
Chapter 2

Fluid Statics

2.1. From the given data: patm = 101 kPa, hk = 0.62 m, and hw = 2.05 m. For water, γw = 9.79 kN·m3,
and for kerosene, ρk = 808 kg/m3, which gives γk = 7.92 kN·m3 (from Appendix B.4). The
absolute pressure on the bottom of the tank, pb, is calculated as follows:

pb = patm + γkhk + γwhw = 101 + 7.92(0.62) + 9.79(2.05) = 125.98 kPa

As a gauge pressure, the pressure on the bottom of the tank is 125.98 kPa − 101 kPa =
24.98 kPa .

2.2. (a) Taking γw = 9.79 kN/m3 and p = 101.3 kPa, the depth, h, below the water surface
corresponding to a gauge pressure of 101.3 kPa is given by

h =
p

γw
=

101.3

9.79
= 10.3 m

(b) From the given data: ∆h = 1.65 m. Therefore, the pressure difference, ∆p, is given by

∆p = γ∆h = (9.79)(1.65) = 16.2 kPa

2.3. From the given data: SG1 = 0.98, z1 = 0 m, SG2 = 1.07, and z2 = −12 m. Since SG varies
linearly,

SG = SG1 +
SG2 − SG1

z2 − z1
(z − z1) = 0.98 +

1.07 − 0.98

−12 − 0
(z − 0) = 0.98 − 0.0075z (1)

The relationship between specific gravity (SG) and specific weight (γ) is given by

γ (kN/m3) = g · SG = 9.807 · SG (2)

Combining Equations 1 and 2 gives the following equation for the variation of specific weight
with depth,

γ = 0.611 − 0.0736 z kN/m3 (3)

Using the hydrostatic pressure distribution (Equation 2.10) the difference in pressure between
z = −12 m and z = 0 m is given by Equation 2.11 as

p2−p1 = −
∫ z2

z1

γ dz = −
∫ −12

0
(0.611−0.0736 z) dz = −

[
9.611 z − 0.03678 z2

]−12

0
= 121 kPa

This is a gauge pressure , relative to atmospheric pressure on the surface of the liquid.
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2.4. (a) From the given data: h = 12 m and pA = 200 kPa. For water at 20◦C, γ = 9.789 kN/m3.
By definition of absolute pressure,

pA = patm + γh → 200 = patm + (9.789)(12) → patm = 91.5 kPa

(b) From the given data: SG = 0.85, ρ = 850 kg/m3, γ = 8.336 kN/m3, and h = 6 m. Since
the pressure distribution is hydrostatic,

pg = γh = (8.336)(6) = 50.0 kPa , pA = patm + pg = 91.5 + 50.0 = 141.5 kPa

2.5. From the given data: h = 10 m. For water at 20◦C, γ = 9.79 kg/m3. For standard atmospheric
pressure, patm = 101.3 kPa. The gauge pressure, p, at the valve is given by

p = γh = (9.79)(10) = 97.9 kPa

The absolute pressure, pabs, at the valve location is given by

pabs = p+ patm = 97.9 + 101.3 = 199.2 kPa

2.6. From the given data: p0 = 14 kPa, and γoil = 0.80, γw = 0.80(9.79) = 7.83 kN/m3. Hence,
at a depth h = 1.5 m below the surface of the oil, the pressure, p, is given by

p = p0 + γoilh = 14 + (7.83)(1.5) = 25.7 kPa

2.7. From the given data: pB = 5 kPa, ∆z1 = 0.30 m, and ∆z2 = 0.62 m. For water at 20◦C,
γ = 9.789 kN/m3. The air pressures in tanks A and C are as follows:

pA = pA + γ∆z1 = 5 + (9.789)(0.30) = 7.94 kPa

pC = pA − γ∆z2 = 7.94 − (9.789)(0.62) = 1.87 kPa

2.8. From the given data: D1 = 5 mm, h = 30 m, and T = 15◦C. For water at 15◦C, ρ =
999.1 kg/m3 and γ = 9798 N/m3. Under standard conditions, patm = 101.3 kPa. The initial
volume of the bubble, V1, the initial pressure, p1, and the final pressure, p2, are given by

V1 =
πD3

1

6
=
π(0.005)3

6
= 6.545 × 10−8 m3

p1 = patm + γh = 101.3 × 103 + (9798)(30) = 3.953 × 105 Pa

p2 = patm = 1.013 × 105 Pa

Applying the ideal gas law to the air in the bubble and assuming isothermal conditions gives

p1V1 = p2V2 → V2 =

(
p1
p2

)
V1 =

(
3.953 × 105

1.013 × 105

)
(6.545 × 10−8) = 2.554 × 10−7 m3

Therefore, the diameter, D2, at the surface is given by

D2 =

[
6V2
π

] 1
3

=

[
6(2.554 × 10−7)

π

] 1
3

= 0.00787 m ≈ 7.9 mm
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2.9. From the given data: ∆z = 20 m, patm = 101.3 kPa, and T = 20◦C. At 20◦C, the density of
seawater is given by Appendix B.4 as ρ = 1023 kg/m3, which corresponds to γ = 10.03 kN/m3.
Since the pressure distribution in the ocean is hydrostatic and the pressure of the air inside
the bubble is equal to the pressure of the water outside the bubble, and the temperature is
constant, the ratio of densities is given by

ρ1
ρ2

=
p1
p2

=
patm + γ∆z

patm
=

101.3 + (10.03)(20)

101.3
= 2.98

2.10. From the given data: h1 = 7 m, γ1 = 9 kN/m3, h2 = 2.3 m, and pbot = 92 kPa. For
water at 4◦C, γw = 9.81 kN/m3. The specific gravity, SG, can be derived from the following
hydrostatic pressure relationship,

pbot = γ1h1 + [SG · γw]h2 → 92 = (9)(7) + [SG · (9.81)](2.3) → SG = 1.3

Yes the liquid on the bottom must necessarily be denser than the liquid on the top.

2.11. For water at 20◦C, Table 1.9 gives γ = 9.79 kN/m3. The pressure head, h, corresponding to
p = 450 kPa is therefore

h =
p

γ
=

450

9.79
= 46.0 m

2.12. For p = 800 kPa, the pressure head, h, is given by

h =
p

γw
=

800

9.79
= 81.7 m (of water)

For crude oil at 20◦C, ρoil = 856 kg/m3 (from Appendix B.4), which gives γoil = 8.40 kN/m3.
For p = 800 kPa,

h =
p

γoil
=

800

8.40
= 95.2 m (of crude oil)

2.13. Pressure, p1, corresponding to hw = 80 mm of water is

p1 = γwhw = (9.79)(0.080) = 0.783 kPa

and the pressure, p2, corresponding to hf = 60 mm of a fluid whose specific weight is γf =
2.90γw = 2.90(9.79) = 28.4 kN/m3 is

p2 = γfhf = (28.4)(0.060) = 1.70 kPa

The total pressure, p, is therefore given by

p = p1 + p2 = 0.783 + 1.70 = 2.48 kPa

and the pressure head, hHg, in mm of mercury (taking γHg = 133 kN/m3) is

hHg =
p

γHg
=

2.48

133
× 1000 = 18.6 mm Hg
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2.14. For patm = 101.3 kPa, the pressure head, hHg, in mm of mercury (γHg = 133 kN/m3) is given
by

hHg =
patm
γHg

=
101.3

133
× 1000 = 762 mm Hg

2.15. From the given data: D = 7 mm, and h′ = 80 mm. For water at 20◦C, σ = 72.8 mN/m =
0.0728 N/m, and γ = 9789 N/m3 (from Appendix B.1). For water and clean glass, θ = 0◦.

(a) The rise height, ∆h, due to surface tension is calculated as

∆h =
4σ cos θ

γD
=

4(0.0728) cos 0◦

(9789)(0.007)
= 4.45 × 10−3 m = 4.45 mm

(b) In accordance with Equation 2.20, the pressure head, h, at the attachment point is given
by

h = h′ − ∆h = 80 − 4.45 = 75.75 mm ≈ 75.8 mm

2.16. When the reservoir is half-full, the pipeline pressure is 350 kPa, and the height, h0, of the
mid-point of the reservoir above the pipeline is

h0 =
350

γw
=

350

9.79
= 35.8 m

Note that the pressures of liquids in pipes are generally given as gauge pressures unless stated
otherwise. When the pressure in the pipeline is 500 kPa, the height, h1, of the water in the
reservoir above the pipeline is

h1 =
500

γw
=

500

9.79
= 51.1 m

Hence the minimum space between the mid-point and top of the reservoir is 51.1 m − 35.8 m
= 15.3 m .

2.17. From the given data: x = 120 mm Hg, y = 70 mm Hg, ∆zhead = 0.5 m, ∆ztoe = 1.5 m, and
ρ = 1060 kg/m3. From the given density, γ = 10.40 kN/m3.

(a) The following pressure differences can be calculated:

heart-head = γ · ∆zhead = (10.40)(0.5) = 5.20 kPa = 39 mm Hg

heart-toe = γ · ∆ztoe = (10.40)(1.5) = 15.6 kPa = 117 mm Hg

The blood pressures in the head and toes are:

head =
120 − 39

70 − 39
= 81/31

toes =
120 + 117

70 + 117
= 237/187

(b) The maximum pressure is p = 120 mm Hg = 16.0 kPa. Therefore, the height, h, that
blood would rise in the tube is given by

h =
p

γ
=

16.0

10.40
= 1.54 m
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2.18. From the given data: p = 150 mm Hg = 20.00 kPa, and ρ = 1025 kg/m3. Taking g =
9.807 m/s2, the height h between arm level and fluid level is given by

h =
p

ρg
=

20.00 × 103

(1025)(9.807)
= 1.99 m

2.19. From the given data: ∆z = 6 m, and ρ = 1060 kg/m3. The specific weight of the blood is γ
= 10.4 kN/m3.

(a) When the giraffe drinks, the change in pressure in the head, ∆p, is given by

∆p = γ · ∆z = (10.4)(6) = 67.6 kPa = 507 mm Hg

(b) The difference in pressure between the head and the heart is 507 mm/2 = 254 mm.
Since the maximum pressure at the heart level is given as 280 mm, then the maximum
pressure in the head is 280 mm + 254 mm = 534 mm Hg .

2.20. From the given data: pair = 300 kPa, A1 = 7 cm2 = 0.0007 m2, W1 = 50 N = 0.05 kN, A2

= 500 cm2 = 0.05 m2, W2 = 800 N = 0.8 kN, ∆z = 1 m, ∆s1 = 10 cm, ρ = 900 kg/m3, and
γ = ρg = 8.83 kN/m3.

(a) The force, F , exerted by the compressed air on the piston is given by

F = pairA1 = (300)(0.0007) = 0.21 kN

(b) Let W be the weight mounted on the platform, then

F +W1

A1
− γ∆z =

W +W2

A2
→ 0.21 + 0.05

0.0007
− (8.83)(1) =

W + 0.8

0.05
→W = 17.3 kN

(c) If ∆s2 is the displacement of the platform, then

A1∆s1 = A2∆s2 → (7)(10) = (500)∆s2 → ∆s2 = 0.14 cm

2.21. From the given data: F1 = 500 N, D1 = 25 mm, and D2 = 100 mm. If the force on the 100-mm
piston is F2, and noting that performance of the hydraulic system will not be compromised
if both pistons exert the same pressure, then

F1

D2
1

=
F2

D2
2

→ 500

252
=

F2

1002
→ F2 = 8000 N

2.22. From the given data: z = 4342 m = 4.342 km. For the standard atmosphere, T0 = 15◦C
= 288.2 K, b = 6.5◦C/km, p0 = 101.3 kPa, and g/Rb = 5.26. The standard-atmosphere
temperature, T , at the summit is calculated using Equation 2.25 as

T = T0 − bz = 15 − (6.5)(4.342) = −13.2◦C = 259.9 K

The standard-atmosphere pressure, p, at the summit is calculated using Equation 2.26 as

p = p0

(
T

T0

) g
Rb

= 101.3

(
259.9

288.2

)5.26

= 58.8 kPa

The calculated standard-atmosphere temperature and pressure are fairly close to the measured
values of −11◦C and 58 kPa.
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2.23. From the given data: z1 = 11 km, z2 = 20 km, T0 = −56.5◦C = 216.7 K, and p1 = 22.63 kPa.
The average value of g is ḡ = 9.769 m/s2. For air, R = 287.1 J/kg·K. Using Equation 2.29,
the theoretical pressure, p2, at the top of the stratosphere is given by

p2 = p1 exp

[
− ḡ(z2 − z1)

RT0

]
= (22.63) exp

[
−(9.769)(20000 − 11000)

(287.1)(216.7)

]
= 5.51 kPa

The standard-atmosphere pressure at z = 20 km (from Appendix B.3) is 5.529 kPa , so the
theoretical and standard values are very close.

