

Bond Pricing

Inputs
Rate Convention
Annual Coupon Rate
Yield to Maturity (Annualized)
Number of Payments / Year
Number of Periods to Maturity (T)
Face Value (PAR)

Outputs

Discount Rate / Period (r)
Coupon Payment (PMT)
Duration and Convexity

Bond Duration using a Timeline

Period	0	1	2	3	4	5
Time (Years)	0.0	0.5	1.0	1.5	2.0	2.5
Cash Flows		\$20.00	\$20.00	\$20.00	\$20.00	\$20.00
Present Value of Cash Flows		\$19.83	\$19.66	\$19.49	\$19.32	\$19.15
Bond Price using a Timeline	\$1,086.96					
Weight		1.8	1.8\%	1.8\%	1.8\%	1.8\%
Weight * Time			0.02	0.03	0.04	0.04
Duration using a Timeline						
Modified Duration using a Timeline						
Bond Duration using a Formula				$\begin{aligned} & \text { V of Cas } \\ & \text { nter }=\mathrm{C} \end{aligned}$	$\begin{aligned} & \text { Flow ol } \\ & \text { BB\$20 } \end{aligned}$	tet $/$ Tot copy act
Duration (D) using a Formula						
Modified Duration using a Formula				$\begin{aligned} & \text { Veight * } \\ & \text { nter } \end{aligned}$	17 an	py acros
Bond Duration using a Function (under APR)Duration using a Function				Sum of all the Weight * Times Enter =SUM(C22:J22)		
Modified Duration using a Function	3.74 -...			Duration / (1+(Discount Rate / P Enter $=\mathrm{B} 23 /(1+\$ \mathrm{~B} \$ 12)$ and cop		
(7) DURATION (Settlement Date, Maturity Date, Annual Coupon Rate, Yield to Maturity, Number of Periods)						

Coupon Rate, Yield to Maturity, Number of Periods)
Enter $=\operatorname{IF}\left(\$ C \$ 4=1, "{ }^{\prime \prime}\right.$, DURATION(DATE $(2000,1,1)$, DATE(2000+B8/B7,1,1),B5,B6,B7))
(8) MDURATION (Settlement Date, Maturity Date, Annual Coupon Rate, Yield to Maturity, Number of Periods) Enter $=\mathrm{IF}\left(\$ \mathrm{C} \$ 4=1,{ }^{\text {" } " ~}{ }^{\prime}, \mathrm{MDURATION}(\mathrm{DATE}(2000,1,1)\right.$, DATE(2000+B8/B7,1,1),B5,B6,B7))
(6) The Duration Formula is:
$D=\frac{1+r}{r \cdot N O P}-\frac{1+r+T \cdot(C R}{C R \cdot\left((1+r)^{T}-\right.}$
Enter $=(1+\mathrm{B} 12) /\left(\mathrm{B} 12^{*} \mathrm{~B} 7\right)-(1+\mathrm{B} 12$ $/\left(\mathrm{B} 5^{*}\left((1+\mathrm{B} 12)^{\wedge} \mathrm{B} 8-1\right)+\mathrm{B} 12^{\star}\right.$

Bond Convexity

Weight * (Time^2+Time)
Convexity using a Timeline Convexity using a Formula

$$
\frac{\left(\begin{array}{l}
C R \cdot(1+r)^{1+T} \cdot(r \cdot(N O P+1)+2) \\
-C R \cdot\left(r^{2} \cdot(N O P+T+1) \cdot(T+1)+r \cdot(N O P+2 \cdot T+3)+2\right)+r^{3} \cdot N O P \cdot T \cdot(N O P+T
\end{array}\right.}{r^{2} \cdot N O P^{2} \cdot\left(C R \cdot(1+r)^{T}-C R+r \cdot N O P\right)}
$$

Enter $=\left(\left(\mathrm{B} 5^{*}\left((1+\mathrm{B} 12)^{\wedge}(1+\mathrm{B} 8)\right)^{\star}\left(\mathrm{B} 12^{\star}(\mathrm{B} 7+1)+2\right)-\mathrm{B} 5^{\star}\left(\mathrm{B} 12^{\wedge} 2^{\star}(\mathrm{B} 7+\mathrm{B} 8+1)^{\star}(\mathrm{B} 8+1)+\mathrm{B} 12^{\star}\left(\mathrm{B} 7+2^{\star} \mathrm{B} 8+3\right)\right.\right.\right.$ $\left.\left./\left(\mathrm{B} 12^{\wedge} 2^{\star} \mathrm{B} 7^{\wedge} 2^{\star}\left(\mathrm{B} 5^{*}(1+\mathrm{B} 12)^{\wedge} \mathrm{B} 8-\mathrm{B} 5+\mathrm{B} 12^{\star} \mathrm{B} 7\right)\right)\right) /\left((1+\mathrm{B} 12)^{\wedge} 2\right)\right)$

