
Solution to Chapter 2 Problems

Problem 2.1

1. � (2t + 5) = �
(
2
(
t + 5

2

))
. This indicates first we have to plot �(2t) and then shift it to left by 5

2 . A
plot is shown below:
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� t

� (2t + 5)
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2. � (−2t + 8) = � (−2(t − 4)). This operation combines a scaling, flipping, and shifting.

�

�

15
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17
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t

�(−2t + 8)

3.
∑∞

n=0 �(t − n) is a sum of shifted triangular pulses. Note that the sum of the left and right side of
triangular pulses that are displaced by one unit of time is equal to 1, The plot is given below

�

�

�� t

x3(t)

−1

1

4. Let x(t) = 2�
(

t
2

) − �(t), then x4(t) = ∑∞
n=−∞ x(t − 4n). First we plot x(t) then by shifting it

by multiples of 4 we can plot x4(t). x(t) is a triangular pulse of width 4 and height 2 from which a
standard triangular pulse of width 1 and height 1 is subtracted. The result is a trapezoidal pulse, which
when replicated at intervals of 4 gives the plot of x4(t).

�

�

�� ���� ������ ���� �� �� t

x4(t)

1

2−2 6−6

5. It is obvious from the definition of sgn(t) that sgn(2t) = sgn(t). Therefore x5(t) = 0.

6. x6(t) is a sequence of alternating triangular pulses each with width 2 and height 1.
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t
1−1

1

−1

7. x7(t) is sinc(t) contracted by a factor of 10.
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8. This is sinc(t) expanded by a factor of 10.
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9. x9(t) is the product of a sinusoidal signal with frequency 2 and an expanded rectangular pulse.
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Problem 2.2

1. x[n] = sinc(3n/9) = sinc(n/3).
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2. x[n] = �
(

n
4−1

3

)
. If − 1

2 ≤
n
4−1

3 ≤ 1
2 , i.e., −2 ≤ n ≤ 10, we have x[n] = 1.
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3. x[n] = n
4u−1(n/4) − (n

4 − 1)u−1(n/4 − 1). For n < 0, x[n] = 0, for 0 ≤ n ≤ 3, x[n] = n
4 and for

n ≥ 4, x[n] = n
4 − n

4 + 1 = 1.

−5 0 5 10 15 20
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Problem 2.3

x1[n] = 1 and x2[n] = cos(2πn) = 1, for all n. This shows that two signals can be different but their
sampled versions be the same.

Problem 2.4

Let x1[n] and x2[n] be two periodic signals with periods N1 and N2, respectively, and let N = LCM(N1, N2),
and define x[n] = x1[n] + x2[n]. Then obviously x1[n + N] = x1[n] and x2[n + N ] = x2[n], and hence
x[n] = x[n+N ], i.e., x[n] is periodic with period N .
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For continuous-time signals x1(t) and x2(t) with periods T1 and T2 respectively, in general we cannot
find a T such that T = k1T1 = k2T2 for integers k1 and k2. This is obvious for instance if T1 = 1 and T2 = π .
The necessary and sufficient condition for the sum to be periodic is that T1

T2
be a rational number.

Problem 2.5

Using the result of problem 2.4 we have:

1. The frequencies are 2000 and 5500, their ratio (and therefore the ratio of the periods) is rational, hence
the sum is periodic.

2. The frequencies are 2000 and 5500
π

. Their ratio is not rational, hence the sum is not periodic.

3. The sum of two periodic discrete-time signal is periodic.

4. The fist signal is periodic but cos[11000n] is not periodic, since there is no N such that cos[11000(n+
N)] = cos(11000n) for all n. Therefore the sum cannot be periodic.

Problem 2.6

1)

x1(t) =

⎧⎪⎪⎨⎪⎪⎩
e−t t > 0

−et t < 0

0 t = 0

�⇒ x1(−t) =

⎧⎪⎪⎨⎪⎪⎩
−e−t t > 0

et t < 0

0 t = 0

= −x1(t)

Thus, x1(t) is an odd signal
2) x2(t) = cos

(
120πt + π

3

)
is neither even nor odd. We have cos

(
120πt + π

3

) = cos
(

π
3

)
cos(120πt) −

sin
(

π
3

)
sin(120πt). Therefore x2e(t) = cos

(
π
3

)
cos(120πt) and x2o(t) = − sin

(
π
3

)
sin(120πt). (Note: This

part can also be considered as a special case of part 7 of this problem)
3)

x3(t) = e−|t | �⇒ x3(−t) = e−|(−t)| = e−|t | = x3(t)

Hence, the signal x3(t) is even.
4)

x4(t) =
{

t
|t | t �= 0

0 t = 0
�⇒ x4(−t) =

{ −t
|t | t �= 0

0 t = 0
= −x4(t)

Thus, the signal x4(t) is odd.
5)

x5(t) =
{

t t ≥ 0

0 t < 0
�⇒ x5(−t) =

{
0 t ≥ 0

−t t < 0

The signal x5(t) is neither even nor odd. The even part of the signal is

x5,e(t) = x5(t)+ x5(−t)

2
=
{

t
2 t ≥ 0
−t
2 t < 0

= |t |
2
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The odd part is

x5,o(t) = x5(t)− x5(−t)

2
=
{

t
2 t ≥ 0
t
2 t < 0

= t

2

6)

x6(t) = sin t + cos t �⇒ x6(−t) = − sin t + cos t

Clearly x6(−t) �= x6(t) for every t since otherwise 2 sin t = 0 ∀t . Similarly x6(−t) �= −x6(t) for every t

since otherwise 2 cos t = 0 ∀t . Thus x6(t) is neither even or odd. The even and the odd parts of x6(t) are
given by

x6,e(t) = x6(t)+ x6(−t)

2
= cos t

x6,o(t) = x6(t)− x6(−t)

2
= sin t

7)

x7(t) = x1(t)− x2(t) �⇒ x7(−t) = x1(−t)− x2(−t) = x1(t)+ x2(t)

Clearly x7(−t) �= x7(t) since otherwise x2(t) = 0 ∀t . Similarly x7(−t) �= −x7(t) since otherwise x1(t) =
0 ∀t . The even and the odd parts of x7(t) are given by

x7,e(t) = x7(t)+ x7(−t)

2
= x1(t)

x7,o(t) = x7(t)− x7(−t)

2
= −x2(t)

Problem 2.7

For the first two questions we will need the integral I = ∫ eax cos2 xdx.

I = 1

a

∫
cos2 x deax = 1

a
eax cos2 x + 1

a

∫
eax sin 2x dx

= 1

a
eax cos2 x + 1

a2

∫
sin 2x deax

= 1

a
eax cos2 x + 1

a2
eax sin 2x − 2

a2

∫
eax cos 2x dx

= 1

a
eax cos2 x + 1

a2
eax sin 2x − 2

a2

∫
eax(2 cos2 x − 1) dx

= 1

a
eax cos2 x + 1

a2
eax sin 2x − 2

a2

∫
eax dx − 4

a2
I

Thus,

I = 1

4+ a2

[
(a cos2 x + sin 2x)+ 2

a

]
eax
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1)

Ex = lim
T→∞

∫ T
2

− T
2

x2
1(t)dx = lim

T→∞

∫ T
2

0
e−2t cos2 tdt

= lim
T→∞

1

8

[
(−2 cos2 t + sin 2t)− 1

]
e−2t

∣∣∣∣ T2
0

= lim
T→∞

1

8

[
(−2 cos2 T

2
+ sin T − 1)e−T + 3

]
= 3

8

Thus x1(t) is an energy-type signal and the energy content is 3/8

2)

Ex = lim
T→∞

∫ T
2

− T
2

x2
2(t)dx = lim

T→∞

∫ T
2

− T
2

e−2t cos2 tdt

= lim
T→∞

[∫ 0

− T
2

e−2t cos2 tdt +
∫ T

2

0
e−2t cos2 tdt

]
But,

lim
T→∞

∫ 0

− T
2

e−2t cos2 tdt = lim
T→∞

1

8

[
(−2 cos2 t + sin 2t)− 1

]
e−2t

∣∣∣∣0− T
2

= lim
T→∞

1

8

[
−3+ (2 cos2 T

2
+ 1+ sin T )eT

]
= ∞

since 2+ cos θ + sin θ > 0. Thus, Ex = ∞ since as we have seen from the first question the second integral
is bounded. Hence, the signal x2(t) is not an energy-type signal. To test if x2(t) is a power-type signal we
find Px .

Px = lim
T→∞

1

T

∫ 0

− T
2

e−2t cos2 dt + lim
T→∞

1

T

∫ T
2

0
e−2t cos2 dt

But limT→∞ 1
T

∫ T
2

0 e−2t cos2 dt is zero and

lim
T→∞

1

T

∫ 0

− T
2

e−2t cos2 dt = lim
T→∞

1

8T

[
2 cos2 T

2
+ 1+ sin T

]
eT

> lim
T→∞

1

T
eT > lim

T→∞
1

T
(1+ T + T 2) > lim

T→∞ T = ∞

Thus the signal x2(t) is not a power-type signal.

3)

Ex = lim
T→∞

∫ T
2

− T
2

x2
3(t)dx = lim

T→∞

∫ T
2

− T
2

sgn2(t)dt = lim
T→∞

∫ T
2

− T
2

dt = lim
T→∞ T = ∞

Px = lim
T→∞

1

T

∫ T
2

− T
2

sgn2(t)dt = lim
T→∞

1

T

∫ T
2

− T
2

dt = lim
T→∞

1

T
T = 1
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The signal x3(t) is of the power-type and the power content is 1.

4)
First note that

lim
T→∞

∫ T
2

− T
2

A cos(2πf t)dt =
∞∑

k=−∞
A

∫ k+ 1
2f

k− 1
2f

cos(2πf t)dt = 0

so that

lim
T→∞

∫ T
2

− T
2

A2 cos2(2πf t)dt = lim
T→∞

1

2

∫ T
2

− T
2

(A2 + A2 cos(2π2f t))dt

= lim
T→∞

1

2

∫ T
2

− T
2

A2dt = lim
T→∞

1

2
A2T = ∞

Ex = lim
T→∞

∫ T
2

− T
2

(A2 cos2(2πf1t)+ B2 cos2(2πf2t)+ 2AB cos(2πf1t) cos(2πf2t))dt

= lim
T→∞

∫ T
2

− T
2

A2 cos2(2πf1t)dt + lim
T→∞

∫ T
2

− T
2

B2 cos2(2πf2t)dt +

AB lim
T→∞

∫ T
2

− T
2

[cos2(2π(f1 + f2)+ cos2(2π(f1 − f2)]dt

= ∞+∞+ 0 = ∞
Thus the signal is not of the energy-type. To test if the signal is of the power-type we consider two cases
f1 = f2 and f1 �= f2. In the first case

Px = lim
T→∞

1

T

∫ T
2

− T
2

(A+ B)2 cos2(2πf1)dt

= lim
T→∞

1

2T
(A+ B)2

∫ T
2

− T
2

dt = 1

2
(A+ B)2

If f1 �= f2 then

Px = lim
T→∞

1

T

∫ T
2

− T
2

(A2 cos2(2πf1t)+ B2 cos2(2πf2t)+ 2AB cos(2πf1t) cos(2πf2t))dt

= lim
T→∞

1

T

[
A2T

2
+ B2T

2

]
= A2

2
+ B2

2

Thus the signal is of the power-type and if f1 = f2 the power content is (A+ B)2/2 whereas if f1 �= f2 the
power content is 1

2 (A2 + B2)

Problem 2.8

1. This is signal x4(t) plotted in problem 2.1, as shown there it is obvious that the signal is periodic.
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2. x2(t + 1) = ∑∞
n=−∞�(t − n + 1) = ∑∞

n=−∞�(t − (n − 1)) = ∑∞
n=−∞�(t − n) = x2(t). Hence

x2(t) is periodic with period 1.

3. This is the sum of two periodic signals with periods 2π and 1. Since the ratio of the two periods is not
rational the sum is not periodic (by the result of problem 2.4)

4. sin[n] is not periodic. There is no integer N such that sin[n+N ] = sin[n] for all n.

5. x5(t + T ) = ∑∞
n=−∞ y(t − nT + T ) = ∑∞

n=−∞ y(t − (n − 1)T ) = ∑∞
n=−∞ y(t − nT ) = x5(t).

Therefore x5(t) is periodic with period T .

Problem 2.9

1)

Px = lim
T→∞

1

T

∫ T
2

−T
2

A2
∣∣ej (2πf0t+θ)

∣∣2 dt = lim
T→∞

1

T

∫ T
2

−T
2

A2dt = lim
T→∞

1

T
A2T = A2

Thus x(t) = Aej(2πf0t+θ) is a power-type signal and its power content is A2.

2)

Px = lim
T→∞

1

T

∫ T
2

−T
2

A2 cos2(2πf0t + θ) dt = lim
T→∞

1

T

∫ T
2

−T
2

A2

2
dt + lim

T→∞
1

T

∫ T
2

−T
2

A2

2
cos(4πf0t + 2θ) dt

As T →∞, the there will be no contribution by the second integral. Thus the signal is a power-type signal
and its power content is A2

2 .

3)

Px = lim
T→∞

1

T

∫ T
2

−T
2

u2
−1(t)dt = lim

T→∞
1

T

∫ T
2

0
dt = lim

T→∞
1

T

T

2
= 1

2

Thus the unit step signal is a power-type signal and its power content is 1/2

4)

Ex = lim
T→∞

∫ T
2

−T
2

x2(t)dt = lim
T→∞

∫ T
2

0
K2t−

1
2 dt = lim

T→∞ 2K2t
1
2

∣∣∣∣T/2

0

= lim
T→∞

√
2K2T

1
2 = ∞

Thus the signal is not an energy-type signal.

Px = lim
T→∞

1

T

∫ T
2

−T
2

x2(t)dt = lim
T→∞

1

T

∫ T
2

0
K2t−

1
2 dt

= lim
T→∞

1

T
2K2t

1
2

∣∣∣∣T/2

0

= lim
T→∞

1

T
2K2(T /2)

1
2 = lim

T→∞
√

2K2T −
1
2 = 0

11



Since Px is not bounded away from zero it follows by definition that the signal is not of the power-type (recall
that power-type signals should satisfy 0 < Px <∞).