2.24. From the given data: b = 6.5◦C/km, p0 = 101.325 kPa, and T0 = 15◦C = 288.15 K. For
air, R = 287.1 J/kg·K, which gives g/Rb = 5.255. Assuming a uniform lapse rate and a
hydrostatic pressure distribution, the temperature, T , and pressure, p, at any elevation are
given by

T = T0 − bz, p = p0

(
T

T0

) g
Rb

The results of applying these equations and comparing the predictions to the standard atmo-
sphere is given in the following table.

z T T p Tstd pstd ∆T ∆p
(km) (◦C) ( K) (kPa) (◦C) (kPa) (◦C) (kPa)

0 15.0 288.15 101.325 15.00 101.325 0.00 0.000
1 8.5 281.65 89.876 8.50 89.876 0.00 0.000
2 2.0 275.15 79.498 2.00 79.501 0.00 −0.003
3 −4.5 268.65 70.112 −4.49 70.121 −0.01 −0.009
4 −11.0 262.15 61.644 −10.98 61.660 −0.02 −0.016
5 −17.5 255.65 54.024 −17.47 54.048 −0.03 −0.024
6 −24.0 249.15 47.186 −23.96 47.217 −0.04 −0.031
7 −30.5 242.65 41.065 −30.45 41.110 −0.05 −0.045
8 −37.0 236.15 35.605 −36.94 35.651 −0.06 −0.046
9 −43.5 229.65 30.747 −43.42 30.800 −0.08 −0.053

10 −50.0 223.15 26.441 −49.90 26.499 −0.10 −0.058
11 −56.5 216.65 22.636 −56.50 22.632 0.00 0.004

Bases on the results presented in the the above table, the maximum temperature difference
is −0.10◦C , and the maximum pressure difference is −0.058 kPa .

2.25. Taking the pressure distribution in the atmosphere as hydrostatic,

dp

dz
= −ρg; ρ =

p

RT
; T = a+ bz

Using these equations:

dp

p
= − g

RT
dz = − g

R(a+ bz)
dz
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∫ 2

1

dp

p
= − g

R

∫ 2

1

dz

a+ bz

p2
p1

=

(
a+ bz2
a+ bz1

)−g/Rb

(1)

From the given data: p1 = 101 kPa, p2 = 1 Pa, z1 = 0 m, a = 273 + 20 = 293 K, b = −6.3
K/km = −0.0063 K/m, R = 287 J/kg·K (for air), which yields

− g

Rb
=

9.81

(287)(0.0063)
= 5.426

Substituting into Equation 2.23 gives

0.001

101
=

(
293 − 0.0063z2

293

)5.426

which yields z2 = 52,070 m = 52.1 km .

2.26. From the given data: z = 2256 m, T = 5◦C = 278 K, T0 = 27◦C = 300 K, and p0 = 101 kPa.
The lapse rate, b, can be estimated as

b =
T0 − T

z
=

300 − 278

2256
= 0.00975 K/m = 9.75 K/km

For the standard atmosphere, b = 6.50 K/km, g/Rb = 5.26, and so for b = 9.75 K/km it is
estimated that

g

Rb
= 5.26 × 6.50

9.75
= 3.51

(a) The pressure, p, at the Peak can be calculated using Equation 2.26 which gives

p = p0

(
T

T0

) g
Rb

= (101)

(
278

300

)3.51

= 77.3 kPa

(b) The vapor pressure of water is equal to 77.3 kPa when the temperature of the water is

92◦C (from Appendix B.1). Therefore, water boils at 92◦C at the Peak.

2.27. For the standard atmosphere, b = 6.50 K/km = 0.00650 K/m. For air, M = 28.96 g/mol =
0.02896 kg/mol. Constants are R = 8.314 J/mol·K and g = 9.81 m/s2. Therefore,

gM

Rb
=

(9.81)(0.02896)

(8.314)(0.00650)
= 5.26

Under standard atmospheric conditions, p0 = 101.3 kPa and T0 = 15◦C = 288.15 K. In La
Paz, z = 3640 m and estimated atmospheric conditions are as follows:

T = T0 − bz = 288.15 − (0.00650)(3640) = 264.5 K(= −8.66◦C)

p = p0

(
T

T0

) gM
Rb

= (101.3)

(
264.5

288.15

)5.26

= 64.56 kPa

The temperature of water at which the saturation vapor pressure is 64.56 kPa is the temper-
ature at which water boils and is equal to approximately 87.6◦C .

41



2.28. From the given data: ∆z = 3000 m. For standard air, R = 287.1 J/kg·K, and for a standard
atmosphere at sea level, p1 = 101.325 kPa and T1 = 15◦C = 288.15 K. Assume that the
temperature remains constant at 15◦C over the depth of the shaft. Using Equation 2.29 gives

p2 = p1 exp

[
−g(z2 − z1)

RT0

]
→ p2 = (101.325) exp

[
−(9.807)(−3000)

(287.1)(288.15)

]
= 145 kPa

2.29. From the given data: p0 = 755 mm, z = 829.8 m = 0.8298 km, and T0 = 35.5◦C = 308.7 K.
Assuming standard atmospheric conditions, b = 6.5◦C/km, and g/Rb = 5.26. The estimated
temperature, T , at the top of the building is calculated using Equation 2.25 as

T = T0 − bz = 35.5 − (6.5)(0.8298) = 30.10◦C = 303.3 K

The barometric pressure, p, at the top of the building can be estimated using Equation 2.26
as

p = p0

(
T

T0

) g
Rb

= 755

(
303.3

308.7

)5.26

= 688 mm Hg

2.30. From the given data: p1 = 750 mm, and p2 = 690 mm. For a standard atmosphere: p0 =
760 mm, T0 = 15◦C = 288.15 K, b = 6.5 K/km, and g/Rb = 5.26. Using Equation 2.26,

p1 = p0

[
1 − bz1

T0

] g
Rb

→ 750 = (760)

[
1 − (6.5)z1

288.15

]5.26
→ z1 = 0.111 km

p2 = p0

[
1 − bz2

T0

] g
Rb

→ 690 = (760)

[
1 − (6.5)z1

288.15

]5.26
→ z2 = 0.807 km

Therefore the change in elevation is estimated as 0.807 km − 0.111 km = 0.696 km = 696 m

2.31. From the given data: hair = 0.3 m, hg1 = 1.2 m, hg2 = 0.8 m., hg3 = 1.9 m, and patm =
101 kPa. For gasoline at 20◦C, ρg = 680 kg/m3, which gives γg = 6.67 kN/m3. If p0 is the
pressure at the Bourdon gauge, then

p0 + γghg1 − γghg3 = 0 → p0 + 6.67(1.2 − 1.9) = 0 → p0 = 4.67 kPa

Note that the Bourdon gauge reads gauge pressure, and the variation of hydrostatic pressure
in the air is negligible.

2.32. From the given data: SG1 = 0.9, ∆z1 = 0.25 m, SG2 = 2.5, and ∆z2 = 0.25 m. The specific
weights corresponding to the given specific gravities are determined by the relation

γ = SG · ρ0g = SG · (1000)(9.807) = 9807 · SG N/m3 = 9.807 · SG kN/m3

Using this relation, the specific weights of the light and dense fluids are

γ1 = 9.807(0.9) = 8.826 kN/m3, γ2 = 9.807(2.5) = 24.52 kN/m3

(a) Assuming that both the top of the light fluid and the air above the liquid are at the
same atmospheric pressure, then

���patm + γ1∆z1 − γ2∆z = ���patm → ∆z =
γ1
γ2

∆z1 =
8.826

24.52
(0.25) = 0.090 m
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(b) Since the pressure distribution is hydrostatic, the gauge pressure on the bottom of the
tank, p0, is given by

p0 = γ1∆z1 + γ2∆z2 = (8.826)(0.25) + (24.52)(0.25) = 8.34 kPa

2.33. From Figure 2.50,
pA = pB − γf(0.10) − γw(0.15)

where pB = 0 kPa (gauge pressure), γf = 40 kN/m3, and γw = 9.79 kN/m3. Hence,

pA = 0 − 40(0.10) − 9.79(0.15) = −5.47 kPa

Alternative solution:
In terms of absolute pressure, pB = 101.33 kPa, γf = 40 kN/m3, and γw = 9.79 kN/m3.
Hence,

pA = 101.33 − 40(0.10) − 9.79(0.15) = 95.86 kPa

It should be noted that the pressure of liquids in pipes is seldom given in terms of absolute
pressure, so pA = −5.47 kPa is the preferred answer.

2.34. For SAE 30 oil and mercury at 20◦C: ρoil = 918 kg/m3, and ρHg = 13550 kg/m3 (from
Appendix B.4). These values correspond to: γoil = 9.00 kN/m3, and γHg = 133 kN/m3.
Applying the hydrostatic pressure equation gives

pair + γoilhoil − γHghHg = patm

pair + (9.00)(1) − (133)(0.25) = patm → pair − patm = 24.3 kPa

2.35. From Figure 2.52,
pA = pB + γwh3 − γfh2 − γwh1

which simplifies to

pA − pB = γw(h3 − h1) − γfh2

2.36. From the given data: γw = 9.79 kN/m3, γg = 18.3 kN/m3, h1 = 0.5 m, and h2 = 0.3 m.
Applying the hydrostatic pressure relation between points 1 and 2 gives

p1 − γwh1 − γgh2 + γw(h1 + h2) = p2

p1 − 9.79(0.5) − 18.3(0.3) + 9.79(0.5 + 0.3) = p2 → p1 − p2 = 2.55 kPa

2.37. For equilibrium,

pw + γw(0.15) − γ1(0.10) − γ2(0.20) + γ3(0.15) = p0

Taking γw = 9.79 kN/m3:

p0 − pw = γw[0.15 − SG1(0.10) − SG2(0.20) + SG3(0.15)]

= (9.79)[0.15 − (13.6)(0.10) − (0.68)(0.20) + (0.86)(0.15)] = −11.9 kPa

So the pressure difference is 11.9 kPa .
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2.38. From the given data: D1 = 1 m, D2 = 10 mm, ∆p = 200 Pa, and ∆s = 200 mm. For SAE 30
oil at 20◦C, ρ = 918 kg/m3 and γ = ρg = 9003 N/m3 (from Appendix B.4). The following
preliminary calculations of the cross-sectional area, A1, of the tank and the cross-sectional
area, A2, of the manometer are useful,

A1 =
πD2

1

4
=
π12

4
= 0.7854 m2, A2 =

πD2
2

4
=
π(0.2)2

4
= 7.854 × 10−5 m2

Let ∆h be the change in oil level in the reservoir corresponding to ∆p, and let p0 be atmo-
spheric pressure, then the continuity and hydrostatic-pressure relationships require that

∆hA1 = ∆sA2 → ∆h =
A2

A1
∆s (1)

��p0 + ∆p− γ∆h− γ∆s sin θ = ��p0 (2)

Combining Equations 1 and 2 to eliminate ∆h gives

sin θ =

[
∆p

γ∆s
− A2

A1

]
=

[
200

(9003)(0.200)
− 7.854 × 10−5

0.7854

]
= 0.1110 → θ = 6.37◦

2.39. For a water temperature of 15◦C, γw = 9.80 kN/m3. For the given manometer setup,

pw = p0 + γwh2 − SGγwL1 sin θ − γwL2 sin θ

Noting that sin θ = 8/12 = 0.667, the above equation gives

pw = 30 + (9.80)(0.50) − (2.4)(9.80)(0.06)(0.667) − (9.80)(0.06)(0.667) = 33.6 kPa

Therefore the water pressure in the pipe is 33.6 kPa .

NEW From the given data: Ixx = 8.553 m4, and θ = 70◦. The given dimensions are shown in
Figure 2.1, where the inclined distance from the water surface to the top of the plane surface
is 1.5 sin 70◦ = 1.596 m.

1.5 m

70o

1
.5

9
6

 m

3
 m

Plane surface

Water surface

Figure 2.1: Side view of inclined surface
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For water at 20◦C, γ = 9.789 kN/m3. From the given dimensions of the plane surface, the
following geometric properties can be calculated:

A1 = (3)(2) = 6 m2, A2 = (5)(1) = 5 m2

ȳ1 = 1.596 +
2

2
= 2.596 m, ȳ2 = 1.596 + 2 +

1

2
= 4.096 m

ȳ =
A1ȳ1 +A2ȳ2
A1 +A2

= 3.278 m, A = 11 m2

Using the calculated data, the resultant force, F , and location, ycp, are given by

F = γAȳ sin θ = (9.789)(11)(3.278) sin 70◦ = 332 kN

ycp = ȳ +
Ixx
Aȳ

= 3.278 +
8.553

(11)(3.278)
= 3.52 m

2.40. From the given data: b = 3 m, d = 4 m, W = 20 kN, h = 2 m, and µ = 0.05. For water, γ
= 9.79 kN/m3. The geometric properties of the gate are:

ȳ = h+
d

2
= 2 +

4

2
= 4 m, A = bd = (3)(4) = 12 m2

The hydrostatic force, F , on the gate is given by

F = γAȳ = (9.79)(12)(4) = 469.9 kN

The frictional force, Ff , and the total force, Flift, required to lift the gate are given by

Ff = µF = (0.05)(469.9) = 23.50 kN

Flift = Ff +W = 23.50 + 20 = 43.5 kN

2.41. From the given data: h = 4 m, L = 3.5 m, w = 0.3 m, and SG = 2.5. The following preliminary
calculations are useful:

A = Lh = (3.5)(4) = 14 m2, γ = SG · (9.807) = 24.52 kN/m3

ȳ =
h

2
=

4

2
= 2 m, Icc =

Lh3

12
=

(4)(3.5)3

12
= 18.67 m4

Using the given and derived data, the support force, F , and location, ycp, are calculated as
follows,

F = γAȳ = (24.52)(14)(2) = 687 kN, ycp = ȳ +
Icc
Aȳ

= 2 +
18.67

(14)(2)
= 2.67 m

Therefore, the magnitude of the required support force on each side of the form is 687 kN .