US Dollar $\quad \begin{gathered}\text { Exch Rate } \\ \$ 1.00=\end{gathered}$

Currency Number	4
(Select from below)	
1 = Chinese Yuan	$¥ 7.3790$
2 = European Euro	$€ 0.6805$
3 = Indian Rupee	IDR 39.30
$4=$ US Dollar	$\$ 1.00$

previous sheet ious sheet to B12

6	7	8
3.0	3.5	4.0
$\$ 20.00$	$\$ 20.00$	$\$ 1,020.00$
$\$ 18.99$	$\$ 18.82$	$\$ 951.71$
1.7%	1.7%	87.6%
0.05	0.06	3.50

Bond Pricing

Price Sensitivity

$$
\begin{aligned}
& \text { Exch Rate } \$ 1.00 \\
& \$ 1.00=\$ 1.00
\end{aligned}
$$


```
F(2) New YTM - Current YTM
    Enter =B21-$B$6 and copy across
```

PV(Actual Discount Rate / Period,
Number of Periods to Maturity,
Coupon Payment, Face Value)
inter $=-\mathrm{PV}(\mathrm{B} 22, \$ \mathrm{~B} \$ 8, \$ \mathrm{~B} \$ 13, \$ \mathrm{~B} \$ 9)$
nd copy across
/Current Discount Rate / Period,
Number of Periods to Maturity,
Coupon Payment, Face Value)
er $=-\mathrm{PV}(\$ \mathrm{~B} \$ 12, \$ \mathrm{~B} \$ 8, \$ \mathrm{~B} \$ 13, \$ \mathrm{~B} \$ 9)$
d copy across
fied Duration
ange in YTM
$=-$ B27*B23
ppy across

7.00\%	7.50%	8.00%	8.50%	9.00%	9.50%	10.00%
3.5%	3.8%	4.0%	4.3%	4.5%	4.8%	5.0%
5.3%	5.8%	6.3%	6.8%	7.3%	7.8%	8.3%
$\$ 863$	$\$ 847$	$\$ 832$	$\$ 817$	$\$ 802$	$\$ 788$	$\$ 774$
$\$ 1,048$	$\$ 1,048$	$\$ 1,048$	$\$ 1,048$	$\$ 1,048$	$\$ 1,048$	$\$ 1,048$
-17.7%	-19.2%	-20.7%	-22.1%	-23.5%	-24.9%	-26.2%
3.77	3.77	3.77	3.77	3.77	3.77	3.77
-19.8%	-21.7%	-23.6%	-25.5%	-27.4%	-29.3%	-31.2%
18.41	18.41	18.41	18.41	18.41	18.41	18.41
-17.3%	-18.7%	-20.0%	-21.3%	-22.5%	$-23.7 \% \mid$	-24.9%

Bond Pricing

Immunization

Inputs
Rate Convention
Yield to Maturity (Annualized)
Number of Payments / Year

Bond 1
Bond 2
Bond 3
Bond 4
Bond 5
Bond 6
Bond 7
Bond 8

O EAR O APR	2	Annual Percentage Rate	
1.74\%			
2			
Annual Coupon Rate	Number of Periods to Maturity (T)	Face Value (PAR)	Number of Bonds
1.50\%	4	\$1,000	1,783
2.00\%	8	\$1,000	2,042
0.90\%	2	\$1,000	0
1.50\%	4	\$1,000	0
1.90\%	6	\$1,000	0
2.30\%	8	\$1,000	0
1.90\%	6	\$1,000	0
2.30\%	8	\$1,000	0

Outputs

Discount Rate / Period (r)
(3) Copy the Present Value \& Duratic

Copy the range B19: J 24 from the
Bond Present Value, Duration, and Convexity using a Timeline

Period	0	1	2	3
Time (Years)	0.0	0.5	1.0	1.5
Liabilities		$\$ 0$	$\$ 0$	50
Present Value of Liabilities		$\$ 0$	$\$ 0$	50

Total Present Value of Liabilities
Weight
Weight * Time
Duration of Liabilities
Modified Duration of Liabilities
Weight * (Time^2+Time)
Convexity of Liabilities

0.0%	0.0%	0.0%
0.00	0.00	0.00

Differences
Total Assets - Liabilities
PV of Assets - PV of Liabilities
Duration of Assets - Duration of Liab
Convexity of Assets - Convexity of Liab

To solve the first problem when there is a single liability to immunize

To solve the second problem when there is a series of liabilities to immunize

To solve the third problem when there is a series of liabilities to immunize with cash flow matching

Coupon
Payment (PMT)

on formulas from the Duration and Convexity sheet Duration and Convexity sheet to B24

