Fluid Mechanics for Engineers 1st Edition Chin Sol utions Manual

Chapter 2

Fluid Statics

2.1. From the given data: paym = 101kPa, hy = 0.62m, and hy, = 2.05 m. For water, 7, = 9.79kN-m?>,
and for kerosene, p, = 808kg/m?, which gives v, = 7.92kN-m?® (from AppendixB.4). The
absolute pressure on the bottom of the tank, py, is calculated as follows:

Pb = Patm + Vichk + Ywhw = 101 + 7.92(0.62) 4+ 9.79(2.05) = | 125.98 kPa
As a gauge pressure, the pressure on the bottom of the tank is 125.98kPa — 101 kPa =

[24.981Pa |

2.2. (a) Taking v = 9.79 kN/m? and p = 101.3 kPa, the depth, h, below the water surface
corresponding to a gauge pressure of 101.3 kPa is given by

(b) From the given data: Ah = 1.65m. Therefore, the pressure difference, Ap, is given by

Ap = vAh = (9.79)(1.65) = [16.2kPa

2.3. From the given data: SG; = 0.98, z;1 = O0m, SGe = 1.07, and 23 = —12m. Since SG varies
linearly,

SGo — SGy 1.07 — 0.98

SG—SGl—Fﬂ(Z’ 2’1) _098+T*0

The relationship between specific gravity (SG) and specific weight () is given by

v (kN/m?) = g - SG = 9.807 - SG (2)

(z—0) =098 —0.0075z (1)

Combining Equations 1 and 2 gives the following equation for the variation of specific weight
with depth,

v =0.611 — 0.0736 z kN/m? (3)
Using the hydrostatic pressure distribution (Equation 2.10) the difference in pressure between
z=—12m and z = 0m is given by Equation 2.11 as

22 —-12
p2—p1 = —/ ydz = —/ (0.611-0.0736 2) dz = — [9.611 2 — 0.03678 22] ,'* =[121 kPa

21 0

This is a ‘ gauge pressure ‘, relative to atmospheric pressure on the surface of the liquid.
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2.4. (a) From the given data: h = 12m and pa = 200kPa. For water at 20°C, v = 9.789 kN /m?>.
By definition of absolute pressure,

PA=Patm +7h = 200 = pam + (9.789)(12) = | patm = 91.5KkPa|

(b) From the given data: SG = 0.85, p = 850kg/m?, v = 8.336 kN/m?, and h = 6 m. Since
the pressure distribution is hydrostatic,

pg = vh = (8.336)(6) = |50.0kPal,  pa = pagm +pg = 91.5 + 50.0 = | 141.5kPa

2.5. From the given data: h = 10 m. For water at 20°C, v = 9.79 kg/m?. For standard atmospheric
pressure, patm = 101.3kPa. The gauge pressure, p, at the valve is given by

p=h = (9.79)(10) =[97.9kPa

The absolute pressure, paps, at the valve location is given by

Pabs = P + Patm = 97.9 4+ 101.3 =|199.2kPa

2.6. From the given data: pp = 14 kPa, and v,y = 0.80, v = 0.80(9.79) = 7.83 kN/m3. Hence,
at a depth h = 1.5 m below the surface of the oil, the pressure, p, is given by

P =po + Yoith = 14 + (7.83)(1.5) = | 25.7kPa

2.7. From the given data: pg = 5kPa, Az; = 0.30m, and Azs = 0.62m. For water at 20°C,
v = 9.789 kN/m3. The air pressures in tanks A and C are as follows:

pa = pa + YAz =5+ (9.789)(0.30) =[7.94kPa

pc = pa — YAze = 7.94 — (9.789)(0.62) = | 1.87kPa

2.8. From the given data: Dy = bmm, h = 30m, and T = 15°C. For water at 15°C, p =
999.1kg/m? and v = 9798 N/m?. Under standard conditions, p.tm = 101.3kPa. The initial
volume of the bubble, V7, the initial pressure, p;, and the final pressure, ps, are given by

wD}  7(0.005)3

6 6

PL = Patm + vh = 101.3 x 10% + (9798)(30) = 3.953 x 10° Pa

Vi = = 6.545 x 1078 m3

P2 = Patm = 1.013 x 10° Pa

Applying the ideal gas law to the air in the bubble and assuming isothermal conditions gives

3.953 x 10°
pVi=pVa — Vo= <21> Vi= <1013§105> (6.545 x 1078) = 2.554 x 10~ " m?
2 .

Therefore, the diameter, D5, at the surface is given by

1 1
6V513 6(2.554 x 10~7)73
Dy — {2] _ [ ( s )} = 0.00787m ~[7.9 mm|

m m
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2.9.

2.10.

2.11.

2.12.

2.13.

From the given data: Az = 20m, patm = 101.3kPa, and T = 20°C. At 20°C, the density of
seawater is given by Appendix B.4 as p = 1023 kg/m?, which corresponds to v = 10.03 kN /m?.
Since the pressure distribution in the ocean is hydrostatic and the pressure of the air inside
the bubble is equal to the pressure of the water outside the bubble, and the temperature is
constant, the ratio of densities is given by

pL p1 pam Az 1013+ (10.03)(20)
g = = -2.98
P2 D2 Patm 101.3

From the given data: hy = 7 m, 71 = 9 kN/m?, hy = 2.3 m, and ppo; = 92 kPa. For
water at 4°C, vy, = 9.81 kN/m3. The specific gravity, SG, can be derived from the following
hydrostatic pressure relationship,

Poot = 11l + [SG -y ]he — 92 = (9)(7) + [SG - (9.81)](2.3) — SG =
the liquid on the bottom must necessarily be denser than the liquid on the top.

For water at 20°C, Table 1.9 gives v = 9.79 kN/m3. The pressure head, h, corresponding to

h=L 525 ~[360m)

For p = 800 kPa, the pressure head, h, is given by

p = 450 kPa is therefore

_p 800
h = T ﬁ—‘éﬂ.?m (ofwater)‘

For crude oil at 20°C, poj1 = 856 kg/m? (from Appendix B.4), which gives 7o = 8.40 kN /m?3.
For p = 800 kPa,

800 .
h=-2L — 2" _T952m (of crude oil
o 840 ‘ m (of crude oil) ‘

Pressure, p1, corresponding to hy, = 80 mm of water is
P1 = Ywhw = (9.79)(0.080) = 0.783 kPa

and the pressure, ps, corresponding to hy = 60 mm of a fluid whose specific weight is 1 =
2.90y,, = 2.90(9.79) = 28.4 kN/m? is

p2 = vehs = (28.4)(0.060) = 1.70kPa
The total pressure, p, is therefore given by
p=p1+p2=0.783+1.70 = 2.48kPa

and the pressure head, hyg, in mm of mercury (taking yge = 133 kN/m?) is

P 2.48
hitg = 2 = =22 % 1000 =[18.6 mm H
He = e 133 mm e
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2.14.

2.15.

2.16.

2.17.

For p,.m = 101.3 kPa, the pressure head, hyg, in mm of mercury (ymg = 133 kN/m3) is given

by
Patm  101.3
hge = = —— x 1000 =| 762 H
Hg Ve 133 X mm Hg

From the given data: D = 7mm, and ' = 80mm. For water at 20°C, ¢ = 72.8 mN/m =
0.0728 N/m, and v = 9789 N/m? (from Appendix B.1). For water and clean glass, § = 0°.

(a) The rise height, Ah, due to surface tension is calculated as
4o cosf  4(0.0728) cos0° _3
Ah = = =4.45 x 10 =14.45
+D (9789)(0.007) A
(b) In accordance with Equation 2.20, the pressure head, h, at the attachment point is given

by
h=h —Ah=80—4.45 = 75.75mm ~ | 75.8 mm |

When the reservoir is half-full, the pipeline pressure is 350 kPa, and the height, hg, of the
mid-point of the reservoir above the pipeline is

350 350
ho:yiw:ﬁ:

Note that the pressures of liquids in pipes are generally given as gauge pressures unless stated
otherwise. When the pressure in the pipeline is 500 kPa, the height, k1, of the water in the
reservoir above the pipeline is

w979

Hence the minimum space between the mid-point and top of the reservoir is 51.1 m — 35.8 m
=[153 m|

From the given data: x = 120 mm Hg, y = 70 mm Hg, Azpeaq = 0.5 m, Aztpe = 1.5 m, and
p = 1060 kg/m3. From the given density, v = 10.40 kN /m?3.

(a) The following pressure differences can be calculated:

heart-head =7 - Azpeaa = (10.40)(0.5) = 5.20kPa = 39 mm Hg
heart-toe =7 - Azoe = (10.40)(1.5) = 15.6kPa = 117 mm Hg

The blood pressures in the head and toes are:

120 — 39
head = ——— =[81/31
ead = 5

120 4 117

= Tl _To37/1
toes 0117 37/187

(b) The maximum pressure is p = 120mm Hg = 16.0kPa. Therefore, the height, h, that
blood would rise in the tube is given by

P 16.0
Ty 1040
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2.18.

2.19.

2.20.

2.21.

2.22,

From the given data: p = 150mm Hg = 20.00kPa, and p = 1025kg/m?. Taking g =
9.807m/s?, the height h between arm level and fluid level is given by

P 20.00 x 103
h="—="_""__=/1.99
0g = (1025)(9.507)

From the given data: Az = 6 m, and p = 1060 kg/m3. The specific weight of the blood is 7y
= 10.4 kN/m3.

(a) When the giraffe drinks, the change in pressure in the head, Ap, is given by

Ap =+ -Az=(10.4)(6) = 67.6kPa = |507 mm Hg

(b) The difference in pressure between the head and the heart is 507 mm/2 = 254 mm.
Since the maximum pressure at the heart level is given as 280 mm, then the maximum

pressure in the head is 280 mm + 254 mm = | 534 mm Hg]|.

From the given data: p.; = 300 kPa, A; = 7 cm? = 0.0007 m?, W; = 50 N = 0.05 kN, A,
=500 cm? = 0.05 m?, Wy = 800 N = 0.8 kN, Az = 1 m, As; = 10 cm, p = 900 kg/m?, and
v = pg = 8.83 kN/m?>.

(a) The force, F, exerted by the compressed air on the piston is given by

F = pan Ay = (300)(0.0007) =[0.21 kN

(b) Let W be the weight mounted on the platform, then

F+W W+W,  0.21+0.05 W +0.8
T A, = e 0RO gy = L0 w [17.31N
A, Ay 0.0007 0.05

(c) If Asg is the displacement of the platform, then

A1Asy = AsAsy  — (7)(10) = (500)Asy;  —  Asy =|0.14cm |

From the given data: F} = 500 N, D1 = 25 mm, and Dy = 100 mm. If the force on the 100-mm
piston is Fb, and noting that performance of the hydraulic system will not be compromised
if both pistons exert the same pressure, then

T 500 By
oo OB B 5 _[8000N]
D2~ D2 252 — 1002 2

From the given data: z = 4342 m = 4.342 km. For the standard atmosphere, Ty = 15°C
= 288.2 K, b = 6.5°C/km, py = 101.3 kPa, and g/Rb = 5.26. The standard-atmosphere
temperature, T', at the summit is calculated using Equation 2.25 as

T =Ty~ bz =15~ (6.5)(4.342) = = 259.9K

The standard-atmosphere pressure, p, at the summit is calculated using Equation 2.26 as

T\ 7 259.9°) >
0 .

The calculated standard-atmosphere temperature and pressure are fairly close to the measured
values of —11°C and 58 kPa.
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2.23.

2.24.

2.25.

From the given data: z; = 11 km, z5 = 20 km, Ty = —56.5°C = 216.7 K, and p; = 22.63 kPa.
The average value of g is § = 9.769 m/s?. For air, R = 287.1 J/kg-K. Using Equation 2.29,
the theoretical pressure, ps, at the top of the stratosphere is given by

g(z2 — 21)

(9.769)(20000 — 11000)
= 2 "7 —(22.63 — =15.51kP
o= prexp | 2220 on.65)enp |- CTEPHE L0 | 551 icPa)

The standard-atmosphere pressure at z = 20 km (from Appendix B.3) is |5.529 kPa|, so the
theoretical and standard values are very close.

