CHAPTER 2

@d—g

2.1 F=~§{ pdS

If p = constant = pe,

f:—pwﬁ pdS (1)

However, the integral of the surface vector over a closed surface is zero, 1.e.,

ﬁd§=0

Hence, combining Eqgs. (1) and (2), we have

F=0
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Denote the pressure distributions on the upper and lower walls by p,(x) and p , (X) respectively.
The walls are close enough to the model such that p, and p, are not necessarily equal t0 pe.
Assume that faces ai and bh are far enough upstream and downstream of the model such that

P = P and v=0 and ai and bh.

Take the y-component of Eq. (2.66)

L=-4f (V') v- [[ pdS)y

abhi

The first integral = 0 over all surfaces, either because V- ds = 0 or because v = 0. Hence

5 b h
L= [] 0dS)y =-[] pudx; [ p, dx]

abhi a

Minus sign because y-component is in downward
Direction.

Note: In the above, the integrals over ia and bh cancel because p = p., on both faces. Hence

h . b
Ve _[ p, dx - _[ pu dx

by My _V_oy/(x +y) ¥

dx u ex/(x*+y?) X

a4
y X

fny=/lnx+c;=£n(cx)

The streamlines are straight lines emanating from the origin. (This is the velocity field and
streamline pattern for a source, to be discussed in Chapter 3.)

24 WV X
dx u
ydy=-xdx
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y2 = -x% + const

X2+ y2 = const.

The streamlines are concentric with their centers at the origin. (This is the velocity field and
streamline pattern for a vortex, to be discussed in Chapter 3.)

2.5 From inspection, since there is no radial component of velocity, the streamlines must be
circular, with centers at the origin. To show this more precisely,

u=-Vesin=—ch=-cy

T

X
v=VgcosB=cr — =cx
T

d_y_v_ ‘X

dx u y

b,z +x°= const.]

This is the equation of a circle with the center at the origin. (This velocity field corresponds to
solid body rotation.) :

26 W_Y__¥
dx u X

<

Iny=x Inx+c ‘ X

y =yl \ / T
{

The streamlines are hyperbolas.
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2.7  (a) 1 Dv =V ?/
v Dt
In polar coordinates: V- {} = 1—01 (rVy+ lév_i
17 r 00
Transformation: X=rcos O
y=rsin0

Vi=ucos®+vsin0

Vg=-usin0+vcosb
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cX _cr cos@ ¢ cosf

N (x2 +y?) r r
_ cy _cr sin@ _ ¢ sinf
W= 2 2~ 2 -
(x"+y") r r

c c .
V.= < cos’0 + — sin’0 =
¥ r

=Nl

& . & .
Vg =~ — ¢0s0 sind + — cosO sind = 0
r r

V{)/ :-1_2 (C)—{—}.@:O
r & r o0

(b) From Eq. (2.23)

a r rdo

VxV=¢,[0+0-0]=[

The flowfield is irrotational.

28 u cy _ cr sin@ _ ¢ sinf

(x> +y?) r’ 1
. —cx  _cr cosé _ ¢ cosd
Ve Ny 2 T
(x"+y’) r r

Vi=S cos® sind - < cosd sind =0
r r

g c v
Vo=- ~ $in’0 - = cos?@=- =
r r r

a 19(-c/r)
o r o0

=0+0=[]
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|
B3
—
| B
|
i lo
|
<
L

Vx V= 0] except at the origin, where r = 0. The flowfield is singular at the origin.

2.9 V. =0. Veg=cr
P T e-; liﬁ(c/r)+9£_lé’(0)}
a r r J6

= e—; (c+c—0)=20t?z

The vorticity is finite. The flow is not irrotational; it is rotational.