4	5	6	7	8
2.0	2.5	3.0	3.5	4.0
\$0	\$0	\$4,000,000	\$0	\$0
\$0	\$0	\$3,797,413	\$0	\$0
0.0\%	0.0\%	100.0\%	0.0\%	0.0\%
0.00	0.00	3.00	0.00	0.00

| 0.00 | 0.00 | | 12.00 | 0.00 |
| ---: | ---: | ---: | ---: | ---: | ---: |

2.76	0.03	0.05	0.06	10.11

Duration, and Convexity formulas from above to B44
$\$ 1,811,540$ $\$ 15,313$ $(\$ 3,984,687)$ $\$ 15,313$ yy across and Liabilities in Present Value, Duration, and Convexity and $=$ B51-B31 in B57

Currency Number (Select from below)	4
1 = Chinese Yuan	$¥ 7.3790$
2 = European Euro	$€ 0.6805$
3 = Indian Rupee	IDR 39.30
4 = US Dollar	$\$ 1.00$

$\left.\begin{array}{l}\begin{array}{c}\text { Annual } \\ \text { Coupon Rate }\end{array} \begin{array}{c}\text { Number of } \\ \text { Periods to } \\ \text { Maturity (T) }\end{array} \\ \begin{array}{|r|r|r|r|}\text { Face Value } \\ \text { (PAR) }\end{array} \\ \hline 1.50 \%\end{array} \quad 4 \begin{array}{c}\text { Number of } \\ \text { Bonds }\end{array}\right]$

00.0	1	2	3
	0.5	1.0	1.5
	\$0	\$0	\$0
	\$2,000,000	\$2,200,000	\$2,500,000

Annual Coupon Rate
Number of Periods to Maturity (T) Face Value $($ PAR) Number of Bonds 0.00% 1 $\$ 1,000$ 2,000 0.00% 2 $\$ 1,000$ 2,200 0.00% 3 $\$ 1,000$ 2,500 0.00% 4 $\$ 1,000$ 3,200 0.00% 5 $\$ 1,000$ 3,700 0.00% 6 $\$ 1,000$ 4,300 0.00% 7 $\$ 1,000$ 4,700 0.00% 8 $\$ 1,000$ 5,100

4	5	6	7	8
2.0	2.5	3.0	3.5	4.0
\$0	\$0	\$4,000,000	\$0	\$0
\$3,200,000	\$3,700,000	\$4,300,000	\$4,700,000	\$5,100,000

Bond Pricing

Inputs
Rate Convention
Annual Coupon Rate
Yield to Maturity (Annualized)
Number of Payments / Year
Number of Periods to Maturity (T)
Face Value (PAR)

Outputs

Discount Rate / Period (r)
Coupon Payment (PMT)

2 Annual Percentage Rate

6
5

2

8
20
(1) Copy the Outputs \& Timeline from the Copy the range B12: J20 from the previ

Bond Duration using a Timeline

(6) The Duration Formula is:
$D=\frac{1+r}{r \cdot N O P}-\frac{1+r+T \cdot(C R}{C R \cdot\left((1+r)^{T}-\right.}$
Enter $=(1+\mathrm{B} 12) /\left(\mathrm{B} 12^{*} \mathrm{~B} 7\right)-(1+\mathrm{B} 12$ $/\left(\mathrm{B}^{\star}\left((1+\mathrm{B} 12)^{\wedge} \mathrm{B} 8-1\right)+\mathrm{B} 12^{\star}\right.$

Bond Convexity

Weight * (Time^2+Time)
Convexity using a Timeline Convexity using a Formula
18.177
18.17

$$
\frac{\left(\begin{array}{l}
C R \cdot(1+r)^{1+T} \cdot(r \cdot(N O P+1)+2) \\
-C R \cdot\left(r^{2} \cdot(N O P+T+1) \cdot(T+1)+r \cdot(N O P+2 \cdot T+3)+2\right)+r^{3} \cdot N O P \cdot T \cdot(N O P+T
\end{array}\right.}{r^{2} \cdot N O P^{2} \cdot\left(C R \cdot(1+r)^{T}-C R+r \cdot N O P\right)}
$$

Enter $=\left(\left(\mathrm{B} 5^{*}\left((1+\mathrm{B} 12)^{\wedge}(1+\mathrm{B} 8)\right)^{\star}\left(\mathrm{B} 12^{\star}(\mathrm{B} 7+1)+2\right)-\mathrm{B} 5^{\star}\left(\mathrm{B} 12^{\wedge} 2^{\star}(\mathrm{B} 7+\mathrm{B} 8+1)^{\star}(\mathrm{B} 8+1)+\mathrm{B} 12^{\star}\left(\mathrm{B} 7+2^{\star} \mathrm{B} 8+3\right)\right.\right.\right.$ $\left.\left./\left(\mathrm{B} 12^{\wedge} 2^{\star} \mathrm{B} 7^{\wedge} 2^{\star}\left(\mathrm{B} 5^{*}(1+\mathrm{B} 12)^{\wedge} \mathrm{B} 8-\mathrm{B} 5+\mathrm{B} 12^{\star} \mathrm{B} 7\right)\right)\right) /\left((1+\mathrm{B} 12)^{\wedge} 2\right)\right)$