From the given data: b = 6.5°C/km, py = 101.325kPa, and Ty = 15°C = 288.15K. For
air, R = 287.1J/kg-K, which gives g/Rb = 5.255. Assuming a uniform lapse rate and a
hydrostatic pressure distribution, the temperature, T', and pressure, p, at any elevation are

given by
g
T\ 76
T=Ty—b = —
s rem(D)

The results of applying these equations and comparing the predictions to the standard atmo-
sphere is given in the following table.

z T T p Tsta Pstd AT Ap
(km)  (°C) (K)  (kPa) (°C) (kPa) | (°C)  (kPa)
0 15.0 288.15 101.325 15.00 101.325 0.00 0.000
1 8.5 281.65 89.876 8.50 89.876 0.00 0.000
2 2.0 275.15 79.498 2.00 79.501 0.00 —0.003
3 —4.5 268.65 70.112 —4.49 70.121 | —0.01 —0.009
4 —11.0 262.15 61.644 | —10.98 61.660 | —0.02 —0.016
D —17.5 255.65 54.024 | —17.47 54.048 | —0.03 —0.024
6 —24.0 249.15 47.186 | —23.96 47217 | —0.04 —0.031
7 —30.5 242.65 41.065 | —30.45 41.110 | —0.05 —0.045
8 —-37.0 236.15 35.605 | —36.94 35.651 | —0.06 —0.046
9 —43.5 229.65 30.747 | —43.42 30.800 | —0.08 —0.053
10 —-50.0 223.15 26.441 | —49.90 26.499 | —0.10 —0.058
11 —56.5 216.65 22.636 | —56.50 22.632 0.00 0.004

Bases on the results presented in the the above table, the maximum temperature difference

is | —0.10°C}|, and the maximum pressure difference is | —0.058 kPa |.

Taking the pressure distribution in the atmosphere as hydrostatic,

dp o P o
L= P% P R T'=a+bz
Using these equations:
dp g g
— = ——==dz=— d
D RT"" R(a+ bz) :
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2@_ g 2 dz

1 D _E 1 a+bz
p2 a+ bz —9/Rb (1)
P \a-+bz

From the given data: p; = 101 kPa, po =1 Pa, 21 =0 m, a = 273 + 20 = 293 K, b = —6.3
K/km = —0.0063 K/m, R = 287 J/kg-K (for air), which yields

g 9.81

— g = 542
Rb ~ (287)(0.0063)

Substituting into Equation 2.23 gives

0.001 (293 — 0.006322 ***°
101 293

which yields zo = 52,070 m = |52.1 km|.

2.26. From the given data: z = 2256 m, T' = 5°C = 278 K, T = 27°C = 300 K, and py = 101 kPa.
The lapse rate, b, can be estimated as

_ To—T 300—278

-z 2256

For the standard atmosphere, b = 6.50 K/km, g/Rb = 5.26, and so for b = 9.75 K/km it is
estimated that

b =0.00975 K/m = 9.75 K /km

g 6.50
I _596x 22 _ 351
Rb “ 975

(a) The pressure, p, at the Peak can be calculated using Equation 2.26 which gives

T\ 278 %%
0
(b) The vapor pressure of water is equal to 77.3 kPa when the temperature of the water is
92°C (from Appendix B.1). Therefore, water boils at at the Peak.

2.27. For the standard atmosphere, b = 6.50 K/km = 0.00650 K/m. For air, M = 28.96 g/mol =
0.02896 kg/mol. Constants are R = 8.314 J/mol-K and g = 9.81 m/s?. Therefore,

gM  (9.81)(0.02896)
S =[5.26
Rb ~ (8.314)(0.00650) [5:26]

Under standard atmospheric conditions, pg = 101.3 kPa and Ty = 15°C = 288.15 K. In La
Paz, z = 3640 m and estimated atmospheric conditions are as follows:

T = Tp — bz = 288.15 — (0.00650)(3640) = 264.5 K (= —8.66°C)

gM

T\ 7o 264.5 \ *%¢
—py [ = —(101.3) [ ==2 — 64.56 kP
p=po (To) (101.3) (288.15) ¢

The temperature of water at which the saturation vapor pressure is 64.56 kPa is the temper-
ature at which water boils and is equal to approximately | 87.6°C |.
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2.28.

2.29.

2.30.

2.31.

2.32.

From the given data: Az = 3000m. For standard air, R = 287.1 J/kg-K, and for a standard
atmosphere at sea level, py = 101.325kPa and 77 = 15°C = 288.15K. Assume that the
temperature remains constant at 15°C over the depth of the shaft. Using Equation 2.29 gives

g(z2 — 21) (9.807)(—3000)
_ _9\=m—Aa) = (101.32 - —[145kPa)
P2 =p1 exp[ RT, ] — P2 =(101.325) exp (287.1)(288.15) okPa

From the given data: pg = 755 mm, z = 829.8 m = 0.8298 km, and Ty = 35.5°C = 308.7 K.
Assuming standard atmospheric conditions, b = 6.5°C/km, and g/Rb = 5.26. The estimated
temperature, T', at the top of the building is calculated using Equation 2.25 as

T =Ty — bz = 35.5 — (6.5)(0.8298) = 30.10°C = 303.3K

The barometric pressure, p, at the top of the building can be estimated using Equation 2.26

as
o (I s (3933Y s
p=ro\q ) = 308.7 - &

From the given data: p; = 750 mm, and ps = 690 mm. For a standard atmosphere: py =
760 mm, Ty = 15°C = 288.15 K, b = 6.5 K/km, and g/Rb = 5.26. Using Equation 2.26,

=+ 5.26
bz | 7 (6.5)21
= 1—— = 1—— =0.111k
P1 = Po [ To] — 750 = (760) [ 588 15 —21=0 m
e 5.26
bzg | HP (6.5)2
P2 = Do [ T0:| — 690 (760) [ 288.15] — 29 = 0.807 km

Therefore the change in elevation is estimated as 0.807km — 0.111km = 0.696 km =

From the given data: hair = 0.3 m, hgy = 1.2 m, hgo = 0.8 m., hg3 = 1.9 m, and pagm =
101 kPa. For gasoline at 20°C, p; = 680 kg/m?, which gives vy = 6.67 kN/m?. If py is the
pressure at the Bourdon gauge, then

P+ Yehgl — Yehea =0 =  po+6.67(1.2-1.9) =0 — po=|4.67kPa

Note that the Bourdon gauge reads gauge pressure, and the variation of hydrostatic pressure
in the air is negligible.

From the given data: SG; = 0.9, Az; = 0.25m, SGo = 2.5, and Az = 0.25m. The specific
weights corresponding to the given specific gravities are determined by the relation

7 = SG - pog = SG - (1000)(9.807) = 9807 - SG N/m? = 9.807 - SG kN /m3
Using this relation, the specific weights of the light and dense fluids are
1 = 9.807(0.9) = 8.826 kN /m?, 2 = 9.807(2.5) = 24.52kN/m?

(a) Assuming that both the top of the light fluid and the air above the liquid are at the
same atmospheric pressure, then

8.826
Datri + 1121 — 12A2Z = Dot — Az = %Azl = m(0.25) =10.090 m
2 .
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2.33.

2.34.

2.35.

2.36.

2.37.

(b) Since the pressure distribution is hydrostatic, the gauge pressure on the bottom of the
tank, pg, is given by

Po = 110z + 1Az = (8.826)(0.25) + (24.52)(0.25) =[8.34kPa

From Figure 2.50,
pa = pB — 7£(0.10) — % (0.15)
where pg = 0 kPa (gauge pressure), 7 = 40 kN/m3, and v, = 9.79 kN/m?. Hence,

pa = 0—40(0.10) — 9.79(0.15) =[ —5.47kPa

Alternative solution:
In terms of absolute pressure, pg = 101.33 kPa, ¢ = 40 kN/m3, and ~, = 9.79 kN/m?3.

Hence,
pa = 101.33 — 40(0.10) — 9.79(0.15) =|95.86 kPa

It should be noted that the pressure of liquids in pipes is seldom given in terms of absolute
pressure, so pp = —5.47kPa is the preferred answer.

For SAE 30 oil and mercury at 20°C: poy = 918 kg/m?, and ppy = 13550 kg/m? (from
Appendix B.4). These values correspond to: 71 = 9.00 kN/m3, and YHe = 133 kN/m3.
Applying the hydrostatic pressure equation gives

Pair + Yoilhoil — ')/thHg = Patm

Pair +(9.00)(1) — (133)(0.25) = Pagm  —  Dair — Patm = 24.3kPa

From Figure 2.52,
PA = PB + Ywhs — yth2 — ywha

which simplifies to

‘PA —pB = Ywlhs — h1) —iho ‘

From the given data: 7y = 9.79 kN/m?, Ve = 18.3 kN/m3, hy = 0.5 m, and hy = 0.3 m.
Applying the hydrostatic pressure relation between points 1 and 2 gives

P1 — Ywhi — Ygho + Yw(h1 + ha) = po
p1—9.79(0.5) — 18.3(0.3) + 9.79(0.5+ 0.3) = ps  — p1 —p2 =
For equilibrium,
Pw + Y (0.15) — 71(0.10) — 72(0.20) + v3(0.15) = po
Taking v = 9.79 kN/m3:

D0 — Pw = Yw[0.15 — SG1(0.10) — SG2(0.20) + SG3(0.15)]
= (9.79)[0.15 — (13.6)(0.10) — (0.68)(0.20) -+ (0.86)(0.15)] = —11.9kPa

So the pressure difference is |11.9 kPa|.
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2.38.

2.39.

NEW

From the given data: D; = 1m, Dy = 10mm, Ap = 200 Pa, and As = 200mm. For SAE 30
oil at 20°C, p = 918kg/m? and v = pg = 9003N/m? (from Appendix B.4). The following
preliminary calculations of the cross-sectional area, Aj, of the tank and the cross-sectional
area, As, of the manometer are useful,

mD? 712 mD3  7(0.2)?

Ay — — 07854 m2 Ay = 222 — = 7.854 x 107° m?
1 4 4 m~, 2 4 4 X m

Let Ah be the change in oil level in the reservoir corresponding to Ap, and let py be atmo-
spheric pressure, then the continuity and hydrostatic-pressure relationships require that

A

AhA; = AsAy  —  Ah= /T2 s (1)
1

pg+ Ap — yAh — yAssinf = py (2)

Combining Equations 1 and 2 to eliminate Ah gives

, Ap Ay 200 7.854 x 107°
T e Y - = 0.1110 0 =[6.37°
i [fyAs AJ [(9003)(0.200) 0.7854 ”

For a water temperature of 15°C, 7, = 9.80 kN/m?. For the given manometer setup,
Pw = Po + Ywhe — SGYwl1sinf — v Lo sin @
Noting that sin § = 8/12 = 0.667, the above equation gives
Pw = 30 + (9.80)(0.50) — (2.4)(9.80)(0.06)(0.667) — (9.80)(0.06)(0.667) = 33.6 kPa

Therefore the water pressure in the pipe is | 33.6 kPa |.

From the given data: I,, = 8.553m*, and # = 70°. The given dimensions are shown in
Figure 2.1, where the inclined distance from the water surface to the top of the plane surface
is 1.58in 70° = 1.596 m.

I«
%

T \Water surface
1

\Plane surface

Figure 2.1: Side view of inclined surface
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2.40.

2.41.

For water at 20°C, v = 9.789 kN/m?. From the given dimensions of the plane surface, the
following geometric properties can be calculated:

A = (3)(2) = 6m?, Ay = (5)(1) = 5m?
2 1
71 = 1.596 + 3= 2.596 m, g2 = 1.596 + 2 + 3= 4.096 m
A1y1 + Asyo

y = = 3.278m, A=11m?>
Y A+ A

Using the calculated data, the resultant force, F', and location, yp, are given by
F =~Aysinf = (9.789)(11)(3.278) sin 70° = | 332 kN
1. 8.553
ep =Y+ —=32784 ————F— =|3.52

From the given data: b =3 m,d =4 m, W = 20 kN, h = 2 m, and g = 0.05. For water, v
= 9.79 kN/m3. The geometric properties of the gate are:

d 4
g=htg=2+5=4m, A =bd = (3)(4) = 12m?