2.10
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Mass flow between streamlines = A y/
Ay =pV An

Ay =(-pVg) Ar+p V, (16)
Let cd approach ab

dy=-pVgdr+prVv,do @))

Also, since v = y (1,0), from calculus

=Y 4+ %Y 4o @)

duw 7
V75 20

Comparing Egs. (1) and (2)

Iy
—p V= 22
p Ve Py
and
oy
rV,= ——
P 2
or:
1 oy
Ve s
P r 09
Py
V:-_—%
P Ve a
2.11 u=cx=—@—/—:w=cxy+f(x) (1)
¥
oy
V=agy=- — : y=cxy+{ 2
Y=ot v ey ) @)
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Comparing Egs. (1) and (2), f(x) and f(y) = constant

[\g=cxy+con§j 3)
u=cx=—0;;x—:¢=cx2+f(y) “4)
V=-cy=%:¢=-cy2+f(x) (5)

Comparing Eqs. (4) and (5), f(y) = - cy* and f(x) = cx*
b=c (X2 - yz) (6)

Differentiating Eq. (3) with respect to x, holding v = const.

O=cxg}i +cy
dx

or,

w=const

Differentiating Eq. (6) with respect to x, holding ¢ = const.

0=2cx-2cy EIZ
dx
or,
dX g=const

Comparing Egs. (7) and (8), we see that

dx

&)
dx w=const (dy)

@=const

Hence, lines of constant y are perpendicular to lines of constant ¢.
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2.12. The geometry of the pipe is shown below.

l{: SOO o fsee T
—_—

P
%:/65’0,;//5-96 l

As the flow goes through the U-shape bend and is turned, it exerts a net force R on the internal
surface of the pipe. From the symmetric geometry, R is in the horizontal direction, as shown,
acting to the right. The equal and opposite force, -R, exerted by the pipe on the flow is the
mechanism that reverses the flow velocity. The cross-sectional arca of the pipe inlet is nd*/4

where d is the inside pipe diameter. Hence, A = nd*/4 = 1(0.5)*/4 = 0.196m>. The mass flow
entering the pipe is

m = p1 AV, = (1.23)(0.196)(100) = 24.11 ke/sec.

Applying the momentum equation, Eq. (2.64) to this geometry, we obtain a result similar to Eq.
(2.75), namely

R=-§f (pV'dS)V )

Where the pressure term in Eq. (2.75) is zero because the pressure at the inlet and exit are the
same values. In Eq. (1), the product (p V * dS) is negative at the inlet (V and dS are in opposite
directions), and is positive at the exit (V and dS) are in the same direction). The magnitude of p

V * dS is simply the mass flow, m. Finally, at the inlet V| is to the right, hence it is in the
positive x-direction. At the exit, V, is to the left, hence it is in the negative x-direction. Thus,
V,=-V, With this, Eq. (1) is written as

R=-[-m Vi +m Vs]=m (V,~ V)

= m [Vi=(-V})]= m 2V))

R= (24.11)(2)(100) =

27

Copyright © 2017 McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written
consent of McGraw-Hill Education



2.13 From Example 2.1, we have

u=Ve [1 + E 271 (cos 2%) e‘z'”ﬁ}’f”!] (2.35)
and

v=-V.h ETT (sin 2%) g~ 2mBy/l (2.36)
Thus,

% _ = (th) (2_1)( Eﬁ) ~2npy /e
e =u=V.+ ; 7 cos ; e (2.35a)

Integrating (2.35a) with respect to x, we have

©=V.x+ (m%h) (ETT) (sin?) {5) e 2By /E 1 f(y)

£

©=Vox+ % (sin %) e~ 2BV 4 gy (2.35h)
From (2.36)

% _y=_v.h= (sin gﬁ) e 2By /L (2.36a)

v £ {

Integrating (2.36a) with respect to y, we have
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®=V.h (ETH) (sin ?) (e—iﬂﬁwf)

)+ 1)

£

th - —a2m |I.-
o= (sin ) (/) + 1) (2.36b)

Comparing (2.35b) and (2.36b), which represent the same function for ¢, we see

in (2.36b) that f(x) = V. X. So the velocity potential for the compressible subsonic

flow over a wavy well is:

@=V.x+ % (sinz’%) e~ 2By /¢

2.14 The equation of a streamline can be found from Eq. (2.118)

dy v

dx u
For the flow over the wavy wall in Example 2.1,

dy  ~ Vi h%{sin%r) g 2By
dx Via [1+ %% {cnsz%r) e‘znﬁ?ft‘]

Asy — «, then e 2™8¥/¢ _, 0. Thus,

dy ]
-~ _ —
dx Ve+0
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The slope is zero. Hence, the streamline at y — « is straight.
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