Chapter 2

Random Variables, Distributions, and Expectations

2.1 Discrete; continuous; continuous; discrete; discrete; continuous.
2.2 A table of sample space and assigned values of the random variable is shown next.

Sample Space	x
$N N N$	0
$N N B$	1
$N B N$	1
$B N N$	1
$N B B$	2
$B N B$	2
$B B N$	2
$B B B$	3

2.3 A table of sample space and assigned values of the random variable is shown next.

Sample Space	w
HHH	3
HHT	1
HTH	1
THH	1
HTT	-1
THT	-1
TTH	-1
TTT	-3

$2.4 \mathrm{~S}=\{Н Н Н$, ТННН,НТННН, ТТННН, ТТТННН, НТТННН, ТНТННН, ННТННН\}; The sample space is discrete.

Copyright ©2013 Pearson Education, Inc.

Σ

2.5
(a) $c=1 / 30$ since $1={ }_{x=0} c\left(x^{2}+4\right)=30 c$.
(b) $c=1 / 10$ since
2.6
(b) $P(80<x<200)={ }^{\substack{x+100) \\(x+1}} \quad 20000$

2.8 (a) $P(0<X<1)=\int_{0} \frac{2(x+2)}{5}$

$$
d x=\frac{(x+2)_{2}}{\bullet_{2}} \quad{ }^{1}=1
$$

(b) $P(1 / 4<x<1 / 2)=\int_{1 / 2} \frac{2(x+2)}{5}$

$$
d x=\underset{5}{(-x+2)_{2}}:_{1 / 4}^{1 / 2}=19 / 80 .
$$

2.9 We can select x defective sets from 2 , and $3-x$ good sets from 5 in ${ }_{x}^{(2)(5)}$ ways. A random selection of 3 from $7 \underset{(2)\binom{5}{5}}{\text { sets can be made in }}\binom{7}{3}$ ways. Therefore,

$$
f(x)=\begin{gathered}
x(7)^{3-x} \\
3
\end{gathered}, \quad x=0,1,2
$$

In tabular form

$$
\begin{array}{cccc}
x & 0 & 1 & 2 \\
f(x) & 2 / 7 & 4 / 7 & 1 / 7
\end{array}
$$

The following is a probability histogram:

4/7

Copyright ©2013 Pearson Education, Inc.

3

2

2.10 (a) $P(T=5)=F(5)-F(4)=3 / 4-1 / 2=1 / 4$.
(b) $P(T>3)=1-F(3)=1-1 / 2=1 / 2$.
(c) $P(1.4<T<6)=F(6)-F(1.4)=3 / 4-1 / 4=1 / 2$.
(d) $P(T \leq 5 \mid T \geq 2) \underset{P(T \geq 2)}{P(2 \leq T \leq 5)} \underset{1-1 / 4}{3 / 4-1 / 4}=\frac{2}{3}$
2.11 The c.dff. of X is
$\begin{cases}0, & \text { for } x<0, \\ 0.41, & \text { for } 0 \leq x<1,\end{cases}$
$F(x)= \begin{cases}0.78, & \text { for } 1 \leq x<2, \\ 0.94, \text { for } 2 \leq x<3, \\ 0.99, & \text { for } 3 \leq x<4, \\ 1, & \text { for } x \geq 4 .\end{cases}$
2.12 (a) $P(X<0.2)=F(0.2)=1-e^{-1.6}=0.7981$;
(b) $f(x)=F^{\prime}(x)=8 e^{-8 x}$. Therefore, $P(X<0.2)=8 \quad \int_{0}^{\int_{0.2}} e^{-8 x} d x=-\left.e^{-8 x}\right|_{0} ^{0.2}=$ 0.7981 .
2.13 The c.d.f. of X is

$$
F(x)=\left\{\begin{array}{l}
10, \quad \text { for } x<0 \\
2 / 7, \quad \text { for } 0 \leq x<1 \\
6 / 7, \text { for } 1 \leq x<2 \\
1, \quad \text { for } x \geq 2
\end{array}\right.
$$

(a) $P(X=1)=P(X \leq 1)-P(X \leq 0)=6 / 7-2 / 7=4 / 7$;
(b) $P(0<X \leq 2)=P(X \leq 2)-P(X \leq 0)=1-2 / 7=5 / 7$.
2.14 A graph of the c.d.f. is shown next.