The hydrostatic force, F', on the gate is given by
F =~Ay=(9.79)(12)(4) = 469.9kN
The frictional force, F;, and the total force, Fj;s, required to lift the gate are given by
Fy = p F = (0.05)(469.9) = 23.50kN

Fiig = Ff + W = 23.50 + 20 = | 43.5kN

From the given data: h =4m, L = 3.5m, w = 0.3m, and SG = 2.5. The following preliminary
calculations are useful:

A=Lh=(35)(4) =14m?,  v=SG-(9.807) = 24.52kN/m?

h 4 Lh?  (4)(3.5)3 4
Y=oy 77 = 19 12 8.67m

Using the given and derived data, the support force, F', and location, y.p, are calculated as
follows,
Joe 18.67

4+ ———= =2.6"Tm

F=nAy = (452)(14)(2) = 68TKN,  yop =9+ 1o =2+ 5oy

Therefore, the magnitude of the required support force on each side of the form is|687 kN |.
This support should be located 4m — 2.67m = from the bottom of the wall section.
The lateral location is L/2 = 3.5/2 = from the edge of the wall section.
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2.42.

2.43.

2.45.

From the given data: b =2 m, d = 3 m, 0 = 60°, htop, = 2.5 m. For water, v = 9.79 kN/m3.
The geometric properties of the gate are calculated as follows:

hio 2.5
A=0bd=(2)(3) =6m?2 = 2P — = 2.887
(2)(3) e Yeop = Gnf ~ sin 60° m
d 3 bd®  (2)(3)3 A
7= Yiop + = = 2. Z =4 , I, = — = = 4.
U = Ytop + 5 887 + 5 387m D 3 500 m

The resultant force, F', and the center of pressure, y.p,, are given by

F = yAgsing = (9.79)(6)(4.387) sin 60° = [ 223 kN

Lua 4.500
o =+ 4387+ 0 4558
Yep =V 0 *6)@3sn) o

The center of pressure is 4.558 sin 60° = below the water surface.

Force, F', on gate given by
F=~Ay

where v = 9.79 kN/m3, A = 7D?/4 = 7(2)?/4 = 3.142 m?, and § = 4 m. Therefore

F = (9.79)(3.142)(4) =

The location of F' is given by ycp, where

I
Yep =Y+ —— A_
For a circle . ( )4
7D (2 4
Icc— 64’— 64 —0785H1

therefore,
0.785
Moment of hydrostatic force about A, My, is the minimum moment needed to open the gate,

My = F(yep — 3) = 123(4.06 — 3) =130 kN-m

From the given data: H = 3m, T = 1m, p. = 2800kg/m?3, p; = 1500kg/m?, and p = 0.35.
Considering a unit length of slurry wall (perpendicular to the page), the following preliminary
calculations are useful,

Ye = peg = 27.46kN/m3, vs = psg = 14.71 kN /m?
W = eV = (27.46)(3 x 1) = 82.38kN,  Fr = uW = (0.35)(82.38) = 28.83kN

I
F = Ay = (14.71)(h) <Z> = 7.355h%,  yep = 9§+ — i =Zh

h-hj2 3

_h R12 2
2

where W = weight of retaining wall, F; = friction force, and Fj, = horizontal hydrostatic
force.
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2.46.

(a) For shear failure, the horizontal hydrostatic force is equal to the friction force, which
requires that

F,=F — 7355h*=2883kN — |h=198m

(b) For overturning about the point P, the ground reaction is equal to zero and

T
W-o =R (h—yp) — (8238)(0.5) = (7.3550°) (h— 3h) -

The more likely failure mode is by , since this failure will occur at with a lower
slurry depth (1.98 m vs. 2.56 m).

From the given data: L =25m, T =5m, s =4m, SG. = 2.4, and y» = 3m. From the given
specific gravity of concrete, the specific weight of concrete is 7. = SG - g = 23.53kN/m3. For
water at 20°C, vy, = 9.789kN/m3. The illustrations given in Figure 2.2 are useful in the
calculations.

5m
o]
I
X -—of| T :
fe———— [ ——] !
P (h + 4) m 1
plw : |
| o\ P
ja—— 20 m—»
(a) Pressure distribution (b) Geometry of dam

Figure 2.2: Definition diagrams for calculations

The slope of the downstream side of the dam is measured by 6, which can be expressed in
terms of the upstream height, h using the relation

sing = "+14 (1)
(h+4)? 4202

Using the subscript “1” to designate upstream and the subscript “2” to designate downstream,
and taking a unit length if the dam (perpendicular to the page), the following preliminary
calculations are useful:

A= (Dh=h, A2:(1)<3): 5

sin 6 sin 6
_h 15
=7y Y27 Gne
o (D(h)* h3 o (1)(3/sinf)®  2.25
100= "0 7 12 200 = 12 T sin’6
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The centers of pressure are calculated as follows:

gy dwo b W12 2k
N T T A T2 /) 3
Iy 15 2.25/ sin’ 2

Yaep = 42+ Aoy sind + (3/sinf)(1.5/sinf)  sind

The horizontal hydrostatic forces on the upstream and downstream faces are:

Fi = v A171 = (9.789)(h)(h/2) = 4.895h>

. 3 1.5 . 44.05
Fy = vy Ao sin @ = (9.789) [sin@] [sin@} sin@ = 7

The moment, M, about the toe of the dam (Point P in Figure 2.2) caused by the uplift
pressure is obtained with the following calculations:

9.789h — 9.789(3)
25

P1—DPo
L

x — p=29.37 + [0.3916h — 1.175]z

P =po+ x — p=3(9.789) +

25

+ [0.1305h — 0.3917]23
0

25

= 3060.9 4+ 2039.1h

25
My, = / z - pdz = 14.6922
0 0

The moment, My, about the toe of the dam caused by the weight of the concrete is obtained
with the following calculations:

My = 5(h + 4)7¢(20 + 2.5) + 1(20)(h + 4)7 (20 - 230)

= 5(h 4 4)(23.53)(20 4 2.5) + 3(20)(h + 4)(23.53) (20 - 2;) — My =5784(h +4)

At the instant of overturning, the ground reaction is equal to zero and the sum of the moments
about P is equal to zero, which requires that

3
— Fi(h = y1cp) + I (0 - y2cp> — M+ My=0

sin

44.05 [ 3 2
_ 20}, _ 2 _ _ -
= —48950°(h— §h) + <Sm9 sine) (3060.9 4 2039.1h) + [5784(h + 4)] = 0
44.05
- —1.6320° + ——5 5 + 78235 + 20075 = 0
S11

(h +4)% + 202

T PO+ 20075 =0 — h=50.7m|

—  —1.632h3 + (44.05)

2.48. From the given data: D =2.5m, R=D/2=1.25m, § = 35°, h. = 1.5 m, and W = 500 kN.
For water, v = 9.79 kN/m?3.
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(a) The hydrostatic force that would exist on the top surface of the gate is the same as that
which exists on the bottom surface of the gate. Work with a top-of-gate perspective.
The relevant geometric properties of the gate are as follows:

1.5
sin 35°

§= —2615m, Yrop = J — R =2.615— 1.25 = 1.365m

TR*  w(1.25)*
4 4

A=7mR*=7(1.25)2 =4.909m?, = =1.918 m*

Therefore the resultant force, I, and its location, ycp,, are given by

F = yAhe = (9.79)(4.909)(1.5) =

i+ L — 96154 018 2.765
= — =2, — = 2. m
Yo = U T 4y (4.909)(2.615)

The location of the resultant relative to the top of the gate is yp = 2.765m — 1.365m =

[1.400m ]

(b) When the gate is about to open, and Fj, is the applied (vertical) force at the bottom of
the gate, taking moments about the top of the gate gives,

F-yp+ Fy-(Dcosf) =W - (Rcosf)
(72.1)(1.400) + Fy(2.5cos 35°) = (500)(1.25cos35°) —  Fi, =[201kN

2.49. From the given data: § = 50°, d = 15 m, and R = 3 m. For water, v = 9.79 kN/m3. The
useful geometric properties of a semicircle (from Appendix C) are

4R

= I, = 0.1098R*
3T

Ye

where, in this case, y. is the distance from the shaft to the centroid, and I,. is the moment
of inertia about an axis parallel to the shaft and passing through the centroid. Using these
properties the following derived geometric properties can be calculated:

4 4R] 15 43)]
y= |:R 371_:| = Sin 50° |:3 371_:| =17.85m

sinf = (17.85)(sin 50°) = 13.68 m
TR% = %7‘((3)2 = 14.14m?

L. = 0.1098R* = 0.1098(3)* = 8.894 m*

Lye 8.894
g 1785 ot 789
Yo =Y+ 47 T 1414 (17.85) o

Using these results, the hydrostatic force, F', calculated as follows

F = yAhe = (9.79)(14.14)(13.68) = 1893 kN
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2.50.

2.51.

The distance from the shaft to the center of pressure, yp1, is given by

15
sin 50°

sin 6

Yepl = Yep — |: — R:| =17.89 — |: — 3:| =1.309m

The support force, Fp, is derived by considering the gate as a free body and taking moments
about the shaft, which yields

1.309
FpR=Fyg — Fp= ch—]fz’l = 1803="= = [8261N

From the given data: § = 35°, R = 420 mm, and ¥ = 3 m. The force, F', on the hatch is
F =~Aysind

where A = 7R? = 7(0.42)? = 0.554 m?, and therefore

F = (9.79)(0.554)(3) sin 35° =[9.33 kN

This force is located at a distance y., from the surface, where

For the circular hatch,

I.= = = 0.0244 m*
64 64 0-0244 m
hence 0.0244
=34+ ———— =301
Yeo =2 (0 550)(3) o

The resultant hydrostatic force is therefore below the water surface, measured along
the sloping wall.

Calculate the force on the gate:
F =~Agsinf (1)

where 6 = 90° — sin~}(3/5) = 53.1°, § = 4/sin(53.1°) + 2.5 = 7.502 m, A = (5)(4) = 20 m?,
and v = 9.79 kN/m?3. Substituting into Equation 1 and also calculating the center of pressure
gives:

F = (9.79)(20)(7.502) sin(53.1°) = 1175 kN
(@)(5)°

I
=7+ —="7502+——L __ — 7780
Yer =V 40 T 20)(7.502) o

Taking moments about the hinge and taking into consideration that the reaction force at P
acts normal to the surface gives

[P cos(53.1°))(5) = (7.502 + 2.5 — 7.780)(1175)

which gives | P = 869 kN |.
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2.52. From the given data: W = 500 kg, w = 5 m, and § = 45°. Taking v = 9.79 kN/m?, the
hydrostatic force on the gate, Fj,, is given by

F, = yAgsin0 = yAh = (9.79) < x 5) (0.5 4 1.5) = 415kN

sin 45°
The center of pressure, y.p, is given by
3
I 2 5 (smrse) 12
?Jcp:ﬂ+_:<. O>+ 3 =it 5 = 3.36m
Ay sin 45 (s *5) (o)

(a) If the force is applied at the center of the gate, taking moments about B gives

F( L5 ):Fh<ycp—y>+W<1.5>

sin 45°
1.5 0.5 500(9.81)(1.5)
F = (41 .36 —
(sin45°) (415) (3 50 sin 450) * 1000

which gives F' = .

(b) The minimum force would be required if it were applied at the ‘ bottom of the gate|. In
this case, taking moments about B gives

3 B 0.5 500(9.81)(1.5)
E (sin45°> =41 (3'36 sin45°> * 1000

which gives F' = .