This support should be located 4 m− 2.67 m = 1.33 m from the bottom of the wall section.

The lateral location is L/2 = 3.5/2 = 1.75 m from the edge of the wall section.
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2.42. From the given data: b = 2 m, d = 3 m, θ = 60◦, htop = 2.5 m. For water, γ = 9.79 kN/m3.
The geometric properties of the gate are calculated as follows:

A = bd = (2)(3) = 6 m2, ytop =
htop
sin θ

=
2.5

sin 60◦
= 2.887 m

ȳ = ytop +
d

2
= 2.887 +

3

2
= 4.387 m, Ixx =

bd3

12
=

(2)(3)3

12
= 4.500 m4

The resultant force, F , and the center of pressure, ycp, are given by

F = γAȳ sin θ = (9.79)(6)(4.387) sin 60◦ = 223 kN

ycp = ȳ +
Ixx
Aȳ

= 4.387 +
4.500

(6)(4.387)
= 4.558 m

The center of pressure is 4.558 sin 60◦ = 3.95 m below the water surface.

2.43. Force, F , on gate given by
F = γAȳ

where γ = 9.79 kN/m3, A = πD2/4 = π(2)2/4 = 3.142 m2, and ȳ = 4 m. Therefore

F = (9.79)(3.142)(4) = 123 kN

The location of F is given by ycp, where

ycp = ȳ +
Icc
Aȳ

For a circle

Icc =
πD4

64
=
π(2)4

64
= 0.785 m4

therefore,

ycp = 4 +
0.785

(3.142)(4)
= 4.06 m

Moment of hydrostatic force about A, MA, is the minimum moment needed to open the gate,

MA = F (ycp − 3) = 123(4.06 − 3) = 130 kN·m

2.45. From the given data: H = 3 m, T = 1 m, ρc = 2800 kg/m3, ρs = 1500 kg/m3, and µ = 0.35.
Considering a unit length of slurry wall (perpendicular to the page), the following preliminary
calculations are useful,

γc = ρcg = 27.46 kN/m3, γs = ρsg = 14.71 kN/m3

W = γcVc = (27.46)(3 × 1) = 82.38 kN, Ff = µW = (0.35)(82.38) = 28.83 kN

Fh = γsAȳ = (14.71)(h)

(
h

2

)
= 7.355h2, ycp = ȳ +

Icc
Aȳ

=
h

2
+
h3/12

h · h/2
=

2

3
h

where W = weight of retaining wall, Ff = friction force, and Fh = horizontal hydrostatic
force.
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(a) For shear failure, the horizontal hydrostatic force is equal to the friction force, which
requires that

Fh = Ff → 7.355h2 = 28.83 kN → h = 1.98 m

(b) For overturning about the point P, the ground reaction is equal to zero and

W · T
2

= Fh · (h− ycp) → (82.38)(0.5) = (7.355h2)
(
h− 2

3h
)

→ h = 2.56 m

The more likely failure mode is by shear failure , since this failure will occur at with a lower
slurry depth (1.98 m vs. 2.56 m).

2.46. From the given data: L = 25 m, T = 5 m, s = 4 m, SGc = 2.4, and y2 = 3 m. From the given
specific gravity of concrete, the specific weight of concrete is γc = SG · g = 23.53 kN/m3. For
water at 20◦C, γw = 9.789 kN/m3. The illustrations given in Figure 2.2 are useful in the
calculations.

p
0p

1

L
x

(a) Pressure distribu!on

 (h + 4) m

5 m

20 m

P

(b) Geometry of dam

!

Figure 2.2: Definition diagrams for calculations

The slope of the downstream side of the dam is measured by θ, which can be expressed in
terms of the upstream height, h using the relation

sin θ =
h+ 4√

(h+ 4)2 + 202
(1)

Using the subscript “1” to designate upstream and the subscript “2” to designate downstream,
and taking a unit length if the dam (perpendicular to the page), the following preliminary
calculations are useful:

A1 = (1)h = h, A2 = (1)

(
3

sin θ

)
=

3

sin θ

ȳ1 =
h

2
, ȳ2 =

1.5

sin θ

I100 =
(1)(h)3

12
=
h3

12
, I200 =

(1)(3/ sin θ)3

12
=

2.25

sin3 θ
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The centers of pressure are calculated as follows:

y1cp = ȳ1 +
I100
A1ȳ1

=
h

2
+

h3/12

(h)(h/2)
=

2h

3

y2cp = ȳ2 +
I200
A2ȳ2

=
1.5

sin θ
+

2.25/ sin3 θ

(3/ sin θ)(1.5/ sin θ)
=

2

sin θ

The horizontal hydrostatic forces on the upstream and downstream faces are:

F1 = γwA1ȳ1 = (9.789)(h)(h/2) = 4.895h2

F2 = γwA2ȳ2 sin θ = (9.789)

[
3

sin θ

] [
1.5

sin θ

]
sin θ =

44.05

sin θ

The moment, M1, about the toe of the dam (Point P in Figure 2.2) caused by the uplift
pressure is obtained with the following calculations:

p = p0 +
p1 − p0
L

x→ p = 3(9.789) +
9.789h− 9.789(3)

25
x→ p = 29.37 + [0.3916h− 1.175]x

M1 =

∫ 25

0
x · p dx = 14.69x2

∣∣∣∣25
0

+ [0.1305h− 0.3917]x3
∣∣∣∣25
0

= 3060.9 + 2039.1h

The moment, M2, about the toe of the dam caused by the weight of the concrete is obtained
with the following calculations:

M2 = 5(h+ 4)γc(20 + 2.5) + 1
2(20)(h+ 4)γc

(
20 − 20

3

)

= 5(h+ 4)(23.53)(20 + 2.5) + 1
2(20)(h+ 4)(23.53)

(
20 − 20

3

)
→ M2 = 5784(h+ 4)

At the instant of overturning, the ground reaction is equal to zero and the sum of the moments
about P is equal to zero, which requires that

− F1(h− y1cp) + F2

(
3

sin θ
− y2cp

)
−M1 +M2 = 0

→ −4.895h2(h− 2
3h) +

44.05

sin θ

(
3

sin θ
− 2

sin θ

)
− (3060.9 + 2039.1h) + [5784(h+ 4)] = 0

→ −1.632h3 +
44.05

sin2 θ
+ 7823h+ 20075 = 0

→ −1.632h3 + (44.05)
(h+ 4)2 + 202

h+ 4
+ 3744.9h+ 20075 = 0 → h = 50.7 m

2.48. From the given data: D = 2.5 m, R = D/2 = 1.25 m, θ = 35◦, hc = 1.5 m, and W = 500 kN.
For water, γ = 9.79 kN/m3.
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(a) The hydrostatic force that would exist on the top surface of the gate is the same as that
which exists on the bottom surface of the gate. Work with a top-of-gate perspective.
The relevant geometric properties of the gate are as follows:

ȳ =
1.5

sin 35◦
= 2.615 m, ytop = ȳ −R = 2.615 − 1.25 = 1.365 m

A = πR2 = π(1.25)2 = 4.909 m2, I =
πR4

4
=
π(1.25)4

4
= 1.918 m4

Therefore the resultant force, F , and its location, ycp, are given by

F = γAhc = (9.79)(4.909)(1.5) = 72.1 kN

ycp = ȳ +
I

Aȳ
= 2.615 +

1.918

(4.909)(2.615)
= 2.765 m

The location of the resultant relative to the top of the gate is yF = 2.765 m− 1.365 m =
1.400 m .

(b) When the gate is about to open, and Fb is the applied (vertical) force at the bottom of
the gate, taking moments about the top of the gate gives,

F · yF + Fb · (D cos θ) = W · (R cos θ)

(72.1)(1.400) + Fb(2.5 cos 35◦) = (500)(1.25 cos 35◦) → Fb = 201 kN

2.49. From the given data: θ = 50◦, d = 15 m, and R = 3 m. For water, γ = 9.79 kN/m3. The
useful geometric properties of a semicircle (from Appendix C) are

yc =
4R

3π
, Ixc = 0.1098R4

where, in this case, yc is the distance from the shaft to the centroid, and Ixc is the moment
of inertia about an axis parallel to the shaft and passing through the centroid. Using these
properties the following derived geometric properties can be calculated:

ȳ =
d

sin θ
−
[
R− 4R

3π

]
=

15

sin 50◦
−
[
3 − 4(3)

3π

]
= 17.85 m

hc = ȳ sin θ = (17.85)(sin 50◦) = 13.68 m

A =
1

2
πR2 =

1

2
π(3)2 = 14.14 m2

Ixc = 0.1098R4 = 0.1098(3)4 = 8.894 m4

ycp = ȳ +
Ixc
Aȳ

= 17.85 +
8.894

(14.14)(17.85)
= 17.89 m

Using these results, the hydrostatic force, F , calculated as follows

F = γAhc = (9.79)(14.14)(13.68) = 1893 kN
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The distance from the shaft to the center of pressure, ycp1, is given by

ycp1 = ycp −
[

d

sin θ
−R

]
= 17.89 −

[
15

sin 50◦
− 3

]
= 1.309 m

The support force, FP, is derived by considering the gate as a free body and taking moments
about the shaft, which yields

FPR = Fycp1 → FP = F
ycp1
R

= 1893
1.309

3
= 826 kN

2.50. From the given data: θ = 35◦, R = 420 mm, and ȳ = 3 m. The force, F , on the hatch is

F = γAȳ sin θ

where A = πR2 = π(0.42)2 = 0.554 m2, and therefore

F = (9.79)(0.554)(3) sin 35◦ = 9.33 kN

This force is located at a distance ycp from the surface, where

ycp = ȳ +
Icc
Aȳ

For the circular hatch,

Icc =
πD4

64
=
π(0.84)4

64
= 0.0244 m4

hence

ycp = 3 +
0.0244

(0.554)(3)
= 3.01 m

The resultant hydrostatic force is therefore 3.01 m below the water surface, measured along
the sloping wall.

2.51. Calculate the force on the gate:
F = γAȳ sin θ (1)

where θ = 90◦ − sin−1(3/5) = 53.1◦, ȳ = 4/ sin(53.1◦) + 2.5 = 7.502 m, A = (5)(4) = 20 m2,
and γ = 9.79 kN/m3. Substituting into Equation 1 and also calculating the center of pressure
gives:

F = (9.79)(20)(7.502) sin(53.1◦) = 1175 kN

ycp = ȳ +
I

Aȳ
= 7.502 +

(4)(5)3

12

(20)(7.502)
= 7.780 m

Taking moments about the hinge and taking into consideration that the reaction force at P
acts normal to the surface gives

[P cos(53.1◦)](5) = (7.502 + 2.5 − 7.780)(1175)

which gives P = 869 kN .
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2.52. From the given data: W = 500 kg, w = 5 m, and θ = 45◦. Taking γ = 9.79 kN/m3, the
hydrostatic force on the gate, Fh, is given by

Fh = γAȳ sin θ = γAh̄ = (9.79)

(
3

sin 45◦
× 5

)
(0.5 + 1.5) = 415 kN

The center of pressure, ycp, is given by

ycp = ȳ +
I

Aȳ
=

(
2

sin 45◦

)
+

5
(

3
sin 45◦

)3 1
12(

3
sin 45◦ × 5

) (
2

sin 45◦

) = 3.36 m

(a) If the force is applied at the center of the gate, taking moments about B gives

F

(
1.5

sin 45◦

)
= Fh(ycp − ȳ) +W (1.5)

F

(
1.5

sin 45◦

)
= (415)

(
3.36 − 0.5

sin 45◦

)
+

500(9.81)(1.5)

1000

which gives F = 522 kN .

(b) The minimum force would be required if it were applied at the bottom of the gate . In
this case, taking moments about B gives

F

(
3

sin 45◦

)
= 415

(
3.36 − 0.5

sin 45◦

)
+

500(9.81)(1.5)

1000

which gives F = 261 kN .

2.53. From the given data: ρf = 998 kg/m3, ρs = 1025 kg/m3, and w = 100 lb/m = 0.4448 kN/m.
A sketch of the dimensions used in solving this problem is shown in Figure 2.3.