US Dollar $\quad \begin{gathered}\text { Exch Rate } \\ \$ 1.00=\end{gathered}$

Currency Number \square
(Select from below)

1 = Chinese Yuan	$¥ 7.3790$
2 = European Euro	$€ 0.6805$
3 = Indian Rupee	IDR 39.30
4 = US Dollar	$\$ 1.00$

previous sheet ious sheet to B12

6	7	8
3.0	3.5	4.0
$\$ 16.00$	$\$ 16.00$	$\$ 1,016.00$
$\$ 14.84$	$\$ 14.65$	$\$ 918.80$
1.4%	1.4%	89.6%
0.04	0.05	3.58

Bond Pricing

Inputs
Rate Convention
Annual Coupon Rate
Yield to Maturity (Annualized)
Number of Payments / Year
Number of Periods to Maturity (T)
Face Value (PAR)

Outputs

Discount Rate / Period (r)
Coupon Payment (PMT)

1
6
5

2
8
20

Effective Annual Rate

(1) Copy the Outputs \& Timeline from the Copy the range $\mathrm{B} 12: \mathrm{J} 20$ from the prev

Bond Duration using a Timeline

(6) The Duration Formula is:
$D=\frac{1+r}{r \cdot N O P}-\frac{1+r+T \cdot(C R}{C R \cdot\left((1+r)^{T}-\right.}$
Enter $=(1+\mathrm{B} 12) /\left(\mathrm{B} 12^{*} \mathrm{~B} 7\right)-(1+\mathrm{B} 12$ $/\left(\mathrm{B} 5^{\star}\left((1+\mathrm{B} 12)^{\wedge} \mathrm{B} 8-1\right)+\mathrm{B} 12^{\star}\right.$

Bond Convexity

Weight * (Time^2+Time)
Convexity using a Timeline Convexity using a Formula
0.01

$$
\frac{\left(\begin{array}{l}
C R \cdot(1+r)^{1+T} \cdot(r \cdot(N O P+1)+2) \\
-C R \cdot\left(r^{2} \cdot(N O P+T+1) \cdot(T+1)+r \cdot(N O P+2 \cdot T+3)+2\right)+r^{3} \cdot N O P \cdot T \cdot(N O P+T
\end{array}\right.}{r^{2} \cdot N O P^{2} \cdot\left(C R \cdot(1+r)^{T}-C R+r \cdot N O P\right)}
$$

Enter $=\left(\left(\mathrm{B} 5^{*}\left((1+\mathrm{B} 12)^{\wedge}(1+\mathrm{B} 8)\right)^{\star}\left(\mathrm{B} 12^{\star}(\mathrm{B} 7+1)+2\right)-\mathrm{B} 5^{\star}\left(\mathrm{B} 12^{\wedge} 2^{\star}(\mathrm{B} 7+\mathrm{B} 8+1)^{\star}(\mathrm{B} 8+1)+\mathrm{B} 12^{\star}\left(\mathrm{B} 7+2^{\star} \mathrm{B} 8+3\right)\right.\right.\right.$ $\left.\left./\left(\mathrm{B} 12^{\wedge} 2^{\star} \mathrm{B} 7^{\wedge} 2^{\star}\left(\mathrm{B} 5^{*}(1+\mathrm{B} 12)^{\wedge} \mathrm{B} 8-\mathrm{B} 5+\mathrm{B} 12^{\star} \mathrm{B} 7\right)\right)\right) /\left((1+\mathrm{B} 12)^{\wedge} 2\right)\right)$

US Dollar $\quad \begin{gathered}\text { Exch Rate } \\ \$ 1.00=\end{gathered}$

Currency Number \square
(Select from below)

1 = Chinese Yuan	$¥ 7.3790$
2 = European Euro	$€ 0.6805$
3 = Indian Rupee	IDR 39.30
4 = US Dollar	$\$ 1.00$

previous sheet ious sheet to B12

6	7	8
3.0	3.5	4.0
$\$ 16.00$	$\$ 16.00$	$\$ 1,016.00$
$\$ 14.84$	$\$ 14.66$	$\$ 919.37$
1.4%	1.4%	89.6%
0.04	0.05	3.58

Bond Pricing

Price Sensitivity

$$
\begin{aligned}
& \text { Exch Rate } \$ 1.00 \\
& \$ 1.00=\$ 1.00
\end{aligned}
$$