2.53. From the given data: py = 998 kg/m?, p; = 1025 kg/m?, and w = 100 1b/m = 0.4448 kN /m.
A sketch of the dimensions used in solving this problem is shown in Figure 2.3.

|
1
I
w!
QL
bz
S——

Gate

LA Centerof L X 2
gravity of gate

(a) Dimensions (b) Forces on gate

Figure 2.3: Gate dimensions and forces

Using the given data and referring to Figure 2.3,
Y = (998)(9.81) = 9.79 kN/m?
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v = (1025)(9.81) = 10.06 kN/m?
Fi = ywAgy sinf = (9.79)(2 x 1)(2 + 1) sin 30° = 29.37kN

R
Ylep = Y1 A@71
3
7o bd
12
A=bd
2 2
R - = 3.11
Ylcp y1+12g1 3+12(3) 3.11m
Fy = s Agosind = (10.06)(2 x 1)[2(H — 1) + 1] sin 30° = 10.06(2H — 1) kN
2 92 0.3333
=gpo+—=0H—-1)+ = (2H -1
Yoo = W2+ o = ) * ser—1 ~ ! Y

Taking moments about A (> M = 0) yields

29.37(1.11) + 0.4448 cos 30°(1) = 10.06(2H — 1) [1 4 03333 ]

(2H — 1)
32.99 = 10.06(2H — 1) + 3.353

which yields H = [1.97 m|.
2.54. The hydrostatic force, F', on the gate is given by
F =~Aysind

For an elliptical surface, Table C.1 in Appendix C gives

mbh
4

A=

where

D 12
sinf  sin30°

b=D =1.2m, h = =24m

and therefore - L 9Y(9.4
A:Z:W( 'i( A _ 5 96m?

The location of the centroid, ¥, is given by

9 9

_ — 18
sing  sin30° m

7=
and the net hydrostatic force on the gate is

F =~Aysinf = (9.79)(2.26)(18) sin 30° = | 199 kN

The location of the center of pressure, ycp, is given by

T,
ycp:y+AL?;
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where Table C.1 in Appendix C gives

mhh®  w(1.2)(2.4)°
B 4

— 4
1 =0.814m

Icc =

hence 0.814
=1 — =|18.0

The moment of the hydrostatic force about P, Mp, is given by

1.2 1 1.2 1
_— 1 C . °
Mp 99 [y D (9 5 > o 300] =199 [18 0 (9 5 > o 300] 239 kN-m

The moment required to keep the gate closed is | 239 kN-m |.

2.55. Consider the flap gate as a free body as shown in Figure 2.4

Figure 2.4: Flap gate free body

The area, A, of the gate under water is given by

A=15 = 1.504h

sin 86°
and the distance to the centroid of the gate from the water surface, y, measured along the

gate, is given by
1 h

2 sin 86°
The hydrostatic force, Fy,, exerted by the water is

= 0.5012h

g:

Fy =~vAysind (1)

where v=9.79 kN/m3 (at 20°C) and § = 86°. Substituting known and derived data into
Equation 1 gives

Fyy = (9.79)(1.504h)(0.5012h) sin 86° = 7.362h kN
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2.56.

The distance, ycp, below the water surface to the center of pressure is given by

IOO

Yp=—>—TY
cp Ay
where 5
bd®  (1.5) (5%57)
Ioo = — = ———m86 — 0.1259h°
12 12 0-1259
Combining Equations 2 and 3 and taking A = 1.504h and y = 0.5012h gives
0.1259h3

+ 0.5012h = 0.6682h

Yer = (1.5047)(0.5012h)

The distance from the hinge to the water surface, measured along the gate (3 in Figure 2.4)

is given by
= 1.75 - 1.002h

"=1.75 —
y cos 4°

and the horizontal distance from the hinge to the center of gravity of the gate (2’ in Figure

2.4) is given by
7' = (1m) cos 86° = 0.06976 m

Taking moments about the hinge, with the weight of the gate (W) equal to 8 kN, yields

FW'(Z’/“‘Z/Cp) =W-a
(7.362h2)(1.75 — 1.002h + 0.6682h) = (8)(0.06976)

which simplifies to
7.362h2(1.75 —0.3338h) = 0.5581

This cubic equation has the following three solutions

h=5.23m, 0.212m, and— 0.204m

The only realistic solution is |h = 0.212 m |.

From the given data: b = 2m and the other dimensions are given in the problem diagram.

Take v = 9.79kN-m?. For reference, the sketch shown in Figure 2.5 is useful.

Figure 2.5: Force on gate
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2.57.

Using the given data:

sin45° = /2, F = ~yAjsinf
_ V2 1
7=23V2+ 5 =4950m,  F= (9.79)(V2 x 2)(4.950) )= 96.9 kN
I bd® _ (2)(v2)? 4
c — 9 -, I = —_—= = .4 14
Yop =Y+ 22 12 12 04714 m
0.4714
A= (V2)(2) = 2.828 m?, Yop = 4.950 + —————— =4.984m

(2.828)(4.950)

Taking moments about P gives

4.984 — 31/2
Flyep — 3V2) = F(1) — F,= 96.9(1\[> =[71.8kN

From the given d
9.789kg/m3, and

= 0.5(3.05m) =

ata: b = 1.52m. Assume T = 20°C, the fluid properties are: 7, =
Yew = 1.025(9.789) = 10.03kg/m3. A schematic diagram of the impor-
tant variables is shown in Figure 2.6. The centroidal depth on the freshwater side is given by

1.525 m.

0.61 mT

e

||||<

Figure 2.6: Schematic diagram of vertical gate

Fi = v Aj = (9.789)(3.05 x 1.525)(1.525) = 69.21 kN

(1.525)(3.05)3

_ Iy 12
=+ > =1525 —2.033m
nEYt g T {1525 x 3.05)(1.525)

h
Fy = vsw A7 = (10.03)(1.525h) <2> = 7.623h* kN

I (1.525)(h)?

i B
e _ = — — 7h
V2=Vt e T o T s x )(h2) 3
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Taking moments about A,

2 h
Fi(11+0.61) = F, (3.05 +0.61—h+ 3h> —  (69.21)(2.03340.61) = 7.632h> (3.66 - 3>

which yields A = 3.002m. Therefore, the gate will open when the depth of seawater is less

than .

2.58. From the given data: h; = 0.5m, he = 0.7m, and w = 3m. Use the subscript “b” to indicate
the portion of the gate below the hinge, and the subscript “t” to indicate the portion of the
gate above the hinge. The following preliminary calculations are useful:

wh?  (3)(0.5)

Ay = why = (3)(0.5) 5m?2, I T o 0.03125m
h3 3)(0.7)3
Ay = why = (3)(0.7) = 2.1 m?, L = “122 _ )(12 ) _ 0.08575 m*

Calculate the resultant hydrostatic forces and their locations on the portions of the gate below
and above the hinge:

Fy, = yAphpe = vAp(h — 0.25) (1)
_ Ibc Ibc
o = =(h—025) +— 2
Ft = ’YAthtC == ’}/At(h - 085) (3)
_ Itc Itc
o = = (h—0.85) + ——° 4
Yt 1Y Yt + Atgt ( ) + At(h _ 085) ( )

When the gate is just about to open, the reaction of the stopper is equal to zero and the sum
of the moments about the hinge is equal to zero. Therefore,

B [hep — (h = 0.5)] = F - [(h — 0.5) — y1cp] (5)

Substituting the expressions from Equations 1 to 4 into Equation 5 and making h the subject
of the formula yields
Ie — 0.252 Ay, + (0.35)(0.85) Ay + Iic

h pu—
0.35A4; — 0.25A4;

(6)

(a) Substituting the values of the given and derived parameters into Equation 6 yields

(0.03125) — 0.252(1.5) + (0.35)(0.85)(2.1) + (0.08575)
B =[1.80m
0.35(2.1) — 0.25(1.5)

(b) Since the specific weight of the liquid, 7, ‘does not appear in the expression for h ‘ given
by Equation 6, the calculated depth of liquid, h does not depend on the specific weight
or the density of the liquid.
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2.59.

2.60.

Consider the side of the trough shown as a free body in Figure 2.7.

Figure 2.7: Free-Body Diagram

The hydrostatic force, F', is given by
. 0.7\ . o
F =~Aysinf = (9.79)(0.75 x 6) —5— ) sin 45° = 11.68 kN

The center of pressure, ¥y, is given by

I 6x0.753
_ cc 12
Yep =Y+ 0 + 075 x 6)(0.375) "

Taking moments about the hinge gives
F(0.75 — yep) = T'(0.75sin 45°)

which yields

F(0.75 —yep)  11.68(0.75 — 0.50)
T = = =|5.51kN
0.75sin 45° 0.75sin 45°
From the given data: W =3m, L = 2m, § = 30°, pg = 300kPa, d; = 2m, and do = 1 m. For
water at 20°C, v = 9.789 m/s2. The following preliminary calculations are useful,
he =do+ [di + 3L]sinf =1+ [2+ 1(2)]sin30° = 2.5m

he 2.5 WL (3)(2)3

e = ICC = = == 2
inf ~ snzoc O™ o
Substituting these data into Equations2.41 and 2.48 gives,
F = [po + vhe] A = [300 + (9.789)(2.5)](6) = 1947kN = |1.947 MN

 ysinfl. (9.789) sin 30°(2)
oo = o _ 5 _ — 5.005
Ve = Ut o ysmlA > 300 + (9.789)(5) sin 30°](6) m

A=WL=(3)(2) =6m2 j=

The depth, hcp, if the resultant force below the water surface is given by

hep = Yep 8in 6 = 5.005sin 30° =
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2.61. From the given data: R = 2 m, and d = 3 m. For water at 20°C, v = 9.79 kN/m3. Using
these data:

Ie = Iyc = 0.05488R* = 0.05488(2)* = 0.8781 m*

Iiye = —0.01647R* = —0.01647(2)* = —0.2635 m*
A= %RQ == %(2)2 = 3.142m?
y=d Z;)]::3+4?f72r):3.849m
AR 4(2
w—?m—?Eﬂ_)—O.849m

F = yAj = (9.79) B x 7T(2)2:| (3.849) =

Ixe 0.8781
g S 38494 200 _T3991
Yo =+ * (3.142)(3.849) [3.921m]
Ly —0.2635
- —0.849 + — > _[(.827
Tep =T g T (3.142)(3.849) =

Mxx = F - zep = (118) - (0.827) =[97.6 kN-m

2.62. The ellipse parameters as referenced to the geometric properties in the Appendix are: a = 1m,
b/2 = 1m — b = 2m. From the other given data: d = 2 m. For water at 20°C, v =
9.789 kN/m3. Using these data with the same axis references as in the Appendix:

Iye = 1gmba’ = 5m(2)(1)* = 0.04909 m*

a 1
y=d+—-=2+ - =2.
Y +2 -|-2 500 m
_ 2b 2(2)
= — = —>=0.4244
. 3T 3 m

F = ~yAj = (9.789)(0.7854)(2.5) = [19.22kN
e 0.04909
=+ 2 =2500 =[2.525
Yo =U+ 45 T {0.7854)(2.500)
IX C
Tep =T + Ayg =0.4244 + 0 =|0.4244m
Mxx = F - zep = (19.22) - (0.4244) = [8.157 kN-m

2.63. For the upper portion of the gate: Ay = 1 mx1m =1 m?, vy = 9.50 kN/m3, gy = 2 + 1/2
=25m, I,y = bd?/12 = (1)(1)3/12 = 0.08333 m*, hence

Fy = yuAugu = (9.50)(1)(2.5) = 23.75kN

I, .
U gy, 00833

— = 2.533m
Aviu (1)(2.5)

YepU = yu +
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For the lower portion of the gate, with depths taken relative to the interface: py = yvhy =
(9.50)(3) = 28.5 kPa, A, = 2 mx1 m =2 m?, 41, = 9.90 kN/m3, g, = 2/2 = 1 m, I, =
bd3/12 = (1)(2)3/12 = 0.6667 m*, hence

F1, = [po + YLyL]AL = [28.5 + (9.90)(1)](2) = 76.80kN

I I 9.90)(0.6667
YepL = 7L + YLLcL :gL+’YLcL:1_|_( )( )

