastic material is pushed downslope by the mass of the material at higher elevations.
- b. Once plastic material starts to sink, it will bring the entire mass of the material with it.

c. Plastic material always flows away from its source.

- d. Both a and b are correct.
- e. Both b and c are correct.

ANS: D DIF: Difficult REF: 2.11 TOP: XII MSC: Conceptual