2.15 (a) $1=k \int_{0}^{\int_{1}} V * d x={ }_{3}^{2 k} x^{3 / 2} \dot{0}{ }^{1}=3-$. \quad Therefore, $k={ }_{2}^{-}$

Copyright ©2013 Pearson Education, Inc.
(b) For $0 \leq x<1, F(x)={ }_{2}^{3} \int_{x}{ }^{\sqrt{ }} \bar{t} d t=t^{3 / 2} \cdot{ }^{\cdot x}{ }^{x}=x^{3 / 2}$.
Hence,

$$
F(x)=\left\lvert\, \begin{array}{cl}
x^{3 / 2}, & 0 \leq x<1 \\
1, & x \geq 1
\end{array}\right.
$$

$$
P(0.3<X<0.6)=F(0.6)-F(0.3)=(0.6)^{3 / 2}-(0.3)^{3 / 2}=0.3004
$$

2.16 Denote by X the number of spades int he three draws. Let S and N stand for a spade and not a spade, respectively. Then
$P(X=0)=P(N N N)=(39 / 52)(38 / 51)(37 / 50)=703 / 1700$,
$P(X=1)=P(S N N)+P(N S N)+P(N N S)=3(13 / 52)(39 / 51)(38 / 50)=741 / 1700, P$
$(X=3)=P(S S S)=(13 / 52)(12 / 51)(11 / 50)=11 / 850$, and
$P(X=2)=1-703 / 1700-741 / 1700-11 / 850=117 / 850$.
The probability mass function for X is then

x	0	1	2	3
$f(x)$	$703 / 1700$	$741 / 1700$	$117 / 850$	$11 / 850$

2.17 Let T be the total value of the three coins. Let D and N stand for a dime and nickel, respectively. Since we are selecting without replacement, the sample space containing elements for which $t=20,25$, and 30 cents corresponding to the selecting of 2 nickels and 1 dime, 1 nickel and 2 dimes, and 3 dimes. Therefore, $P(T=20)=\frac{\left.{ }_{\eta}^{(22)}\right)(4}{4}=1^{5}$,
$P(T=25)=\frac{\left(2_{1}\right)\left(4_{42}\right)}{\left(\sigma_{3}\right)}=35$,
$P(T=30)=\frac{\left(4_{3}\right)}{\left({ }^{63}\right)}=-$
and the probability distribution in tabular form is

t	20	25	30
$P(T=t)$	$1 / 5$	$3 / 5$	$1 / 5$

As a probability histogram

Copyright ©2013 Pearson Education, Inc.
2.18 There are ${ }_{4}^{(10)}$ ways of selecting any 4 CDs from 10 . We can select x jazz CDs from 5 and $4-x$ from the remaining CDs in $x_{4}{ }_{4-x}$ (5) ways. Hence

$$
f(x)=x(10)_{4}^{(5)\left(5_{4}\right)}{ }_{4}^{(-x}, \quad x=0,1,2,3,4 .
$$

 $=1-\exp (-x / 2000)$. So

$$
F(x)=\begin{array}{lr}
\left\{\begin{array}{l}
0, \\
1-\exp (-x / 2000), \\
x \geq 0
\end{array}\right. & x<0,
\end{array}
$$

(b) $P(X>1000)=1-F(1000)=1-[1-\exp (-1000 / 2000)]=0.6065$.
(c) $P(X<2000)=F(2000)=1-\exp (-2000 / 2000)=0.6321$.