=1.086m
[Po + LYLl AL I, 76.8

Therefore, the total force, F', and location, ycp, are given by

F =Fy+ F,=23.75+76.80 =|100.6 kN

Fyyepu + F.(3+ YeplL) (23.75)(2.533) + (76.80)(3 + 1.086)
Yep = Ia = 100.6 =13.72m

2.64. The parameters of the ellipse, as described in the Appendix, are a = 1m, and b = 2m. From
the given data: d = 3m. For the upper portion of the gate:

Ay = gmab = ¢m(1)(2) = 0.7854m’, U = 9.40 kN /m?
20 2(2
Ju=d-go=3- éw) =2.576m, Iy = pgmab® = gm(1)(2)* = 0.1963 m*

Fu = yuAuiu = (9.40)(0.7854)(2.576) = 19.02 kN

Lo 0.1963
— 2,576 — 2,673
Aui0 * (0.7854)(2.576) m

YepU = yu +

For the lower portion of the gate, with depths taken relative to the interface: py = ~yyd =
(9.40)(3) = 28.2 kPa, and

Ap, = Ay = 0.7854m?, L = 9.80kN/m3
20 2(2

UL, = ?Tb = ?f) =0.4244m, I1, = I.y = 0.1963 m*
Y5 Y8

FL, = [po + YL7L] AL = [28.2 + (9.80)(0.4244)](0.7854) = 25.41 kN
yideL yider

9.80)(0.1963
=L + — 0.4244 4 (020(0.1963)

T =1 a = 0.5001
[Po + YLULI AL F1, 25.41 m

YepL = YL +

Therefore, the total force, F', and location, ycp, are given by

F = Fy+ F, = 19.02 + 25.41 = [44.43kN
_ Fuyepu + FL(3 + yepr) _ (19.02)(2.673) + (25.41)(3 +0.5001) _

Yep F 44.43
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NEW For water at 20°C, v = 9.789kN/m?. For the bent part of the surface the perimeter of the

2.65.

2.66.

2.67.

quarter circle is 1 m, and the radius, R, of the quarter circle is calculated as follows:
P=%1.2rp — 1=%1.27R — R=0.6366m
Using the calculated value of R, the horizontal and vertical forces on the surface are given by

Fy = vAugv + YA v = 9.789[(2 x 3)(1.5+ 1) + (0.6366 x 5)(1.5 + 2 + 0.6366)]

=
F, =~V =~ [inR? + 3.5R] W = 9.789 [17(0.6366)2 + 3.5(0.6366)] (5) =

Because of symmetry, the net horizontal hydrostatic force is zero. The pressure at the top of
the cone, po, is given by

po = 150 — 7 (7m) = 150 — (9.79)(7) = 81.47kPa

This gives an equivalent height of water, H, of

14
goPo _8LAT oo
~ 979

Therefore, the vertical force on the cone, F', is given by
1 1
F= [WR2H + 37rR2h] v = [w(1)2(8.32) + g7r(1)2(4) (9.79) =| 297 kN

From the given data: Fy = 2500kN, L = 10m, and h = 2.4m. For water at 20°C, v =
9.789kN/m3. For any given step height (= width), z, the horizontal force, F}, is a function
of x as follows:

_ h+4dx

Ay = w(h +4x) = 10(2.4 + 4z), Uy =12+2z

Fy = yAyiy = 9.789[10(2.4 + 42)](1.2 + 2z)

Setting Fy(z) = 2500kN yields z = |1.187 m | Using this value of z, the vertical force on the
dam, Fy, is given by

F, = 4V = yw(z? 4 22% + 322 + 42%) = (9.789)(10)(1.187)*(1 + 2 + 3 + 4) = [ 1379kN

From the given data: L = 5m, hf = 4m, hy = 2m, and R = 2m. For fresh water at 20°C,
7t = 9.789 kN/m?, and for salt water at 20°C, ~s = 10.03kN/m? (from Appendix B.4). The
following preliminary calculations are useful:

Af = Lhy = (5)(4) = 20m?, Ur = (4)=2m

[y
|
Nl Nl

1
2
Ay = Lhs = (5)(2) = 10m?, G = thy= (1) = 1m

Vor = L [R* — 17R?] = (5) [(2)® — 1x(2)%] = 4.292m?®
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where Vj¢ is the volume of the space between the top of the wall and the freshwater surface.
The horizontal and vertical components of the net hydrostatic force on the wall are given by:

Fy = vy Agije — 7sAstis = (9.789)(20)(2) — (10.03)(10)(1) = [291 kN
F, = 7Vor = (9.789)(4.292) = [42.0kN

2.68. From the given data: R = hy = 3.5m, and w = 4.8m. For fresh water at 20°C, v =
9.789kN/m?, and for salt water at 20°C, 75 = 10.03kN/m? (from Appendix B.4). The
following preliminary calculations are useful:

Ayt = hyw = (3)(4.8) = 16.8 m?, Ays = 3hw = 2.4hm?
ot = She = 1(3.5) = 1.75m, Jus = 5h
Vot = Rhew — nR*w = (3.5)(3.5)(4.8) — 1m(3.5)%(4.8) = 12.62 m?
where Vj is the volume of the space between the top of the gate and the freshwater surface.
(a) For the horizontal hydrostatic forces to be equal,
Ve AviYvt = Vs AvsYvs

Substituting the given and derived relationship into this equation and solving for h gives

2A¢7 . 2(16.8)(1.
h W) Y :\/607(8)2) ST _ (3 g

Vs w

(b) For the vertical hydrostatic forces to be equal,

9.789
viVor = %6Ves = Vo= [ ) Vo = (0 ) (12.62) = 12.32m®
. 10.03

Consider the geometry of the gate shown in Figure 2.8, and recall that the area of a
segment of a circle with central angle 6 is equal to %R29.

|
(R2_h2)% R_(Rz'_hz)yz

Figure 2.8: Segment of a circle

For any height h, the volume above the gate, Vs, is equal to the shaded area and, using
the geometric relations in Figure 2.8 yields

Vos = w[h(R — VR — h2)] - [;RQ sin (;) . ;mh}
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2.69.

NEW

Since Vos = 12.32m3 when the vertical hydrostatic forces are equal, then

1 h 1
(4.8)[~(3.5 — V/3.52 — h?)] — [2(3.5)2 sin™! (35> - 5\/3.52 — h2h| =12.32
which yields h = |2.598 m

From the given data: R = 1m, and W = 40kN/m. For water at 20°C, v = 9.789 kN/m3. If
Fy, and Fy, are the horizontal and vertical hydrostatic forces on the gate, then the magnitude,
F', and direction, 6, of the hydrostatic force are given by

Fy
F =\/F?+ F2, sinf = ——— (1)
VI A+ FY

The vertical force on the gate, Fy, is given by
Fy=7[(h—R)R+irR? = (9.789)[(h — 1)(1) + ix(1)?*] — F, =9.789h —2.101kN (2)

The resultant hydrostatic force acts through the center of the circular quadrant, the weight
of the gate acts vertically through the centroid of the gate, and the centroid of the gate is
located at a distance 4R/3m from the center of the quadrant. Taking moments about the pin
when the gate is just about to open (i.e., the reaction is equal to zero) and using Equation 1
gives

4 F: 4(1
FRsinf =W R——R — 2TF2 (1) = =40 _4Q) —  F, =23.02kN
3 2 2 37

Combining this result with Equation 2 gives |h = 2.57m |.

(a) From the given data: h = 2.7m, r; = 1m, and ro = 0.95m. For water at 20°C,
v = 9.789kN/m3. For a unit length of gate, L = 1m and z- and y-components of the
hydrostatic force on the gate, and the weight of the gate, are given by:

Fy = vgA = ~[h — 0.5r][r L] = 9.879[2.7 — 0.5(1)][1(1)] = 21.54kN
E, =4V =~[(h —r1)r1 + 0.257r3| L = 9.789[(2.7 — 1)(1) 4 0.257(1)?](1) = 24.33 kN
W = pggVy = pagmL[ri — 3] = pg(9.807)7(1)[1* — 0.95%] = 3.004pg N = 3.004 x 10 py kN

The calculated values of I, and Fj, can be used to determine the magnitude and direction
of the resultant force as follows:

F, 24.
F=\[F2+F2=1/21.542 + 24.33> = 32.49kN, ¢ =tan"! (Fy) = tan~! ( 33) = 36.83°

i 32.49

Taking moments about the hinge when the gate is about to open, yields:

Forysing-Wey =0 —  (32.49)-(1)sin36.83°—(3.004py x107%)-(1) =0 —  pg = |8099 kg/m?
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(b) Consider now a gate material with density p, = 8100kg/m3. When the gate is filled
with water:

W = 3.004pg + ymrs L = 3.004(8100) + (9.789)7(0.95)*(1) = 52.08 kN
Fy=7[(h—ri)r +0.25mr7] L = (9.789) [(h — 1)(1) + 0.257(1)?] (1) = 9.789(h — 0.2146) kN

F,  9.789(h — 0.2146)
F

inf = =
sin ja

Taking moments about the hinge when the gate is about to open, yields:

9.789(h — 0.2146
Feorysinf—W.r =0 — F-(1) (F )—52.08-(1)20 — [h=551m

2.70. From the given data: v = 9.79kN/m3, A, = (3)(20) = 60m?, and ¢, = 6.5m. The horizontal
force, F,, on viewing glass is given by

Fy = Ay = (9.79)(60)(6.5) = 3820 kN

The volume of water, Vj, above the viewing glass is given by

Vo= {(8)(3) - (6)%| (20) = 338.6 m*

> =
1

Vertical force, F,, on the viewing glass isgiven by

F, =V, = (9.79)(338.6) = 3310 kN

The net force on the viewing glass is given by

F = ,/F2+F2=/(3820)% + (3310)2 = | 5050 kN

2.71. Determine the hydrostatic forces on the plane and curved surfaces separately and then add
them up. Assume that v = 9.79 kN/m3. The geometric relationships and relevant dimensions
are shown in Figure 2.9.
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Figure 2.9: Geometric Relationships

Plane Surface: The force normal to the surface, F', is given by
F =~Aysing (1)
Using the given data and the geometric relationships shown in Figure 2.9:
A= (3)(2) = 6m?
gsinf = 2 + 2sin45° + gsin45° =4.475m
Substituting these parameters into Equation 1 gives
F =(9.79)(6)(4.475) = 262.9 kN
This force has = and y components as follows:

F, = 262.9cos45° = 185.9kN
F, = —262.9sin45° = —185.9kN

Curved Surface: The x-component of the force on the curved surface is given by
F, = ~vyAy, (2)
Using the given data and the geometric relationships shown in Figure 2.9:

A= (2x0.7071)(2) = 2.828 m?
Yy =24 0.7071 = 2.7071m

Substituting these parameters into Equation 2 gives

F, = (9.79)(2.828)(2.7071) = 74.95kN
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The y component of the hydrostatic force on the upper curved surface is given by
Fp=—W1 (3)
Using the given data and the geometric relationships shown in Figure 2.9:

1
A1 = 5(0.7071)(0.7071) = 0.2500 m”

A = gﬂ = g(l)2 = 0.3927 m?

AA = Ay — A; =0.3927 — 0.2500 = 0.1427 m?
Vi = [(2+0.7071)(0.2929) — 0.1427](2) = 1.300 m®

Substituting into Equation 3 gives
Fy1 = —(9.79)(1.300) = —12.73kN
The y component of the hydrostatic force on the lower curved surface is given by
Fyo =~V2 (4)
Using the given data and the geometric relationships shown in Figure 2.9:

Ag = (0.2929)(0.7071) — AA = (0.2929)(0.7071) — 0.1427 = 0.0644 m?
Vo = [(2+ 2 x 0.7071)(0.2929) — 0.0644](2) = 1.871 m3

Substituting into Equation 4 gives
Fyp =(9.79)(1.871) = 18.32kN

Therefore, the net vertical hydrostatic force on the curved portion of the gate is given
by
F, = Fy + Fp=—12.73+18.32 = 5.59kN

This force could also be determined by simply calculating the buoyant force on the gate.

