CHAPTER 2

2.1

$$
\begin{align*}
& \overrightarrow{\mathrm{F}}=-\oiint_{s} \mathrm{pd} \overrightarrow{\mathrm{~S}} \\
& \text { If } \mathrm{p}=\mathrm{constant}=\mathrm{p}_{\infty} \\
& \overrightarrow{\mathrm{F}}=-\mathrm{p}_{\infty} \oiint_{s} \mathrm{pd} \overrightarrow{\mathrm{~S}} \tag{1}
\end{align*}
$$

However, the integral of the surface vector over a closed surface is zero, i.e.,

$$
\oiint_{S} \mathrm{~d} \overrightarrow{\mathrm{~S}}=0
$$

Hence, combining Eqs. (1) and (2), we have

$$
\overrightarrow{\mathrm{F}}=0
$$

2.2

Copyright © 2017 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education

Denote the pressure distributions on the upper and lower walls by $p_{u}(x)$ and $p_{\ell}(x)$ respectively. The walls are close enough to the model such that p_{u} and p_{ℓ} are not necessarily equal to p_{∞}. Assume that faces ai and bh are far enough upstream and downstream of the model such that

$$
\mathrm{p}=\mathrm{p}_{\infty} \quad \text { and } \mathrm{v}=0 \quad \text { and } \underline{\text { ai }} \text { and } \underline{\mathrm{bh}} .
$$

Take the y-component of Eq. (2.66)

$$
\mathrm{L}=-\oiint_{\mathrm{S}}(\rho \overrightarrow{\mathrm{~V}} \cdot \overrightarrow{\mathrm{dS}}) \mathrm{v}-\iint_{\text {abhi }}(\mathrm{p} \overrightarrow{\mathrm{dS}}) \mathrm{y}
$$

The first integral $=0$ over all surfaces, either because $\vec{V} \cdot \overrightarrow{d s}=0$ or because $v=0$. Hence

$$
\begin{aligned}
& L^{\prime}=-\iint_{\text {abhi }}(p \overrightarrow{d S}) y=-\left[\int_{a}^{b} p_{u} d x-\int_{i}^{n} p_{\ell} d x\right] \\
& \text { Minus sign because y-component is in downward } \\
& \text { Direction. }
\end{aligned}
$$

Note: In the above, the integrals over $\underline{i a}$ and $\underline{\mathrm{bh}}$ cancel because $\mathrm{p}=\mathrm{p}_{\infty}$ on both faces. Hence

$$
L^{\prime}=\int_{i}^{\mathrm{h}} \mathrm{p}_{\ell} \mathrm{dx}-\int_{\mathrm{a}}^{\mathrm{b}} \mathrm{p}_{\mathrm{u}} \mathrm{dx}
$$

$2.3 \quad \frac{d y}{d x}=\frac{v}{u}=\frac{c y /\left(x^{2}+y^{2}\right)}{c x /\left(x^{2}+y^{2}\right)}=\frac{y}{x}$
$\frac{d y}{y}=\frac{d x}{x}$
$\ell n y=\ell n x+c_{1}=\ell n\left(c_{2} x\right)$
$y=c_{2} x$
The streamlines are straight lines emanating from the origin. (This is the velocity field and streamline pattern for a source, to be discussed in Chapter 3.)
$2.4 \quad \frac{d y}{d x}=\frac{v}{u}=-\frac{x}{y}$
$y d y=-x d x$

Copyright © 2017 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill Education

$$
\begin{aligned}
& y^{2}=-x^{2}+\text { const } \\
& x^{2}+y^{2}=\text { const. }
\end{aligned}
$$

The streamlines are concentric with their centers at the origin. (This is the velocity field and streamline pattern for a vortex, to be discussed in Chapter 3.)
2.5 From inspection, since there is no radial component of velocity, the streamlines must be circular, with centers at the origin. To show this more precisely,

$$
\begin{aligned}
& u=-V_{\theta} \sin =-c r \frac{y}{r}=-c y \\
& v=V_{\theta} \cos \theta=c r \frac{x}{r}=c x \\
& \frac{d y}{d x}=\frac{v}{u}=-\frac{x}{y} \\
& y^{2}+x^{2}=\text { const. }
\end{aligned}
$$

This is the equation of a circle with the center at the origin. (This velocity field corresponds to solid body rotation.)
$2.6 \quad \frac{d y}{d x}=\frac{v}{u}=-\frac{y}{x}$

$$
\begin{aligned}
& \frac{d y}{y}=-\frac{d x}{x} \\
& \ln y=x \ln x+c_{1} \\
& y=c_{2} / x
\end{aligned}
$$

The streamlines are hyperbolas.