(c) $P(X>26)=\int_{26}^{26} 5{ }_{5}^{252} d^{X=}{ }_{5(26.25-26)=0.1 \text {. Itisnotextremelyrare. }}^{2}$.
2.21
(a) $f(x) \geq 0$ and ${ }_{1}^{\infty} 3 x^{-4} d x=-3_{3}^{*=3} \cdot{ }_{1}^{\infty}=1$. So, this is a valid density function.
(b) For $x \geq 1, F(x)=\stackrel{\int_{x}}{1} 3 t^{-4} d t=1 \begin{aligned} & 1-x^{-3} . \\ & 0,\end{aligned}$

$$
F(x)=\begin{array}{ll}
\{, & x<1, \\
1-x^{-3}, & x \geq 1 .
\end{array}
$$

(c) $P(X>4)=1-F(4)=4^{-3}=0.0156$.
2.22
(a) $\left.1=k{ }_{-1}^{1}\left({ }^{1}-x_{2}\right) d x=k 3 x \int_{x}^{-3_{3}}\right) \cdot{ }_{-1}^{1}={ }^{16_{3}} k$ So, $k=$ ($)$.
(b) For $-1 \leq x<1, F(x)={ }^{3}$

(c) $\left.P(|X|<0.8)=P(X<-0.8)+P\left(X \gg^{2} 0.8\right)={ }^{128} F^{2}(-0.8)+1-F(0.8)_{(1)}\right)(1)$ $=1+\quad 2 \quad{ }_{160} .8+{ }_{16} 0.8_{3}-\quad 2 \quad{ }_{160} \cdot{ }^{8-}{ }_{160} \cdot{ }_{3}=0.164$.
2.23
(a) For $y \geq 0, F(y)=^{14} \nexists e^{-t / 4} d^{y=1-e} y^{4}$. So $P(Y>6)=e^{-6 / 4}=0.2231$. This
(b) probability certainly cannot be considered as "unlikely.
(b) $P(Y \leq 1)=1-e^{-1 / 4}=0.2212$, which is not so small either.
2.24 (a) $f(y) \geq 0$ and $\left.\int_{0}^{\int_{1}} 5^{(1-y)}{ }_{4} d^{y=-(1-y)_{5}}\right|^{0}=1$. So, this is a valid density function.

Copyright ©2013 Pearson Education, Inc.
(b) $P(Y<0.1)=-\left.(1-y)^{5}\right|_{0} ^{0.1}=1-(1-0.1)^{5}=0.4095$.
(c) $P(Y>0.5)=(1-0.5)^{5}=0.03125$.
2.25 (a) Using integral by parts and setting $1=k \int_{0}^{\int_{1}} y^{4}(1-y)_{3} d^{y}$, weobtain $k=280$.
(b) For $0 \leq y<1, F(y)=56 y^{5}(1-y)^{3}+28 y^{6}(1-y)^{2}+8 y^{7}(1-y)+y^{8}$. So, $P(Y \leq 0.5)=0.3633$.
(c) Using the cdf in (b), $P(Y>0.8)=0.0563$.
2.26 (a) The event $Y=y$ means that among 5 selected, exactly y tubes meet the specification (M) and $5-y\left(M^{\prime}\right)$ does not. The probability for one combination of such a situation is $(0.99)_{5!}^{y}(1-0.99)^{5-y}$ if we assume independence among the tubes. Since there are $y(5-y!!p$ ermutations of getting $y M s$ and $5-y M$'s, the probability of this event $(Y=y$) would be what it is specified in the problem.
(b) Three out of 5 is outside of specification means that $Y=2 . P(Y=2)=9.8 \times 10^{-6}$ which is extremely small. So, the conjecture is false.
2.27
(a) $\left.P(X>8)=1-P(X \leq 8)=\sum_{x=0}^{\sum_{8}} e^{-66_{x}}=1-e^{-6} \frac{\left(6^{0}\right.}{0!}+{ }_{1!}^{6_{1}}+\cdots+{ }_{8!}^{6_{8}}\right)=0.1528$.
(b) $P(X=2)=e_{2!}^{-66_{2}}=0.0446$.

(a) $P(X \leq 1 / 3)=1-(1-1 / 3)^{2}=5 / 9$.
(b) $P(X>0.5)=(1-1 / 2)^{2}=1 / 4$.