2 m

30o

G
1 m

2 m
A H

1 m
H-1 m

30o

30o

Gate

Center of

gravity of gate

  H-1

sin 30o = 2(H-1)

(a) Dimensions (b) Forces on gate

A
x

A
y

W

F
1

F
2

Figure 2.3: Gate dimensions and forces

Using the given data and referring to Figure 2.3,

γw = (998)(9.81) = 9.79 kN/m3
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γs = (1025)(9.81) = 10.06 kN/m3

F1 = γwAȳ1 sin θ = (9.79)(2 × 1)(2 + 1) sin 30◦ = 29.37 kN

y1cp = ȳ1 +
I

Aȳ1

I =
bd3

12
A = bd

y1cp = ȳ1 +
d2

12ȳ1
= 3 +

22

12(3)
= 3.11 m

F2 = γsAȳ2 sin θ = (10.06)(2 × 1)[2(H − 1) + 1] sin 30◦ = 10.06(2H − 1) kN

y2cp = ȳ2 +
d2

12ȳ2
= (2H − 1) +

22

12(2H − 1)
= (2H − 1) +

0.3333

2H − 1

Taking moments about A (
∑
M = 0) yields

29.37(1.11) + 0.4448 cos 30◦(1) = 10.06(2H − 1)

[
1 +

0.3333

(2H − 1)

]
32.99 = 10.06(2H − 1) + 3.353

which yields H = 1.97 m .

2.54. The hydrostatic force, F , on the gate is given by

F = γAȳ sin θ

For an elliptical surface, Table C.1 in Appendix C gives

A =
πbh

4

where

b = D = 1.2 m, h =
D

sin θ
=

1.2

sin 30◦
= 2.4 m

and therefore

A =
πbh

4
=
π(1.2)(2.4)

4
= 2.26 m2

The location of the centroid, ȳ, is given by

ȳ =
9

sin θ
=

9

sin 30◦
= 18 m

and the net hydrostatic force on the gate is

F = γAȳ sin θ = (9.79)(2.26)(18) sin 30◦ = 199 kN

The location of the center of pressure, ycp, is given by

ycp = ȳ +
Icc
Aȳ
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where Table C.1 in Appendix C gives

Icc =
πbh3

64
=
π(1.2)(2.4)3

64
= 0.814 m4

hence

ycp = 18 +
0.814

(2.26)(18)
= 18.0 m

The moment of the hydrostatic force about P, MP , is given by

MP = 199

[
ycp −

(
9 − 1.2

2

)
1

sin 30◦

]
= 199

[
18.0 −

(
9 − 1.2

2

)
1

sin 30◦

]
= 239 kN·m

The moment required to keep the gate closed is 239 kN·m .

2.55. Consider the flap gate as a free body as shown in Figure 2.4

Figure 2.4: Flap gate free body

The area, A, of the gate under water is given by

A = 1.5
h

sin 86◦
= 1.504h

and the distance to the centroid of the gate from the water surface, ȳ, measured along the
gate, is given by

ȳ =
1

2

h

sin 86◦
= 0.5012h

The hydrostatic force, Fw, exerted by the water is

Fw = γAȳ sin θ (1)

where γ=9.79 kN/m3 (at 20◦C) and θ = 86◦. Substituting known and derived data into
Equation 1 gives

Fw = (9.79)(1.504h)(0.5012h) sin 86◦ = 7.362h2 kN
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The distance, ycp, below the water surface to the center of pressure is given by

ycp =
Ioo
Aȳ

+ ȳ (2)

where

Ioo =
bd3

12
=

(1.5)
(

h
sin 86◦

)3
12

= 0.1259h3 (3)

Combining Equations 2 and 3 and taking A = 1.504h and ȳ = 0.5012h gives

ycp =
0.1259h3

(1.504h)(0.5012h)
+ 0.5012h = 0.6682h

The distance from the hinge to the water surface, measured along the gate (y′ in Figure 2.4)
is given by

y′ = 1.75 − h

cos 4◦
= 1.75 − 1.002h

and the horizontal distance from the hinge to the center of gravity of the gate (x′ in Figure
2.4) is given by

x′ = (1 m) cos 86◦ = 0.06976 m

Taking moments about the hinge, with the weight of the gate (W ) equal to 8 kN, yields

Fw · (y′ + ycp) = W · x′

(7.362h2)(1.75 − 1.002h+ 0.6682h) = (8)(0.06976)

which simplifies to
7.362h2(1.75 − 0.3338h) = 0.5581

This cubic equation has the following three solutions

h = 5.23 m, 0.212 m, and − 0.204 m

The only realistic solution is h = 0.212 m .

2.56. From the given data: b = 2 m and the other dimensions are given in the problem diagram.
Take γ = 9.79 kN·m3. For reference, the sketch shown in Figure 2.5 is useful.

Figure 2.5: Force on gate
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Using the given data:

sin 45◦ =
√

2, F = γAȳ sin θ

ȳ = 3
√

2 +

√
2

2
= 4.950 m, F = (9.79)(

√
2 × 2)(4.950)

(
1√
2

)
= 96.9 kN

ycp = ȳ +
I

Aȳ
, I =

bd3

12
=

(2)(
√

2)3

12
= 0.4714 m4

A = (
√

2)(2) = 2.828 m2, ycp = 4.950 +
0.4714

(2.828)(4.950)
= 4.984 m

Taking moments about P gives

F (ycp − 3
√

2) = Fs(1) → Fs = 96.9
(4.984 − 3

√
2)

1
= 71.8 kN

2.57. From the given data: b = 1.52 m. Assume T = 20◦C, the fluid properties are: γw =
9.789 kg/m3, and γsw = 1.025(9.789) = 10.03 kg/m3. A schematic diagram of the impor-
tant variables is shown in Figure 2.6. The centroidal depth on the freshwater side is given by
ȳ = 0.5(3.05 m) = 1.525 m.

0.61 m

A

F
1

F
2

3.05 m

y
1

y
2

h

Figure 2.6: Schematic diagram of vertical gate

F1 = γwAȳ = (9.789)(3.05 × 1.525)(1.525) = 69.21 kN

y1 = ȳ +
I0
Aȳ

= 1.525 +

(1.525)(3.05)3

12
(1.525 × 3.05)(1.525)

= 2.033 m

F2 = γswAȳ = (10.03)(1.525h)

(
h

2

)
= 7.623h2 kN

y2 = ȳ +
I0
Aȳ

=
h

2
+

(1.525)(h)3

12
(1.525 × h)(h/2)

=
2

3
h
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Taking moments about A,

F1(y1+0.61) = F2

(
3.05 + 0.61 − h+

2

3
h

)
→ (69.21)(2.033+0.61) = 7.632h2

(
3.66 − h

3

)
which yields h = 3.002 m. Therefore, the gate will open when the depth of seawater is less
than 3.00 m .

2.58. From the given data: h1 = 0.5 m, h2 = 0.7 m, and w = 3 m. Use the subscript “b” to indicate
the portion of the gate below the hinge, and the subscript “t” to indicate the portion of the
gate above the hinge. The following preliminary calculations are useful:

Ab = wh1 = (3)(0.5) = 1.5 m2, Ibc =
wh31
12

=
(3)(0.5)3

12
= 0.03125 m4

At = wh2 = (3)(0.7) = 2.1 m2, Itc =
wh32
12

=
(3)(0.7)3

12
= 0.08575 m4

Calculate the resultant hydrostatic forces and their locations on the portions of the gate below
and above the hinge:

Fb = γAbhbc = γAb(h− 0.25) (1)

ybcp = ȳb +
Ibc
Abȳb

= (h− 0.25) +
Ibc

Ab(h− 0.25)
(2)

Ft = γAthtc = γAt(h− 0.85) (3)

ytcp = ȳt +
Itc
Atȳt

= (h− 0.85) +
Itc

At(h− 0.85)
(4)

When the gate is just about to open, the reaction of the stopper is equal to zero and the sum
of the moments about the hinge is equal to zero. Therefore,

Fb · [ybcp − (h− 0.5)] = Ft · [(h− 0.5) − ytcp] (5)

Substituting the expressions from Equations 1 to 4 into Equation 5 and making h the subject
of the formula yields

h =
Ibc − 0.252Ab + (0.35)(0.85)At + Itc

0.35At − 0.25Ab
(6)

(a) Substituting the values of the given and derived parameters into Equation 6 yields

h =
(0.03125) − 0.252(1.5) + (0.35)(0.85)(2.1) + (0.08575)

0.35(2.1) − 0.25(1.5)
= 1.80 m

(b) Since the specific weight of the liquid, γ, does not appear in the expression for h given
by Equation 6, the calculated depth of liquid, h does not depend on the specific weight
or the density of the liquid.
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2.59. Consider the side of the trough shown as a free body in Figure 2.7.

Figure 2.7: Free-Body Diagram

The hydrostatic force, F , is given by

F = γAȳ sin θ = (9.79)(0.75 × 6)

(
0.75

2

)
sin 45◦ = 11.68 kN

The center of pressure, ycp, is given by

ycp = ȳ +
Icc
Aȳ

= 0.375 +
6×0.753

12

(0.75 × 6)(0.375)
= 0.50 m

Taking moments about the hinge gives

F (0.75 − ycp) = T (0.75 sin 45◦)

which yields

T =
F (0.75 − ycp)

0.75 sin 45◦
=

11.68(0.75 − 0.50)

0.75 sin 45◦
= 5.51 kN

2.60. From the given data: W = 3 m, L = 2 m, θ = 30◦, p0 = 300 kPa, d1 = 2 m, and d2 = 1 m. For
water at 20◦C, γ = 9.789 m/s2. The following preliminary calculations are useful,

hc = d2 + [d1 + 1
2L] sin θ = 1 + [2 + 1

2(2)] sin 30◦ = 2.5 m

A = WL = (3)(2) = 6 m2, ȳ =
hc

sin θ
=

2.5

sin 30◦
= 5 m, Icc =

WL3

12
=

(3)(2)3

12
= 2 m4

Substituting these data into Equations 2.41 and 2.48 gives,

F = [p0 + γhc]A = [300 + (9.789)(2.5)](6) = 1947 kN = 1.947 MN

ycp = ȳ +
γ sin θIcc

[p0 + γȳ sin θ]A
= 5 +

(9.789) sin 30◦(2)

[300 + (9.789)(5) sin 30◦](6)
= 5.005 m

The depth, hcp, if the resultant force below the water surface is given by

hcp = ycp sin θ = 5.005 sin 30◦ = 2.50 m
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2.61. From the given data: R = 2 m, and d = 3 m. For water at 20◦C, γ = 9.79 kN/m3. Using
these data:

Ixc = Iyc = 0.05488R4 = 0.05488(2)4 = 0.8781 m4

Ixyc = −0.01647R4 = −0.01647(2)4 = −0.2635 m4

A =
1

4
πR2 ==

1

4
π(2)2 = 3.142 m2

ȳ = d+
4R

3π
= 3 +

4(2)

3π
= 3.849 m

x̄ =
4R

3π
=

4(2)

3π
= 0.849 m

F = γAȳ = (9.79)

[
1

4
× π(2)2

]
(3.849) = 118 kN

ycp = ȳ +
Ixc
Aȳ

= 3.849 +
0.8781

(3.142)(3.849)
= 3.921 m

xcp = x̄+
Ixyc
Aȳ

= 0.849 +
−0.2635

(3.142)(3.849)
= 0.827 m

MXX = F · xcp = (118) · (0.827) = 97.6 kN·m

2.62. The ellipse parameters as referenced to the geometric properties in the Appendix are: a = 1 m,
b/2 = 1 m → b = 2 m. From the other given data: d = 2 m. For water at 20◦C, γ =
9.789 kN/m3. Using these data with the same axis references as in the Appendix:

Iyc = 1
128πba

3 = 1
128π(2)(1)3 = 0.04909 m4

Ixyc = 0 m4

A = 1
8πab = 1

8π(1)(2) = 0.7854 m2

ȳ = d+
a

2
= 2 +

1

2
= 2.500 m

x̄ =
2b

3π
=

2(2)

3π
= 0.4244 m

F = γAȳ = (9.789)(0.7854)(2.5) = 19.22 kN

ycp = ȳ +
Iyc
Aȳ

= 2.500 +
0.04909

(0.7854)(2.500)
= 2.525 m

xcp = x̄+
Ixyc
Aȳ

= 0.4244 + 0 = 0.4244 m

MXX = F · xcp = (19.22) · (0.4244) = 8.157 kN·m

2.63. For the upper portion of the gate: AU = 1 m×1 m = 1 m2, γU = 9.50 kN/m3, ȳU = 2 + 1/2
= 2.5 m, IcU = bd3/12 = (1)(1)3/12 = 0.08333 m4, hence

FU = γUAUȳU = (9.50)(1)(2.5) = 23.75 kN

ycpU = ȳU +
IcU
AUȳU

= 2.5 +
0.0833

(1)(2.5)
= 2.533 m
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For the lower portion of the gate, with depths taken relative to the interface: p0 = γUhU =
(9.50)(3) = 28.5 kPa, AL = 2 m×1 m = 2 m2, γL = 9.90 kN/m3, ȳL = 2/2 = 1 m, IcL =
bd3/12 = (1)(2)3/12 = 0.6667 m4, hence

FL = [p0 + γLȳL]AL = [28.5 + (9.90)(1)](2) = 76.80 kN

ycpL = ȳL +
γLIcL

[p0 + γLȳL]AL
= ȳL +

γLIcL
FL

= 1 +
(9.90)(0.6667)