Problem 2.10

�(t) =

⎧⎪⎪⎨⎪⎪⎩
t + 1, −1 ≤ t ≤ 0

−t + 1, 0 ≤ t ≤ 1

0, o.w.

u−1(t) =

⎧⎪⎪⎨⎪⎪⎩
1 t > 0

1/2 t = 0

0 t < 0

Thus, the signal x(t) = �(t)u−1(t) is given by

x(t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 t < 0

1/2 t = 0

−t + 1 0 ≤ t ≤ 1

0 t ≥ 1

�⇒ x(−t) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
0 t ≤ −1

t + 1 −1 ≤ t < 0

1/2 t = 0

0 t > 0

The even and the odd part of x(t) are given by

xe(t) = x(t)+ x(−t)

2
= 1

2
�(t)

xo(t) = x(t)− x(−t)

2
=

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 t ≤ −1
−t−1

2 −1 ≤ t < 0

0 t = 0
−t+1

2 0 < t ≤ 1

0 1 ≤ t

Problem 2.11

1) Suppose that

x(t) = x1
e (t)+ x1

o(t) = x2
e (t)+ x2

o (t)

with x1
e (t), x2

e (t) even signals and x1
o(t), x1

o(t) odd signals. Then, x(−t) = x1
e (t)− x1

o(t) so that

x1
e (t) = x(t)+ x(−t)

2

= x2
e (t)+ x2

o (t)+ x2
e (−t)+ x2

o (−t)

2

= 2x2
e (t)+ x2

o (t)− x2
o (t)

2
= x2

e (t)

Thus x1
e (t) = x2

e (t) and x1
o(t) = x(t)− x1

e (t) = x(t)− x2
e (t) = x2

o (t)

12



2) Let x1
e (t), x2

e (t) be two even signals and x1
o(t), x2

o (t) be two odd signals. Then,

y(t) = x1
e (t)x

2
e (t) �⇒ y(−t) = x1

e (−t)x2
e (−t) = x1

e (t)x
2
e (t) = y(t)

z(t) = x1
o(t)x

2
o (t) �⇒ z(−t) = x1

o(−t)x2
o (−t) = (−x1

o(t))(−x2
o (t)) = z(t)

Thus the product of two even or odd signals is an even signal. For v(t) = x1
e (t)x

1
o(t) we have

v(−t) = x1
e (−t)x1

o(−t) = x1
e (t)(−x1

o(t)) = −x1
e (t)x

1
o(t) = −v(t)

Thus the product of an even and an odd signal is an odd signal.

3) One trivial example is t + 1 and t2

t+1 .

Problem 2.12

1) x1(t) = �(t)+�(−t). The signal �(t) is even so that x1(t) = 2�(t)

��. . . . . . . . . . . . . . . . . .1

2

1
2

1
2

2)

x2(t) = �(t)−�(t − 1) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, t < −1/2

1/2, t = 1/2

1, −1/2 < t < 1/2

0, t = 1/2

−1, 1/2 < t < 3/2

−1/2, t = 3/2

0, 3/2 < t

�
�

�

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

.

−1

3
2

1
2− 1

2

1

13



3)

x3(t) = �(t) ·�(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, t < −1/2

1/4, t = −1/2

t + 1, −1/2 < t ≤ 0

−t + 1, 0 ≤ t < 1/2

1/4, t = 1/2

0, 1/2 < t

��. . . . . . . . .
.
.
.
.
.

.

.

.

.

.

�
�
�

�
�

�
1
4

− 1
2

1
2

1

4) x4(t) =∑∞
n=−∞�(t − 2n)

���
�
��

�
��

�
��

�
��

�
��

�
���

... ...

−3 −1 31

1

5) x5(t) =∑∞
n=−∞(−1)n�(t − n)

. . . . . . . . . . . . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . . .

�
�

�
�
����

�
�
���

�
�
��

�
�
�
�
����

�
�
���

�
�
�
����

�
�
���

�
�
��

−1

−2 21−1

1

6) x6(t) = sgn(t)+ sgn(1− t). Note that x6(0) = 1, x6(1) = 1

��

.

.

.

.

.

.

.

.

.
0

2

1

7) x7(t) = 1+ sgn(t). Note that x7(0) = 1.

14



�

0

2

8) x8(t) = sgn2(t). Note that x8(0) = 0

�
0

1

9) x9(t) = sinc(t)sgn(t). Note that x9(0) = 0.

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

-4 -3 -2 -1 0 1 2 3 4

10) x10(t) =∑∞
n=−∞(−1)nnδ(t − n)

............

. . . . . . . . .

�

�

�

�... ...

2

1

−2 −1 21

11) x11(t) =∑∞
n=1

1
2n �( t

n
) Note that for |t | < 1/2, x11(t) =∑∞

n=1
1

2n = 1
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Problem 2.13

1) The value of the expression sinc(t)δ(t) can be found by examining its effect on a function φ(t) through
the integral ∫ ∞

−∞
φ(t)sinc(t)δ(t) = φ(0)sinc(0) = sinc(0)

∫ ∞
−∞

φ(t)δ(t)

Thus sinc(t)δ(t) has the same effect as the function sinc(0)δ(t) and we conclude that

x1(t) = sinc(t)δ(t) = sinc(0)δ(t) = δ(t)

2) sinc(t)δ(t − 3) = sinc(3)δ(t − 3) = 0.

3) sinc(t − 2)δ(t) = sinc(0− 2)δ(t) = 0.

4)

x4(t) = �(t) �

∞∑
n=−∞

δ(t − 2n)

=
∞∑

n=−∞

∫ ∞
−∞

�(t − τ)δ(τ − 2n)dτ

=
∞∑

n=−∞

∫ ∞
−∞

�(τ − t)δ(τ − 2n)dτ

=
∞∑

n=−∞
�(t − 2n)
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5)

x5(t) = �(t) � δ′(t) =
∫ ∞
−∞

�(t − τ)δ′(τ )dτ

= (−1)
d

dτ
�(t − τ)

∣∣∣∣
τ=0

= �′(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 t < −1
1
2 t = −1

1 −1 < t < 0

0 t = 0

−1 0 < t < 1

− 1
2 t = 1

0 1 < t

6)

x6(t) = cos(t)δ(3t) = 1

3
cos(t)δ(t) = 1

3
cos(0)δ(t) = 1

3
δ(t)

7) x7(t) = cos
(
2t + π

3

)
δ(3t) = 1

3 cos
(
2t + π

3

)
δ(t) = 1

3 cos
(

π
3

)
δ(t). Hence x7(t) = 1

6δ(t).

8) x8(t) = cos(t)δ(3t + 1) = cos(t)δ(3(t + 1/3)) = 1
3 cos(t)δ(t + 1/3) = 1

3 cos(−1/3)δ(t + 1/3) ≈
0.315δ(t + 1/3)

9)

x9(t) = δ(5t) � δ(4t) = 1

5
δ(t) �

1

4
δ(t) = 1

20
δ(t)

10) Note that the effect of the function δ(n)(αt) on φ(t) is∫ ∞
−∞

φ(t)δ(n)(αt)dt = 1

α

∫ ∞
−∞

φ(
t

α
)δ′(t)dt

= 1

α
(−1)n dn

dtn
φ(

t

α
)

∣∣∣∣
t=0

=
(

1

α

)n+1

(−1)n dn

dxn
φ(x)

∣∣∣∣
x=0

Thus δ(n)(αt) = 1
an+1 δ

(n)(t) and

x10(t) = δ(5t) � δ′(3t) = 1

5
δ(t) �

1

9
δ′(t) = 1

45
δ′(t)

11) To see the effect of cos tδ′(t) on a function φ(t) consider the integral∫ ∞
−∞

φ(t) cos(t)δ′(t)dt = (−1)
d

dt
(cos(t)φ(t))

∣∣∣∣
t=0

= (−1)(− sin(t)φ(t)+ cos(t)
d

dt
φ(t))

∣∣∣∣
t=0

= cos(0)(−1)
d

dt
φ(t)

∣∣∣∣
t=0
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The effect is the same as that of the function cos(0)δ′(t) so that

x11(t) = cos(0)δ′(t) = δ′(t)

12)

x12(t) =
∫ ∞
−∞

�(t)δ(2(t − 1

2
))dt =

∫ ∞
−∞

1

2
�(t)δ(t − 1

2
) = 1

4

13) ∫ ∞
−∞

sinc(t)δ(t)dt = sinc(0) = 1

14) ∫ ∞
−∞

sinc(t + 1)δ(t)dt = sinc(1) = 0

15) ∫ ∞
−∞

∞∑
n=1

[ 1

2n
�(

t

n
)]δ(t)dt =

∞∑
n=1

1

2n

∫ ∞
−∞

�(
t

n
)δ(t)dt =

∞∑
n=1

1

2n
= 1

16) ∫ ∞
−∞

cos(t)

[ ∞∑
1

δ(2nt)

]
dt =

∞∑
1

1

2n

∫ ∞
−∞

cos(t)δ(t)dt =
∞∑
1

1

2n
= 1

Problem 2.14

The impulse signal can be defined in terms of the limit

δ(t) = lim
τ→0

1

2τ

(
e−

|t |
τ

)
But e−

|t |
τ is an even function for every τ so that δ(t) is even. Since δ(t) is even, we obtain

δ(t) = δ(−t) �⇒ δ′(t) = −δ′(−t)

Thus, the function δ′(t) is odd. For the function δ(n)(t) we have∫ ∞
−∞

φ(t)δ(n)(−t)dt = (−1)n

∫ ∞
−∞

φ(t)δ(n)(t)dt

where we have used the differentiation chain rule

d

dt
δ(k−1)(−t) = d

d(−t)
δ(k−1)(−t)

d

dt
(−t) = (−1)δ(k)(−t)

18



Thus, if n = 2l (even) ∫ ∞
−∞

φ(t)δ(n)(−t)dt =
∫ ∞
−∞

φ(t)δ(n)(t)dt

and the function δ(n)(t) is even. If n = 2l + 1 (odd), then (−1)n = −1 and∫ ∞
−∞

φ(t)δ(n)(−t)dt = −
∫ ∞
−∞

φ(t)δ(n)(t)dt

from which we conclude that δ(n)(t) is odd.

Problem 2.15

x(t) � δ(n)(t) =
∫ ∞
−∞

x(τ)δ(n)(t − τ) dτ

The signal δ(n)(t) is even if n is even and odd if n is odd. Consider first the case that n = 2l. Then,

x(t) � δ(2l)(t) =
∫ ∞
−∞

x(τ)δ(2l)(τ − t) dτ = (−1)2l d2l

dτ 2l
x(τ )

∣∣∣∣
τ=t

= dn

dtn
x(t)

If n is odd then,

x(t) � δ(2l+1)(t) =
∫ ∞
−∞

x(τ)(−1)δ(2l+1)(τ − t) dτ = (−1)(−1)2l+1 d2l+1

dτ 2l+1
x(τ)

∣∣∣∣
τ=t

= dn

dtn
x(t)

In both cases

x(t) � δ(n)(t) = dn

dtn
x(t)

The convolution of x(t) with u−1(t) is

x(t) � u−1(t) =
∫ ∞
−∞

x(τ)u−1(t − τ)dτ

But u−1(t − τ) = 0 for τ > t so that

x(t) � u−1(t) =
∫ t

−∞
x(τ)dτ

Problem 2.16

1) Nonlinear, since the response to x(t) = 0 is not y(t) = 0 (this is a necessary condition for linearity of a
system, see also problem 2.21).
2) Nonlinear, if we multiply the input by constant −1, the output does not change. In a linear system the
output should be scaled by −1.
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3) Linear, the output to any input zero, therefore for the input αx1(t)+ βx2(t) the output is zero which can
be considered as αy1(t)+ βy2(t) = α × 0 + β × 0 = 0. This is a linear combination of the corresponding
outputs to x1(t) and x2(t).
4) Nonlinear, the output to x(t) = 0 is not zero.
5) Nonlinear. The system is not homogeneous for if α < 0 and x(t) > 0 then y(t) = T [αx(t)] = 0 whereas
z(t) = αT [x(t)] = α.