Total Hydrostatic Force: The x and y components of the total hydrostatic force are equal
to the sum of the hydrostatic forces on the plane and curved portions of the gate, so

F, = 185.9 + 74.95 =
F, = —185.9+5.59 =

2.72. From the given data: width of the gate = 5 m, weight of gate = 10 kN. Let R, and R, be
the reaction of the gate to the hydrostatic force. Hence,

R, = ,‘YAV:IJV
where v = 9.79 kN/m3, A, = 3 x 5 = 15 m?, and §, = 3/2 = 1.5 m. Substituting gives

R, = (9.79)(15)(1.5) = 220kN
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2.73.

This force is located at y., below the water surface, where

I
Yep = Yy + ﬁ
VIV
where 5 (3)?
bd 5(3
=—= =11.25 m*
©= 12 T 12 bm
and hence 11.95
The vertical reaction, Iz, is equal to the weight of water above the gate,
3 2
R, =~V = (9.79) [”( ) } (5) = 346 kN

This force acts through the centroid of the circle quadrant occupied by the gate, which is

4r/3n from P, where

4 4
dr_A68) o7
3 3
The net hydrostatic force, R, on the gate is therefore given by

R = \/R2 + R2 = /2207 + 3462 = [410kN

The moment, M, tending to open the gate is

M = 346(1.27) — 220(2.0) — 10(1) = —10.6 kN-m

Hence the moment required to open the gate is | 10.6 kN-m |.

Note: This moment is numerically equal to the moment due only to the weight of the gate.
This is an expected result since the resultant hydrostatic force on a circular gate will neces-
sarily act through the center of the gate.

From the given data: H = 15.25 m and assume v = 9.79 kN/m?. The horizontal component
of the force is given by

15.25
Fi, = vAj, = (9.79)(15.25 x 1) <2> = 1138kN

The vertical force is the weight of the fluid above the dam. The x coordinate at the water
level, xg, is given by

T, st 6.050
= — . = — o = 0. m
Y= 94 2.4 0

and the vertical force on the dam is given by

6.050

6.050 1,‘2 $3
Fy =7V = 9.79/ (1) (1525 — =~ ) de = 9.79 [15.252 — — = 602.1kN
0 2.4 72],
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2.74.

Therefore the resultant force is /11382 + 602.12 = | 1287 kN | and this force makes an angle
of tan"1(1138/602.1) = 62.1° with the vertical. The horizontal force acts at the center of
pressure given by

(1)(15.25)3
I 15.25 19

ycp:g"‘f— + =10.17m

2 15.25
Y (15.25 x 1) ()

2
The vertical force acts through the center of gravity given by
1 6.050 72 159522 4476050
= 15.25 — — | de = 0.01626 - — = 2.269
Tee T 7602.1 /0 ¢ < 2.4> v [ 2 9.6} . o
9.79

Using these data give

AB =2.269m + (15.25m — 10.17m) tan 62.1° = | 11.87m

Considering the normal force on the viewing glass, Fy, and the limit of 100 N that can be
supported by each rivet,

Fyx = vAj = (9.79) <”(41)2> (5) = 38.45kN

38450
required rivets = oo = 385 rivets

Considering the shear force on the viewing glass, Fg, and the limit of 5 N that can be supported
by each rivet,

o 114 3| 114 3|
Fs = 75 |:37TR } = (9.79)2 [3#(0.5) ] = 2.56 kN
2
required rivets = 260 560 = 512 rivets

Therefore, at least | 512 rivets | are needed to support the weight of the water in the viewing
glass, plus additional rivets to support the weight of the glass itself. If a flat viewing glass is
used instead, at least | 385 rivets | would be required.

The force on the top half of the viewing glass, Fr, is given by

_ 1 4R 1 4(0.5)
Fr=~Ag =~ |=7R? —— | =(9. —7(0.5)? — ——~| =18.41kN
T="vAy =7 [27rR} [5 377] (9.79) [277(0 5) } [5 . } 8
The force on the bottom half of the viewing glass, Fg, is given by
1 4R 1 4(0.5
Fg =yAg=ry |=7R*| |5+ —| = (9.79) | =7 (0.5)?] |5+ 405 _ o pa1ew
2 3 2 3

Therefore the force ratio is 18.41/20.04 = . More rivets will be required on the .
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2.75. Take one-half of the trough as a free body. The horizontal component of the hydrostatic
force, Fy, is given by

Fi = vAj = (9.79)(3 x 0.5) <025> — 367N

The vertical component of the hydrostatic force, Fy, is given by
1
F, =~V = (9.79) [ﬂ(o,s)? X 3] = 5.77TkN

The line of action of Fj, is y, from the water surface, where

0.5 3(0.5)2

— I 12
Yh=7+-—=—+—-"2—0 =0.333m
Ay 2 (3)(0.5) (%)

The line of action of Fy is z, from the centerline of the trough, where

4R (4)(0.5)

g =0.2122m
3T 3

Ty

Taking moments about the hinge gives

(R — yh)Fh +axyFy, = RT
(0.5 — 0.333)(3.67) + (0.2122)(5.77) = (0.5)T

which yields T' = .

2.76. Look at the gate as a free body as shown in Figure 2.10, where 2 — 2sin45° = 0.586 m. The
net horizontal force, Fy, is given by

111 v}

Figure 2.10: Gate as a Free Body

Fit = vAw g1 — 7 Ases = (10.05) [(2 % 3)(3) — (0.586 x 3) <2 + 05286>] — 140.4KN
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2.77.

2.78.

The net vertical force, Fy, is given by
Fh = ’)/V
1 2 o 1 o . o 1 2
= (10.05) |4 x 2 — 1%(2) +4 x 2cos45° — g % 2cos45° x 28in45° | — §W(2) (3)
= 239.5kN

The net hydrostatic force on the gate acts through the center of the circle. Taking moments
about the center of the circle gives

2B, =24 — B, = A (1)
For equilibrium in the z-direction,
B, +140.4 = Acos45° (2)
and for equilibrium in the y direction
By + Asin45° = 239.5kN (3)

Combining Equations 1 to 3 gives

A=140.3kN, B, = —412kN, B, = 140.3kN

From the given data: D = 400 mm, ¢ = 4 mm, and p = 800 kPa. For equilibrium:
D
pA=20Lt — p(LD)=20Llt — o= p2—t

where ¢ is the circumferential stress, and L is any arbitrary length of pipe. Substituting given

values:
4
o= (808251)00) — 40000kPa = [40 MPa

From the given data: Wy, = 40 N, and Wyater = 25 N. For water at 20°C, ~, = 9.79 kN/mS.
Let 75 be the density of the solid object and let Vg be its volume, then

4
W= 40N o = (1)
Vs
25
Vs —wVs =20N  — Vo= (2)
Ys T Tw

Combining Equations 1 and 2 yields
40 25 40 25
- = — -_—
Vs Vs T Yw Yoo s — 979

— % =|26.1kN/m3

The volume of the object, Vi, can therefore be estimated as

40 40
s 26.1 x 103

Vi = — 1,53 x 103 m3
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2.79. (a) Use the subscript “o” to denote the object, “w” to denote water, and “a” to denote air.
The basic equations to be used are as follows:

Wa =% Vo, Wy = 'Yovo - 'YWVZ)

where W represents weight, and V' represents volume. Dividing the second equation by
the first equation gives

Wy o 1 1
S L SG=-—
A o ¢ 1= Wy /W,

(b) From the give data: W, = 40N, and W, = 25N. Substituting these data into the
derived equation gives

1 1
- - =[2.67
1—Wy/W. 1-—25/40 [2.67]

SG

2.80. From the given data: Dy = 15m, Ry, = Dy/2 = 7.5m, and W = 2kN. For standard
atmospheric conditions at sea level, pg = 101.3kPa and Ty = 15°C = 288.15K. For air,
R =287.1J/kg-K. The volume of the balloon, V4, is given by

Vi, = 47R} = 37 (7.5)° = 1767 m?

At liftoff, the weight of the air in the balloon plus the attached weight to be lifted is equal to
the volume of air displaced by the balloon. If T" is the temperature of the air in the balloon
under this condition, then using the ideal gas law to calculate the density of air gives

-1
Pog Pog pPogWs | PogVh
VW =22, > T= -W
rr P RT, " R [ RT, }

-1
— 2000 =318.1K

T (101.1 x 10%)(9.807)(1767) [(101.3 x 10)(9.807)(1767)

287.1 (287.1)(288.15)

Therefore, the temperature of the air in the balloon must be raised to 318.1 K — 273.15K =

[45.0°C]

2.81. From the given data: D = 3m, and M = 8kg. The volume of the balloon is given by

mD?  w(3)?
6 6

V= =14.14m?

The balloon stabilizes when the weight of the balloon is equal to the weight of the air displaced
by the balloon, which requires that

M 8

Mo o 3
v 1114 = pair = 0.5658 kg/m

Mg = pair,gv —  Pair =

Referring to the standard atmosphere in Appendix B.3, the density in the atmosphere is equal
to 0.5658 kg/m? at an elevation of 7.38 km. Therefore, the balloon stabilizes at an elevation

of [7.38 km |
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2.82. From the given data: W = 1.5kN, patm = 101 kPa, T, = 20°C = 293.15K, w = 80 g/m?, and

2.83.

2.84.

Ty, = 80°C = 353.15K. For air, R = 287.1J/kg-K. The density of the atmospheric air, p,,
and the density of the air in the balloon, py,, can be derived from the ideal gas law as follows:
P 101 x 103 P 101 x 103

. = = 1.200 kg/m3, = = = 0.9962 kg/m?
Pe = RT, ~ (287.1)(293.15) g/m Pb = RT, T (287.1)(353.15) &/m

Under stable conditions, the weight of the balloon plus the air in the balloon plus the sup-
ported weight is equal to the weight of the air displaced by the balloon, which requires that
nD3 nD3
W twg - 7D* + prg - == = pag -~
3 3

D D
1500 + (0.080)(9.807)w D? + (0.9962)(9.807)77T = (1.200)(9.807)7TT ~ [D=121m

When the sum of the forces equal zero,

D3 D3
Fo+Fz—-W=0 — svaJwW”T—yp%:o
which simplifies to
1 mD? (7o — 2w) D?
= — Yw = 1
v 37TND(%D o) T (1)

In this case, 7p = 2.65vy = 2.65(9.79) = 25.9 kN/m? = 25900 N/m?, v, = 9.79 kN/m? =
9790 N/m?, D = 2 mm = 0.002 m, and g = 1.00 x 1073 N-s/m? at 20°C. Substituting into

Equation 1 gives
(25900 — 9790)(0.002)?
o= s

From the given data: L = 10m, Ly =7m, Ly =3 m, W =15 m, H = 4 m, SG; = 1.5,
and SGy = 3.0. For fresh water at 20°C, v, = 9.79 kN/m?. For fresh water at 4°C, 7y, =
9.807 kN/m?. The specific weights of the two parts of the body are calculated as follows,

specific weight of light section, v; = SGy - vy = 1.5(9.807) = 14.71kN/m?
specific weight of heavy section, 42 = SGa - 7% = 3.0(9.807) = 29.42kN/m3

The volumes of the sections of cabin are calculated as follows,

volume light section, Vi = L1 x W x H = (7)(15)(4) = 420 m?
volume of heavy section, Vo = Lo x W x H = (3)(15)(4) = 180m?>
volume of entire cabin, V. = V] 4+ Vo = 420 + 180 = 600 m

w

The forces on various parts of the body are as follows,

buoyant force on the entire body, Fi = v Ve = (9.79)(600) = 5874 kN
weight of light section, Wi = V1 = (14.71)(420) = 6178 kN
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2.85.

2.86.

