© 2015 Cengage Learning EMEA. For use only with Hawawini and Viallet's Finance for Executives, $5^{\text {th }}$ Edition. May not be posted to a publicly accessible website, in whole or in part.

Finance For Executives -5 ${ }^{\text {th }}$ Edition -Chapter 2

Answers to Review Problems

1. Finding the implicit interest rate.

If indifferent then the present values of the alternatives should be the same, that is, $\frac{\$ 1,000}{1+\mathrm{k}}=\frac{\$ 1,180}{(1+\mathrm{k})^{3}}$, and thus $(1+\mathrm{k})^{2}=\frac{\$ 1,180}{\$ 1,000}=1.180$ from which we get $\mathrm{k}=\mathbf{8 . 6 3 \%}$.

2. APR versus effective interest rate.

Using equation 2.4 we can write: $1+\mathrm{k}_{\text {eff }}=1.0617=\left(1+\frac{\text { APR }}{12}\right)^{12}$, thus:
$(1.0617)^{\frac{1}{12}}=1.0050=1+\frac{\mathrm{APR}}{12}$ from which we get $\mathrm{APR}=\mathbf{6 \%}$.
With a financial calculator, enter $\mathrm{N}=12, \mathrm{PV}=1, \mathrm{PMT}=0, \mathrm{FV}=-1.0617$ and press I / YR. you will find a monthly APR of 0.5% which multiplied by 12 gives you 6%.
3. Compounded value and compounded rate.
a. $(1+3 \%) \times(1+5 \%) \times(1+6 \%)=\$ \mathbf{1 . 1 4 6 4}$
b. $(1+k)^{3}=1.1464$ from which we get $\mathbf{k}=\mathbf{4 . 6 6 \%}$.

4. Alternative financing plans.

$\operatorname{PV}($ Plan 1$)=\$ 12,400+\$ 400 \times \operatorname{ADF}(\mathrm{T}=35 ; \mathrm{k}=6 \% / 12)=\$ 12,400+\$ 400 \times 32.0354=\mathbf{2 5}, \mathbf{2 1 4}$.
$\mathrm{PV}($ Plan 2$)=\$ 492 \times \operatorname{ADF}(\mathrm{T}=60 ; \mathrm{k}=6 \% / 12)=\$ 492 \times 51.7256=\$ 25,449$.
The first plan is preferable because it is less expensive because it has a lower present value.

5. Annuity versus perpetuity.

The future value of the $\$ 100$ a year for the next 10 years (see formula 2.13 for the future value of an annuity) at the rate ' k ' must be equal to the present value, at the end of 10 , of a $\$ 100$ perpetuity at the same rate ' k ', hence we have:
$\frac{\$ 100}{\mathrm{k}}\left[(1+\mathrm{k})^{10}-1\right]=\frac{\$ 100}{\mathrm{k}}$, and thus $\left[(1+\mathrm{k})^{10}-1\right]=1$, from which we get $(1+\mathrm{k})^{10}=2$.
Using a financial calculator we find $\mathrm{k}=\mathbf{7 . 1 8 \%}$. (Enter $\mathrm{N}=10, \mathrm{PV}=1, \mathrm{PMT}=0, \mathrm{FV}=-2$ and press I/YR. you will find 7.18\%.)

6. Valuing a loan.

© 2015 Cengage Learning EMEA. For use only with Hawawini and Viallet's Finance for Executives, $5^{\text {th }}$ Edition. May not be posted to a publicly accessible website, in whole or in part.
a. The loan will generate fixed interest income of $\$ 800,000$ (8% of $\$ 10$ million) every year over the next 4 years plus $\$ 10$ million at the end of the fourth year. Its value is thus the sum of the present value of 4 -year, $\$ 800,000$ annuity at 7 percent (the prevailing market rate) and the present value of $\$ 10$ million to be received in 4 years at 7 percent:
Value of loan $=[\$ 800,000 \times \operatorname{ADF}(\mathrm{T}=4 ; \mathrm{k}=7 \%)]+[\$ 10,000,000 \times \mathrm{DF}(\mathrm{T}=4 ; \mathrm{k}=7 \%)]$
Value of loan $=[\$ 800,000 \times 3.3872]+[\$ 10,000,000 \times 0.7629]=\mathbf{\$ 1 0 , 3 3 8 , 7 6 0}$.
b. Value of loan $=[\$ 400,000 \times \mathrm{ADF}(\mathrm{T}=8 ; \mathrm{k}=3.5 \%)]+[\$ 10,000,000 \times \mathrm{DF}(\mathrm{T}=8 ; \mathrm{k}=3.5 \%)]$

Value of loan $=[\$ 400,000 \times 6.8740]+[\$ 10,000,000 \times 0.7594]=\mathbf{\$ 1 0 , 3 4 3 , 6 0 0}$.