6) Nonlinear. The system is not homogeneous for if x(t) �= 0 then

y(t) = T [αx(t)] = αx(t)

|α||x(t)| = sgn(α)
x(t)

|x(t)|
whereas

z(t) = αT [x(t)] = α
x(t)

|x(t)|

7) Nonlinear. The system is not homogeneous for if α < 0 then y(t) = T [αx(t)] = |α||x(t)| whereas
z(t) = αT [x(t)] = α|x(t)|. The system is not additive either since |x1(t)+ x2(t)| �= |x1(t)| + |x2(t)|.
8) Linear. For if x(t) = αx1(t)+ βx2(t) then

T [αx1(t)+ βx2(t)] = (αx1(t)+ βx2(t))e
−t

= αx1(t)e
−t + βx2(t)e

−t = αT [x1(t)] + βT [x2(t)]

9) Linear. For if x(t) = αx1(t)+ βx2(t) then

T [αx1(t)+ βx2(t)] = (αx1(t)+ βx2(t))u(t)

= αx1(t)u(t)+ βx2(t)u(t) = αT [x1(t)] + βT [x2(t)]

10) Linear.

y(t) = (αx1(t)+ βx2(t))δ(t) = (αx1(0)+ βx2(0))δ(t)

= αx1(0)δ(t)+ βx2(0)δ(t) = αx1(t)δ(t)+ βx2(t)δ(t)

11) Linear.

y(t) = (αx1(t)+ βx2(t))

∞∑
n=−∞

δ(t − nT )

=
∞∑

n=−∞
(αx1(nT )+ βx2(nT ))δ(t − nT )

=
∞∑

n=−∞
αx1(nT )δ(t − nT )+

∞∑
n=−∞

βx2(nT )δ(t − nT )

= αx1(t)

∞∑
n=−∞

δ(t − nT )+ βx2(t)

∞∑
n=−∞

δ(t − nT )
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12) Linear. For if x(t) = αx1(t)+ βx2(t) then

T [αx1(t)+ βx2(t)] =

⎧⎪⎪⎨⎪⎪⎩
d
dt

(αx1(t)+ βx2(t)) t > 0

(αx1(t)+ βx2(t)) t < 0

0 t = 0

=

⎧⎪⎪⎨⎪⎪⎩
α d

dt
x1(t)+ β d

dt
x2(t) t > 0

αx1(t)+ βx2(t) t < 0

0 t = 0

= αT [x1(t)] + βT [x2(t)

13) Linear. We can write the output of this feedback system as

y(t) = x(t)+ y(t − 1) =
∞∑

n=0

x(t − n)

Then for x(t) = αx1(t)+ βx2(t)

y(t) =
∞∑

n=0

(αx1(t − n)+ βx2(t − n))

= α

∞∑
n=0

x1(t − n)+ β

∞∑
n=0

x2(t − n))

= αy1(t)+ βy2(t)

14) Linear. Assuming that only a finite number of jumps occur in the interval (−∞, t] and that the magnitude
of these jumps is finite so that the algebraic sum is well defined, we obtain

y(t) = T [αx(t)] =
N∑

n=1

αJx(tn) = α

N∑
n=1

Jx(tn) = αT [x(t)]

where N is the number of jumps in (−∞, t] and Jx(tn) is the value of the jump at time instant tn, that is

Jx(tn) = lim
ε→0

(x(tn + ε)− x(tn − ε))

For x(t) = x1(t)+ x2(t) we can assume that x1(t), x2(t) and x(t) have the same number of jumps and at the
same positions. This is true since we can always add new jumps of magnitude zero to the already existing
ones. Then for each tn, Jx(tn) = Jx1(tn)+ Jx2(tn) and

y(t) =
N∑

n=1

Jx(tn) =
N∑

n=1

Jx1(tn)+
N∑

n=1

Jx2(tn)

so that the system is additive.

Problem 2.17

Only if (�⇒)

21



If the system T is linear then

T [αx1(t)+ βx2(t)] = αT [x1(t)] + βT [x2(t)]
for all α, β and x(t)’s. If we set β = 0, then

T [αx1(t)] = αT [x1(t)]
so that the system is homogeneous. If we let α = β = 1, we obtain

T [x1(t)+ x2(t)] = T [x1(t)] + T [x2(t)]
and thus the system is additive.
If (⇐�)
Suppose that both conditions 1) and 2) hold. Thus the system is homogeneous and additive. Then

T [αx1(t)+ βx2(t)]
= T [αx1(t)] + T [βx2(t)] (additive system)

= αT [x1(t)] + βT [x2(t)] (homogeneous system)

Thus the system is linear.

Problem 2.18

1. Neither homogeneous nor additive.

2. Neither homogeneous nor additive.

3. Homogeneous and additive.

4. Neither homogeneous nor additive.

5. Neither homogeneous nor additive.

6. Homogeneous but not additive.

7. Neither homogeneous nor additive.

8. Homogeneous and additive.

9. Homogeneous and additive.

10. Homogeneous and additive.

11. Homogeneous and additive.

12. Homogeneous and additive.

13. Homogeneous and additive.

14. Homogeneous and additive.
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Problem 2.19

We first prove that

T [nx(t)] = nT [x(t)]
for n ∈ N . The proof is by induction on n. For n = 2 the previous equation holds since the system is
additive. Let us assume that it is true for n and prove that it holds for n+ 1.

T [(n+ 1)x(t)]
= T [nx(t)+ x(t)]
= T [nx(t)] + T [x(t)] (additive property of the system)

= nT [x(t)] + T [x(t)] (hypothesis, equation holds for n)

= (n+ 1)T [x(t)]
Thus T [nx(t)] = nT [x(t)] for every n. Now, let

x(t) = my(t)

This implies that

T
[
x(t)

m

]
= T [y(t)]

and since T [x(t)] = T [my(t)] = mT [y(t)] we obtain

T
[
x(t)

m

]
= 1

m
T [x(t)]

Thus, for an arbitrary rational α = k
λ

we have

T
[

k

λ
x(t)

]
= T
[
k

(
x(t)

λ

)]
= kT
[
x(t)

λ

]
= k

λ
T [x(t)]

Problem 2.20

Clearly, for any α

y(t) = T [αx(t)] =
{

α2x2(t)

αx′(t) x ′(t) �= 0

0 x ′(t) = 0
=
{

αx2(t)

x′(t) x ′(t) �= 0

0 x ′(t) = 0
= αT [x(t)]

Thus the system is homogeneous and if it is additive then it is linear. However, if x(t) = x1(t)+ x2(t) then
x ′(t) = x ′1(t)+ x ′2(t) and

(x1(t)+ x2(t))
2

x ′1(t)+ x ′2(t)
�= x2

1(t)

x ′1(t)
+ x2

2(t)

x ′2(t)
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for some x1(t), x2(t). To see this let x2(t) = c (a constant signal). Then

T [x1(t)+ x2(t)] = (x1(t)+ c)2

x ′1(t)
= x2

1(t)+ 2cx1(t)+ c2

x ′1(t)

and

T [x1(t)] + T [x2(t)] = x2
1(t)

x ′1(t)

Thus T [x1(t)+ x2(t)] �= T [x1(t)] + T [x2(t)] unless c = 0. Hence the system is nonlinear since the additive
property has to hold for every x1(t) and x2(t).

As another example of a system that is homogeneous but non linear is the system described by

T [x(t)] =
{

x(t)+ x(t − 1) x(t)x(t − 1) > 0

0 otherwise

Clearly T [αx(t)] = αT [x(t)] but T [x1(t)+ x2(t)] �= T [x1(t)] + T [x2(t)]

Problem 2.21

Any zero input signal can be written as 0 · x(t) with x(t) an arbitrary signal. Then, the response of the linear
system is y(t) = L[0 · x(t)] and since the system is homogeneous (linear system) we obtain

y(t) = L[0 · x(t)] = 0 · L[x(t)] = 0

Thus the response of the linear system is identically zero.

Problem 2.22

For the system to be linear we must have

T [αx1(t)+ βx2(t)] = αT [x1(t)] + βT [x2(t)]
for every α, β and x(t)’s.

T [αx1(t)+ βx2(t)] = (αx1(t)+ βx2(t)) cos(2πf0t)

= αx1(t) cos(2πf0t)+ βx2(t) cos(2πf0t)

= αT [x1(t)] + βT [x2(t)]
Thus the system is linear. In order for the system to be time-invariant the response to x(t − t0) should be
y(t − t0) where y(t) is the response of the system to x(t). Clearly y(t − t0) = x(t − t0) cos(2πf0(t − t0))

and the response of the system to x(t − t0) is y ′(t) = x(t − t0) cos(2πf0t). Since cos(2πf0(t − t0)) is not
equal to cos(2πf0t) for all t , t0 we conclude that y ′(t) �= y(t − t0) and thus the system is time-variant.

Problem 2.23

1) False. For if T1[x(t)] = x3(t) and T2[x(t)] = x1/3(t) then the cascade of the two systems is the identity
system T [x(t)] = x(t) which is known to be linear. However, both T1[·] and T2[·] are nonlinear.
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2) False. For if

T1[x(t)] =
{

tx(t) t �= 0

0 t = 0
T2[x(t)] =

{
1
t
x(t) t �= 0

0 t = 0

Then T2[T1[x(t)]] = x(t) and the system which is the cascade of T1[·] followed by T2[·] is time-invariant ,
whereas both T1[·] and T2[·] are time variant.

3) False. Consider the system

y(t) = T [x(t)] =
{

x(t) t ≥ 0

1 t < 0

Then the output of the system y(t) depends only on the input x(τ) for τ ≤ t This means that the system is
causal. However the response to a causal signal, x(t) = 0 for t ≤ 0, is nonzero for negative values of t and
thus it is not causal.

Problem 2.24

1) Time invariant: The response to x(t − t0) is 2x(t − t0)+ 3 which is y(t − t0).
2) Time varying the response to x(t − t0) is (t + 2)x(t − t0) but y(t − t0) = (t − t0 + 2)x(t − t0), obviously
the two are not equal.
3) Time varying: The response to x(t − t0) is t + x(t − t0) whereas y(t − t0) = x(t − t0)+ t − t0.
4) Time-varying system. The response y(t− t0) is equal to x(−(t− t0)) = x(−t+ t0). However the response
of the system to x(t − t0) is z(t) = x(−t − t0) which is not equal to y(t − t0)

5) Time-varying system. Clearly

y(t) = x(t)u−1(t) �⇒ y(t − t0) = x(t − t0)u−1(t − t0)

However, the response of the system to x(t − t0) is z(t) = x(t − t0)u−1(t) which is not equal to y(t − t0)

6) Time-varying system. Clearly

y(t) = x(t)δ(t) �⇒ y(t − t0) = x(t − t0)δ(t − t0) = x(0)δ(t − t0)

However, the response of the system to x(t− t0) is z(t) = x(t− t0)δ(t) = x(−t0)δ(t) which is different with
y(t − t0).

7) Time-varying system. It is true that y(t − t0) is the response to x(t − t0) for t0 = mT . However, for the
system to be time-invariant this relation should hold for every t0 which is not the case.

8) Time-invariant system. Clearly

y(t) =
∫ t

−∞
x(τ)dτ �⇒ y(t − t0) =

∫ t−t0

−∞
x(τ)dτ

The response of the system to x(t − t0) is

z(t) =
∫ t

−∞
x(τ − t0)dτ =

∫ t−t0

−∞
x(v)dv = y(t − t0)
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where we have used the change of variable v = τ − t0.

9) Time-invariant system. Writing y(t) as
∑∞

n=−∞ x(t − n) we get

y(t − t0) =
∞∑

n=−∞
x(t − t0 − n) = T [x(t − t0)]

10) Time-invariant system. The response of the system is simply y(t) = sgn(x(t)). Thus y(t − t0) =
sgn(x(t − t0)) is the response of the system to x(t − t0).

Problem 2.25

The differentiator is a LTI system (see examples 2.19 and 2.1.21 in book). It is true that the output of a
system which is the cascade of two LTI systems does not depend on the order of the systems. This can be
easily seen by the commutative property of the convolution

h1(t) � h2(t) = h2(t) � h1(t)

Let h1(t) be the impulse response of a differentiator, and let y(t) be the output of the system h2(t) with input
x(t). Then,

z(t) = h2(t) � x ′(t) = h2(t) � (h1(t) � x(t))

= h2(t) � h1(t) � x(t) = h1(t) � h2(t) � x(t)

= h1(t) � y(t) = y ′(t)

Problem 2.26

The integrator is is a LTI system (why?). It is true that the output of a system which is the cascade of two LTI
systems does not depend on the order of the systems. This can be easily seen by the commutative property
of the convolution

h1(t) � h2(t) = h2(t) � h1(t)

Let h1(t) be the impulse response of an integrator, and let y(t) be the output of the system h2(t) with input
x(t). Then,

z(t) = h2(t) �

∫ t

−∞
x(τ) dτ = h2(t) � (h1(t) � x(t))

= h2(t) � h1(t) � x(t) = h1(t) � h2(t) � x(t)

= h1(t) � y(t) =
∫ t

−∞
y(τ) dτ

Problem 2.27

The output of a LTI system is the convolution of the input with the impulse response of the system. Thus,

δ(t) =
∫ ∞
−∞

h(τ)e−α(t−τ)u−1(t − τ)dτ =
∫ t

−∞
h(τ)e−α(t−τ)dτ
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Differentiating both sides with respect to t we obtain

δ′(t) = (−α)e−αt

∫ t

−∞
h(τ)eατ dτ + e−αt d

dt

[∫ t

−∞
h(τ)eατ dτ

]
= (−α)δ(t)+ e−αth(t)eαt = (−α)δ(t)+ h(t)

Thus

h(t) = αδ(t)+ δ′(t)

The response of the system to the input x(t) is

y(t) =
∫ ∞
−∞

x(τ)
[
αδ(t − τ)+ δ′(t − τ)

]
dτ

= α

∫ ∞
−∞

x(τ)δ(t − τ)dτ +
∫ ∞
−∞

x(τ)δ′(t − τ)dτ

= αx(t)+ d

dt
x(t)

Problem 2.28

For the system to be causal the output at the time instant t0 should depend only on x(t) for t ≤ t0.

y(t0) = 1

2T

∫ t0+T

t0−T

x(τ )dτ = 1

2T

∫ t0

t0−T

x(τ )dτ + 1

2T

∫ t0+T

t0

x(τ)dτ

We observe that the second integral on the right side of the equation depends on values of x(τ) for τ greater
than t0. Thus the system is non causal.

Problem 2.29

Consider the system

y(t) = T [x(t)] =
{

x(t) x(t) �= 0

1 x(t) = 0

This system is causal since the output at the time instant t depends only on values of x(τ) for τ ≤ t (actually
it depends only on the value of x(τ) for τ = t , a stronger condition.) However, the response of the system
to the impulse signal δ(t) is one for t < 0 so that the impulse response of the system is nonzero for t < 0.

Problem 2.30

1. Noncausal: Since for t < 0 we do not have sinc(t) = 0.

2. This is a rectangular signal of width 6 centered at t0 = 3, for negative t’s it is zero, therefore the system
is causal.