2.87.

weight of heavy section, Wy = v, Vs = (29.42)(180) = 5296 kN

If the support force is F', then equilibrium of forces in the vertical direction requires that

F =W+ Wy — F. = 6178 4+ 5296 — 5874 = | 5600 kN

Considering the cabin as a free body and taking moments about the centroid, accounting for
the fact that the buoyant force acts through the centroid of the body, the moment equation
gives

L—-14
2

- |

| roomm [52]

2

(6178) - [102_7] + (5600) - z = (5296) - [102_3] —  z=[1.66m]

From the given data: L. = 0.15m, and f, = 0.15. For water at 20°C, p,, = 998.2kg/m>
(Appendix B.1), and for SAE 30 oil at 20°C, p, = 918kg/m? (Appendix B.4). If p. is the
density of the cube, noting that the buoyancy force is equal to the weight of fluid displaced,
then for equilibrium,

PCL39 = L3g[fopo + (L= fo)pw] = pc= fopo+ (1= fo)pw

—  pe = (0.15)(918) + (1 — 0.15)(998.2) = | 986 kg/m3

The weight, W, of a floating object in a fluid of specific weight ¢ is related to the displacement
volume, V', by the relation: W = ~¢V. Therefore,

MXlOO:MX100:V2_V1

x 100
Wi Vi Vi

This shows that the percentage change in V is the same as the percentage change in W.

From the given data: f = 0.90, t = 25mm, W; = 500N, and ps = 8000 kg/m3. For seawater,
ps = 1023kg/m? (from Appendix B.4). The specific weights corresponding to the given
densities are v = 78.56 kN/m? and ~, = 10.03kN/m3. If D is the (outer) diameter of the
sphere, then for 90% (= f) of the sphere below water, putting the buoyant force equal to the
weight of the sphere plus the instrumentation gives

nD3 aD3  w(D —2t)3
f ' 'VWT = |: 6 - 6 :| + I/Vl
D? D?  x(D—50 x 10-3)3
(0.9)(10.03)”T — (78.56) [”6 _ 506X 0~) } + 500 x 1073

which yields .
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2.88.

2.89.

2.90.

From the given data: dy = 1m, do = 0.1m, and SG = 0.85. Assume that the specific
gravity specification applies to this object in this water. Use the subscript “o” to denote
the total object, the subscript “s” to denote the portion of the object that is submerged,
and the subscript “w” to denote water. Taking L to be the length of the object, for vertical

equilibrium,
'YOVO = 'Yw‘/s — 'YOAOE = ’YWASE - Ag= <%> A, — A;=5SG- ’7'[']‘?,2 (1)

The geometry of the partially submerged object is shown in Figure 2.11.

Figure 2.11: Geometry of partially submerged object

In this case, h=d; —do = 1m — 0.1m = 0.9 m and the submerged area, As, is given by

Ay =TR? - {R2 <Z> — Rsin <Z> (h — R)] ,  where g = cos~! <h;2R> (2)

Combining Equations 1 and 2 and solving for R (with A = 0.9m and SG = 0.85) yields
R = 0.568m and hence D = 2R = 1.14m. Therefore, the maximum diameter of the object

that will satisfy the given constraints is .

From the given data: W; = 800 N and W» = 200 N. For water at 20°C, v, = 9790 N/m?’.
Let L be any given load carried by the canoe, and let V; and V5 be the displacement volumes
corresponding to Wi and Wa, respectively, then
L+~ysVi=W1 — L+9790V; =800 (1)
L+~yuVo=Ws — L+9790V; =200 (2)

Subtracting Equations 1 and 2 to eliminate L gives

800 — 200
Vi—Vo = om0 0.0613 m?

Let Vi be the total volume of the body, V, be the volume of the body above the surface of
the liquid, 1 be the specific weight of the body, and 75 be the specific weight of the liquid.
For equilibrium,

Vo  SGse —SG
nVei=7i-Va) — SG-%h=SGy (Vi-Va) — =2 1
Vi SGo
The fraction, f,, of the body that is above the water surface is given by
Vo SGe —SGq
a _—_—="—_ 1
f: T s, (1)
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In the case of the iceberg in seawater, SG; = 0.92 and SGy = 1.03, and Equation 1 gives

1.03 - 0.92
= —— =1(0.11
fa= "3

2.91. From the given data: SG = 0.8, and D = 10mm. Let N = number of bubbles per m?, 1§, =
volume of each bubble, p = density of water, and p, = density of bubbly water. Using these
definitions and neglecting the mass of air in the bubbles,

volume of air in 1 m? = N \Z8
volume of water in 1 m® =1 — NV},
mass of water in 1 m® = p(1 — NV;)

density of bubbly water, p, = p(1 — NV;)

The ship sinks when the density of the bubbly water is equal to the density of the ship, in

which case o
SG-p=p, — SG-p=p(1-NW}) — N= . Q)
b
From the given bubble diameter, V4, = %ﬂ D? =5.236 x 107" m?, and Equation 1 gives
1-038
5.236 x 10—7 3.82 x 10” bubbles/m

2.92. For equilibrium, the weight of the pool must at least equal the buoyant force. Let the depth
of water in the pool be z, then for equilibrium (see Figure 2.12)
/7Ground Surface

I _l_
Ground Water
1.25 m /
2.5 l AV . AV
" = AVA 1 =
h X
S T
| 10 m |

Figure 2.12: Swimming pool

Wt. of pool + Wt. of water in pool = Buoyant force
500 + (10 x 5 x )(9.79) = [10 x 5 x (2.5 — 1.25)](9.79
500 + 4902 = 612
x=0.23m

Therefore at least of water must be maintained in the pool.

74



2.93. When the barge is fully loaded, the draft, V', is given by
YswV = (20 + 250) kN

For S = 1.03,

20 + 250
V=-"_""_=2678m> 1
(1.03)(9.79) o (1)

and from geometry
2

V= <6y + 2*71) (3) = 18y + ng 2)

Combining Equations 1 and 2 gives
3
18y + 5y2 = 26.8

and solving gives the draft as y = .

2.94. From the given data: f; = 0.75, and fo = 0.90. For water, p, = 998 kg/m?3. The average
density of the body, py, can be derived from Equation 2.75 as follows

v _
Lo =P 5= fipw = (0.75)(998) = | 749 kg /m?
W Pt Pw

The average density of the solid material is ps and the fraction of the body that is open space
is fo. Representing the mass of the solid by M and the volume of the solid by Vj, then

(e r R L
i Vo/ (= o) 2)Ps Ps 1 —fgpb
Substituting the known values of fy and p}, yields

1
1-0.9

Pb =

(749) = | 7490 kg/m?

Ps =

2.95. From the given data: H =2m, A = LW, SGy = 1.2, Az; = 1.2m, and SGy = 1.6. Denote
the specific weights of the body, top layer, and bottom layer by 1, v1, and ~y», respectively.
For vertical equilibrium, where h is the depth of penetration into the bottom layer,:

SG SG
WAH =y AAz +79Ah  — h=2H DAy o p=2bg  2PLAL (1)

V2 V2 SGo SGo
(a) The minimum specific gravity of the body for full penetration of the top layer can be

derived by setting h = 0 in Equation 1 which gives

A 1.2
SGp, - H =SG1Az;, — SGp = %sgl = - (12) =

(b) The depth of penetration, h, into the bottom layer when SGy, = 1.0 can be obtained by
substituting directly into Equation 1, which yields

10 1.2

h= 162 - {512 =[0.35m
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2.96. From the given data: L = 3 m, D = 200 mm = 0.2 m, and SG = 0.6. For seawater, V5w =
10.03 kN/m? (from Appendix B.4). The the relevant forces and dimensions in the problem
are shown in Figure 2.13, where W is the weight of the buoy, T is the tension in the support
cable, and F}, is the buoyant force.

Figure 2.13: Buoy at low tide

Let A be the cross-sectional area of the buoy and V}, be the volume of the buoy, then

D? 0.22
Abuoy = 7T4 =T 1 = 0.03142 m?

Vbuoy = AbuoyL = (0-03142)(3) = 0.09426 m?

The magnitudes of W and Fy, can be expressed in terms of other variables as follows:

W= ’ybuobeuoy
Fy = 5w Vsub

(a) This is the case of the partially submerged buoy. Taking moments about the point where
the support cable is attached to the buoy,

L L L uo;
ybuoy%LEG@S’g: ’ysw%lq?l%s’g—) fl = ’Y};Siwy = \/@ (1)

For vertical equilibrium,
T + Youoy Vouoy = YswVeub = T+ Ybuoy Abuoy L = Ysw Abuoy L1
— T4 SG - YewAbuoy L = YswAbuoy L1
which simplifies to
T = oAby L {LLl - SG} — o Vinoy [LLl - SG} @)
Combining Equations 1 and 2 and evaluating gives

T = o Vosey | VG — SG| = (10.03)(0.09426) [ V0.6 — 0.6] =

(b) This is the case of the fully submerged buoy. For vertical equilibrium,

T = Yo Vouoy — Tbuoy Viuoy = Yew Vbuoy (1 — SG) = (10.03)(0.09426)(1 — 0.6) = [0.378 kN
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2.97. From the given data: W = 0.246 N and Dy = 10 mm = 0.01 m. For pure water at 20°C,
w = 9790 N/m3. Calculate the cross-sectional area, Ag, of the hydrometer stem and the
volume, Vj, of the hydrometer below the water mark in pure water:

Ap = %Dg = %(0.01)2 = 7.854 x 107° m?
Y Vo = 0.246 N — 9790Vp = 0.246 — Vp = 2.513 x 107° m?

For Ah = 2 cm = 0.02 m, the specific gravity of the fluid, SGy, is given by

Vo 2.513

SG - = fy
P7 Vo + ApAh — 2513 + (7.854)(0.02)

0.94

2.98. From the given data: D = 9mm, V) = 20cm? = 2 x 10*mm?, and SG = 1.2. The cross-
sectional area, Ag, of the hydrometer stem is given by

Ay =D = 2(9)2 = 63.62 mm?

N

The relationship between the hydrometer displacement, Ah, and the specific gravity, SG, is
given by Equation 2.78 as

Vo

5C = T AR

1 2 x 104 1
_ | W L2 o et - so4mm
1.2 63.62

Therefore the distilled-water mark will be above the liquid surface.

2.99. From the given data: D = 0.70m, R = D/2 = 0.35m, L = 0.60m, SG;, = 0.65, and
SGy = 0.90. The centroidal moment of inertia, Iyy, of the circular area that intersects the
liquid surface is given by (Appendix C.1):

TR*  7w(0.35)*
4 4

Io = =1.179 x 102 m? (1)
When the cylindrical body is placed in the liquid, the weight of the body is equal to the
weight of the liquid displaced, which requires that
2 2 0.65 3
YoVeub = W R*L — Ve = —WR L= WW(O 35) (0.60) —  Viup = 0.1668 m
e
(2)
where the relation v, /v, = SGy,/SGy has been used. The submerged height, h, can be derived
from the buoyancy relationship given in Equation 2 as follows,

SG, . 0.65
Viu = —ﬂ'RQL — w#h= LRl & h=22PL = ="2(0.60) = 0.4333m
e SG, T 0.90

The distance between the center of gravity and the center of buoyancy, GB, is therefore given
by

L h 060 04333
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NEW

NEW

The metacentric height, GM, can be calculated from Equation 2.79 using the results from
Equations 1 to 3 to yield

Iy ~ 1.179 x 1072 -
GM = 7 GB = 01665 0.0833 =|—0.0127m

sub

Since the metacentric height is negative, the cylindrical body is at the orientation
at which it is placed in the liquid.