76.8
= 1.086 m

Therefore, the total force, F , and location, ycp, are given by

F = FU + FL = 23.75 + 76.80 = 100.6 kN

ycp =
FUycpU + FL(3 + ycpL)

F
=

(23.75)(2.533) + (76.80)(3 + 1.086)

100.6
= 3.72 m

2.64. The parameters of the ellipse, as described in the Appendix, are a = 1 m, and b = 2 m. From
the given data: d = 3 m. For the upper portion of the gate:

AU = 1
8πab = 1

8π(1)(2) = 0.7854 m2, γU = 9.40 kN/m3

ȳU = d− 2b

3π
= 3 − 2(2)

3π
= 2.576 m, IcU = 1

128πab
3 = 1

128π(1)(2)3 = 0.1963 m4

FU = γUAUȳU = (9.40)(0.7854)(2.576) = 19.02 kN

ycpU = ȳU +
IcU
AUȳU

= 2.576 +
0.1963

(0.7854)(2.576)
= 2.673 m

For the lower portion of the gate, with depths taken relative to the interface: p0 = γUd =
(9.40)(3) = 28.2 kPa, and

AL = AU = 0.7854 m2, γL = 9.80 kN/m3

ȳL =
2b

3π
=

2(2)

3π
= 0.4244 m, IcL = IcU = 0.1963 m4

FL = [p0 + γLȳL]AL = [28.2 + (9.80)(0.4244)](0.7854) = 25.41 kN

ycpL = ȳL +
γLIcL

[p0 + γLȳL]AL
= ȳL +

γLIcL
FL

= 0.4244 +
(9.80)(0.1963)

25.41
= 0.5001 m

Therefore, the total force, F , and location, ycp, are given by

F = FU + FL = 19.02 + 25.41 = 44.43 kN

ycp =
FUycpU + FL(3 + ycpL)

F
=

(19.02)(2.673) + (25.41)(3 + 0.5001)

44.43
= 3.146 m
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NEW For water at 20◦C, γ = 9.789 kN/m3. For the bent part of the surface the perimeter of the
quarter circle is 1 m, and the radius, R, of the quarter circle is calculated as follows:

P = 1
4 · 2πR → 1 = 1

4 · 2πR → R = 0.6366 m

Using the calculated value of R, the horizontal and vertical forces on the surface are given by

Fx = γAv1ȳv1 + γAv1ȳv1 = 9.789[(2 × 3)(1.5 + 1) + (0.6366 × 5)(1.5 + 2 + 0.6366)]

= 265.8 kN

Fz = γV = γ
[
1
4πR

2 + 3.5R
]
W = 9.789

[
1
4π(0.6366)2 + 3.5(0.6366)

]
(5) = 124.6 kN

2.65. Because of symmetry, the net horizontal hydrostatic force is zero. The pressure at the top of
the cone, p0, is given by

p0 = 150 − γw(7 m) = 150 − (9.79)(7) = 81.47 kPa

This gives an equivalent height of water, H, of

H =
p0
γ

=
81.47

9.79
= 8.32 m

Therefore, the vertical force on the cone, F , is given by

F =

[
πR2H +

1

3
πR2h

]
γ =

[
π(1)2(8.32) +

1

3
π(1)2(4)

]
(9.79) = 297 kN

2.66. From the given data: F0 = 2500 kN, L = 10 m, and h = 2.4 m. For water at 20◦C, γ =
9.789 kN/m3. For any given step height (= width), x, the horizontal force, Fx, is a function
of x as follows:

Av = w(h+ 4x) = 10(2.4 + 4x), ȳv =
h+ 4x

2
= 1.2 + 2x

Fx = γAvȳv = 9.789[10(2.4 + 4x)](1.2 + 2x)

Setting Fx(x) = 2500 kN yields x = 1.187 m . Using this value of x, the vertical force on the
dam, Fy, is given by

Fy = γV0 = γw(x2 + 2x2 + 3x2 + 4x2) = (9.789)(10)(1.187)2(1 + 2 + 3 + 4) = 1379 kN

2.67. From the given data: L = 5 m, hf = 4 m, hs = 2 m, and R = 2 m. For fresh water at 20◦C,
γf = 9.789 kN/m3, and for salt water at 20◦C, γs = 10.03 kN/m3 (from Appendix B.4). The
following preliminary calculations are useful:

Af = Lhf = (5)(4) = 20 m2, ȳf = 1
2hf = 1

2(4) = 2 m

As = Lhs = (5)(2) = 10 m2, ȳs = 1
2hs = 1

2(1) = 1 m

V0f = L
[
R2 − 1

4πR
2
]

= (5)
[
(2)2 − 1

4π(2)2
]

= 4.292 m3

60



where V0f is the volume of the space between the top of the wall and the freshwater surface.
The horizontal and vertical components of the net hydrostatic force on the wall are given by:

Fx = γfAf ȳf − γsAsȳs = (9.789)(20)(2) − (10.03)(10)(1) = 291 kN

Fy = γfV0f = (9.789)(4.292) = 42.0 kN

2.68. From the given data: R = hf = 3.5 m, and w = 4.8 m. For fresh water at 20◦C, γf =
9.789 kN/m3, and for salt water at 20◦C, γs = 10.03 kN/m3 (from Appendix B.4). The
following preliminary calculations are useful:

Avf = hfw = (3)(4.8) = 16.8 m2, Avs = 1
2hw = 2.4hm2

ȳvf = 1
2hf = 1

2(3.5) = 1.75 m, ȳvs = 1
2h

V0f = Rhfw − 1
4πR

2w = (3.5)(3.5)(4.8) − 1
4π(3.5)2(4.8) = 12.62 m2

where V0f is the volume of the space between the top of the gate and the freshwater surface.

(a) For the horizontal hydrostatic forces to be equal,

γfAvf ȳvf = γsAvsȳvs

Substituting the given and derived relationship into this equation and solving for h gives

h =

√(
γf
γs

)
2Avf ȳvf
w

=

√(
9.789

10.03

)
2(16.8)(1.75)

4.8
= 3.458 m

(b) For the vertical hydrostatic forces to be equal,

γfV0f = γsV0s → V0s =

(
γf
γs

)
V0f =

(
9.789

10.03

)
(12.62) = 12.32 m3

Consider the geometry of the gate shown in Figure 2.8, and recall that the area of a
segment of a circle with central angle θ is equal to 1

2R
2θ.

hR

(R2-h2)½ R-(R2-h2)½

 

Figure 2.8: Segment of a circle

For any height h, the volume above the gate, V0s, is equal to the shaded area and, using
the geometric relations in Figure 2.8 yields

V0s = w[h(R−
√
R2 − h2)] −

[
1

2
R2 sin−1

(
h

R

)
− 1

2

√
R2 − h2h

]
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Since V0s = 12.32 m3 when the vertical hydrostatic forces are equal, then

(4.8)[h(3.5 −
√

3.52 − h2)] −
[

1

2
(3.5)2 sin−1

(
h

3.5

)
− 1

2

√
3.52 − h2h

]
= 12.32

which yields h = 2.598 m

2.69. From the given data: R = 1 m, and W = 40 kN/m. For water at 20◦C, γ = 9.789 kN/m3. If
Fh and Fv are the horizontal and vertical hydrostatic forces on the gate, then the magnitude,
F , and direction, θ, of the hydrostatic force are given by

F =
√
F 2
h + F 2

v , sin θ =
Fv√

F 2
h + F 2

v

(1)

The vertical force on the gate, Fv, is given by

Fv = γ[(h−R)R+ 1
4πR

2] = (9.789)[(h− 1)(1) + 1
4π(1)2] → Fv = 9.789h− 2.101 kN (2)

The resultant hydrostatic force acts through the center of the circular quadrant, the weight
of the gate acts vertically through the centroid of the gate, and the centroid of the gate is
located at a distance 4R/3π from the center of the quadrant. Taking moments about the pin
when the gate is just about to open (i.e., the reaction is equal to zero) and using Equation 1
gives

FR sin θ = W

[
R− 4R

3π

]
→������√

F 2
h + F 2

v (1)
Fv

������√
F 2
h + F 2

v

= 40

[
1 − 4(1)

3π

]
→ Fv = 23.02 kN

Combining this result with Equation 2 gives h = 2.57 m .

NEW (a) From the given data: h = 2.7 m, r1 = 1 m, and r2 = 0.95 m. For water at 20◦C,
γ = 9.789 kN/m3. For a unit length of gate, L = 1 m and x- and y-components of the
hydrostatic force on the gate, and the weight of the gate, are given by:

Fx = γȳA = γ[h− 0.5r1][r1L] = 9.879[2.7 − 0.5(1)][1(1)] = 21.54 kN

Fy = γV = γ[(h− r1)r1 + 0.25πr21]L = 9.789[(2.7 − 1)(1) + 0.25π(1)2](1) = 24.33 kN

W = ρggVg = ρggπL[r21 − r22] = ρg(9.807)π(1)[12 − 0.952] = 3.004ρg N = 3.004 × 10−3ρg kN

The calculated values of Fx and Fy can be used to determine the magnitude and direction
of the resultant force as follows:

F =
√
F 2
x + F 2

y =
√

21.542 + 24.332 = 32.49 kN, θ = tan−1

(
Fy

Fx

)
= tan−1

(
24.33

32.49

)
= 36.83◦

Taking moments about the hinge when the gate is about to open, yields:

F ·r1 sin θ−W ·r1 = 0 → (32.49)·(1) sin 36.83◦−(3.004ρg×10−3)·(1) = 0 → ρg = 8099 kg/m3
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(b) Consider now a gate material with density ρg = 8100 kg/m3. When the gate is filled
with water:

W = 3.004ρg + γπr22L = 3.004(8100) + (9.789)π(0.95)2(1) = 52.08 kN

Fy = γ
[
(h− r1)r1 + 0.25πr21

]
L = (9.789)

[
(h− 1)(1) + 0.25π(1)2

]
(1) = 9.789(h− 0.2146) kN

sin θ =
Fy

F
=

9.789(h− 0.2146)

F

Taking moments about the hinge when the gate is about to open, yields:

F · r1 sin θ −W · r1 = 0 → F · (1)
9.789(h− 0.2146)

F
− 52.08 · (1) = 0 → h = 5.54 m

2.70. From the given data: γ = 9.79 kN/m3, Av = (3)(20) = 60 m2, and ȳv = 6.5 m. The horizontal
force, Fx, on viewing glass is given by

Fx = γAvȳv = (9.79)(60)(6.5) = 3820 kN

The volume of water, V0, above the viewing glass is given by

V0 =

[
(8)(3) − 1

4
· π

4
(6)2

]
(20) = 338.6 m3

Vertical force, Fz, on the viewing glass isgiven by

Fz = γV0 = (9.79)(338.6) = 3310 kN

The net force on the viewing glass is given by

F =
√
F 2
x + F 2

y =
√

(3820)2 + (3310)2 = 5050 kN

2.71. Determine the hydrostatic forces on the plane and curved surfaces separately and then add
them up. Assume that γ = 9.79 kN/m3. The geometric relationships and relevant dimensions
are shown in Figure 2.9.
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Figure 2.9: Geometric Relationships

Plane Surface: The force normal to the surface, F , is given by

F = γAȳ sin θ (1)

Using the given data and the geometric relationships shown in Figure 2.9:

A = (3)(2) = 6 m2

ȳ sin θ = 2 + 2 sin 45◦ +
3

2
sin 45◦ = 4.475 m

Substituting these parameters into Equation 1 gives

F = (9.79)(6)(4.475) = 262.9 kN

This force has x and y components as follows:

Fx = 262.9 cos 45◦ = 185.9 kN

Fy = −262.9 sin 45◦ = −185.9 kN

Curved Surface: The x-component of the force on the curved surface is given by

Fx = γAyv (2)

Using the given data and the geometric relationships shown in Figure 2.9:

A = (2 × 0.7071)(2) = 2.828 m2

yv = 2 + 0.7071 = 2.7071 m

Substituting these parameters into Equation 2 gives

Fx = (9.79)(2.828)(2.7071) = 74.95 kN
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The y component of the hydrostatic force on the upper curved surface is given by

Fy1 = −γV1 (3)

Using the given data and the geometric relationships shown in Figure 2.9:

A1 =
1

2
(0.7071)(0.7071) = 0.2500 m2

A0 =
π

8
r2 =

π

8
(1)2 = 0.3927 m2

∆A = A0 −A1 = 0.3927 − 0.2500 = 0.1427 m2

V1 = [(2 + 0.7071)(0.2929) − 0.1427](2) = 1.300 m3

Substituting into Equation 3 gives

Fy1 = −(9.79)(1.300) = −12.73 kN

The y component of the hydrostatic force on the lower curved surface is given by

Fy2 = γV2 (4)

Using the given data and the geometric relationships shown in Figure 2.9:

A3 = (0.2929)(0.7071) − ∆A = (0.2929)(0.7071) − 0.1427 = 0.0644 m2

V2 = [(2 + 2 × 0.7071)(0.2929) − 0.0644](2) = 1.871 m3

Substituting into Equation 4 gives

Fy2 = (9.79)(1.871) = 18.32 kN

Therefore, the net vertical hydrostatic force on the curved portion of the gate is given
by

Fy = Fy1 + Fy2 = −12.73 + 18.32 = 5.59 kN

This force could also be determined by simply calculating the buoyant force on the gate.