3. The system is causal since for negative t’s h(t) = 0.
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Problem 2.31

The output y(t) of a LTI system with impulse response h(t) and input signal u−1(t) is

y(t) =
∫ ∞
−∞

h(τ)u−1(t − τ)dτ =
∫ t

−∞
h(τ)u−1(t − τ)dτ +

∫ ∞
t

h(τ )u−1(t − τ)dτ

But u−1(t − τ) = 1 for τ < t so that∫ t

−∞
h(τ)u−1(t − τ)dτ =

∫ t

−∞
h(τ)dτ

Similarly, since u−1(t − τ) = 0 for τ < t we obtain∫ ∞
t

h(τ )u−1(t − τ)dτ = 0

Combining the previous integrals we have

y(t) =
∫ ∞
−∞

h(τ)u−1(t − τ)dτ =
∫ t

−∞
h(τ)dτ

Problem 2.32

Let h(t) denote the the impulse response of a differentiator. Then for every input signal

x(t) � h(t) = d

dt
x(t)

If x(t) = δ(t) then the output of the differentiator is its impulse response. Thus,

δ(t) � h(t) = h(t) = δ′(t)

The output of the system to an arbitrary input x(t) can be found by convolving x(t) with δ′(t). In this case

y(t) = x(t) � δ′(t) =
∫ ∞
−∞

x(τ)δ′(t − τ)dτ = d

dt
x(t)

Assume that the impulse response of a system which delays its input by t0 is h(t). Then the response to
the input δ(t) is

δ(t) � h(t) = δ(t − t0)

However, for every x(t)

δ(t) � x(t) = x(t)

so that h(t) = δ(t − t0). The output of the system to an arbitrary input x(t) is

y(t) = x(t) � δ(t − t0) =
∫ ∞
−∞

x(τ)δ(t − t0 − τ)dτ = x(t − t0)
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Problem 2.33

The response of the system to the signal αx1(t)+ βx2(t) is

y1(t) =
∫ t

t−T

(αx1(τ )+ βx2(τ ))dτ = α

∫ t

t−T

x1(τ )dτ + β

∫ t

t−T

x2(τ )dτ

Thus the system is linear. The response to x(t − t0) is

y1(t) =
∫ t

t−T

x(τ − t0)dτ =
∫ t−t0

t−t0−T

x(v)dv = y(t − t0)

where we have used the change of variables v = τ − t0. Thus the system is time invariant. The impulse
response is obtained by applying an impulse at the input.

h(t) =
∫ t

t−T

δ(τ )dτ =
∫ t

−∞
δ(τ )dτ −

∫ t−T

−∞
δ(τ )dτ = u−1(t)− u−1(t − T )

Problem 2.34

1)

e−tu−1(t) � e−tu−1(t) =
∫ ∞
−∞

e−τ u−1(τ )e−(t−τ)u−1(t − τ)dτ =
∫ t

0
e−t dτ

=
{

te−t t > 0

0 t < 0

2)

e−tu−1(t) � u−1(t) =
∫ ∞
−∞

u−1(τ )e−(t−τ)u−1(t − τ)dτ

=
∫ t

0
e−(t−τ)dτ = e−t eτ

∣∣∣∣t
0

=
{

1− e−t t > 0

0 t < 0

3)

x(t) = �(t) � �(t) =
∫ ∞
−∞

�(θ)�(t − θ)dθ =
∫ 1

2

− 1
2

�(t − θ)dθ =
∫ t+ 1

2

t− 1
2

�(v)dv
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t ≤ −3

2
�⇒ x(t) = 0

−3

2
< t ≤ −1

2
�⇒ x(t) =

∫ t+ 1
2

−1
(v + 1)dv = (

1

2
v2 + v)

∣∣∣∣t+ 1
2

−1

= 1

2
t2 + 3

2
t + 9

8

−1

2
< t ≤ 1

2
�⇒ x(t) =

∫ 0

t− 1
2

(v + 1)dv +
∫ t+ 1

2

0
(−v + 1)dv

= (
1

2
v2 + v)

∣∣∣∣0
t− 1

2

+ (−1

2
v2 + v)

∣∣∣∣t+ 1
2

0

= −t2 + 3

4

1

2
< t ≤ 3

2
�⇒ x(t) =

∫ 1

t− 1
2

(−v + 1)dv = (−1

2
v2 + v)

∣∣∣∣1
t− 1

2

= 1

2
t2 − 3

2
t + 9

8

3

2
< t �⇒ x(t) = 0

Thus,

x(t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 t ≤ − 3
2

1
2 t2 + 3

2 t + 9
8 − 3

2 < t ≤ − 1
2

−t2 + 3
4 − 1

2 < t ≤ 1
2

1
2 t2 − 3

2 t + 9
8

1
2 < t ≤ 3

2

0 3
2 < t

4)

x(t) = �(t)sgn(t) � u−1(t) =
∫ t

−∞
�(τ)sgn(τ )dτ

t ≤ −1 �⇒ x(t) = 0

−1 < t ≤ 0 �⇒ x(t) =
∫ t

−∞
(−v − 1)dv = (−1

2
v2 − v)

∣∣∣∣t−1

= −1

2
t2 − t − 1

2

0 < t ≤ 1 �⇒ x(t) = −1

2
+
∫ t

0
(−v + 1)dv = −1

2
+ (−1

2
v2 + v)

∣∣∣∣t
0

= −1

2
t2 + t − 1

2
1 < t �⇒ x(t) = 0

5)

x(t) = �(t) � sgn(t) =
∫ ∞
−∞

�(τ)sgn(t − τ)dτ =
∫ t

−∞
�(τ)dτ −

∫ ∞
t

�(τ)dτ = x1(t)− x2(t)
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t ≤ −1 �⇒ x1(t) = 0, x2(t) = 1 and x(t) = −1

−1 ≤ t ≤ 0 �⇒ x1(t) =
∫ t

−1
(v + 1)dv = (

1

2
v2 + v)

∣∣∣∣t−1

= 1

2
t2 + t + 1

2

x2(t) =
∫ 0

t

(v + 1)dv +
∫ 1

0
(−v + 1)dv = (

1

2
v2 + v)

∣∣∣∣0
t

+ 1

2

= −1

2
t2 − t + 1

2
x(t) = x1(t)− x2(t) = t2 + 2t

0 ≤ t ≤ 1 �⇒ x1(t) = 1

2

∫ t

0
(−v + 1)dv = 1

2
+ (−1

2
v2 + v)

∣∣∣∣t
0

= −1

2
t2 + t + 1

2

x2(t) =
∫ 1

t

(−v + 1)dv = (−1

2
v2 + v)

∣∣∣∣1
t

= 1

2
t2 − t + 1

2

x(t) = x1(t)− x2(t) = −t2 + 2t

1 ≤ t �⇒ x1(t) = 1, x2(t) = 0 and x(t) = 1

6)

x(t) = �(t)u−1(t) � �(t) =
∫ ∞

0
�(τ)�(t − τ)dτ

Note that �(t − τ) = 1 for |t − τ | < 1/2 and zero otherwise. Thus

t < −1

2
�⇒ x(t) = 0

−1

2
≤ t ≤ −1

2
�⇒ x(t) =

∫ t+ 1
2

0
�(τ)dτ = (−1

2
v2 + v)

∣∣∣∣t+ 1
2

0

= −1

2
t2 + 1

2
t + 3

8

1

2
≤ t ≤ 3

2
�⇒ x(t) =

∫ 1

t− 1
2

�(τ)dτ = (−1

2
v2 + v)

∣∣∣∣1
t− 1

2

= 1

2
t2 − 3

2
t + 9

8

3

2
< t �⇒ x(t) = 0

Problem 2.35

The output of a LTI system with impulse response h(t) is

y(t) =
∫ ∞
−∞

x(t − τ)h(τ)dτ =
∫ ∞
−∞

x(τ)h(t − τ)dτ

Using the first formula for the convolution and observing that h(τ) = 0, τ < 0 we obtain

y(t) =
∫ 0

−∞
x(t − τ)h(τ)dτ +

∫ ∞
0

x(t − τ)h(τ)dτ =
∫ ∞

0
x(t − τ)h(τ)dτ

Using the second formula for the convolution and writing

y(t) =
∫ t

−∞
x(τ)h(t − τ)dτ +

∫ ∞
t

x(τ )h(t − τ)dτ
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we obtain

y(t) =
∫ t

−∞
x(τ)h(t − τ)dτ

The last is true since h(t − τ) = 0 for t < τ so that
∫∞
t

x(τ )h(t − τ)dτ = 0

Problem 2.36

In order for the signals ψn(t) to constitute an orthonormal set of signals in [α, α+T0] the following condition
should be satisfied

〈ψn(t), ψm(t)〉 =
∫ α+T0

α

ψn(t)ψ
∗
m(t)dt = δmn =

{
1 m = n

0 m �= n

But

〈ψn(t), ψm(t)〉 =
∫ α+T0

α

1√
T0

e
j2π n

T0
t 1√

T0
e
−j2π m

T0
t
dt

= 1

T0

∫ α+T0

α

e
j2π

(n−m)
T0

t
dt

If n = m then e
j2π

(n−m)
T0

t = 1 so that

〈ψn(t), ψn(t)〉 = 1

T0

∫ α+T0

α

dt = 1

T0
t

∣∣∣∣α+T0

α

= 1

When n �= m then,

〈ψn(t), ψm(t)〉 = 1

j2π(n−m)
ex

∣∣∣∣j2π(n−m)(α+T0)/T0

j2π(n−m)α/T0

= 0

Thus, 〈ψn(t), ψn(t)〉 = δmn which proves that ψn(t) constitute an orthonormal set of signals.

Problem 2.37

1) Since (a − b)2 ≥ 0 we have that

ab ≤ a2

2
+ b2

2

with equality if a = b. Let

A =
[

n∑
i=1

α2
i

] 1
2

, B =
[

n∑
i=1

β2
i

] 1
2

Then substituting αi/A for a and βi/B for b in the previous inequality we obtain

αi

A

βi

B
≤ 1

2

α2
i

A2
+ 1

2

β2
i

B2
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with equality if αi

βi
= A

B
= k or αi = kβi for all i. Summing both sides from i = 1 to n we obtain

n∑
i=1

αiβi

AB
≤ 1

2

n∑
i=1

α2
i

A2
+ 1

2

n∑
i=1

β2
i

B2

= 1

2A2

n∑
i=1

α2
i +

1

2B2

n∑
i=1

β2
i =

1

2A2
A2 + 1

2B2
B2 = 1

Thus,

1

AB

n∑
i=1

αiβi ≤ 1 ⇒
n∑

i=1

αiβi ≤
[

n∑
i=1

α2
i

] 1
2
[

n∑
i=1

β2
i

] 1
2

Equality holds if αi = kβi , for i = 1, . . . , n.

2) The second equation is trivial since |xiy
∗
i | = |xi ||y∗i |. To see this write xi and yi in polar coordinates as

xi = ρxi
ejθxi and yi = ρyi

ejθyi . Then, |xiy
∗
i | = |ρxi

ρyi
ej (θxi

−θyi
)| = ρxi

ρyi
= |xi ||yi | = |xi ||y∗i |. We turn

now to prove the first inequality. Let zi be any complex with real and imaginary components zi,R and zi,I

respectively. Then, ∣∣∣∣∣
n∑

i=1

zi

∣∣∣∣∣
2

=
∣∣∣∣∣

n∑
i=1

zi,R + j

n∑
i=1

zi,I

∣∣∣∣∣
2

=
(

n∑
i=1

zi,R

)2

+
(

n∑
i=1

zi,I

)2

=
n∑

i=1

n∑
m=1

(zi,Rzm,R + zi,I zm,I )

Since (zi,Rzm,I − zm,Rzi,I )
2 ≥ 0 we obtain

(zi,Rzm,R + zi,I zm,I )
2 ≤ (z2

i,R + z2
i,I )(z

2
m,R + z2

m,I )

Using this inequality in the previous equation we get∣∣∣∣∣
n∑

i=1

zi

∣∣∣∣∣
2

=
n∑

i=1

n∑
m=1

(zi,Rzm,R + zi,I zm,I )

≤
n∑

i=1

n∑
m=1

(z2
i,R + z2

i,I )
1
2 (z2

m,R + z2
m,I )

1
2

=
(

n∑
i=1

(z2
i,R + z2

i,I )
1
2

)(
n∑

m=1

(z2
m,R + z2

m,I )
1
2

)
=
(

n∑
i=1

(z2
i,R + z2

i,I )
1
2

)2

Thus ∣∣∣∣∣
n∑

i=1

zi

∣∣∣∣∣
2

≤
(

n∑
i=1

(z2
i,R + z2

i,I )
1
2

)2

or

∣∣∣∣∣
n∑

i=1

zi

∣∣∣∣∣ ≤
n∑

i=1

|zi |

The inequality now follows if we substitute zi = xiy
∗
i . Equality is obtained if zi,R

zi,I
= zm,R

zm,I
= k1 or ∠zi =

∠zm = θ .
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3) From 2) we obtain ∣∣∣∣∣
n∑

i=1

xiy
∗
i

∣∣∣∣∣
2

≤
n∑

i=1

|xi ||yi |

But |xi |, |yi | are real positive numbers so from 1)

n∑
i=1

|xi ||yi | ≤
[

n∑
i=1

|xi |2
] 1

2
[

n∑
i=1

|yi |2
] 1

2

Combining the two inequalities we get∣∣∣∣∣
n∑

i=1

xiy
∗
i

∣∣∣∣∣
2

≤
[

n∑
i=1

|xi |2
] 1

2
[

n∑
i=1

|yi |2
] 1

2

From part 1) equality holds if αi = kβi or |xi | = k|yi | and from part 2) xiy
∗
i = |xiy

∗
i |ejθ . Therefore, the two

conditions are {
|xi | = k|yi |
∠xi − ∠yi = θ

which imply that for all i, xi = Kyi for some complex constant K .