2.29
(a) $\sum_{3} \sum_{3} f(x, y)=c \sum_{3}^{\sum_{3}} \sum_{0} x y=36 c=1$. Hence $c=1 / 36$.
(b) $\sum_{x y}^{x=0=0} f(x, y)=c \sum_{x y}^{\sum=0} \sum_{y}|x-y|=15 c=1$. Hence $c=1 / 15$.
2.30 The joint probability distribution of (X, Y) is

$f(x, y)$		x			
		0	1	2	3
	0	0	1/30	2/30	3/30
y	1	1/30	2/30	3/30	4/30
	2	2/30	3/30	4/30	5/30

(a) $P(X \leq 2, Y=1)=f(0,1)+f(1,1)+f(2,1)=1 / 30+2 / 30+3 / 30=1 / 5$.
(b) $P(X>2, Y \leq 1)=f(3,0)+f(3,1)=3 / 30+4 / 30=7 / 30$.
(c) $P(X>Y)=f(1,0)+f(2,0)+f(3,0)+f(2,1)+f(3,1)+f(3,2)$ $=1 / 30+2 / 30+3 / 30+3 / 30+4 / 30+5 / 30=3 / 5$.

Copyright ©2013 Pearson Education, Inc.
(d) $P(X+Y=4)=f(2,2)+f(3,1)=4 / 30+4 / 30=4 / 15$.
(e) The possible outcomes of X are $0,1,2$, and 3 , and the possible outcomes of Y are 0,1 , and 2. The marginal distribution of X can be calculated such as $f_{X}(0)=1 / 30+2 / 30=1 / 10$. Finally, we have the distribution tables.

x	0	1	2	3	y	0	1	2
$f_{X}(x)$	$1 / 10$	$1 / 5$	$3 / 10$	$4 / 10$	$f_{Y}(y)$	$1 / 5$	$1 / 3$	$7 / 15$

2.31 (a) We can select x oranges from 3, y apples from 2, and $4-x-y$ bananas from $3_{(3)(2)(}$)
(8)
in $x \quad y \quad \stackrel{3}{4-x-y}$ ways. A random selection of 4 pieces of fruit can be made in ways. Therefore,

Hence, we have the following joint probability table with the marginal distributions on the last row and last column.

$f(x, y)$	X				$f_{Y}(y)$
	0		2	3	
0	0	3/70	9/70	3/70	3/14
$y \quad 1$	2/70	18/70	18/70	2/70	8/14
2	3/70	9/70	3/70	0	3/14
$f_{X}(x)$	1/14	6/14	6/14	1/14	

(b) $P[(X, Y) \in A]=P(X+Y \leq 2)=f(1,0)+f(2,0)+f(0,1)+f(1,1)+f(0,2)$ $=3 / 70+9 / 70+2 / 70+18 / 70+3 / 70=1 / 2$.

(d) We know from (c) that $P(Y=0 \mid X=2)=3 / 10$, and we can calculate

$$
P(Y=1 \mid X=2)=\begin{aligned}
& 18 / 70 \\
& 6 / 14
\end{aligned}=\begin{aligned}
& 3 \\
& 5
\end{aligned}, \text { and } P(Y=2 \mid X=2)=6 / 14 \quad \begin{gathered}
- \\
10
\end{gathered}
$$

2.32 (a) $g(x)={ }^{2} \int_{3}^{-\int_{1}}(x+2 y) d y=^{2}{ }_{\underline{6}}(x+1)$, for $0 \leq x \leq 1$.
(b) $h(y)={ }^{2} \int_{1}(x+2 y) d x={ }_{3}^{1}(1+4 y)$, for $0 \leq y \leq 1$.
(c) $P\left(X<\frac{3}{1 / 2}\right)=2^{2} \int_{1 / 2}(x+1) d x=5$
2.33

(b) $g(x)=\quad 24 x y d y=12 x(1-x)^{2}$, for $0 \leq x<1$.