7. Perpetual cash flows.

a. If the current membership is renewed every year in perpetuity with fees growing at 3 percent annually, its the present value at 6 percent is $\mathrm{PV}=\frac{\$ 2,000(1+3 \%)}{6 \%-3 \%}=\frac{\$ 2,060}{0.03}=\$ 68,667$. This is a higher amount than the proposed price of $\$ 65,000$ for life-long family membership. The lifelong family membership is thus a better deal.
b. The interest rate that makes you indifferent is the one that equates the present value of the two choices, that is, $\$ 65,000=\frac{\$ 2,060}{k-3 \%}$, from which we get $k=6.17 \%$.
c. The annual fee, call it X , that makes you indifferent is giving by the equation:
$\$ 65,000=\frac{X \times 1.03}{6 \%-3 \%}$,
from which we get $X=\$ \mathbf{1 , 8 9 3 . 2 0}$.
_d. $\$ \mathbf{6 8 , 6 6 7}$, which is the present value of the current membership if it were an annuity growing at 3 percent.

8. Growing annuities versus growing perpetuities.

a. It is the present value, at 8 percent, of an annuity of $\$ 80$ million growing at 3 percent for 5 year. Using formula 2.12 you get: $\quad \mathrm{PV}=\frac{\$ 80 \mathrm{~m}}{8 \%-3 \%}\left[1-\left(\frac{1.03}{1.08}\right)^{5}\right]=\$ 1,600 \mathrm{~m} \times 0.2110=$ \$337. 60 million.
b. It is the present value, at 8 percent, of a perpetuity growing at 3 percent, that is, $\mathrm{PV}=\frac{\$ 80 \mathrm{~m}}{8 \%-3 \%}$, which is $\mathbf{\$ 1 , 6 0 0}$ million.

9. Mortgage loan.

a. The monthly mortgage payment, call it X , is the solution to the equation:

$$
\$ 80,000=\mathrm{X} \times \operatorname{ADF}(\mathrm{T}=360 ; 8 \% / 12)=\mathrm{X} \times 136.2783
$$

from which we get $X=\$ \mathbf{5 8 7 . 0 3}$.
b. Interest payment in first installment $=\underline{\$ 80,000 \times \frac{8 \%}{12}=\mathbf{\$ 5 3 3 . 3 3}}$.
© 2015 Cengage Learning EMEA. For use only with Hawawini and Viallet's Finance for Executives, $5^{\text {th }}$ Edition. May not be posted to a publicly accessible website, in whole or in part.
Principal repayment $=\$ 587.03-\$ 533.33=\$ 53.70$.
c. Total interest payments $=$ Total payments - Principal repayment $=(\$ 587.03 \times 360)-\$ 80,000$

Total interest payments $==\$ 211,330.80-\$ 80,000=\$ \mathbf{1 3 1}, \mathbf{3 3 0 . 8 0}$.

10. Retirement planning.

a. The capital needed at 65 , call it X , is an immediate annuity such as:
$\mathrm{X}=\$ 50,000+\$ 50,000 \times \operatorname{ADF}(\mathrm{T}=19 ; 6 \%)=\$ 50,000+\$ 50,000 \times 11.1581=\$ 607,905.82$
The lump sum needed today is the present value at $\mathrm{DF}(\mathrm{T}=40 ; \mathrm{k}=6 \%)$:
Lump sum $=\$ 609,905.82 \times \mathrm{DF}(\mathrm{T}=40 ; \mathrm{k}=6 \%)=\$ 609,905.82 \times 0.0972=\mathbf{\$ 5 9 , 0 8 8 . 4 5}$.
b. Amount to invest every month is an annuity, call it X , whose present value (including the immediate payment) must be equal to the lump sum $\$ 59,088.45$, that is:

$$
\$ 59,088.45=\mathrm{X}+\mathrm{X} \times \operatorname{ADF}(\mathrm{T}=40 \times 12 ; \mathrm{k}=6 \% / 12)=\mathrm{X}+\mathrm{X} \times 181.7476,
$$

from which we get $\mathrm{X}=\mathbf{\$ 3 2 3 . 3 3}$.