2.7 (a) $\frac{1}{\delta v} \frac{\mathrm{D}(\delta v)}{\mathrm{Dt}}=\nabla \cdot \overrightarrow{\mathrm{V}}$

In polar coordinates: $\nabla \cdot \overrightarrow{\mathrm{V}}=\frac{1}{\mathrm{r}} \frac{\partial}{\partial}\left(\mathrm{r} \mathrm{V}_{\mathrm{r}}\right)+\frac{1}{\mathrm{r}} \frac{\partial \mathrm{V}_{\theta}}{\partial \theta}$
Transformation: $\quad x=r \cos \theta$
$y=r \sin \theta$
$V_{r}=u \cos \theta+v \sin \theta$
$\mathrm{V}_{\theta}=-\mathrm{u} \sin \theta+\mathrm{v} \cos \theta$

$$
\begin{aligned}
& u=\frac{c x}{\left(x^{2}+y^{2}\right)}=\frac{c r \cos \theta}{r^{2}}=\frac{c \cos \theta}{r} \\
& v=\frac{c y}{\left(x^{2}+y^{2}\right)}=\frac{c r \sin \theta}{r^{2}}=\frac{c \sin \theta}{r} \\
& V_{r}=\frac{c}{r} \cos ^{2} \theta+\frac{c}{r} \sin ^{2} \theta=\frac{c}{r} \\
& V_{\theta}=-\frac{c}{r} \cos \theta \sin \theta+\frac{c}{r} \cos \theta \sin \theta=0 \\
& \nabla \cdot \vec{V}=\frac{1}{r} \frac{\partial}{\partial r}(c)+\frac{1}{r} \frac{\partial(0)}{\partial \theta}=0
\end{aligned}
$$

(b) From Eq. (2.23)

$$
\begin{aligned}
& \nabla \times \vec{V}=\mathrm{e}_{\mathrm{z}}\left[\frac{\partial V_{\theta}}{\partial \mathrm{r}}+\frac{\mathrm{V}_{\theta}}{\mathrm{r}}-\frac{1}{\mathrm{r}} \frac{\partial V_{\mathrm{r}}}{\partial \theta}\right] \\
& \nabla \times \mathrm{V}=\mathrm{e}_{\mathrm{z}}[0+0-0]=0
\end{aligned}
$$

The flowfield is irrotational.
$2.8 \mathrm{u}=\frac{\mathrm{cy}}{\left(\mathrm{x}^{2}+\mathrm{y}^{2}\right)}=\frac{\mathrm{cr} \sin \theta}{\mathrm{r}^{2}}=\frac{\mathrm{c} \sin \theta}{\mathrm{r}}$

$$
\begin{aligned}
& v=\frac{-c x}{\left(x^{2}+y^{2}\right)}=\frac{c r \cos \theta}{r^{2}}=-\frac{c \cos \theta}{r} \\
& V_{r}=\frac{c}{r} \cos \theta \sin \theta-\frac{c}{r} \cos \theta \sin \theta=0 \\
& V_{\theta}=-\frac{c}{r} \sin ^{2} \theta-\frac{c}{r} \cos ^{2} \theta=-\frac{c}{r}
\end{aligned}
$$

(a) $\nabla \cdot \overrightarrow{\mathrm{V}}=\frac{1}{\mathrm{r}} \frac{\partial}{\partial \mathrm{t}}(0)+\frac{1}{\mathrm{r}} \frac{\partial(-\mathrm{c} / \mathrm{r})}{\partial \theta}=0+0=0$
(b) $\quad \nabla \times \vec{V}=\overrightarrow{\mathrm{e}_{\mathrm{z}}}\left[\frac{\partial(-\mathrm{c} / \mathrm{r})}{\partial \mathrm{r}}-\frac{\mathrm{c}}{\mathrm{r}^{2}}-\frac{1}{\mathrm{r}} \frac{\partial(0)}{\partial \theta}\right]$

$$
=\overrightarrow{\mathrm{e}_{2}}\left[\frac{\mathrm{c}}{\mathrm{r}^{2}}-\frac{\mathrm{c}}{\mathrm{r}_{2}}-0\right]
$$