4) The same procedure can be used to prove the Cauchy-Schwartz inequality for integrals. An easier approach
is obtained if one considers the inequality

|x(t)+ αy(t)| ≥ 0, for all α

Then

0 ≤
∫ ∞
−∞
|x(t)+ αy(t)|2dt =

∫ ∞
−∞

(x(t)+ αy(t))(x∗(t)+ α∗y∗(t))dt

=
∫ ∞
−∞
|x(t)|2dt + α

∫ ∞
−∞

x∗(t)y(t)dt + α∗
∫ ∞
−∞

x(t)y∗(t)dt + |a|2
∫ ∞
−∞
|y(t)|2dt

The inequality is true for
∫∞
−∞ x∗(t)y(t)dt = 0. Suppose that

∫∞
−∞ x∗(t)y(t)dt �= 0 and set

α = −
∫∞
−∞ |x(t)|2dt∫∞

−∞ x∗(t)y(t)dt

Then,

0 ≤ −
∫ ∞
−∞
|x(t)|2dt + [

∫∞
−∞ |x(t)|2dt]2 ∫∞−∞ |y(t)|2dt

| ∫∞−∞ x(t)y∗(t)dt |2

and ∣∣∣∣∫ ∞−∞ x(t)y∗(t)dt

∣∣∣∣ ≤ [∫ ∞−∞ |x(t)|2dt

] 1
2
[∫ ∞
−∞
|y(t)|2dt

] 1
2
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Equality holds if x(t) = −αy(t) a.e. for some complex α.

Problem 2.38

1)

ε2 =
∫ ∞
−∞

∣∣∣∣∣x(t)−
N∑

i=1

αiφi(t)

∣∣∣∣∣
2

dt

=
∫ ∞
−∞

(
x(t)−

N∑
i=1

αiφi(t)

)⎛⎝x∗(t)−
N∑

j=1

α∗j φ
∗
j (t)

⎞⎠ dt

=
∫ ∞
−∞
|x(t)|2dt −

N∑
i=1

αi

∫ ∞
−∞

φi(t)x
∗(t)dt −

N∑
j=1

α∗j

∫ ∞
−∞

φ∗j (t)x(t)dt

+
N∑

i=1

N∑
j=1

αiα
∗
j

∫ ∞
−∞

φi(t)φ
∗
j dt

=
∫ ∞
−∞
|x(t)|2dt +

N∑
i=1

|αi |2 −
N∑

i=1

αi

∫ ∞
−∞

φi(t)x
∗(t)dt −

N∑
j=1

α∗j

∫ ∞
−∞

φ∗j (t)x(t)dt

Completing the square in terms of αi we obtain

ε2 =
∫ ∞
−∞
|x(t)|2dt −

N∑
i=1

∣∣∣∣∫ ∞−∞ φ∗i (t)x(t)dt

∣∣∣∣2 + N∑
i=1

∣∣∣∣αi −
∫ ∞
−∞

φ∗i (t)x(t)dt

∣∣∣∣2
The first two terms are independent of α’s and the last term is always positive. Therefore the minimum is
achieved for

αi =
∫ ∞
−∞

φ∗i (t)x(t)dt

which causes the last term to vanish.

2) With this choice of αi’s

ε2 =
∫ ∞
−∞
|x(t)|2dt −

N∑
i=1

∣∣∣∣∫ ∞−∞ φ∗i (t)x(t)dt

∣∣∣∣2

=
∫ ∞
−∞
|x(t)|2dt −

N∑
i=1

|αi |2

Problem 2.39

1) Using Euler’s relation we have

x1(t) = cos(2πt)+ cos(4πt)

= 1

2

(
ei2πt + e−j2πt + ej4πt + e−j4πt

)
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Therefore for n = ±1,±2, x1,n = 1
2 and for all other values of n, x1,n = 0.

2) Using Euler’s relation we have

x2(t) = cos(2πt)− cos(4πt + π/3)

= 1

2

(
ei2πt + e−j2πt − ej (4πt+π/3) − e−j (4πt+π/3)

)
= 1

2
ei2πt + 1

2
e−j2πt + 1

2
e−j2π/3ej4πt + 1

2
ej2π/3e−j4πt

from this we conclude that x2,±1 = 1
2 and x2,2 = x∗2,−2 = 1

2e−j2π/3, and for all other values of n, x2,n = 0.
3) We have x3(t) = 2 cos(2πt) − sin(4πt) = 2 cos(2πt) + cos(4πt + π/2). Using Euler’s relation as in
parts 1 and 2 we see that x3,±1 = 1 and x3,2 = x∗3,−2 = j , and for all other values of n, x3,n = 0.
4) The signal x4(t) is periodic with period T0 = 2. Thus

x4,n = 1

2

∫ 1

−1
�(t)e−j2π n

2 t dt = 1

2

∫ 1

−1
�(t)e−jπntdt

= 1

2

∫ 0

−1
(t + 1)e−jπntdt + 1

2

∫ 1

0
(−t + 1)e−jπntdt

= 1

2

(
j

πn
te−jπnt + 1

π2n2
e−jπnt

) ∣∣∣∣0−1

+ j

2πn
e−jπnt

∣∣∣∣0−1

−1

2

(
j

πn
te−jπnt + 1

π2n2
e−jπnt

) ∣∣∣∣1
0

+ j

2πn
e−jπnt

∣∣∣∣1
0

1

π2n2
− 1

2π2n2
(ejπn + e−jπn) = 1

π2n2
(1− cos(πn))

When n = 0 then

x4,0 = 1

2

∫ 1

−1
�(t)dt = 1

2

Thus

x4(t) = 1

2
+ 2

∞∑
n=1

1

π2n2
(1− cos(πn)) cos(πnt)

5) x5(t) = 1. It follows then that x5,0 = 1 and x5,n = 0, ∀n �= 0.

6) The signal is periodic with period T0 = 1. Thus

x6,n = 1

T0

∫ T0

0
ete−j2πntdt =

∫ 1

0
e(−j2πn+1)tdt

= 1

−j2πn+ 1
e(−j2πn+1)t

∣∣∣∣1
0

= e(−j2πn+1) − 1

−j2πn+ 1

= e − 1

1− j2πn
= e − 1√

1+ 4π2n2
(1+ j2πn)
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7) The signal cos(t) is periodic with period T1 = 2π whereas cos(2.5t) is periodic with period T2 = 0.8π .
It follows then that cos(t)+ cos(2.5t) is periodic with period T = 4π . The trigonometric Fourier series of
the even signal cos(t)+ cos(2.5t) is

cos(t)+ cos(2.5t) =
∞∑

n=1

αn cos(2π
n

T0
t)

=
∞∑

n=1

αn cos(
n

2
t)

By equating the coefficients of cos(n
2 t) of both sides we observe that an = 0 for all n unless n = 2, 5 in

which case a2 = a5 = 1. Hence x7,2 = x7,5 = 1
2 and x7,n = 0 for all other values of n.

8) The signal x8(t) is periodic with period T0 = 1. For n = 0

x8,0 =
∫ 1

0
(−t + 1)dt = (−1

2
t2 + t)

∣∣∣∣1
0

= 1

2

For n �= 0

x8,n =
∫ 1

0
(−t + 1)e−j2πntdt

= −
(

j

2πn
te−j2πnt + 1

4π2n2
e−j2πnt

) ∣∣∣∣1
0

+ j

2πn
e−j2πnt

∣∣∣∣1
0

= − j

2πn

Thus,

x8(t) = 1

2
+

∞∑
n=1

1

πn
sin 2πnt

9) The signal x9(t) is periodic with period T0 = 2T . We can write x9(t) as

x9(t) =
∞∑

n=−∞
δ(t − n2T )−

∞∑
n=−∞

δ(t − T − n2T )

= 1

2T

∞∑
n=−∞

ejπ n
T

t − 1

2T

∞∑
n=−∞

ejπ n
T

(t−T )

=
∞∑

n=−∞

1

2T
(1− e−jπn)ej2π n

2T
t

However, this is the Fourier series expansion of x9(t) and we identify x9,n as

x9,n = 1

2T
(1− e−jπn) = 1

2T
(1− (−1)n) =

{
0 n even
1
T

n odd
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10) The signal is periodic with period T . Thus,

x7,n = 1

T

∫ T
2

− T
2

δ′(t)e−j2π n
T

tdt

= 1

T
(−1)

d

dt
e−j2π n

T
t

∣∣∣∣
t=0

= j2πn

T 2

11) The signal x8(t) is real even and periodic with period T0 = 1
2f0

. Hence, x8,n = a8,n/2 or

x8,n = 2f0

∫ 1
4f0

− 1
4f0

cos(2πf0t) cos(2πn2f0t)dt

= f0

∫ 1
4f0

− 1
4f0

cos(2πf0(1+ 2n)t)dt + f0

∫ 1
4f0

− 1
4f0

cos(2πf0(1− 2n)t)dt

= 1

2π(1+ 2n)
sin(2πf0(1+ 2n)t)

∣∣ 1
4f0

1
4f0

+ 1

2π(1− 2n)
sin(2πf0(1− 2n)t)

∣∣ 1
4f0

1
4f0

= (−1)n

π

[
1

(1+ 2n)
+ 1

(1− 2n)

]

12) The signal x9(t) = cos(2πf0t)+ | cos(2πf0t)| is even and periodic with period T0 = 1/f0. It is equal to
2 cos(2πf0t) in the interval [− 1

4f0
, 1

4f0
] and zero in the interval [ 1

4f0
, 3

4f0
]. Thus

x9,n = 2f0

∫ 1
4f0

− 1
4f0

cos(2πf0t) cos(2πnf0t)dt

= f0

∫ 1
4f0

− 1
4f0

cos(2πf0(1+ n)t)dt + f0

∫ 1
4f0

− 1
4f0

cos(2πf0(1− n)t)dt

= 1

2π(1+ n)
sin(2πf0(1+ n)t)

∣∣ 1
4f0

1
4f0

+ 1

2π(1− n)
sin(2πf0(1− n)t)

∣∣ 1
4f0

1
4f0

= 1

π(1+ n)
sin(

π

2
(1+ n))+ 1

π(1− n)
sin(

π

2
(1− n))

Thus x9,n is zero for odd values of n unless n = ±1 in which case x9,±1 = 1
2 . When n is even (n = 2l) then

x9,2l = (−1)l

π

[
1

1+ 2l
+ 1

1− 2l

]

Problem 2.40

It follows directly from the uniqueness of the decomposition of a real signal in an even and odd part.
Nevertheless for a real periodic signal

x(t) = a0

2
+

∞∑
n=1

[
an cos(2π

n

T0
t)+ bn sin(2π

n

T0
t)

]
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The even part of x(t) is

xe(t) = x(t)+ x(−t)

2

= 1

2

(
a0 +

∞∑
n=1

an(cos(2π
n

T0
t)+ cos(−2π

n

T0
t))

+bn(sin(2π
n

T0
t)+ sin(−2π

n

T0
t))

)
= a0

2
+

∞∑
n=1

an cos(2π
n

T0
t)

The last is true since cos(θ) is even so that cos(θ) + cos(−θ) = 2 cos θ whereas the oddness of sin(θ)

provides sin(θ)+ sin(−θ) = sin(θ)− sin(θ) = 0.
The odd part of x(t) is

xo(t) = x(t)− x(−t)

2

−
∞∑

n=1

bn sin(2π
n

T0
t)

Problem 2.41

1) The signal y(t) = x(t − t0) is periodic with period T = T0.

yn = 1

T0

∫ α+T0

α

x(t − t0)e
−j2π n

T0
t
dt

= 1

T0

∫ α−t0+T0

α−t0

x(v)e
−j2π n

T0 (v + t0)dv

= e
−j2π n

T0
t0 1

T0

∫ α−t0+T0

α−t0

x(v)e
−j2π n

T0
v
dv

= xne
−j2π n

T0
t0

where we used the change of variables v = t − t0

2) For y(t) to be periodic there must existT such that y(t+mT ) = y(t). But y(t+T ) = x(t+T )ej2πf0t ej2πf0T

so that y(t) is periodic if T = T0 (the period of x(t)) and f0T = k for some k in Z . In this case

yn = 1

T0

∫ α+T0

α

x(t)e
−j2π n

T0
t
ej2πf0t dt

= 1

T0

∫ α+T0

α

x(t)e
−j2π

(n−k)
T0

t
dt = xn−k
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3) The signal y(t) is periodic with period T = T0/α.

yn = 1

T

∫ β+T

β

y(t)e−j2π n
T

tdt = α

T0

∫ β+ T0
α

β

x(αt)e
−j2π nα

T0
t
dt

= 1

T0

∫ βα+T0

βα

x(v)e
−j2π n

T0
v
dv = xn

where we used the change of variables v = αt .