Sensitivity

? in Yield To Maturity

| 3.00% | 3.50% | 4.00% | 4.50% | 5.00% | 5.50% | 6.00% | 6.50% |
| ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| 1.5% | 1.8% | 2.0% | 2.3% | 2.5% | 2.8% | 3.0% | 3.3% |
| -1.3% | -0.8% | -0.3% | 0.2% | 0.7% | 1.2% | 1.7% | 2.2% |
| $\$ 1,105$ | $\$ 1,085$ | $\$ 1,066$ | $\$ 1,047$ | $\$ 1,029$ | $\$ 1,011$ | $\$ 993$ | $\$ 976$ |
| $\$ 1,055$ | $\$ 1,055$ | $\$ 1,055$ | $\$ 1,055$ | $\$ 1,055$ | $\$ 1,055$ | $\$ 1,055$ | $\$ 1,055$ |
| 4.7% | 2.9% | 1.0% | -0.7% | -2.5% | -4.2% | -5.9% | -7.5% |
| 3.56 | 3.56 | 3.56 | 3.56 | 3.56 | 3.56 | 3.56 | 3.56 |
| 4.6% | 2.8% | 1.0% | -0.7% | -2.5% | -4.3% | -6.1% | -7.9% |
| 16.93 | 16.93 | 16.93 | 16.93 | 16.93 | 16.93 | 16.93 | 16.93 |
| 4.7% | 2.9% | 1.0% | -0.7% | -2.5% | -4.2% | -5.8% | -7.5% |

```
F(2) New YTM - Current YTM
    Enter =B21-$B$6 and copy across
```

PV(Actual Discount Rate / Period,
Number of Periods to Maturity,
Coupon Payment, Face Value)
inter $=-\mathrm{PV}(\mathrm{B} 22, \$ \mathrm{~B} \$ 8, \$ \mathrm{~B} \$ 13, \$ \mathrm{~B} \$ 9)$
nd copy across
/Current Discount Rate / Period,
Number of Periods to Maturity,
Coupon Payment, Face Value)
er $=-\mathrm{PV}(\$ \mathrm{~B} \$ 12, \$ \mathrm{~B} \$ 8, \$ \mathrm{~B} \$ 13, \$ \mathrm{~B} \$ 9)$
d copy across
fied Duration
ange in YTM
=-B27*B23
ppy across

7.00\%	7.50%	8.00%	8.50%	9.00%	9.50%	10.00%
3.5%	3.8%	4.0%	4.3%	4.5%	4.8%	5.0%
2.7%	3.2%	3.7%	4.2%	4.7%	5.2%	5.7%
$\$ 959$	$\$ 942$	$\$ 926$	$\$ 910$	$\$ 894$	$\$ 879$	$\$ 864$
$\$ 1,055$	$\$ 1,055$	$\$ 1,055$	$\$ 1,055$	$\$ 1,055$	$\$ 1,055$	$\$ 1,055$
-9.1%	-10.7%	-12.2%	-13.7%	-15.2%	-16.7%	-18.1%
3.56	3.56	3.56	3.56	3.56	3.56	3.56
-9.7%	-11.4%	-13.2%	-15.0%	-16.8%	-18.6%	-20.3%
16.93	16.93	16.93	16.93	16.93	16.93	16.93
-9.0%	-10.6%	-12.1%	-13.5%	-14.9%	-16.3%	-17.6%

Bond Pricing

Immunization

Inputs
Rate Convention
Yield to Maturity (Annualized)
Number of Payments / Year

Bond 1
Bond 2
Bond 3
Bond 4
Bond 5
Bond 6
Bond 7
Bond 8

\bigcirc EAR $\bigcirc^{\text {O APR }}$	2	Annual Percentage Rate	
3.17\%			
2			
Annual Coupon Rate	Number of Periods to Maturity (T)	Face Value (PAR)	Number of Bonds
3.25\%	4	\$1,000	2,838
4.25\%	8	\$1,000	3,789
0.90\%	2	\$1,000	0
1.50\%	4	\$1,000	0
1.90\%	6	\$1,000	0
2.30\%	8	\$1,000	0
1.90\%	6	\$1,000	0
2.30\%	8	\$1,000	0

Outputs

Discount Rate / Period (r)
(3) Copy the Present Value \& Duratic

Copy the range B19:J24 from the
Bond Present Value, Duration, and Convexity using a Timelline

Period	0	1	2	3
Time (Years)	0.0	0.5	1.0	1.5
Liabilities		$\$ 0$	$\$ 0$	50
Present Value of Liabilities		$\$ 0$	$\$ 0$	50

Total Present Value of Liabilities
Weight
Weight * Time
Duration of Liabilities
Modified Duration of Liabilities
Weight * (Time^2+Time)
Convexity of Liabilities