$\nabla \times \vec{V}=0$ except at the origin, where $r=0$. The flowfield is singular at the origin.
$2.9 \quad \mathrm{~V}_{\mathrm{r}}=0 . \quad \mathrm{V}_{\theta}=\mathrm{cr}$

$$
\begin{aligned}
\nabla \times \vec{V} & =\overrightarrow{e_{z}}\left[\frac{\partial(\mathrm{c} / \mathrm{r})}{\partial}+\frac{\mathrm{cr}}{\mathrm{r}}-\frac{1}{\mathrm{r}} \frac{\partial(0)}{\partial \theta}\right] \\
& =\overrightarrow{\mathrm{e}_{\mathrm{z}}}(\mathrm{c}+\mathrm{c}-0)=2 \mathrm{c} \overrightarrow{\mathrm{e}_{\mathrm{z}}}
\end{aligned}
$$

The vorticity is finite. The flow is not irrotational; it is rotational.
2.10

Mass flow between streamlines $=\Delta \bar{\psi}$

$$
\begin{aligned}
& \Delta \bar{\psi}=\rho V \Delta n \\
& \Delta \bar{\psi}=\left(-\rho V_{\theta}\right) \Delta r+\rho V_{r}(r \theta)
\end{aligned}
$$

Let cd approach ab

$$
\begin{equation*}
d \psi=-\rho V_{\theta} d r+\rho r V_{r} d \theta \tag{1}
\end{equation*}
$$

Also, since $\bar{\psi}=\bar{\psi}(\mathrm{r}, \theta)$, from calculus

$$
\begin{equation*}
\mathrm{d} \bar{\psi}=\frac{\partial \bar{\psi}}{\partial} \mathrm{d} \mathbf{r}+\frac{\partial \bar{\psi}}{\partial \theta} \mathrm{d} \theta \tag{2}
\end{equation*}
$$

Comparing Eqs. (1) and (2)

$$
-\rho V_{\theta}=\frac{\partial \bar{\psi}}{\partial}
$$

and

$$
\rho r \mathrm{~V}_{\mathrm{r}}=\frac{\partial \ddot{\psi}}{\partial \theta}
$$

or:

$$
\begin{aligned}
& \rho \mathrm{V}_{\mathrm{r}}=\frac{1}{\mathrm{r}} \frac{\partial \bar{\psi}}{\partial \theta} \\
& \rho \mathrm{~V}_{\theta}=-\frac{\partial \bar{\psi}}{\partial \mathrm{t}}
\end{aligned}
$$

$2.11 \mathrm{u}=\mathrm{cx}=\frac{\partial \psi}{\partial \mathrm{y}}: \psi=\mathrm{cxy}+\mathrm{f}(\mathrm{x})$

$$
\begin{equation*}
\mathrm{v}=-\mathrm{cy}=-\frac{\partial \psi}{\partial \mathrm{x}}: \psi=\mathrm{cxy}+\mathrm{f}(\mathrm{y}) \tag{2}
\end{equation*}
$$

Comparing Eqs. (1) and (2), $f(x)$ and $f(y)=$ constant

$$
\begin{align*}
& \psi=\mathrm{cxy}+\text { const. } \tag{3}\\
& \mathrm{u}=\mathrm{cx}=\frac{\partial \psi}{\partial \mathrm{x}}: \phi=\mathrm{cx}^{2}+\mathrm{f}(\mathrm{y}) \tag{4}\\
& \mathrm{v}=-\mathrm{cy}=\frac{\partial \psi}{\partial \mathrm{y}}: \phi=-\mathrm{cy}^{2}+\mathrm{f}(\mathrm{x}) \tag{5}
\end{align*}
$$