Total Hydrostatic Force: The x and y components of the total hydrostatic force are equal
to the sum of the hydrostatic forces on the plane and curved portions of the gate, so

Fx = 185.9 + 74.95 = 260.9 kN

Fy = −185.9 + 5.59 = −180.3 kN

2.72. From the given data: width of the gate = 5 m, weight of gate = 10 kN. Let Rx and Ry be
the reaction of the gate to the hydrostatic force. Hence,

Rx = γAvȳv

where γ = 9.79 kN/m3, Av = 3 × 5 = 15 m2, and ȳv = 3/2 = 1.5 m. Substituting gives

Rx = (9.79)(15)(1.5) = 220 kN
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This force is located at ycp below the water surface, where

ycp = ȳv +
Icc
Avȳv

where

Icc =
bd3

12
=

5(3)3

12
= 11.25 m4

and hence

ycp = 1.5 +
11.25

(15)(1.5)
= 2.0 m

The vertical reaction, Ry, is equal to the weight of water above the gate,

Ry = γV = (9.79)

[
π(3)2

4

]
(5) = 346 kN

This force acts through the centroid of the circle quadrant occupied by the gate, which is
4r/3π from P, where

4r

3π
=

4(3)

3π
= 1.27 m

The net hydrostatic force, R, on the gate is therefore given by

R =
√
R2

x +R2
y =

√
2202 + 3462 = 410 kN

The moment, M , tending to open the gate is

M = 346(1.27) − 220(2.0) − 10(1) = −10.6 kN·m

Hence the moment required to open the gate is 10.6 kN·m .

Note: This moment is numerically equal to the moment due only to the weight of the gate.
This is an expected result since the resultant hydrostatic force on a circular gate will neces-
sarily act through the center of the gate.

2.73. From the given data: H = 15.25 m and assume γ = 9.79 kN/m3. The horizontal component
of the force is given by

Fh = γAȳv = (9.79)(15.25 × 1)

(
15.25

2

)
= 1138 kN

The vertical force is the weight of the fluid above the dam. The x coordinate at the water
level, x0, is given by

y =
x2

2.4
→ 15.25 =

x20
2.4

→ x0 = 6.050 m

and the vertical force on the dam is given by

Fv = γV = 9.79

∫ 6.050

0
(1)

(
15.25 − x2

2.4

)
dx = 9.79

[
15.25x− x3

7.2

]6.050
0

= 602.1 kN
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Therefore the resultant force is
√

11382 + 602.12 = 1287 kN and this force makes an angle
of tan−1(1138/602.1) = 62.1◦ with the vertical. The horizontal force acts at the center of
pressure given by

ycp = ȳ +
I

Aȳ
=

15.25

2
+

(1)(15.25)3

12

(15.25 × 1)

(
15.25

2

) = 10.17 m

The vertical force acts through the center of gravity given by

xcg =
1(

602.1

9.79

) ∫ 6.050

0
x

(
15.25 − x2

2.4

)
dx = 0.01626

[
15.25x2

2
− x4

9.6

]6.050
0

= 2.269 m

Using these data give

AB = 2.269 m + (15.25 m − 10.17 m) tan 62.1◦ = 11.87 m

2.74. Considering the normal force on the viewing glass, FN, and the limit of 100 N that can be
supported by each rivet,

FN = γAȳ = (9.79)

(
π(1)2

4

)
(5) = 38.45 kN

required rivets =
38450

100
= 385 rivets

Considering the shear force on the viewing glass, FS, and the limit of 5 N that can be supported
by each rivet,

FS = γ
1

2

[
4

3
πR3

]
= (9.79)

1

2

[
4

3
π(0.5)3

]
= 2.56 kN

required rivets =
2560

5
= 512 rivets

Therefore, at least 512 rivets are needed to support the weight of the water in the viewing
glass, plus additional rivets to support the weight of the glass itself. If a flat viewing glass is
used instead, at least 385 rivets would be required.

The force on the top half of the viewing glass, FT, is given by

FT = γAȳ = γ

[
1

2
πR2

] [
5 − 4R

3π

]
= (9.79)

[
1

2
π(0.5)2

] [
5 − 4(0.5)

3π

]
= 18.41 kN

The force on the bottom half of the viewing glass, FB, is given by

FB = γAȳ = γ

[
1

2
πR2

] [
5 +

4R

3π

]
= (9.79)

[
1

2
π(0.5)2

] [
5 +

4(0.5)

3π

]
= 20.04 kN

Therefore the force ratio is 18.41/20.04 = 0.92 . More rivets will be required on the bottom .
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2.75. Take one-half of the trough as a free body. The horizontal component of the hydrostatic
force, Fh, is given by

Fh = γAȳ = (9.79)(3 × 0.5)

(
0.5

2

)
= 3.67 kN

The vertical component of the hydrostatic force, Fv, is given by

Fv = γV = (9.79)

[
1

4
π(0.5)2 × 3

]
= 5.77 kN

The line of action of Fh is yh from the water surface, where

yh = ȳ +
I

Aȳ
=

0.5

2
+

3(0.5)2

12

(3)(0.5)
(
0.5
2

) = 0.333 m

The line of action of Fv is xv from the centerline of the trough, where

xv =
4R

3π
=

(4)(0.5)

3π
= 0.2122 m

Taking moments about the hinge gives

(R− yh)Fh + xvFv = RT

(0.5 − 0.333)(3.67) + (0.2122)(5.77) = (0.5)T

which yields T = 3.67 kN .

2.76. Look at the gate as a free body as shown in Figure 2.10, where 2 − 2 sin 45◦ = 0.586 m. The
net horizontal force, FH, is given by

Figure 2.10: Gate as a Free Body

FH = γA1vȳ1 − γA2vȳ2 = (10.05)

[
(2 × 3)(3) − (0.586 × 3)

(
2 +

0.586

2

)]
= 140.4 kN
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The net vertical force, FV, is given by

Fh = γV

= (10.05)

[
4 × 2 − 1

4
π(2)2 + 4 × 2 cos 45◦ −

(
1

2
× 2 cos 45◦ × 2 sin 45◦

)
− 1

8
π(2)2

]
(3)

= 239.5 kN

The net hydrostatic force on the gate acts through the center of the circle. Taking moments
about the center of the circle gives

2By = 2A→ By = A (1)

For equilibrium in the x-direction,

Bx + 140.4 = A cos 45◦ (2)

and for equilibrium in the y direction

By +A sin 45◦ = 239.5 kN (3)

Combining Equations 1 to 3 gives

A = 140.3 kN, Bx = −41.2 kN, By = 140.3 kN

2.77. From the given data: D = 400 mm, t = 4 mm, and p = 800 kPa. For equilibrium:

pA = 2σLt → p(LD) = 2σLt → σ =
pD

2t

where σ is the circumferential stress, and L is any arbitrary length of pipe. Substituting given
values:

σ =
(800)(400)

2(4)
= 40000 kPa = 40 MPa

2.78. From the given data: Wair = 40 N, and Wwater = 25 N. For water at 20◦C, γw = 9.79 kN/m3.
Let γs be the density of the solid object and let Vs be its volume, then

γsVs = 40 N → Vs =
40

γs
(1)

γsVs − γwVs = 25 N → Vs =
25

γs − γw
(2)

Combining Equations 1 and 2 yields

40

γs
=

25

γs − γw
→ 40

γs
=

25

γs − 9.79
→ γs = 26.1 kN/m3

The volume of the object, Vs, can therefore be estimated as

Vs =
40

γs
=

40

26.1 × 103
= 1.53 × 10−3 m3
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2.79. (a) Use the subscript “o” to denote the object, “w” to denote water, and “a” to denote air.
The basic equations to be used are as follows:

Wa = γoVo, Ww = γoVo − γwVo

where W represents weight, and V represents volume. Dividing the second equation by
the first equation gives

Ww

Wa
= 1 − γw

γo
= 1 − 1

SG
→ SG =

1

1 −Ww/Wa

(b) From the give data: Wa = 40 N, and Wo = 25 N. Substituting these data into the
derived equation gives

SG =
1

1 −Ww/Wa
=

1

1 − 25/40
= 2.67

2.80. From the given data: Db = 15 m, Rb = Db/2 = 7.5 m, and W = 2 kN. For standard
atmospheric conditions at sea level, p0 = 101.3 kPa and T0 = 15◦C = 288.15 K. For air,
R = 287.1 J/kg·K. The volume of the balloon, Vb, is given by

Vb = 4
3πR

3
b = 4

3π(7.5)3 = 1767 m3

At liftoff, the weight of the air in the balloon plus the attached weight to be lifted is equal to
the volume of air displaced by the balloon. If T is the temperature of the air in the balloon
under this condition, then using the ideal gas law to calculate the density of air gives

p0g

RT
Vb +W =

p0g

RT0
Vb → T =

p0gVb
R

[
p0gVb
RT0

−W

]−1

→ T =
(101.1 × 103)(9.807)(1767)

287.1

[
(101.3 × 103)(9.807)(1767)

(287.1)(288.15)
− 2000

]−1

= 318.1 K

Therefore, the temperature of the air in the balloon must be raised to 318.1 K − 273.15 K =
45.0◦C .

2.81. From the given data: D = 3 m, and M = 8 kg. The volume of the balloon is given by

V =
πD3

6
=
π(3)3

6
= 14.14 m3

The balloon stabilizes when the weight of the balloon is equal to the weight of the air displaced
by the balloon, which requires that

M �g = ρair�gV → ρair =
M

V
=

8

14.14
→ ρair = 0.5658 kg/m3

Referring to the standard atmosphere in Appendix B.3, the density in the atmosphere is equal
to 0.5658 kg/m3 at an elevation of 7.38 km. Therefore, the balloon stabilizes at an elevation

of 7.38 km .
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2.82. From the given data: W = 1.5 kN, patm = 101 kPa, Ta = 20◦C = 293.15 K, w = 80 g/m2, and
Tb = 80◦C = 353.15 K. For air, R = 287.1 J/kg·K. The density of the atmospheric air, ρa,
and the density of the air in the balloon, ρb, can be derived from the ideal gas law as follows:

ρa =
p

RTa
=

101 × 103

(287.1)(293.15)
= 1.200 kg/m3, ρb =

p

RTb
=

101 × 103

(287.1)(353.15)
= 0.9962 kg/m3

Under stable conditions, the weight of the balloon plus the air in the balloon plus the sup-
ported weight is equal to the weight of the air displaced by the balloon, which requires that

W + wg · πD2 + ρbg ·
πD3

6
= ρag ·

πD3

6

1500 + (0.080)(9.807)πD2 + (0.9962)(9.807)
πD3

6
= (1.200)(9.807)

πD3

6
→ D = 12.1 m

2.83. When the sum of the forces equal zero,

FD + FB −W = 0 → 3πµvD + γw
πD3

6
− γp

πD3

6
= 0

which simplifies to

v =
1

3πµD
(γp − γw)

πD3

6
→ v =

(γp − γw)D2

18µ
(1)

In this case, γp = 2.65γw = 2.65(9.79) = 25.9 kN/m3 = 25900 N/m3, γw = 9.79 kN/m3 =
9790 N/m3, D = 2 mm = 0.002 m, and µ = 1.00 × 10−3 N·s/m2 at 20◦C. Substituting into
Equation 1 gives

v =
(25900 − 9790)(0.002)2

18(1.00 × 10−3)
= 3.58 m/s

2.84. From the given data: L = 10 m, L1 = 7 m, L2 = 3 m, W = 15 m, H = 4 m, SG1 = 1.5,
and SG2 = 3.0. For fresh water at 20◦C, γfw = 9.79 kN/m3. For fresh water at 4◦C, γw =
9.807 kN/m3. The specific weights of the two parts of the body are calculated as follows,

specific weight of light section, γ1 = SG1 · γw = 1.5(9.807) = 14.71 kN/m3

specific weight of heavy section, γ2 = SG2 · γw = 3.0(9.807) = 29.42 kN/m3

The volumes of the sections of cabin are calculated as follows,

volume light section, V1 = L1 ×W ×H = (7)(15)(4) = 420 m3

volume of heavy section, V2 = L2 ×W ×H = (3)(15)(4) = 180 m3

volume of entire cabin, Vc = V1 + V2 = 420 + 180 = 600 m3

The forces on various parts of the body are as follows,

buoyant force on the entire body, Fc = γfwVc = (9.79)(600) = 5874 kN

weight of light section, W1 = γ1V1 = (14.71)(420) = 6178 kN

71



weight of heavy section, W2 = γ2V2 = (29.42)(180) = 5296 kN

If the support force is F , then equilibrium of forces in the vertical direction requires that

F = W1 +W2 − Fc = 6178 + 5296 − 5874 = 5600 kN

Considering the cabin as a free body and taking moments about the centroid, accounting for
the fact that the buoyant force acts through the centroid of the body, the moment equation
gives

W1 ·
[
L− L1

2

]
+ F · x = W2 ·

[
L− L2

2

]

(6178) ·
[

10 − 7

2

]
+ (5600) · x = (5296) ·

[
10 − 3

2

]
→ x = 1.66 m

2.85. From the given data: Lc = 0.15 m, and fo = 0.15. For water at 20◦C, ρw = 998.2 kg/m3

(Appendix B.1), and for SAE 30 oil at 20◦C, ρo = 918 kg/m3 (Appendix B.4). If ρc is the
density of the cube, noting that the buoyancy force is equal to the weight of fluid displaced,
then for equilibrium,

ρcL
3g = L3g[foρo + (1 − fo)ρw] → ρc = foρo + (1 − fo)ρw

→ ρc = (0.15)(918) + (1 − 0.15)(998.2) = 986 kg/m3

2.86. The weight, W , of a floating object in a fluid of specific weight γf is related to the displacement
volume, V , by the relation: W = γfV . Therefore,

W2 −W1

W1
× 100 =

γfV2 − γfV1
γfV1

× 100 =
V2 − V1
V1

× 100

This shows that the percentage change in V is the same as the percentage change in W .