From the given data: D = 300mm, R = D/2 = 150mm = 0.15m, and pjog = 512kg/m?. For
water at 20°C, pyas = 998kg/m3. Let = be the depth of the log below water when the axis is
vertical, then for equilibrium

512
PloggF L = puagrfile — =L = Sl & w=05130L

Pwat

At the limit of stability,

TR4
I(]O 4 L T
GM =0= — GB 0= Y
Vvsub - TR2x <2 2)

substituting known quantities gives

70.15%

1 L 05130L
0= — (2222} o [L=0212
70.152(0.5130L) (2 2 =

From the given data: rp, = %(4 m) =2m, h, =2m, 1, = %(2 m) = 1m, py, = 998kg/m?, and
pp = 170kg/m3. Let h be the height of the pole. The following equations must be satisfied:

TI"I“ghp(hb + %hp) + Wr%hb(%hb)

V = w2y + mrdhy,  ye = v . Vi = mrihen = 2V
Vw

YV 1,,.2 1

houb = —, Igg = s7rf, GB =y, — sh

sub %777‘% 00 1Ty Yg 3 /tsub

Ioo Ino

GM = - GB, GM =0, GB =
‘/;ub ‘/sub

Noting that vy /v, = 170/998 = 0.1703, substituting the given data and combining the above
equations yield the following equation for hp:

ho (2+ 1hy) —0.02129(h, +8)* — 0.1549 =0 — hy, =

A final check is necessary to ensure that the base is not submerged in water. Calculating hgup

gives
1%
Bty = <%> — 5 =053m

Yw 7r7“b

Since the base is not submerged (hgy, < hp) the calculations are validated.
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2.100.

2.101.

2.102.

At the limit of stability, the metacentric height is equal to zero, so

M= 10 _gg o 0 _gp_g o gt

‘/sub sub Vvsub
bd®  4(0.70)3 4

Ipp= — = =0.114

00 = 79 12 0-114m

Veub = %(0.70)(0.15)+(0.3)(0.7) (4) = 1.05m3

Io  0.114
=2t 0,109
Vo 1.05 m

GB =

Find the distance of the center of buoyancy, zg above the bottom:

_ Arzi+Asze (0.7%0.3)(0.1540.30/2) + (5 x 0.7 x 0.15)(223-12)

- - —0.26
BT AT A 0.21 + 0.0525 m

If the height of the center of gravity above the bottom is zg, then
zc — 2z =0.109m — zg = 2z + 0.109 = 0.26 + 0.109 = 0.37m

Hence, the limit of stability occurs when the center of gravity is above the bottom
of the canoe.

From the given data: D = 0.3 m, Az = 0.5 m, a; = 0, and a, = 1 m/s?®. For kerosene
at 20°C, p = 808 kg/m? (from Appendix B.4). Applying Equation 2.95 gives the pressure
increase from bottom to top, Ap, as follows

Ap = —paz Az — p(g+ a)Az = —808(0)(0) — 808(9.81 4+ 1)(0.5) = —4367 Pa = —4.37kPa

Therefore, the gauge pressure on the bottom of the cylinder is |4.37 kPa| The area, A, of
the bottom of the container is given by

1 1
A= Z7TD2 = Z7r(0.3)2 = 0.07069 m?

Hence the force, F', exerted by the fluid in the cylinder on the elevator is given by

F = ppottomA = (4.37)(0.07069) = 0.309 kN = | 309 N

From the given data: Az =10 m, D = 2 m, a; = 2 m/s?, and a, = 0. For water at 20°C, p
= 998 kg/m3. The pressure difference, Ap, between opposing locations at the front and back
of the tank is given by Equation 2.95 as

Ap = —pag Az — p(g+a)Az  —  Ap=—(998)(2)(10) — 0 = 19 960 Pa = 19.96 kPa

The area of the front and back of the tank is A = 7D?/4 = 3.142 m?, so the force difference,

AF, is given by
AF = Ap- A= (19.96)(3.142) = |62.7kN
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2.103. From the given data: p = 1040kg/m3. For spillage to occur: Az = —0.8 m for Az = 2 m,
and a, = 0.

(a) Taking g = 9.81 m/s?, the limiting acceleration, a,, is obtained from Equation 2.96 as
follows

Az g -0.8 Qg

= _ - —
Az g+ a, 2 9.81+0

az =|3.92 m/s?

(b) Under the limiting (spill) condition, the depth of liquid at the front of the tank is
1.2m —0.8m = 0.4m. In accordance with Equation 2.23, the gauge pressure, py¢, at the
bottom front of the tank is therefore given by

Pt = pg(0.4m) = (1040)(9.807)(0.4) = 4.08 x 10° Pa = |4.08 kPa

Under the limiting (spill) condition, the depth of liquid at the back of the tank is 2 m.
In accordance with Equation 2.23, the gauge pressure, pyp, at the bottom back of the
tank is therefore given by

pob = pg(2m) = (1040)(9.807)(2) = 2.04 x 10* Pa = | 20.4 kPa

2.104. From the given data: L =3 m, W = 0.8 m, H = 1.6 m, and d = 1.2 m. Consider both
alignments of the tank separately.

(a) Long side aligned with the direction of truck motion. For spillage to occur: Az = 0.4 m
for Az = 1.5 m. The limiting acceleration, a,, is obtained from Equation 2.96 as follows

Az ag 0.4  ay

= _ - =
Ax g 1.5  9.81

—  ap = 2.62m/s?

(b) Short side aligned with the direction of truck motion. For spillage to occur: Az = 0.4 m
for Az = 0.4 m. The limiting acceleration, a, is obtained from Equation 2.96 as follows

Az ag R 0.4 Qg

_ 0 — 9.81 m/s2
04 o8l — CGa=98lm/s

Az g

Therefore, the maximum allowable acceleration of | 9.81 m/s? | occurs with the’ side orientation |.

2.105. From the given data: § = 10°. Applying Equation 2.96 gives

Ay
9.81

Ay

tanf = —— —  tanl0° = — a; =|—1.73 m/s?
g

2.106. From the given data: AV = 90 km/h = 25 m/s, and At = 10 s. Since the truck decelerates
at a constant rate,
AV 25 9
G0 = xp T 19 oM/
Let 6 be the slope of the liquid surface, then Equation 2.96 gives

Qg 2.5
tanf = —— tanf = ——— 0=|-14.3°
an - tmf=—oo o

g
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2.107. From the given data: a = 5m/s? and § = 25°. The components of the acceleration are:
a; = 5cos25° = 4.532m/s?
a, = 5sin25° = 2.113m/s?
Taking g = 9.807m/s? and substituting into Equation 2.96 gives

A 4.532
G _ _ o3 = —0.3802
Az g+ a, 9.807 +2.113

The slope of the surface in the tanker is therefore equal to tan=!(0.3802) = . Therefore
the slope of the liquid in the tank is the slope of the incline.

2.108. Under the given conditions, the truck is free-falling down the incline with a, = 0 and a, = —g.
Substituting these values into Equation 2.96 gives

Az Qg 0 0

E__g—kaz g—g O

Therefore, the slope of the water surface is |indeterminate ‘ This result is a consequence of
there being no effective gravity force to keep the liquid contained in the tank.

2.109. From the given data: W = 300 mm = 0.3 m, H = 280 mm = 0.28 m, and pat,, = 101 kPa.
For water at 20°C, p = 998 kg/m? and psy, = 2.34 kPa (from Appendix B.4).

(a) In this case Az = 40 mm and Az = 300 mm, and Equation 2.96 gives the required
acceleration, a,, as

Az g —40 Oy
vl - = - — =11.308 m/s?
Ar  g+a, 300  98L+0 ta m/s

(b) In this case r1 =0, 72 = 0.15m, 21 = 0, 22 = 0.28 m, p; = psyp = 2.34 kPa, and py =
Patm = 101 kPa. The required rate of rotation, w, for these conditions to occur is given
by Equation 2.104 as follows:

2

W
p2—p1= %(T% —71) — pglzo — 2]
2
101 — 2.34 — 998w

(0.282 — 02) — (998)(9.81)[0.28 — 0] — w = 15.90rad/s =

2.110. From the given data: z3 — 20 = 40 mm = 0.04 m, 1 = 0.15 m + 0.05 m = 0.20 m, and
ro = 0.15 m — 0.05 m = 0.10 m. The corresponding rate of rotation can be derived from
Equation 2.103 as follows

w2 2

2 — 2= %(7‘% —12) = 0.04 = m(m? —0.1%) - w = 5.114rad/s =
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2.111. From the given data: R = 0.2m, w = 450rpm = 47.12rad/s, and A = 0.1m. Identify
locations in the tube using the axes shown in Figure 2.83.

z

Figure 2.14: Reference axes

Since the U-tube has a circular shape of radius R, then
2%+ 2% = R? (1)

The pressure distribution in the U-tube is given by Equation 2.104, from which the gauge
pressure can be expressed as

2
pw
Pg = 7[1‘3 —229] — pg(z — 20) (2)

where z, = x-coordinate measured from the axis of rotation, x.q = xz-coordinate liquid surface
that is open to the atmosphere, and zy (= 0) = z coordinate of the open surface.

(a) Combining Equations 1 and 2 and noting that the axis of rotation is A from the origin

(P) gives
2

pe = -l + AP = (R+ A)) - pg(—V/R? — ?) (3)

The pressure is a minimum where dp,/dz = 0. Differentiating Equation 3 and setting
the result equal to zero gives

dpg  pw’ Py 1
=y R+ A+ TR = 2) 2 (<22)] = 0

which simplifies to

wt 47.124

g—2(x+A)2(R2 —at) -2 =0— W(m+0.1)2(0.22 —2?)—2*=0— 2 =-0.1026m

Therefore, the minimum gauge pressure occurs at a location that is 0.1026 — 0.1 = =
0.003 m | to the left of the rotation axis.

(b) The gauge pressure as a function of x is given by Equation 3 and is plotted in Figure
2.15.
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2.112.

2.113.

E /
X
Qm -60 //
-80 4
-100 \r—/
-0.2 -0.1 0 0.1 0.2
x (m)

Figure 2.15: Gage pressure in U-tube

(¢) Setting x = —0.1026 m in Equation 3 gives the minimum gauge pressure as —98.06 kPa,
which corresponds to an absolute pressure of 101.3kPa — 98.06 kPa = |3.24 kPa| The

vapor pressure of water at 20°C is 2.337 kPa, so cavitation will |not occur | under the
given conditions.

From the given data: D = 0.5 m, R = D/2 = 0.25 m, and w = 30 rad/s. For crude oil at
20°C, p = 856 kg/m? (from Appendix B.4). The pressure difference, Ap, between the center
and perimeter is given by Equation 2.104 as

2 2
Ap =22 —y2y = B0 552 (2) _ 24080 Pa = [24.1kPa

2

From the given data: R =0.5/2 = 0.25m, w = 400 rpm = 41.89rad/s, and py = 200 kPa. For
water at 20°C, p = 998.2kg/m3. The pressure distribution on the top of the cylinder is given
by Equation 2.104, which can be expressed as

2

w
po—p="(B=1%) - p=a+tbr’ (1)
where
’R? 998.2)(41.89)%(0.25)?
a:po—p“’2 _ 900 x 10 — 9982 2)( ) 1453 % 10°Pa
2 2)(1.89)2
b= % = (998)2(89) = 8.757 x 10° Pa/m>
Using Equation 1, the force, F', on the top surface of the cylinder is given by

R R R 2 4
b
F:/ (a+b7’2)27rrdr:27r[/ ardr—i—/ br3dr] — F:27r[a]; —i—f]
0 0 0

Substituting the values of the given and derived parameters into the above equation yields

1.4 10°)(0.25)2 ) 10°)(0.25)4
F:27r[( R )(0.25)° | (8757 T )(0.25) ][xlo?’ KN/N] = [33.91N
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2.114. From the given data: D =3 cm, R = D/2 = 1.5 cm = 0.015 m, and Az = 1 cm = 0.01 m.
In accordance with Equation 2.108,

w2 R?

w?(0.015)?
Az:Q[ I ] - 0.01=2 [4(9.81)} — w =29.5rad/s =[282rpm |

2.115. From the given data: D = 1.5 m, R=D/2=0.75 m, and d = 1 m.

(a) In accordance with Equation 2.108, the liquid surface intersects the bottom of the cylin-
der when

_ w2 R?

w?(0.75)2

(b) From the given data: w = 40 rpm = 4.189 rad/s. In accordance with Equation 2.108,
the required height, Az, above the static water level is given by

2 2 2 2
AL R (4189200752
dg 4(9.81)

The cylinder must be at least 1 m + 0.25 m = high to avoid spillage.
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