Comparing Eqs. (4) and (5), $f(y)=-c y^{2}$ and $f(x)=c x^{2}$

$$
\begin{equation*}
\phi=\mathrm{c}\left(\mathrm{x}^{2}-\mathrm{y}^{2}\right) \tag{6}
\end{equation*}
$$

Differentiating Eq. (3) with respect to x, holding $\psi=$ const.

$$
0=c x \frac{d y}{d x}+c y
$$

or,

$$
\begin{equation*}
\left(\frac{d y}{d x}\right)_{\psi=\text { const }}=-y / x \tag{7}
\end{equation*}
$$

Differentiating Eq. (6) with respect to x , holding $\phi=$ const.

$$
0=2 c x-2 c y \frac{d y}{d x}
$$

or,

$$
\begin{equation*}
\left(\frac{d y}{d x}\right)_{\phi=\text { const }}=x / y \tag{8}
\end{equation*}
$$

Comparing Eqs. (7) and (8), we see that

$$
\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{\psi=\text { const }}=-\frac{1}{\left(\frac{\mathrm{dy}}{\mathrm{dx}}\right)_{\phi=\text { const }}}
$$

Hence, lines of constant ψ are perpendicular to lines of constant ϕ.
2.12. The geometry of the pipe is shown below.

As the flow goes through the U-shape bend and is turned, it exerts a net force R on the internal surface of the pipe. From the symmetric geometry, R is in the horizontal direction, as shown, acting to the right. The equal and opposite force, $-R$, exerted by the pipe on the flow is the mechanism that reverses the flow velocity. The cross-sectional area of the pipe inlet is $\pi \mathrm{d}^{2} / 4$ where d is the inside pipe diameter. Hence, $\mathrm{A}=\pi \mathrm{d}^{2} / 4=\pi(0.5)^{2} / 4=0.196 \mathrm{~m}^{2}$. The mass flow entering the pipe is

$$
\stackrel{\circ}{\mathrm{m}}=\rho_{1} \mathrm{~A} \mathrm{~V}_{1}=(1.23)(0.196)(100)=24.11 \mathrm{~kg} / \mathrm{sec}
$$

Applying the momentum equation, Eq. (2.64) to this geometry, we obtain a result similar to Eq. (2.75), namely

$$
\begin{equation*}
R=-\oiint(\rho \mathbf{V} \cdot \mathbf{d S}) \mathbf{V} \tag{1}
\end{equation*}
$$

Where the pressure term in Eq. (2.75) is zero because the pressure at the inlet and exit are the same values. In Eq. (1), the product ($\rho \mathbf{V} \cdot \mathbf{d S}$) is negative at the inlet (\mathbf{V} and $\mathbf{d S}$ are in opposite directions), and is positive at the exit (\mathbf{V} and $\mathbf{d S}$) are in the same direction). The magnitude of ρ $\mathbf{V} \cdot \mathbf{d S}$ is simply the mass flow, $\dot{\mathrm{m}}$. Finally, at the inlet V_{1} is to the right, hence it is in the positive x -direction. At the exit, V_{2} is to the left, hence it is in the negative x-direction. Thus, $V_{2}=-V_{1}$. With this, Eq. (1) is written as

$$
\begin{aligned}
\mathrm{R} & =-\left[-\dot{\mathrm{m}} \mathrm{~V}_{1}+\dot{\mathrm{m}} \mathrm{~V}_{2}\right]=\dot{\mathrm{m}}\left(\mathrm{~V}_{1}-\mathrm{V}_{2}\right) \\
& =\dot{\mathrm{m}}\left[\mathrm{~V}_{1}-\left(-\mathrm{V}_{1}\right)\right]=\dot{\mathrm{m}}\left(2 \mathrm{~V}_{1}\right) \\
\mathrm{R} & =(24.11)(2)(100)=4822 \mathrm{~N}
\end{aligned}
$$

2.13 From Example 2.1, we have

$$
\begin{equation*}
\mathrm{u}=\mathrm{V}_{\infty}\left[1+\frac{\mathrm{h}}{\beta} \frac{2 \pi}{\ell}\left(\cos \frac{2 \pi x}{\ell}\right) \mathrm{e}^{-2 \pi \beta \mathrm{y} / \ell}\right] \tag{2.35}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathrm{V}=-\mathrm{V}_{\infty} \mathrm{h} \frac{2 \pi}{\ell}\left(\sin \frac{2 \pi x}{\ell}\right) \mathrm{e}^{-2 \pi \beta y / \ell} \tag{2.36}
\end{equation*}
$$