2.87. From the given data: f = 0.90, t = 25 mm, Wi = 500 N, and ρs = 8000 kg/m3. For seawater,
ρs = 1023 kg/m3 (from Appendix B.4). The specific weights corresponding to the given
densities are γs = 78.56 kN/m3 and γw = 10.03 kN/m3. If D is the (outer) diameter of the
sphere, then for 90% (= f) of the sphere below water, putting the buoyant force equal to the
weight of the sphere plus the instrumentation gives

f · γw
πD3

6
= γs

[
πD3

6
− π(D − 2t)3

6

]
+Wi

(0.9)(10.03)
πD3

6
= (78.56)

[
πD3

6
− π(D − 50 × 10−3)3

6

]
+ 500 × 10−3

which yields D = 1.12 m .

72



2.88. From the given data: d1 = 1 m, d2 = 0.1 m, and SG = 0.85. Assume that the specific
gravity specification applies to this object in this water. Use the subscript “o” to denote
the total object, the subscript “s” to denote the portion of the object that is submerged,
and the subscript “w” to denote water. Taking L to be the length of the object, for vertical
equilibrium,

γoVo = γwVs → γoAo�L = γwAs�L → As =

(
γo
γw

)
Ao → As = SG · πR2 (1)

The geometry of the partially submerged object is shown in Figure 2.11.

h

R

h - R !/2

Figure 2.11: Geometry of partially submerged object

In this case, h = d1 − d2 = 1 m − 0.1 m = 0.9 m and the submerged area, As, is given by

As = πR2 −
[
R2

(
θ

2

)
−R sin

(
θ

2

)
(h−R)

]
, where

θ

2
= cos−1

(
h−R

R

)
(2)

Combining Equations 1 and 2 and solving for R (with h = 0.9 m and SG = 0.85) yields
R = 0.568 m and hence D = 2R = 1.14 m. Therefore, the maximum diameter of the object
that will satisfy the given constraints is 1.14 m .

2.89. From the given data: W1 = 800 N and W2 = 200 N. For water at 20◦C, γw = 9790 N/m3.
Let L be any given load carried by the canoe, and let V1 and V2 be the displacement volumes
corresponding to W1 and W2, respectively, then

L+ γwV1 = W1 → L+ 9790V1 = 800 (1)

L+ γwV2 = W2 → L+ 9790V2 = 200 (2)

Subtracting Equations 1 and 2 to eliminate L gives

V1 − V2 =
800 − 200

9790
= 0.0613 m3

2.90. Let Vt be the total volume of the body, Va be the volume of the body above the surface of
the liquid, γ1 be the specific weight of the body, and γ2 be the specific weight of the liquid.
For equilibrium,

γ1Vt = γ2(Vt − Va) → SG1 · Vt = SG2 · (Vt − Va) → Va
Vt

=
SG2 − SG1

SG2

The fraction, fa, of the body that is above the water surface is given by

fa =
Va
Vt

=
SG2 − SG1

SG2
(1)
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In the case of the iceberg in seawater, SG1 = 0.92 and SG2 = 1.03, and Equation 1 gives

fa =
1.03 − 0.92

1.03
= 0.11

2.91. From the given data: SG = 0.8, and D = 10 mm. Let N = number of bubbles per m3, Vb =
volume of each bubble, ρ = density of water, and ρb = density of bubbly water. Using these
definitions and neglecting the mass of air in the bubbles,

volume of air in 1 m3 = NVb

volume of water in 1 m3 = 1 −NVb

mass of water in 1 m3 = ρ(1 −NVb)

density of bubbly water, ρb = ρ(1 −NVb)

The ship sinks when the density of the bubbly water is equal to the density of the ship, in
which case

SG · ρ = ρb → SG · ρ = ρ(1 −NVb) → N =
1 − SG

Vb
(1)

From the given bubble diameter, Vb = 1
6πD

3 = 5.236 × 10−7 m3, and Equation 1 gives

N =
1 − 0.8

5.236 × 10−7
= 3.82 × 105 bubbles/m3

2.92. For equilibrium, the weight of the pool must at least equal the buoyant force. Let the depth
of water in the pool be x, then for equilibrium (see Figure 2.12)

Figure 2.12: Swimming pool

Wt. of pool + Wt. of water in pool = Buoyant force

500 + (10 × 5 × x)(9.79) = [10 × 5 × (2.5 − 1.25)](9.79

500 + 490x = 612

x = 0.23 m

Therefore at least 23 cm of water must be maintained in the pool.
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2.93. When the barge is fully loaded, the draft, V , is given by

γswV = (20 + 250) kN

For S = 1.03,

V =
20 + 250

(1.03)(9.79)
= 26.78 m3 (1)

and from geometry

V =

(
6y + 2

y2

4

)
(3) = 18y +

3

2
y2 (2)

Combining Equations 1 and 2 gives

18y +
3

2
y2 = 26.8

and solving gives the draft as y = 1.34 m .

2.94. From the given data: f1 = 0.75, and f2 = 0.90. For water, ρw = 998 kg/m3. The average
density of the body, ρ̄b, can be derived from Equation 2.75 as follows

Vf
Vb

=
ρ̄b
ρf

→ f1 =
ρ̄b
ρw

→ ρ̄b = f1ρw = (0.75)(998) = 749 kg/m3

The average density of the solid material is ρ̄s and the fraction of the body that is open space
is f2. Representing the mass of the solid by Ms and the volume of the solid by Vs, then

ρ̄b =
Ms

Vb
=

Ms

Vs/(1 − f2)
= (1 − f2)ρ̄s → ρ̄s =

1

1 − f2
ρ̄b

Substituting the known values of f2 and ρ̄b yields

ρ̄s =
1

1 − 0.9
(749) = 7490 kg/m3

2.95. From the given data: H = 2 m, A = LW , SG1 = 1.2, ∆z1 = 1.2 m, and SG2 = 1.6. Denote
the specific weights of the body, top layer, and bottom layer by γb, γ1, and γ2, respectively.
For vertical equilibrium, where h is the depth of penetration into the bottom layer,:

γbAH = γ1A∆z1 + γ2Ah → h =
γb
γ2
H − γ1

γ2
∆z1 → h =

SGb

SG2
H − SG1

SG2
∆z1 (1)

(a) The minimum specific gravity of the body for full penetration of the top layer can be
derived by setting h = 0 in Equation 1 which gives

SGb ·H = SG1∆z1 → SGb =
∆z1
H

SG1 =
1.2

2
(1.2) = 0.72

(b) The depth of penetration, h, into the bottom layer when SGb = 1.0 can be obtained by
substituting directly into Equation 1, which yields

h =
1.0

1.6
(2) − 1.2

1.6
(1.2) = 0.35 m
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2.96. From the given data: L = 3 m, D = 200 mm = 0.2 m, and SG = 0.6. For seawater, γsw =
10.03 kN/m3 (from Appendix B.4). The the relevant forces and dimensions in the problem
are shown in Figure 2.13, where W is the weight of the buoy, T is the tension in the support
cable, and Fb is the buoyant force.

L = 3 m

L
1

W

F
b

T

 

Figure 2.13: Buoy at low tide

Let A be the cross-sectional area of the buoy and Vb be the volume of the buoy, then

Abuoy =
πD2

4
=
π0.22

4
= 0.03142 m2

Vbuoy = AbuoyL = (0.03142)(3) = 0.09426 m3

The magnitudes of W and Fb can be expressed in terms of other variables as follows:

W = γbuoyVbuoy

Fb = γswVsub

(a) This is the case of the partially submerged buoy. Taking moments about the point where
the support cable is attached to the buoy,

γbuoy���AbuoyL
L

�2
���cos θ = γsw���AbuoyL1

L1

�2
���cos θ → L1

L
=

√
γbuoy
γsw

=
√

SG (1)

For vertical equilibrium,

T + γbuoyVbuoy = γswVsub → T + γbuoyAbuoyL = γswAbuoyL1

→ T + SG · γswAbuoyL = γswAbuoyL1

which simplifies to

T = γswAbuoyL

[
L1

L
− SG

]
= γswVbuoy

[
L1

L
− SG

]
(2)

Combining Equations 1 and 2 and evaluating gives

T = γswVbuoy

[√
SG − SG

]
= (10.03)(0.09426)

[√
0.6 − 0.6

]
= 0.165 kN

(b) This is the case of the fully submerged buoy. For vertical equilibrium,

T = γswVbuoy − γbuoyVbuoy = γswVbuoy(1 − SG) = (10.03)(0.09426)(1 − 0.6) = 0.378 kN
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2.97. From the given data: W = 0.246 N and D0 = 10 mm = 0.01 m. For pure water at 20◦C,
γw = 9790 N/m3. Calculate the cross-sectional area, A0, of the hydrometer stem and the
volume, V0, of the hydrometer below the water mark in pure water:

A0 =
π

4
D2

0 =
π

4
(0.01)2 = 7.854 × 10−5 m2

γwV0 = 0.246 N → 9790V0 = 0.246 → V0 = 2.513 × 10−5 m3

For ∆h = 2 cm = 0.02 m, the specific gravity of the fluid, SGf , is given by

SGf =
V0

V0 +A0∆h
=

2.513

2.513 + (7.854)(0.02)
= 0.94

2.98. From the given data: D = 9 mm, V0 = 20 cm3 = 2 × 104 mm3, and SG = 1.2. The cross-
sectional area, A0, of the hydrometer stem is given by

A0 =
π

4
D2 =

π

4
(9)2 = 63.62 mm2

The relationship between the hydrometer displacement, ∆h, and the specific gravity, SG, is
given by Equation 2.78 as

SG =
V0

V0 +A0∆h
→ ∆h =

[
V0
SG

− V0

]
1

A0
=

[
2 × 104

1.2
− 2 × 104

]
1

63.62
= −52.4 mm

Therefore the distilled-water mark will be 52.4 mm above the liquid surface.

2.99. From the given data: D = 0.70 m, R = D/2 = 0.35 m, L = 0.60 m, SGb = 0.65, and
SGℓ = 0.90. The centroidal moment of inertia, I00, of the circular area that intersects the
liquid surface is given by (Appendix C.1):

I00 =
πR4

4
=
π(0.35)4

4
= 1.179 × 10−2 m4 (1)

When the cylindrical body is placed in the liquid, the weight of the body is equal to the
weight of the liquid displaced, which requires that

γℓVsub = γbπR
2L → Vsub =

γb
γℓ
πR2L =

0.65

0.90
π(0.35)2(0.60) → Vsub = 0.1668 m3

(2)
where the relation γb/γℓ = SGb/SGℓ has been used. The submerged height, h, can be derived
from the buoyancy relationship given in Equation 2 as follows,

Vsub =
γb
γℓ
πR2L → ���πR2h =

γb
γℓ

���πR2L → h =
SGb

SGℓ
L =

0.65

0.90
(0.60) = 0.4333 m

The distance between the center of gravity and the center of buoyancy, GB, is therefore given
by

GB =
L

2
− h

2
=

0.60

2
− 0.4333

2
= 0.0833 m (3)
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The metacentric height, GM, can be calculated from Equation 2.79 using the results from
Equations 1 to 3 to yield

GM =
I00
Vsub

− GB =
1.179 × 10−2

0.1668
− 0.0833 = −0.0127 m

Since the metacentric height is negative, the cylindrical body is unstable at the orientation
at which it is placed in the liquid.