4)

yn = 1

T0

∫ α+T0

α

x ′(t)e−j2π n
T0

t
dt

= 1

T0
x(t)e

−j2π n
T0

t

∣∣∣∣α+T0

α

− 1

T0

∫ α+T0

α

(−j2π
n

T0
)e
−j2π n

T0
t
dt

= j2π
n

T0

1

T0

∫ α+T0

α

x(t)e
−j2π n

T0
t
dt = j2π

n

T0
xn

Problem 2.42

1

T0

∫ α+T0

α

x(t)y∗(t)dt = 1

T0

∫ α+T0

α

∞∑
n=−∞

xne
j2πn
T0

t
∞∑

m=−∞
y∗me

− j2πm
T0

t
dt

=
∞∑

n=−∞

∞∑
m=−∞

xny
∗
m

1

T0

∫ α+T0

α

e
j2π(n−m)

T0
t
dt

=
∞∑

n=−∞

∞∑
m=−∞

xny
∗
mδmn =

∞∑
n=−∞

xny
∗
n

Problem 2.43

a) The signal is periodic with period T . Thus

xn = 1

T

∫ T

0
e−t e−j2π n

T
tdt = 1

T

∫ T

0
e−(j2π n

T
+1)tdt

= − 1

T
(
j2π n

T
+ 1
)e−(j2π n

T
+1)t

∣∣∣∣T
0

= − 1

j2πn+ T

[
e−(j2πn+T ) − 1

]
= 1

j2πn+ T
[1− e−T ] = T − j2πn

T 2 + 4π2n2
[1− e−T ]

If we write xn = an−jbn

2 we obtain the trigonometric Fourier series expansion coefficients as

an = 2T

T 2 + 4π2n2
[1− e−T ], bn = 4πn

T 2 + 4π2n2
[1− e−T ]
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b) The signal is periodic with period 2T . Since the signal is odd we obtain x0 = 0. For n �= 0

xn = 1

2T

∫ T

−T

x(t)e−j2π n
2T

tdt = 1

2T

∫ T

−T

t

T
e−j2π n

2T
tdt

= 1

2T 2

∫ T

−T

te−jπ n
T

tdt

= 1

2T 2

(
jT

πn
te−jπ n

T
t + T 2

π2n2
e−jπ n

T
t

) ∣∣∣∣T−T

= 1

2T 2

[
jT 2

πn
e−jπn + T 2

π2n2
e−jπn + jT 2

πn
ejπn − T 2

π2n2
ejπn

]
= j

πn
(−1)n

The trigonometric Fourier series expansion coefficients are:

an = 0, bn = (−1)n+1 2

πn

c) The signal is periodic with period T . For n = 0

x0 = 1

T

∫ T
2

− T
2

x(t)dt = 3

2

If n �= 0 then

xn = 1

T

∫ T
2

− T
2

x(t)e−j2π n
T

tdt

= 1

T

∫ T
2

− T
2

e−j2π n
T

tdt + 1

T

∫ T
4

− T
4

e−j2π n
T

tdt

= j

2πn
e−j2π n

T
t

∣∣∣∣ T2− T
2

+ j

2πn
e−j2π n

T
t

∣∣∣∣ T4− T
4

= j

2πn

[
e−jπn − ejπn + e−jπ n

2 − e−jπ n
2

]
= 1

πn
sin(π

n

2
) = 1

2
sinc(

n

2
)

Note that xn = 0 for n even and x2l+1 = 1
π(2l+1)

(−1)l . The trigonometric Fourier series expansion coefficients
are:

a0 = 3, , a2l = 0, , a2l+1 = 2

π(2l + 1)
(−1)l, , bn = 0, ∀n

d) The signal is periodic with period T . For n = 0

x0 = 1

T

∫ T

0
x(t)dt = 2

3
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If n �= 0 then

xn = 1

T

∫ T

0
x(t)e−j2π n

T
tdt = 1

T

∫ T
3

0

3

T
te−j2π n

T
tdt

+ 1

T

∫ 2T
3

T
3

e−j2π n
T

tdt + 1

T

∫ T

2T
3

(− 3

T
t + 3)e−j2π n

T
tdt

= 3

T 2

(
jT

2πn
te−j2π n

T
t + T 2

4π2n2
e−j2π n

T
t

) ∣∣∣∣ T3
0

− 3

T 2

(
jT

2πn
te−j2π n

T
t + T 2

4π2n2
e−j2π n

T
t

) ∣∣∣∣T
2T
3

+ j

2πn
e−j2π n

T
t

∣∣∣∣ 2T
3

T
3

+ 3

T

jT

2πn
e−j2π n

T
t

∣∣∣∣T
2T
3

= 3

2π2n2
[cos(

2πn

3
)− 1]

The trigonometric Fourier series expansion coefficients are:

a0 = 4

3
, an = 3

π2n2
[cos(

2πn

3
)− 1], bn = 0, ∀n

e) The signal is periodic with period T . Since the signal is odd x0 = a0 = 0. For n �= 0

xn = 1

T

∫ T
2

− T
2

x(t)dt = 1

T

∫ T
4

− T
2

−e−j2π n
T

tdt

+ 1

T

∫ T
4

− T
4

4

T
te−j2π n

T
tdt + 1

T

∫ T
2

T
4

e−j2π n
T

tdt

= 4

T 2

(
jT

2πn
te−j2π n

T
t + T 2

4π2n2
e−j2π n

T
t

) ∣∣∣∣ T4− T
4

− 1

T

(
jT

2πn
e−j2π n

T
t

) ∣∣∣∣− T
4

− T
2

+ 1

T

(
jT

2πn
e−j2π n

T
t

) ∣∣∣∣ T2
T
4

= j

πn

[
(−1)n − 2 sin(πn

2 )

πn

]
= j

πn

[
(−1)n − sinc(

n

2
)
]

For n even, sinc(n
2 ) = 0 and xn = j

πn
. The trigonometric Fourier series expansion coefficients are:

an = 0, ∀n, bn =
{
− 1

πl
n = 2l

2
π(2l+1)

[1+ 2(−1)l

π(2l+1)
] n = 2l + 1

f) The signal is periodic with period T . For n = 0

x0 = 1

T

∫ T
3

− T
3

x(t)dt = 1

42



For n �= 0

xn = 1

T

∫ 0

− T
3

(
3

T
t + 2)e−j2π n

T
tdt + 1

T

∫ T
3

0
(− 3

T
t + 2)e−j2π n

T
tdt

= 3

T 2

(
jT

2πn
te−j2π n

T
t + T 2

4π2n2
e−j2π n

T
t

) ∣∣∣∣0− T
3

− 3

T 2

(
jT

2πn
te−j2π n

T
t + T 2

4π2n2
e−j2π n

T
t

) ∣∣∣∣ T3
0

+ 2

T

jT

2πn
e−j2π n

T
t

∣∣∣∣0− T
3

+ 2

T

jT

2πn
e−j2π n

T
t

∣∣∣∣ T3
0

= 3

π2n2

[
1

2
− cos(

2πn

3
)

]
+ 1

πn
sin(

2πn

3
)

The trigonometric Fourier series expansion coefficients are:

a0 = 2, an = 2

[
3

π2n2

(
1

2
− cos(

2πn

3
)

)
+ 1

πn
sin(

2πn

3
)

]
, bn = 0, ∀n

Problem 2.44

1) H(f ) = 10�(
f

4 ). The system is bandlimited with bandwidth W = 2. Thus at the output of the system
only the frequencies in the band [−2, 2] will be present. The gain of the filter is 10 for all f in (−2, 2) and
5 at the edges f = ±2.
a) Since the period of the signal is T = 1 we obtain

y(t) = 10[a0

2
+ a1 cos(2πt)+ b1 sin(2πt)]

+5[a2 cos(2π2t)+ b2 sin(2π2t)]
With

an = 2

1+ 4π2n2
[1− e−1], bn = 4πn

1+ 4π2n2
[1− e−1]

we obtain

y(t) = (1− e−1)

[
20+ 20

1+ 4π2
cos(2πt)+ 40π

1+ 4π2
sin(2πt)

+ 10

1+ 16π2
cos(2π2t)+ 40π

1+ 16π2
sin(2π2t)

]

b) Since the period of the signal is 2T = 2 and an = 0, for all n, we have

x(t) =
∞∑

n=1

bn sin(2π
n

2
t)
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The frequencies n
2 should satisfy |n2 | ≤ 2 or n ≤ 4. With bn = (−1)n+1 2

πn
we obtain

y(t) = 20

π
sin(

2πt

2
)− 20

2π
sin(2πt)

+ 20

3π
sin(

2π3t

2
)− 10

4π
sin(2π2t)

c) The period of the signal is T = 1 and

a0 = 3, , a2l = 0, , a2l+1 = 2

π(2l + 1)
(−1)l, , bn = 0, ∀n

Hence,

x(t) = 3

2
+

∞∑
l=0

a2l+1 cos(2π(2l + 1)t)

At the output of the channel only the frequencies for which 2l + 1 ≤ 2 will be present so that

y(t) = 10
3

2
+ 10

2

π
cos(2πt)

d) Since bn = 0 for all n, and the period of the signal is T = 1, we have

x(t) = a0

2
+

∞∑
n=1

an cos(2πnt)

With a0 = 4
3 and an = 3

π2n2 [cos( 2πn
3 )− 1] we obtain

y(t) = 20

3
+ 30

π2
(cos(

2π

3
)− 1) cos(2πt)

+ 15

4π2
(cos(

4π

3
)− 1) cos(2π2t)

= 20

3
− 45

π2
cos(2πt)− 45

8π2
cos(2π2t)

e)With an = 0 for all n, T = 1 and

bn =
{
− 1

πl
n = 2l

2
π(2l+1)

[1+ 2(−1)l

π(2l+1)
] n = 2l + 1

we obtain

y(t) = 10b1 sin(2πt)+ 5b2 sin(2πt2t)

= 10
2

π
(1+ 2

π
) sin(2πt)− 5

1

π
sin(2πt2t)
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f) Similarly with the other cases we obtain

y(t) = 10+ 10 · 2
[

3

π2
(
1

2
− cos(

2π

3
)+ 1

π
sin(

2π

3
)

]
cos(2πt)

+5 · 2
[

3

4π2
(
1

2
− cos(

4π

3
)+ 1

2π
sin(

4π

3
)

]
cos(2π2t)

= 10+ 20

[
3

π2
+
√

3

2π

]
cos(2πt)+ 10

[
3

4π2
−
√

3

4π

]
cos(2π2t)

2) In general

y(t) =
∞∑

n=−∞
xnH(

n

T
)ej2π n

T
t

The DC component of the input signal and all frequencies higher than 4 will be cut off.

a) For this signal T = 1 and xn = 1−j2πn

1+4π2n2 (1− e−1). Thus,

y(t) = 1− j2π

1+ 4π2
(1− e−1)(−j)ej2πt + 1− j2π2

1+ 4π24
(1− e−1)(−j)ej2π2t

+1− j2π3

1+ 4π29
(1− e−1)(−j)ej2π3t + 1− j2π4

1+ 4π216
(1− e−1)(−j)ej2π4t

+1+ j2π

1+ 4π2
(1− e−1)je−j2πt + 1+ j2π2

1+ 4π24
(1− e−1)je−j2π2t

+1+ j2π3

1+ 4π29
(1− e−1)je−j2π3t + 1+ j2π4

1+ 4π216
(1− e−1)je−j2π4t

= (1− e−1)

4∑
n=1

2

1+ 4π2n2
(sin(2πnt)− 2πn cos(2πnt))

b)With T = 2 and xn = j

πn
(−1)n we obtain

y(t) =
8∑

n=1

j

πn
(−1)n(−j)ejπnt +

−1∑
n=−8

j

πn
(−1)njejπnt

=
8∑

n=1

(−1)n

πn
ejπnt +

−1∑
n=−8

− 1

πn
(−1)njejπnt

c) In this case

x2l = 0, x2l+1 = 1

π(2l + 1)
(−1)l
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Hence

y(t) = 1

π
(−j)ej2πt + 1

3π
(−1)(−j)ej2π3t

+ 1

−π
(−1)je−j2πt + 1

−3π
je−j2π3t

= 1

2π
sin(2πt)− 1

6π
sin(2π3t)

d) x0 = 2
3 and xn = 3

2πn2 (cos( 2πn
3 )− 1). Thus

y(t) =
4∑

n=1

3

2πn2
(cos(

2πn

3
)− 1)(−j)ej2πnt

+
−1∑

n=−4

3

2πn2
(cos(

2πn

3
)− 1)jej2πnt

e)With xn = j

πn
((−1)n − sinc(n

2 )) we obtain

y(t) =
4∑

n=1

1

πn
((−1)n − sinc(

n

2
))+

−1∑
n=−4

−1

πn
((−1)n − sinc(

n

2
))

f)Working similarly with the other cases we obtain

y(t) =
4∑

n=1

[
3

π2n2

(
1

2
− cos(

2πn

3
)

)
+ 1

πn
sin(

2πn

3
)

]
(−j)ej2πnt

+
−1∑

n=−4

[
3

π2n2

(
1

2
− cos(

2πn

3
)

)
+ 1

πn
sin(

2πn

3
)

]
jej2πnt

Problem 2.45

Using Parseval’s relation (Equation 2.2.38), we see that the power in the periodic signal is given by
∑∞

n=−∞ |xn|2.
Since the signal has finite power

1

T0

∫ α+T0

α

|x(t)|2dt = K <∞

Thus,
∑∞

n=−∞ |xn|2 = K <∞. The last implies that |xn| → 0 as n→∞. To see this write

∞∑
n=−∞

|xn|2 =
−M∑

n=−∞
|xn|2 +

M∑
n=−M

|xn|2 +
∞∑

n=M

|xn|2

Each of the previous terms is positive and bounded by K . Assume that |xn|2 does not converge to zero as n

goes to infinity and choose ε = 1. Then there exists a subsequence of xn, xnk
, such that

|xnk
| > ε = 1, for nk > N ≥ M
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Then
∞∑

n=M

|xn|2 ≥
∞∑

n=N

|xn|2 ≥
∑
nk

|xnk
|2 = ∞

This contradicts our assumption that
∑∞

n=M |xn|2 is finite. Thus |xn|, and consequently xn, should converge
to zero as n→∞.

Problem 2.46

1) Using the Fourier transform pair

e−α|t | F−→ 2α

α2 + (2πf )2
= 2α

4π2

1
α2

4π2 + f 2

and the duality property of the Fourier transform: X(f ) = F[x(t)] ⇒ x(−f ) = F[X(t)] we obtain(
2α

4π2

)
F
[

1
α2

4π2 + t2

]
= e−α|f |

With α = 2π we get the desired result

F
[

1

1+ t2

]
= πe−2π |f |

2)

F[x(t)] = F[�(t − 3)+�(t + 3)]
= sinc(f )e−j2πf 3 + sinc(f )ej2πf 3

= 2sinc(f ) cos(2π3f )

3)

F[x(t)] = F[�(2t + 3)+�(3t − 2)]
= F[�(2(t + 3

2
))+�(3(t − 2

3
)]

= 1

2
sinc2(

f

2
)ejπf 3 + 1

3
sinc2(

f

3
)e−j2πf 2

3

4) F[�(t/4)] = 4sinc(4f ), hence F[4�(t/4)] = 16sinc(4f ). Using modulation property of FT we have
F[4�(t/4) cos(2πf0t)] = 8sinc(4(f − f0))+ 8sinc(4(f + f0)).