0.0%	0.0%	0.0%
0.00	0.00	0.00

3.00
2.95
11.60

Differences
Total Assets - Liabilities
PV of Assets - PV of Liabilities
Duration of Assets - Duration of Liab
Convexity of Assets - Convexity of Liab

To solve the first problem when there is a single liability to immunize

To solve the second problem when there is a series of liabilities to immunize

To solve the third problem when there is a series of liabilities to immunize with cash flow matching

Coupon
Payment (PMT)

in formulas from the Duration and Convexity sheet Duration and Convexity sheet to B24

4	5	6	7	8
2.0	2.5	3.0	3.5	4.0
\$0	\$0	\$7,300,000	\$0	\$0
\$0	\$0	\$6,642,711	\$0	\$0
0.0\%	0.0\%	100.0\%	0.0\%	0.0\%
0.00	0.00	3.00	0.00	0.00
0.00	0.00	12.00	0.00	0.00

ents)^ 2)	(4) Weight * $\left(\right.$ Time ${ }^{\wedge} 2+$ Time) Enter $=\mathrm{C} 26^{*}\left(\mathrm{C} 22^{\wedge} 2+\mathrm{C} 22\right)$ and copy across			
\$2,884,451	\$0	\$0	\$0	\$0
\$61,567	\$61,567	\$61,567	\$61,567	\$3,850,280
\$0	\$0	\$0	\$0	\$0
\$0	\$0	\$0	\$0	\$0
\$0	\$0	\$0	\$0	\$0
\$0	\$0	\$0	\$0	\$0
\$0	\$0	\$0	\$0	\$0
\$0	\$0	\$0	\$0	\$0
\$2,946,017	\$61,567	\$61,567	\$61,567	\$3,850,280
\$2,766,413	\$56,911	\$56,023	\$55,149	\$3,395,124

41.6%	0.9%	0.8%	0.8%	51.1%
0.83	0.02	0.03	0.03	2.04

0.07
0.10
0.13
10.22

Currency Number (Select from below)	4
1 = Chinese Yuan	$¥ 7.3790$
2 = European Euro	$€ 0.6805$
3 = Indian Rupee	IDR 39.30
4 = US Dollar	$\$ 1.00$

$\left.\begin{array}{l}\begin{array}{c}\text { Annual } \\ \text { Coupon Rate }\end{array} \begin{array}{c}\text { Number of } \\ \text { Periods to } \\ \text { Maturity (T) }\end{array} \\ \begin{array}{|r|r|r|r|}\text { Face Value } \\ \text { (PAR) }\end{array} \\ \hline 3.25 \%\end{array} \quad 4 \begin{array}{c}\text { Number of } \\ \text { Bonds }\end{array}\right]$

00.0	1	2	3
	0.5	1.0	1.5
	\$0	\$0	\$0
	\$2,000,000	\$2,200,000	\$2,500,000

Annual Coupon Rate
Number of Periods to Maturity (T) Face Value $($ PAR) Number of Bonds 0.00% 1 $\$ 1,000$ 2,000 0.00% 2 $\$ 1,000$ 2,200 0.00% 3 $\$ 1,000$ 2,500 0.00% 4 $\$ 1,000$ 3,200 0.00% 5 $\$ 1,000$ 3,700 0.00% 6 $\$ 1,000$ 4,300 0.00% 7 $\$ 1,000$ 4,700 0.00% 8 $\$ 1,000$ 5,100

4	5	6	7	8
2.0	2.5	3.0	3.5	4.0
\$0	\$0	\$4,000,000	\$0	\$0
\$3,200,000	\$3,700,000	\$4,300,000	\$4,700,000	\$5,100,000

Bond Pricing

Immunization

Inputs
Rate Convention
Yield to Maturity (Annualized)
Number of Payments / Year

Bond 1
Bond 2
Bond 3
Bond 4
Bond 5
Bond 6
Bond 7
Bond 8

O EAR O APR	2	Annual Percentage Rate	
3.17\%			
2			
Annual Coupon Rate	Number of Periods to Maturity (T)	Face Value (PAR)	Number of Bonds
1.50\%	2	\$1,000	0
2.70\%	4	\$1,000	34,996
2.90\%	6	\$1,000	5,073
3.20\%	8	\$1,000	10,046
1.90\%	6	\$1,000	0
2.30\%	8	\$1,000	0
1.90\%	6	\$1,000	0
2.30\%	8	\$1,000	0

Outputs

Discount Rate / Period (r)
(3) Copy the Present Value \& Duratic

Copy the range B19:J24 from the
Bond Present Value, Duration, and Convexity using a Timeline