NEW From the given data: D = 300 mm, R = D/2 = 150 mm = 0.15 m, and ρlog = 512 kg/m3. For
water at 20◦C, ρwat = 998 kg/m3. Let x be the depth of the log below water when the axis is
vertical, then for equilibrium

ρlog���gπR2L = ρwat���gπR2x → x =
ρlog
ρwat

L =
512

998
L → x = 0.5130L

At the limit of stability,

GM = 0 =
I00
Vsub

− GB → 0 =

πR4

4
πR2x

−
(
L

2
− x

2

)
substituting known quantities gives

0 =

π 0.154

4
π 0.152(0.5130L)

−
(
L

2
− 0.5130L

2

)
→ L = 0.212 m

NEW From the given data: rb = 1
2(4 m) = 2 m, hb = 2 m, rp = 1

2(2 m) = 1 m, ρw = 998 kg/m3, and
ρb = 170 kg/m3. Let h be the height of the pole. The following equations must be satisfied:

V = πr2php + πr2bhb, yg =
πr2php(hb + 1

2hp) + πr2bhb(12hb)

V
, Vsub = πr2bhsub =

γb
γw
V

hsub =
γwV

γbπr
2
b

, I00 = 1
4πr

2
b, GB = yg − 1

2hsub

GM =
I00
Vsub

− GB, GM = 0, GB =
I00
Vsub

Noting that γw/γb = 170/998 = 0.1703, substituting the given data and combining the above
equations yield the following equation for hp:

hp
(
2 + 1

2hp
)
− 0.02129(hp + 8)2 − 0.1549 = 0 → hp = 4.45 m

A final check is necessary to ensure that the base is not submerged in water. Calculating hsub
gives

hsub =

(
γb
γw

)
V

πr2b
= 0.53 m

Since the base is not submerged (hsub < hb) the calculations are validated.
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2.100. At the limit of stability, the metacentric height is equal to zero, so

GM =
I00
Vsub

− GB → I00
Vsub

− GB = 0 → GB =
I00
Vsub

I00 =
bd3

12
=

4(0.70)3

12
= 0.114 m4

Vsub =

[
1

2
(0.70)(0.15) + (0.3)(0.7)

]
(4) = 1.05 m3

GB =
I00
Vsub

=
0.114

1.05
= 0.109 m

Find the distance of the center of buoyancy, zB above the bottom:

zB =
A1z1 +A2z2
A1 +A2

=
(0.7 × 0.3)(0.15 + 0.30/2) + (12 × 0.7 × 0.15)(2×0.15

3 )

0.21 + 0.0525
= 0.26 m

If the height of the center of gravity above the bottom is zG, then

zG − zB = 0.109 m → zG = zB + 0.109 = 0.26 + 0.109 = 0.37 m

Hence, the limit of stability occurs when the center of gravity is 0.37 m above the bottom
of the canoe.

2.101. From the given data: D = 0.3 m, ∆z = 0.5 m, ax = 0, and az = 1 m/s2. For kerosene
at 20◦C, ρ = 808 kg/m3 (from Appendix B.4). Applying Equation 2.95 gives the pressure
increase from bottom to top, ∆p, as follows

∆p = −ρax∆x− ρ(g + az)∆z = −808(0)(0) − 808(9.81 + 1)(0.5) = −4367 Pa = −4.37 kPa

Therefore, the gauge pressure on the bottom of the cylinder is 4.37 kPa . The area, A, of
the bottom of the container is given by

A =
1

4
πD2 =

1

4
π(0.3)2 = 0.07069 m2

Hence the force, F , exerted by the fluid in the cylinder on the elevator is given by

F = pbottomA = (4.37)(0.07069) = 0.309 kN = 309 N

2.102. From the given data: ∆x = 10 m, D = 2 m, ax = 2 m/s2, and az = 0. For water at 20◦C, ρ
= 998 kg/m3. The pressure difference, ∆p, between opposing locations at the front and back
of the tank is given by Equation 2.95 as

∆p = −ρax∆x− ρ(g + az)∆z → ∆p = −(998)(2)(10) − 0 = 19 960 Pa = 19.96 kPa

The area of the front and back of the tank is A = πD2/4 = 3.142 m2, so the force difference,
∆F , is given by

∆F = ∆p ·A = (19.96)(3.142) = 62.7 kN
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2.103. From the given data: ρ = 1040 kg/m3. For spillage to occur: ∆z = −0.8 m for ∆x = 2 m,
and az = 0.

(a) Taking g = 9.81 m/s2, the limiting acceleration, ax, is obtained from Equation 2.96 as
follows

∆z

∆x
= − ax

g + az
→ −0.8

2
= − ax

9.81 + 0
→ ax = 3.92 m/s2

(b) Under the limiting (spill) condition, the depth of liquid at the front of the tank is
1.2 m−0.8 m = 0.4 m. In accordance with Equation 2.23, the gauge pressure, pbf , at the
bottom front of the tank is therefore given by

pbf = ρg(0.4 m) = (1040)(9.807)(0.4) = 4.08 × 103 Pa = 4.08 kPa

Under the limiting (spill) condition, the depth of liquid at the back of the tank is 2 m.
In accordance with Equation 2.23, the gauge pressure, pbb, at the bottom back of the
tank is therefore given by

pbb = ρg(2 m) = (1040)(9.807)(2) = 2.04 × 104 Pa = 20.4 kPa

2.104. From the given data: L = 3 m, W = 0.8 m, H = 1.6 m, and d = 1.2 m. Consider both
alignments of the tank separately.

(a) Long side aligned with the direction of truck motion. For spillage to occur: ∆z = 0.4 m
for ∆x = 1.5 m. The limiting acceleration, ax, is obtained from Equation 2.96 as follows

∆z

∆x
=
ax
g

→ 0.4

1.5
=

ax
9.81

→ ax = 2.62 m/s2

(b) Short side aligned with the direction of truck motion. For spillage to occur: ∆z = 0.4 m
for ∆x = 0.4 m. The limiting acceleration, ax, is obtained from Equation 2.96 as follows

∆z

∆x
=
ax
g

→ 0.4

0.4
=

ax
9.81

→ ax = 9.81 m/s2

Therefore, the maximum allowable acceleration of 9.81 m/s2 occurs with the side orientation .

2.105. From the given data: θ = 10◦. Applying Equation 2.96 gives

tan θ = −ax
g

→ tan 10◦ = − ax
9.81

→ ax = −1.73 m/s2

2.106. From the given data: ∆V = 90 km/h = 25 m/s, and ∆t = 10 s. Since the truck decelerates
at a constant rate,

ax =
∆V

∆t
=

25

10
= 2.5 m/s2

Let θ be the slope of the liquid surface, then Equation 2.96 gives

tan θ = −ax
g

→ tan θ = − 2.5

9.81
→ θ = −14.3◦
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2.107. From the given data: a = 5 m/s2 and θ = 25◦. The components of the acceleration are:

ax = 5 cos 25◦ = 4.532 m/s2

az = 5 sin 25◦ = 2.113 m/s2

Taking g = 9.807 m/s2 and substituting into Equation 2.96 gives

∆z

∆x
= − ax

g + az
= − 4.532

9.807 + 2.113
= −0.3802

The slope of the surface in the tanker is therefore equal to tan−1(0.3802) = 20.1◦ . Therefore

the slope of the liquid in the tank is less than the slope of the incline.

2.108. Under the given conditions, the truck is free-falling down the incline with ax = 0 and az = −g.
Substituting these values into Equation 2.96 gives

∆z

∆x
= − ax

g + az
= − 0

g − g
=

0

0

Therefore, the slope of the water surface is indeterminate . This result is a consequence of
there being no effective gravity force to keep the liquid contained in the tank.

2.109. From the given data: W = 300 mm = 0.3 m, H = 280 mm = 0.28 m, and patm = 101 kPa.
For water at 20◦C, ρ = 998 kg/m3 and psvp = 2.34 kPa (from Appendix B.4).

(a) In this case ∆z = 40 mm and ∆x = 300 mm, and Equation 2.96 gives the required
acceleration, ax, as

∆z

∆x
= − ax

g + az
→ −40

300
= − ax

9.81 + 0
→ ax = 1.308 m/s2

(b) In this case r1 = 0, r2 = 0.15 m, z1 = 0, z2 = 0.28 m, p1 = psvp = 2.34 kPa, and p2 =
patm = 101 kPa. The required rate of rotation, ω, for these conditions to occur is given
by Equation 2.104 as follows:

p2 − p1 =
ρω2

2
(r22 − r21) − ρg[z2 − z1]

101 − 2.34 =
(998)ω2

2
(0.282 − 02) − (998)(9.81)[0.28 − 0] → ω = 15.90 rad/s = 152 rpm

2.110. From the given data: z1 − z2 = 40 mm = 0.04 m, r1 = 0.15 m + 0.05 m = 0.20 m, and
r2 = 0.15 m − 0.05 m = 0.10 m. The corresponding rate of rotation can be derived from
Equation 2.103 as follows

z1 − z2 =
ω2

2g
(r21 − r22) → 0.04 =

ω2

2(9.807)
(0.22 − 0.12) → ω = 5.114 rad/s = 48.8 rpm

81



2.111. From the given data: R = 0.2 m, ω = 450 rpm = 47.12 rad/s, and ∆ = 0.1 m. Identify
locations in the tube using the axes shown in Figure 2.83.

R
P

Δ

x

z

Figure 2.14: Reference axes

Since the U-tube has a circular shape of radius R, then

x2 + z2 = R2 (1)

The pressure distribution in the U-tube is given by Equation 2.104, from which the gauge
pressure can be expressed as

pg =
ρω2

2
[x2∗ − x2∗0] − ρg(z − z0) (2)

where x∗ = x-coordinate measured from the axis of rotation, x∗0 = x-coordinate liquid surface
that is open to the atmosphere, and z0 (= 0) = z coordinate of the open surface.

(a) Combining Equations 1 and 2 and noting that the axis of rotation is ∆ from the origin
(P) gives

pg =
ρω2

2
[(x+ ∆)2 − (R+ ∆)2] − ρg(−

√
R2 − x2) (3)

The pressure is a minimum where dpg/dx = 0. Differentiating Equation 3 and setting
the result equal to zero gives

dpg
dx

=
ρω2

2
[2(x+ ∆)] +

ρg

2
[(R2 − x2)−

1
2 (−2x)] = 0

which simplifies to

ω4

g2
(x+ ∆)2(R2−x2)−x2 = 0 → 47.124

9.8072
(x+ 0.1)2(0.22−x2)−x2 = 0 → x = −0.1026 m

Therefore, the minimum gauge pressure occurs at a location that is 0.1026 − 0.1 ≈ =
0.003 m to the left of the rotation axis.

(b) The gauge pressure as a function of x is given by Equation 3 and is plotted in Figure
2.15.
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Figure 2.15: Gage pressure in U-tube

(c) Setting x = −0.1026 m in Equation 3 gives the minimum gauge pressure as −98.06 kPa,

which corresponds to an absolute pressure of 101.3 kPa − 98.06 kPa = 3.24 kPa . The
vapor pressure of water at 20◦C is 2.337 kPa, so cavitation will not occur under the
given conditions.

2.112. From the given data: D = 0.5 m, R = D/2 = 0.25 m, and ω = 30 rad/s. For crude oil at
20◦C, ρ = 856 kg/m3 (from Appendix B.4). The pressure difference, ∆p, between the center
and perimeter is given by Equation 2.104 as

∆p =
ρω2

2
(r22 − r21) =

(856)(30)2

2
(0.252 − 02) = 24080 Pa = 24.1 kPa

2.113. From the given data: R = 0.5/2 = 0.25 m, ω = 400 rpm = 41.89 rad/s, and p0 = 200 kPa. For
water at 20◦C, ρ = 998.2 kg/m3. The pressure distribution on the top of the cylinder is given
by Equation 2.104, which can be expressed as

p0 − p =
ρω2

2
(R2 − r2) → p = a+ br2 (1)

where

a = p0 −
ρω2R2

2
= 200 × 103 − (998.2)(41.89)2(0.25)2

2
= 1.453 × 105 Pa

b =
ρω2

2
=

(998.2)(1.89)2

2
= 8.757 × 105 Pa/m2

Using Equation 1, the force, F , on the top surface of the cylinder is given by

F =

∫ R

0
(a+ br2)2πr dr = 2π

[∫ R

0
ar dr +

∫ R

0
br3 dr

]
→ F = 2π

[
aR2

2
+
bR4

4

]
Substituting the values of the given and derived parameters into the above equation yields

F = 2π

[
(1.453 × 105)(0.25)2

2
+

(8.757 × 105)(0.25)4

4

]
[×10−3 kN/N] = 33.9 kN
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2.114. From the given data: D = 3 cm, R = D/2 = 1.5 cm = 0.015 m, and ∆z = 1 cm = 0.01 m.
In accordance with Equation 2.108,

∆z = 2

[
ω2R2

4g

]
→ 0.01 = 2

[
ω2(0.015)2

4(9.81)

]
→ ω = 29.5 rad/s = 282 rpm

2.115. From the given data: D = 1.5 m, R = D/2 = 0.75 m, and d = 1 m.

(a) In accordance with Equation 2.108, the liquid surface intersects the bottom of the cylin-
der when

d =
ω2R2

4g
→ 1 =

ω2(0.75)2

4(9.81)
→ ω = 8.35 rad/s = 79.8 rpm

(b) From the given data: ω = 40 rpm = 4.189 rad/s. In accordance with Equation 2.108,
the required height, ∆z, above the static water level is given by

∆z =
ω2R2

4g
=

(4.189)2(0.75)2

4(9.81)
= 0.25 m

The cylinder must be at least 1 m + 0.25 m = 1.25 m high to avoid spillage.
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