5) We use a combination of scaling, time shift, and modulation properties to obtain the result. F
[
4�
(

t−2
4

)] =
16e−j4πf sinc(4f ) and

F
[

4�

(
t − 2

4

)
cos(2πf0t)

]
= 8e−j4π(f−f0)sinc(4(f − f0))+ 8e−j4π(f+f0)sinc(4(f + f0))
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6) T (f ) = F[sinc3(t)] = F[sinc2(t)sinc(t)] = �(f ) � �(f ). But

�(f ) � �(f ) =
∫ ∞
−∞

�(θ)�(f − θ)dθ =
∫ 1

2

− 1
2

�(f − θ)dθ =
∫ f+ 1

2

f− 1
2

�(v)dv

For f ≤ −3

2
�⇒ T (f ) = 0

For −3

2
< f ≤ −1

2
�⇒ T (f ) =

∫ f+ 1
2

−1
(v + 1)dv = (

1

2
v2 + v)

∣∣∣∣f+ 1
2

−1

= 1

2
f 2 + 3

2
f + 9

8

For −1

2
< f ≤ 1

2
�⇒ T (f ) =

∫ 0

f− 1
2

(v + 1)dv +
∫ f+ 1

2

0
(−v + 1)dv

= (
1

2
v2 + v)

∣∣∣∣0
f− 1

2

+ (−1

2
v2 + v)

∣∣∣∣f+ 1
2

0

= −f 2 + 3

4

For
1

2
< f ≤ 3

2
�⇒ T (f ) =

∫ 1

f− 1
2

(−v + 1)dv = (−1

2
v2 + v)

∣∣∣∣1
f− 1

2

= 1

2
f 2 − 3

2
f + 9

8

For
3

2
< f �⇒ T (f ) = 0

Thus,

T (f ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 f ≤ − 3
2

1
2f 2 + 3

2f + 9
8 − 3

2 < f ≤ − 1
2

−f 2 + 3
4 − 1

2 < f ≤ 1
2

1
2f 2 − 3

2f + 9
8

1
2 < f ≤ 3

2

0 3
2 < f

7)

F[tsinc(t)] = 1

π
F[sin(πt)] = j

2π

[
δ(f + 1

2
)− δ(f − 1

2
)

]
The same result is obtain if we recognize that multiplication by t results in differentiation in the frequency
domain. Thus

F[tsinc] = j

2π

d

df
�(f ) = j

2π

[
δ(f + 1

2
)− δ(f − 1

2
)

]

8)

F[t cos(2πf0t)] = j

2π

d

df

(
1

2
δ(f − f0)+ 1

2
δ(f + f0)

)
= j

4π

(
δ′(f − f0)+ δ′(f + f0)

)
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9)

F[e−α|t | cos(βt)] = 1

2

[
2α

α2 + (2π(f − β

2π
))2
+ 2α

α2 + (2π(f + β

2π
))2

]

10)

F[te−α|t | cos(βt)] = j

2π

d

df

(
α

α2 + (2π(f − β

2π
))2
+ α

α2 + (2π(f + β

2π
))2

)

= −j

[
2απ(f − β

2π
)(

α2 + (2π(f − β

2π
))2
)2 + 2απ(f + β

2π
)(

α2 + (2π(f + β

2π
))2
)2
]

Problem 2.47

x1(t) = −x(t)+x(t) cos(2000πt)+x(t) (1+ cos(6000πt))orx1(t) = x(t) cos(2000πt)+x(t) cos(6000πt).
Using modulation property, we have X1(f ) = 1

2X(f −1000)+ 1
2X(f +1000)+ 1

2X(f −3000)+ 1
2X(f +

3000). The plot is given below:

1000 3000

2

Problem 2.48

F[1
2
(δ(t + 1

2
)+ δ(t − 1

2
))] =

∫ ∞
−∞

1

2
(δ(t + 1

2
)+ δ(t − 1

2
))e−j2πf tdt

= 1

2
(e−jπf + e−jπf ) = cos(πf )

Using the duality property of the Fourier transform:

X(f ) = F[x(t)] �⇒ x(f ) = F[X(−t)]
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we obtain

F[cos(−πt)] = F[cos(πt)] = 1

2
(δ(f + 1

2
)+ δ(f − 1

2
))

Note that sin(πt) = cos(πt + π
2 ). Thus

F[sin(πt)] = F[cos(π(t + 1

2
))] = 1

2
(δ(f + 1

2
)+ δ(f − 1

2
))ejπf

= 1

2
ejπ 1

2 δ(f + 1

2
)+ 1

2
e−jπ 1

2 δ(f − 1

2
)

= j

2
δ(f + 1

2
)− j

2
δ(f − 1

2
)

Problem 2.49

a) We can write x(t) as x(t) = 2�( t
4)− 2�( t

2 ). Then

F[x(t)] = F[2�(
t

4
)] − F[2�(

t

2
)] = 8sinc(4f )− 4sinc2(2f )

b)

x(t) = 2�(
t

4
)−�(t) �⇒ F[x(t)] = 8sinc(4f )− sinc2(f )

c)

X(f ) =
∫ ∞
−∞

x(t)e−j2πf tdt =
∫ 0

−1
(t + 1)e−j2πf tdt +

∫ 1

0
(t − 1)e−j2πf tdt

=
(

j

2πf
t + 1

4π2f 2

)
e−j2πf t

∣∣∣∣0−1

+ j

2πf
e−j2πf t

∣∣∣∣0−1

+
(

j

2πf
t + 1

4π2f 2

)
e−j2πf t

∣∣∣∣1
0

− j

2πf
e−j2πf t

∣∣∣∣1
0

= j

πf
(1− sin(πf ))

d) We can write x(t) as x(t) = �(t + 1)−�(t − 1). Thus

X(f ) = sinc2(f )ej2πf − sinc2(f )e−j2πf = 2jsinc2(f ) sin(2πf )

e) We can write x(t) as x(t) = �(t + 1)+�(t)+�(t − 1). Hence,

X(f ) = sinc2(f )(1+ ej2πf + e−j2πf ) = sinc2(f )(1+ 2 cos(2πf )
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f) We can write x(t) as

x(t) =
[
�

(
2f0(t − 1

4f0
)

)
−�

(
2f0(t − 1

4f0
)

)]
sin(2πf0t)

Then

X(f ) =
[

1

2f0
sinc

(
f

2f0

)
e
−j2π 1

4f0
f − 1

2f0
sinc

(
f

2f0
)

)
e

j2π 1
4f0

f

]
�
j

2
(δ(f + f0)− δ(f + f0))

= 1

2f0
sinc

(
f + f0

2f0

)
sin

(
π

f + f0

2f0

)
− 1

2f0
sinc

(
f − f0

2f0

)
sin

(
π

f − f0

2f0

)

Problem 2.50

(Convolution theorem:)

F[x(t) � y(t)] = F[x(t)]F[y(t)] = X(f )Y (f )

Thus

sinc(t) � sinc(t) = F−1[F[sinc(t) � sinc(t)]]
= F−1[F[sinc(t)] · F[sinc(t)]]
= F−1[�(f )�(f )] = F−1[�(f )]
= sinc(t)

Problem 2.51

F[x(t)y(t)] =
∫ ∞
−∞

x(t)y(t)e−j2πf tdt

=
∫ ∞
−∞

(∫ ∞
−∞

X(θ)ej2πθtdθ

)
y(t)e−j2πf tdt

=
∫ ∞
−∞

X(θ)

(∫ ∞
−∞

y(t)e−j2π(f−θ)tdt

)
dθ

=
∫ ∞
−∞

X(θ)Y (f − θ)dθ = X(f ) � Y (f )

Problem 2.52

1) Clearly

x1(t + kT0) =
∞∑

n=−∞
x(t + kT0 − nT0) =

∞∑
n=−∞

x(t − (n− k)T0)

=
∞∑

m=−∞
x(t −mT0) = x1(t)
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where we used the change of variable m = n− k.

2)

x1(t) = x(t) �

∞∑
n=−∞

δ(t − nT0)

This is because∫ ∞
−∞

x(τ)

∞∑
n=−∞

δ(t − τ − nT0)dτ =
∞∑

n=−∞

∫ ∞
−∞

x(τ)δ(t − τ − nT0)dτ =
∞∑

n=−∞
x(t − nT0)

3)

F[x1(t)] = F[x(t) �

∞∑
n=−∞

δ(t − nT0)] = F[x(t)]F[
∞∑

n=−∞
δ(t − nT0)]

= X(f )
1

T0

∞∑
n=−∞

δ(f − n

T0
) = 1

T0

∞∑
n=−∞

X(
n

T0
)δ(f − n

T0
)

Problem 2.53

1) By Parseval’s theorem∫ ∞
−∞

sinc5(t)dt =
∫ ∞
−∞

sinc3(t)sinc2(t)dt =
∫ ∞
−∞

�(f )T (f )df

where

T (f ) = F[sinc3(t)] = F[sinc2(t)sinc(t)] = �(f ) � �(f )

But

�(f ) � �(f ) =
∫ ∞
−∞

�(θ)�(f − θ)dθ =
∫ 1

2

− 1
2

�(f − θ)dθ =
∫ f+ 1

2

f− 1
2

�(v)dv

For f ≤ −3

2
�⇒ T (f ) = 0

For −3

2
< f ≤ −1

2
�⇒ T (f ) =

∫ f+ 1
2

−1
(v + 1)dv = (

1

2
v2 + v)

∣∣∣∣f+ 1
2

−1

= 1

2
f 2 + 3

2
f + 9

8

For −1

2
< f ≤ 1

2
�⇒ T (f ) =

∫ 0

f− 1
2

(v + 1)dv +
∫ f+ 1

2

0
(−v + 1)dv

= (
1

2
v2 + v)

∣∣∣∣0
f− 1

2

+ (−1

2
v2 + v)

∣∣∣∣f+ 1
2

0

= −f 2 + 3

4

For
1

2
< f ≤ 3

2
�⇒ T (f ) =

∫ 1

f− 1
2

(−v + 1)dv = (−1

2
v2 + v)

∣∣∣∣1
f− 1

2

= 1

2
f 2 − 3

2
f + 9

8

For
3

2
< f �⇒ T (f ) = 0
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Thus,

T (f ) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

0 f ≤ − 3
2

1
2f 2 + 3

2f + 9
8 − 3

2 < f ≤ − 1
2

−f 2 + 3
4 − 1

2 < f ≤ 1
2

1
2f 2 − 3

2f + 9
8

1
2 < f ≤ 3

2

0 3
2 < f

Hence,∫ ∞
−∞

�(f )T (f )df =
∫ − 1

2

−1
(
1

2
f 2 + 3

2
f + 9

8
)(f + 1)df +

∫ 0

− 1
2

(−f 2 + 3

4
)(f + 1)df

+
∫ 1

2

0
(−f 2 + 3

4
)(−f + 1)df +

∫ 1

1
2

(
1

2
f 2 − 3

2
f + 9

8
)(−f + 1)df

= 41

64

2) ∫ ∞
0

e−αtsinc(t)dt =
∫ ∞
−∞

e−αtu−1(t)sinc(t)dt

=
∫ ∞
−∞

1

α + j2πf
�(f )df =

∫ 1
2

− 1
2

1

α + j2πf
df

= 1

j2π
ln(α + j2πf )

∣∣1/2
−1/2 =

1

j2π
ln(

α + jπ

α − jπ
) = 1

π
tan−1 π

α

3) ∫ ∞
0

e−αtsinc2(t)dt =
∫ ∞
−∞

e−αtu−1(t)sinc2(t)dt

=
∫ ∞
−∞

1

α + j2πf
�(f )df df

=
∫ 0

−1

f + 1

α + jπf
df +
∫ 1

0

−f + 1

α + jπf
df

But
∫

x
a+bx

dx = x
b
− a

b2 ln(a + bx) so that∫ ∞
0

e−αtsinc2(t)dt = (
f

j2π
+ α

4π2
ln(α + j2πf ))

∣∣∣∣0−1

−(
f

j2π
+ α

4π2
ln(α + j2πf ))

∣∣∣∣1
0

+ 1

j2π
ln(α + j2πf )

∣∣∣∣1−1

= 1

π
tan−1(

2π

α
)+ α

2π2
ln(

α√
α2 + 4π2

)
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4) ∫ ∞
0

e−αt cos(βt)dt =
∫ ∞
−∞

e−αtu−1(t) cos(βt)dt

= 1

2

∫ ∞
−∞

1

α + j2πf
(δ(f − β

2π
)+ δ(f + β

2π
))dt

= 1

2
[ 1

α + jβ
+ 1

α − jβ
] = α

α2 + β2

Problem 2.54

Using the convolution theorem we obtain

Y (f ) = X(f )H(f ) = (
1

α + j2πf
)(

1

β + j2πf
)

= 1

(β − α)

1

α + j2πf
− 1

(β − α)

1

β + j2πf

Thus

y(t) = F−1[Y (f )] = 1

(β − α)
[e−αt − e−βt ]u−1(t)

If α = β then X(f ) = H(f ) = 1
α+j2πf

. In this case

y(t) = F−1[Y (f )] = F−1[( 1

α + j2πf
)2] = te−αtu−1(t)

The signal is of the energy-type with energy content

Ey = lim
T→∞

∫ T
2

− T
2

|y(t)|2dt = lim
T→∞

∫ T
2

0

1

(β − α)2
(e−αt − e−βt )2dt

= lim
T→∞

1

(β − α)2

[
− 1

2α
e−2αt

∣∣∣∣T/2

0

− 1

2β
e−2βt

∣∣∣∣T/2

0

+ 2

(α + β)
e−(α+β)t

∣∣∣∣T/2

0

]

= 1

(β − α)2
[ 1

2α
+ 1

2β
− 2

α + β
] = 1

2αβ(α + β)

Problem 2.55

xα(t) =
{

x(t) α ≤ t < α + T0

0 otherwise

Thus

Xα(f ) =
∫ ∞
−∞

xα(t)e
−j2πf tdt =

∫ α+T0

α

x(t)e−j2πf tdt
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Evaluating Xα(f ) for f = n
T0

we obtain

Xα(
n

T0
) =
∫ α+T0

α

x(t)e
−j2π n

T0
t
dt = T0xn

where xn are the coefficients in the Fourier series expansion of x(t). Thus Xα(
n
T0

) is independent of the
choice of α.