Period	0	1	2	3
Time (Years)	0.0	0.5	1.0	1.5
Liabilities		54,500,000	\$5,100,000	\$5,600,000
Present Value of Liabilities		\$4,429.788	\$4,942,094	\$5,341,943
Total Present Value of Liabilities	\$48,127, 151			
Weight		9.2\%	10.3\%	11.1\%
Weight * Time		0.05	0.10	0.17

Duration of Liabilities
Modified Duration of Liabilities
Weight * (Time^2+Time)
Convexity of Liabilities
0.10
0.17

2.44
2.40

0.05
0.074 -- - - 0.212
(5) (Sum of Weight * (Time ${ }^{\wedge} 2+$ Time)) / ((1 + Yield to Maturity / Number of Paym Enter $=\mathrm{SUM}(\mathrm{C} 30: \mathrm{J} 30) /\left((1+\mathrm{B} 18)^{\wedge} 2\right)$

Assets	Enter $=$)/((1)	
Bond 1	\$0	\$0	\$0
Bond 2	\$262,469	\$262,469	\$262,469
Bond 3	\$38,044	\$38,044	\$38,044
Bond 4	\$75,346	\$75,346	\$75,346
Bond 5	\$0	\$0	\$0
Bond 6	\$0	\$0	\$0
Bond 7	\$0	\$0	\$0
Bond 8	\$0	\$0	\$0
Total Assets	\$375,859	\$375,859	\$375,859
Present Value of Assets		\$364,222	\$358,539
Weight		0.8\%	0.7\%
Weight * Time		0.01	0.01
Duration of Assets	ct		
Modified Duration of Assets			
Weight * (Time^2+Time)		0.02	0.03

Differences

Total Assets - Liabilities
PV of Assets - PV of Liabilities
Duration of Assets - Duration of Liab
Convexity of Assets - Convexity of Liab
$(\$ 4,124,141) \quad(\$ 4,724,141) \quad(\$ 5,224,141)$
(7) Total Assets - Liabilities Enter $=$ C43-C23 and cop
8) Compute the differences between Assets Enter $=\mathrm{B} 45-\mathrm{B} 25$ in B55, $=\mathrm{B} 48-\mathrm{B} 28$ in B56,

To solve the first problem when there is a single liability to immunize

To solve the second problem when there is a series of liabilities to immunize

To solve the third problem when there is a series of liabilities to immunize with cash flow matching

Coupon

in formulas from the Duration and Convexity sheet Duration and Convexity sheet to B24

4	5	6	7	8
2.0	2.5			
$\$ 6,300,000$	$\$ 6,800,000$	$\$ 7,200,000$	$\$ 7,900,000$	$\$ 8,600,000$
$\$ 5,915,919$	$\$ 6,285,806$	$\$ 6,551,715$	$\$ 7,076,524$	$\$ 7,583,362$

12.3%	13.1%	13.6%	14.7%	15.8%
0.25	0.33	0.41	0.51	0.63

0.74
$1.14 \quad 1.63$
2.32
3.15

4.14	0.02	1.18	0.02	3.71

Duration, and Convexity formulas from above to B44

$\$ 29,071,700$	$(\$ 6,686,610)$	$(\$ 2,014,074)$	$(\$ 7,824,654)$	$\$ 1,521,479$

jy across
and Liabilities in Present Value, Duration, and Convexity and =B51-B31 in B57

Currency Number (Select from below)	4
1 = Chinese Yuan	$¥ 7.3790$
2 = European Euro	$€ 0.6805$
3 = Indian Rupee	IDR 39.30
4 = US Dollar	$\$ 1.00$

$\left.\begin{array}{l}\begin{array}{c}\text { Annual } \\ \text { Coupon Rate }\end{array} \begin{array}{c}\text { Number of } \\ \text { Periods to } \\ \text { Maturity (T) }\end{array} \\ \begin{array}{|r|r|r|r|}\text { Face Value } \\ \text { (PAR) }\end{array} \\ \hline 1.50 \%\end{array} \quad 4 \begin{array}{c}\text { Number of } \\ \text { Bonds }\end{array}\right]$

00.0	1	2	3
	0.5	1.0	1.5
	\$0	\$0	\$0
	\$2,000,000	\$2,200,000	\$2,500,000

Annual Coupon Rate
Number of Periods to Maturity (T) Face Value $($ PAR) Number of Bonds 0.00% 1 $\$ 1,000$ 2,000 0.00% 2 $\$ 1,000$ 2,200 0.00% 3 $\$ 1,000$ 2,500 0.00% 4 $\$ 1,000$ 3,200 0.00% 5 $\$ 1,000$ 3,700 0.00% 6 $\$ 1,000$ 4,300 0.00% 7 $\$ 1,000$ 4,700 0.00% 8 $\$ 1,000$ 5,100