Thus,

$$
\begin{equation*}
\frac{\partial \varphi}{\partial x}=\mathrm{u}=\mathrm{V}_{\infty}+\left(\frac{\mathrm{V}_{\infty} \mathrm{h}}{\beta}\right)\left(\frac{2 \pi}{\ell}\right)\left(\cos \frac{2 \pi x}{\ell}\right) \mathrm{e}^{-2 \pi \beta \mathrm{y} / \ell} \tag{2.35a}
\end{equation*}
$$

Integrating (2.35a) with respect to x, we have

$$
\begin{align*}
& \varphi=V_{\infty} x+\left(\frac{V_{\infty} h}{\beta}\right)\left(\frac{2 \pi}{\ell}\right)\left(\sin \frac{2 \pi x}{\ell}\right) \frac{1}{\left(\frac{2 \pi}{\ell}\right)} e^{-2 \pi \beta y / \ell}+f(y) \\
& \varphi=V_{\infty} x+\frac{V_{\infty} h}{\beta}\left(\sin \frac{2 \pi x}{\ell}\right) e^{-2 \pi \beta y / \ell}+f(y) \tag{2.35b}
\end{align*}
$$

From (2.36)

$$
\begin{equation*}
\frac{\partial \varphi}{\partial y}=\mathrm{v}=-\mathrm{V}_{\infty} \mathrm{h} \frac{2 \pi}{\ell}\left(\sin \frac{2 \pi x}{\ell}\right) \mathrm{e}^{-2 \pi \beta y / \ell} \tag{2.36a}
\end{equation*}
$$

Integrating (2.36a) with respect to y, we have

$$
\begin{align*}
& \varphi=\mathrm{V}_{\infty} \mathrm{h}\left(\frac{2 \pi}{\ell}\right)\left(\sin \frac{2 \pi \mathrm{x}}{\ell}\right)\left(\mathrm{e}^{-2 \pi \beta \mathrm{y} / \ell}\right) \frac{1}{\left(\frac{2 \pi \beta}{\ell}\right)}+\mathrm{f}(\mathrm{x}) \\
& \varphi=\frac{V_{\infty} h}{\beta}\left(\sin \frac{2 \pi x}{\ell}\right)\left(e^{-2 \pi \beta \mathrm{y} / \ell}\right)+\mathrm{f}(\mathrm{x}) \tag{2.36b}
\end{align*}
$$

Comparing (2.35b) and (2.36b), which represent the same function for φ, we see in (2.36b) that $f(x)=V_{\infty} x$. So the velocity potential for the compressible subsonic flow over a wavy well is:

$$
\varphi=\mathrm{V}_{\infty} x+\frac{\mathrm{V}_{\infty} \mathrm{h}}{\beta}\left(\sin \frac{2 \pi x}{\ell}\right) \mathrm{e}^{-2 \pi \beta y / \ell}
$$

2.14 The equation of a streamline can be found from Eq. (2.118)

$$
\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{\mathrm{v}}{\mathrm{u}}
$$

For the flow over the wavy wall in Example 2.1,

$$
\left.\left.\frac{\mathrm{dy}}{\mathrm{dx}}=\frac{-\mathrm{V}_{\infty} \mathrm{h} \frac{2 \pi}{\ell}\left(\sin \frac{2 \pi x}{\ell}\right) e^{-2 \pi \beta \mathrm{y} / \ell}}{V_{\infty}\left[1+\frac{h 2 \pi}{\beta} \frac{2 \pi}{\ell}\left(\cos ^{2 \pi \pi x} \ell\right.\right.}\right) e^{-2 \pi \beta \mathrm{y} / / \mathrm{l}}\right]
$$

As $y \rightarrow \infty$, then $e^{-2 \pi \beta y / t} \rightarrow 0$. Thus,

$$
\frac{d y}{d x} \rightarrow \frac{0}{V_{\infty}+0}=0
$$

The slope is zero. Hence, the streamline at $\mathrm{y} \rightarrow \infty$ is straight.