Problem 2.56

∞∑
n=−∞

x(t − nTs) = x(t) �

∞∑
n=−∞

δ(t − nTs) = 1

Ts

x(t) �

∞∑
n=−∞

e
j2π n

Ts
t

= 1

Ts

F−1

[
X(f )

∞∑
n=−∞

δ(f − n

Ts

)

]

= 1

Ts

F−1

[ ∞∑
n=−∞

X

(
n

Ts

)
δ(f − n

Ts

)

]

= 1

Ts

∞∑
n=−∞

X

(
n

Ts

)
e

j2π n
Ts

t

If we set t = 0 in the previous relation we obtain Poisson’s sum formula

∞∑
n=−∞

x(−nTs) =
∞∑

m=−∞
x(mTs) = 1

Ts

∞∑
n=−∞

X

(
n

Ts

)

Problem 2.57

1) We know that

e−α|t | F−→ 2α

α2 + 4π2f 2

Applying Poisson’s sum formula with Ts = 1 we obtain

∞∑
n=−∞

e−α|n| =
∞∑

n=−∞

2α

α2 + 4π2n2

2) Use the Fourier transform pair �(t)→ sinc(f ) in the Poisson’s sum formula with Ts = K . Then

∞∑
n=−∞

�(nK) = 1

K

∞∑
n=−∞

sinc(
n

K
)

But �(nK) = 1 for n = 0 and �(nK) = 0 for |n| ≥ 1 and K ∈ {1, 2, . . . }. Thus the left side of the
previous relation reduces to 1 and

K =
∞∑

n=−∞
sinc(

n

K
)
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3) Use the Fourier transform pair �(t)→ sinc2(f ) in the Poisson’s sum formula with Ts = K . Then

∞∑
n=−∞

�(nK) = 1

K

∞∑
n=−∞

sinc2(
n

K
)

Reasoning as before we see that
∑∞

n=−∞�(nK) = 1 since for K ∈ {1, 2, . . . }

�(nK) =
{

1 n = 0

0 otherwise

Thus, K =∑∞
n=−∞ sinc2( n

K
)

Problem 2.58

Let H(f ) be the Fourier transform of h(t). Then

H(f )F[e−αtu−1(t)] = F[δ(t)] �⇒ H(f )
1

α + j2πf
= 1 �⇒ H(f ) = α + j2πf

The response of the system to e−αt cos(βt)u−1(t) is

y(t) = F−1
[
H(f )F[e−αt cos(βt)u−1(t)]

]
But

F[e−αt cos(βt)u−1(t)] = F[1
2
e−αtu−1(t)e

jβt + 1

2
e−αtu−1(t)e

−jβt ]

= 1

2

[
1

α + j2π(f − β

2π
)
+ 1

α + j2π(f + β

2π
)

]
so that

Y (f ) = F[y(t)] = α + j2πf

2

[
1

α + j2π(f − β

2π
)
+ 1

α + j2π(f + β

2π
)

]

Using the linearity property of the Fourier transform, the Convolution theorem and the fact that δ′(t) F−→
j2πf we obtain

y(t) = αe−αt cos(βt)u−1(t)+ (e−αt cos(βt)u−1(t)) � δ′(t)
= e−αt cos(βt)δ(t)− βe−αt sin(βt)u−1(t)

= δ(t)− βe−αt sin(βt)u−1(t)

Problem 2.59

1) Using the result of Problem 2.50 we have sinc(t) � sinc(t) = sinc(t).
2)

y(t) = x(t) � h(t) = x(t) � (δ(t)+ δ′(t)

= x(t)+ d

dt
x(t)

56



With x(t) = e−α|t | we obtain y(t) = e−α|t | − αe−α|t |sgn(t).

3)

y(t) =
∫ ∞
−∞

h(τ)x(t − τ)dτ

=
∫ t

0
e−ατ e−β(t−τ)dτ = e−βt

∫ t

0
e−(α−β)τ dτ

If α = β ⇒ y(t) = te−αtu−1(t)

α �= β ⇒ y(t) = e−βt 1

β − α
e−(α−β)t

∣∣∣∣t
0

u−1(t) = 1

β − α

[
e−αt − e−βt

]
u−1(t)

4)

y(t) =
∫ ∞
−∞

e−ατ cos(γ τ)u−1(τ )e−β(t−τ)u−1(t − τ)dτ

=
∫ t

0
e−ατ cos(γ τ)e−β(t−τ)dτ = e−βt

∫ t

0
e(β−α)τ cos(γ τ)dτ

If α = β ⇒ y(t) = e−βt

∫ t

0
cos(γ τ)dτu−1(t) = e−βt

γ
sin(γ t)u−1(t)

If α = β ⇒ y(t) = e−βt

∫ t

0
e(β−α)τ cos(γ τ)dτu−1(t)

= e−βt

(β − α)2 + γ 2
((β − α) cos(γ τ)+ γ sin(γ τ)) e(β−α)τ

∣∣∣∣t
0

u−1(t)

= e−αt

(β − α)2 + γ 2
((β − α) cos(γ t)+ γ sin(γ t)) u−1(t)

− e−βt (β − α)

(β − α)2 + γ 2
u−1(t)

5)

y(t) =
∫ ∞
−∞

e−α|τ |e−β(t−τ)u−1(t − τ)dτ =
∫ t

−∞
e−α|τ |e−β(t−τ)dτ

Consider first the case that α �= β. Then

If t < 0 ⇒ y(t) = e−βt

∫ t

−∞
e(β+α)τ dτ = 1

α + β
eαt

If t < 0 ⇒ y(t) =
∫ 0

−∞
eατ e−β(t−τ)dτ +

∫ t

0
e−ατ e−β(t−τ)dτ

= e−βt

α + β
e(α+β)τ

∣∣∣∣0−∞ + e−βt

β − α
e(β−α)τ

∣∣∣∣t
0

= − 2αe−βt

β2 − α2
+ e−αt

β − α
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Thus

y(t) =
{

1
α+β

eαt t ≤ 0

− 2αe−βt

β2−α2 + e−αt

β−α
t > 0

In the case of α = β

If t < 0 ⇒ y(t) = e−αt

∫ t

−∞
e2ατ dτ = 1

2α
eαt

If t < 0 ⇒ y(t) =
∫ 0

−∞
e−αte2ατ dτ +

∫ t

0
e−αtdτ

= e−αt

2α
e2ατ

∣∣∣∣0−∞ + te−αt

= [ 1

2α
+ t]e−αt

6) Using the convolution theorem we obtain

Y (f ) = �(f )�(f ) =

⎧⎪⎪⎨⎪⎪⎩
0 1

2 < |f |
f + 1 − 1

2 < f ≤ 0

−f + 1 0 ≤ f < 1
2

Thus

y(t) = F−1[Y (f )] =
∫ 1

2

− 1
2

Y (f )ej2πf tdf

=
∫ 0

− 1
2

(f + 1)ej2πf tdf +
∫ 1

2

0
(−f + 1)ej2πf tdf

=
(

1

j2πt
f ej2πf t + 1

4π2t2
ej2πf t

) ∣∣∣∣0− 1
2

+ 1

j2πt
ej2πf t

∣∣∣∣0− 1
2

−
(

1

j2πt
f ej2πf t + 1

4π2t2
ej2πf t

) ∣∣∣∣ 12
0

+ 1

j2πt
ej2πf t

∣∣∣∣ 12
0

= 1

2π2t2
[1− cos(πt)] + 1

2πt
sin(πt)

Problem 2.60

Let the response of the LTI system be h(t) with Fourier transform H(f ). Then, from the convolution theorem
we obtain

Y (f ) = H(f )X(f ) �⇒ �(f ) = �(f )H(f )

However, this relation cannot hold since �(f ) = 0 for 1
2 < |f | whereas �(f ) �= 0 for 1 < |f | ≤ 1/2.
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Problem 2.61

1) No. The input �(t) has a spectrum with zeros at frequencies f = k, (k �= 0, k ∈ Z) and the information
about the spectrum of the system at those frequencies will not be present at the output. The spectrum of the
signal cos(2πt) consists of two impulses at f = ±1 but we do not know the response of the system at these
frequencies.

2)

h1(t) � �(t) = �(t) � �(t) = �(t)

h2(t) � �(t) = (�(t)+ cos(2πt)) � �(t)

= �(t)+ 1

2
F−1
[
δ(f − 1)sinc2(f )+ δ(f + 1)sinc2(f )

]
= �(t)+ 1

2
F−1
[
δ(f − 1)sinc2(1)+ δ(f + 1)sinc2(−1)

]
= �(t)

Thus both signals are candidates for the impulse response of the system.

3) F[u−1(t)] = 1
2δ(f )+ 1

j2πf
. Thus the system has a nonzero spectrum for every f and all the frequencies

of the system will be excited by this input. F[e−atu−1(t)] = 1
a+j2πf

. Again the spectrum is nonzero for all
f and the response to this signal uniquely determines the system. In general the spectrum of the input must
not vanish at any frequency. In this case the influence of the system will be present at the output for every
frequency.

Problem 2.62

F[ ̂A sin(2πf0t + θ)] = −jsgn(f )A

[
− 1

2j
δ(f + f0)e

j2πf θ
2f0 + 1

2j
δ(f − f0)e

−j2πf θ
2f0

]
= A

2

[
sgn(−f0)δ(f + f0)e

j2πf θ
2f0 − sgn(−f0)δ(f − f0)e

−j2πf θ
2f0

]
= −A

2

[
δ(f + f0)e

j2πf θ
2f0 + δ(f − f0)e

−j2πf θ
2f0

]
= −AF[cos(2πf0t + θ)]

Thus, ̂A sin(2πf0t + θ) = −A cos(2πf0t + θ)

Problem 2.63

Taking the Fourier transform of ̂ej2πf0t we obtain

F[̂ej2πf0t ] = −jsgn(f )δ(f − f0) = −jsgn(f0)δ(f − f0)

Thus,

̂ej2πf0t = F−1[−jsgn(f0)δ(f − f0)] = −jsgn(f0)e
j2πf0t
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Problem 2.64

F
[

̂d

dt
x(t)

]
= F[ ̂x(t) � δ′(t)] = −jsgn(f )F[x(t) � δ′(t)]
= −jsgn(f )j2πf X(f ) = 2πf sgn(f )X(f )

= 2π |f |X(f )

Problem 2.65

We need to prove that x̂ ′(t) = (x̂(t))′.

F[x̂ ′(t)] = F[ ̂x(t) � δ′(t)] = −jsgn(f )F[x(t) � δ′(t)] = −jsgn(f )X(f )j2πf

= F[x̂(t)]j2πf = F[(x̂(t))′]
Taking the inverse Fourier transform of both sides of the previous relation we obtain, x̂ ′(t) = (x̂(t))′

Problem 2.66

1) The spectrum of the output signal y(t) is the product of X(f ) and H(f ). Thus,

Y (f ) = H(f )X(f ) = X(f )A(f0)e
j (θ(f0)+(f−f0)θ

′(f )|f=f0 )

y(t) is a narrowband signal centered at frequencies f = ±f0. To obtain the lowpass equivalent signal we
have to shift the spectrum (positive band) of y(t) to the right by f0. Hence,

Yl(f ) = u(f + f0)X(f + f0)A(f0)e
j (θ(f0)+f θ ′(f )|f=f0 ) = Xl(f )A(f0)e

j (θ(f0)+f θ ′(f )|f=f0 )

2) Taking the inverse Fourier transform of the previous relation, we obtain

yl(t) = F−1
[
Xl(f )A(f0)e

jθ(f0)ejf θ ′(f )|f=f0

]
= A(f0)xl(t + 1

2π
θ ′(f )|f=f0)

With y(t) = Re[yl(t)e
j2πf0t ] and xl(t) = Vx(t)e

j�x(t) we get

y(t) = Re[yl(t)e
j2πf0t ]

= Re

[
A(f0)xl(t + 1

2π
θ ′(f )|f=f0)e

jθ(f0)ej2πf0t

]
= Re

[
A(f0)Vx(t + 1

2π
θ ′(f )|f=f0)e

j2πf0t ej�x(t+ 1
2π

θ ′(f )|f=f0 )

]
= A(f0)Vx(t − tg) cos(2πf0t + θ(f0)+�x(t + 1

2π
θ ′(f )|f=f0))

= A(f0)Vx(t − tg) cos(2πf0(t + θ(f0)

2πf0
)+�x(t + 1

2π
θ ′(f )|f=f0))

= A(f0)Vx(t − tg) cos(2πf0(t − tp)+�x(t + 1

2π
θ ′(f )|f=f0))
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where

tg = − 1

2π
θ ′(f )|f=f0, tp = − 1

2π

θ(f0)

f0
= − 1

2π

θ(f )

f

∣∣∣∣
f=f0

3) tg can be considered as a time lag of the envelope of the signal, whereas tp is the time corresponding
to a phase delay of 1

2π

θ(f0)

f0
.

Problem 2.67

1) We can write Hθ(f ) as follows

Hθ(f ) =

⎧⎪⎪⎨⎪⎪⎩
cos θ − j sin θ f > 0

0 f = 0

cos θ + j sin θ f < 0

= cos θ − jsgn(f ) sin θ

Thus,

hθ(t) = F−1[Hθ(f )] = cos θδ(t)+ 1

πt
sin θ

2)

xθ(t) = x(t) � hθ(t) = x(t) � (cos θδ(t)+ 1

πt
sin θ)

= cos θx(t) � δ(t)+ sin θ
1

πt
� x(t)

= cos θx(t)+ sin θx̂(t)

3) ∫ ∞
−∞
|xθ(t)|2dt =

∫ ∞
−∞
| cos θx(t)+ sin θx̂(t)|2dt

= cos2 θ

∫ ∞
−∞
|x(t)|2dt + sin2 θ

∫ ∞
−∞
|x̂(t)|2dt

+ cos θ sin θ

∫ ∞
−∞

x(t)x̂∗(t)dt + cos θ sin θ

∫ ∞
−∞

x∗(t)x̂(t)dt

But
∫∞
−∞ |x(t)|2dt = ∫∞−∞ |x̂(t)|2dt = Ex and

∫∞
−∞ x(t)x̂∗(t)dt = 0 since x(t) and x̂(t) are orthogonal.

Thus,

Exθ
= Ex(cos2 θ + sin2 θ) = Ex
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