4	5	6	7	8
2.0	2.5	3.0	3.5	4.0
\$0	\$0	\$4,000,000	\$0	\$0
\$3,200,000	\$3,700,000	\$4,300,000	\$4,700,000	\$5,100,000

Bond Pricing

Immunization

Inputs

Rate Convention
Yield to Maturity (Annualized)
Number of Payments / Year

2 Annual Percentage Rate

Bond 1
Bond 2
Bond 3
Bond 4
Bond 5
Bond 6
Bond 7
Bond 8
Outputs

Discount Rate / Period (r)
(3) Copy the Present Value \& Duratic

Copy the range B19:J24 from the
Bond Present Value, Duration, and Convexity using a Timeline

Period	0	1	2	3
Time (Years)	0.0	0.5	1.0	1.5
Liabilities		S4,500,000	\$5,100,000	\$5,600,000
Present Value of Liabilities		\$4,429.788	\$4.942,094	\$5,341,943
Total Present Value of Liabilities	\$48,127,151			
Weight		9.2\%	10.3\%	11.1\%
Weight * Time		0.05	0.10	0.17

Duration of Liabilities
Modified Duration of Liabilities
Weight * (Time^2+Time)
Convexity of Liabilities

2.44
2.40

Differences
Total Assets - Liabilities
PV of Assets - PV of Liabilities
Duration of Assets - Duration of Liab
Convexity of Assets - Convexity of Liab

To solve the first problem when there is a single liability to immunize

To solve the second problem when there is a series of liabilities to immunize

To solve the third problem when there is a series of liabilities to immunize with cash flow matching

Coupon

in formulas from the Duration and Convexity sheet Duration and Convexity sheet to B24

4	5	6	7	8
2.0	2.5			

12.3%	13.1%	13.6%	14.7%	15.8%
0.25	0.33	0.41	0.51	0.63

0.74
1.14
1.63
2.32
3.15

0.74	1.14	1.63	2.32	3.15
ents)^ 2)	(4) Weight * (Tim Enter $=\mathrm{C} 26{ }^{*}$	$\begin{aligned} & + \text { Time) } \\ & 2+\mathrm{C} 22) \text { an } \end{aligned}$	across	
\$0	\$0	\$0	\$0	\$0
\$0	\$0	\$0	\$0	\$0
\$0	\$0	\$0	\$0	\$0
\$6,300,000	\$0	\$0	\$0	\$0
\$0	\$6,800,000	\$0	\$0	\$0
\$0	\$0	\$7,200,000	\$0	\$0
\$0	\$0	\$0	\$7,900,000	\$0
\$0	\$0	\$0	\$0	\$8,600,000
\$6,300,000	\$6,800,000	\$7,200,000	\$7,900,000	\$8,600,000
\$5,915,919	\$6,285,806	\$6,551,715	\$7,076,524	\$7,583,362

12.3%	13.1%	13.6%	14.7%	15.8%
0.25	0.33	0.41	0.51	0.63
0.74	1.14	1.63	2.32	3.15

Duration, and Convexity formulas from above to B44		
\$0 \$0 \$0	\$0	\$0
y a across		
and Liabilities in Present Value, Duration, and Convexity and $=$ B51-B31 in B57		

Currency Number (Select from below)	4
1 = Chinese Yuan	$¥ 7.3790$
2 = European Euro	$€ 0.6805$
3 = Indian Rupee	IDR 39.30
4 = US Dollar	$\$ 1.00$

$\left.\begin{array}{l}\begin{array}{c}\text { Annual } \\ \text { Coupon Rate }\end{array} \begin{array}{c}\text { Number of } \\ \text { Periods to } \\ \text { Maturity (T) }\end{array} \\ \begin{array}{|r|r|r|r|}\text { Face Value } \\ \text { (PAR) }\end{array} \\ \hline 1.50 \%\end{array} \quad 4 \begin{array}{c}\text { Number of } \\ \text { Bonds }\end{array}\right]$

00.0	1	2	3
	0.5	1.0	1.5
	\$0	\$0	\$0
	\$2,000,000	\$2,200,000	\$2,500,000

Annual Coupon Rate
Number of Periods to Maturity (T) Face Value $($ PAR) Number of Bonds 0.00% 1 $\$ 1,000$ 2,000 0.00% 2 $\$ 1,000$ 2,200 0.00% 3 $\$ 1,000$ 2,500 0.00% 4 $\$ 1,000$ 3,200 0.00% 5 $\$ 1,000$ 3,700 0.00% 6 $\$ 1,000$ 4,300 0.00% 7 $\$ 1,000$ 4,700 0.00% 8 $\$ 1,000$ 5,100

4	5	6	7	8
2.0	2.5	3.0	3.5	4.0
\$0	\$0	\$4,000,000	\$0	\$0
\$3,200,000	\$3,700,000	\$4,300,000	\$4,700,000	\$5,100,000

