Fundanment al s of Communi cati on Systens 1st Edition Proakis Solutions Manual

Solution to Chapter 2 Problems

Problem 2.1

1. 1 (2t +5) =TT (2 (¢ + 2)). This indicates first we have to plot I1(2¢) and then shift it to left by 2. A
plot is shown below:

(21 +5)
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2. I (=2t +8) = I1 (—2(¢t — 4)). This operation combines a scaling, flipping, and shifting.
(-2t +8)

3. Y 02, At — n) is a sum of shifted triangular pulses. Note that the sum of the left and right side of
triangular pulses that are displaced by one unit of time is equal to 1, The plot is given below

x3(1)

1

—1

4. Let x(t) = 2A (%) — A(t), then x4(t) = Z;’O:_oox(t — 4n). First we plot x(¢) then by shifting it
by multiples of 4 we can plot x4(¢). x(¢) is a triangular pulse of width 4 and height 2 from which a
standard triangular pulse of width 1 and height 1 is subtracted. The result is a trapezoidal pulse, which
when replicated at intervals of 4 gives the plot of x4(7).

x4(1)

—6 -2 2 6

5. It is obvious from the definition of sgn(¢) that sgn(2¢) = sgn(¢). Therefore x5(¢) = 0.

6. x6(t) is a sequence of alternating triangular pulses each with width 2 and height 1.
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Xe(1)

7. x7(t) is sinc(z) contracted by a factor of 10.
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8. This is sinc(¢) expanded by a factor of 10.
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9. x9(t) is the product of a sinusoidal signal with frequency 2 and an expanded rectangular pulse.
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Problem 2.2

1. x[n] = sinc(3n/9) = sinc(n/3).
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3. x[n] = Ju_1(n/4) — (5 — Du_1(n/4 —1). Forn <0, x[n] =0, for0 <n < 3, x[n] = 7 and for
n>4,xn]=7-57+1=1
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Problem 2.3

xi[n] = 1 and x3[n] = cos(2rn) = 1, for all n. This shows that two signals can be different but their
sampled versions be the same.

Problem 2.4

Let x;[n] and x,[n] be two periodic signals with periods N and N,, respectively, and let N = LCM(N;, N»),
and define x[n] = x;[n] + x2[n]. Then obviously x,[n + N] = xi[n] and x;[n + N] = x;[n], and hence
x[n] = x[n + NJ, i.e., x[n] is periodic with period N.



For continuous-time signals x; () and x,(¢) with periods 77 and T, respectively, in general we cannot
finda T suchthat T = kT, = k, T, for integers k| and k,. This is obvious for instance if 7} = 1 and 75 = 7.
The necessary and sufficient condition for the sum to be periodic is that % be a rational number.

Problem 2.5
Using the result of problem 2.4 we have:

1. The frequencies are 2000 and 5500, their ratio (and therefore the ratio of the periods) is rational, hence
the sum is periodic.

2. The frequencies are 2000 and Sfrﬁ. Their ratio is not rational, hence the sum is not periodic.
3. The sum of two periodic discrete-time signal is periodic.

4. The fist signal is periodic but cos[11000#] is not periodic, since there is no N such that cos[11000(n +
N)] = cos(11000n) for all n. Therefore the sum cannot be periodic.

Problem 2.6
D
et >0 —e ' >0
xit)=1 —¢ t<0 = xi(—t) = e t<0 =—xi(0)

Thus, x;(¢) is an odd signal

2) x,(1) = cos (120t + %) is neither even nor odd. We have cos (12077 + %) = cos (%) cos(12071) —
sin (%) sin(12071). Therefore x;, (1) = cos (%) cos(1207r¢) and x,,(f) = — sin (%) sin(1207¢). (Note: This
part can also be considered as a special case of part 7 of this problem)

3)

x3(1) = e = x3(—1) = e 1T = 711 = x3(r)

Hence, the signal x3(¢) is even.
4)

x4(t>={ w170 :>x4<—z)={ Y o

Thus, the signal x4(¢) is odd.
5)

t =0 0 >0
x5(1) = = xs5(—1) =
0 t<0 —t t <0

The signal x5(¢) is neither even nor odd. The even part of the signal is

Xs5.(t) = x50 + x5(=1) = { ; 120
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The odd part is

x5(t) — xs5(—1) L t>0 t
Xso() = = = =3
2
6)
Xxg(t) = sint + cost = xg(—t) = —sint + cost

Clearly x¢(—t) # x6(t) for every ¢ since otherwise 2sint = 0 Vz. Similarly x¢(—t) # —x¢(¢) for every ¢
since otherwise 2 cost = 0 Vr. Thus x4(¢) is neither even or odd. The even and the odd parts of x¢(¢) are
given by

xe(1) + xe(—=1)
— =
X6(1) — x6(—1)

Xooll) = S =sint

X6.,0(1) cost

)
xX7(1) = x1(t) — x2(t) = x7(=1) = x1(=1) — x2(—1) = x1(¢) + x2(2)

Clearly x7(—t) # x7(t) since otherwise x,(¢) = 0 V¢. Similarly x7(—t) # —x7(¢) since otherwise x;(t) =
0 V¢. The even and the odd parts of x7(¢) are given by

o) = wﬂm

Xo(t) = M=—X2(t)

Problem 2.7

For the first two questions we will need the integral [ = [ ¢ cos” xdx.

1 1 1
I = - / cos’ x de™ = —e** cos® x + —/e‘” sin 2x dx
a a a

1 1 .
= —e™cos’x + — [ sin2x de™
a a?

1 ax 2 1 ax : 2 ax

= —e*cos"x+ —e“sin2x — — [ e cos2x dx
a a? a?
1 ax 2 1 ax .: 2 ax 2

= —e"cos"x + e sin2x — — [ e (2cos”x — 1) dx
a a a
1 1 2

= —e™cos’x + —e“sin2x — — | e dx — —1
a a? a? a?

Thus,
I = ; (acos2x—i-sin2x)+z e
4+ a? a



1))

5 2 Ty 2
E., = lim / x7(f)dx = lim e ' cos” tdt
T—o00 7% T—o0 0
1 %
= lim - [(—2cos’t +sin2r) — 1]e™™
T—o00 8 0
li 1(2 2T+'T De T +3 .
= lim - |(—=2cos" — +sinT — 1)e = —
T—o00 8 2 8

Thus x;(¢) is an energy-type signal and the energy content is 3/8

2)
s 2 T 2 a2
E., = lim x;(t)dx = lim e ' costdt
T—oo | _ T T—oo J_ T
2 2
0 3
= lim |:/ e~ cos? tdt + / e cos? tdti|
T—o00 T 0
2
But,
0 1 0
lim e cos’tdt = lim — [(—2 cos® t + sin 27) — 1] e
T—00 _% T—00 8 _%

. 1 2 T . T

= lm - |[-3+Q2cos" =+ 1+sinT)e’ | =0
T—o0 8 2

since 24 cos @ +sin6 > 0. Thus, E, = oo since as we have seen from the first question the second integral

is bounded. Hence, the signal x,(¢) is not an energy-type signal. To test if x,(¢) is a power-type signal we
find P,.

1[0 1 (2
P, = lim —/ e cos’dt + lim —/ e cos?® dt
0

T—o0 _% T—o0

T
But limy_, o =+ [o7 e~ cos? dt is zero and

1[0 1 T
lim — / e ?cos’dt = lim — |:2 cos’> — + 1 + sin T] el
_r T—oo 8T 2

1
> lim —e’
T— o0

1
> lim —=(1+7+7T? > lim T = o0
T—oo T T—o0

Thus the signal x,(#) is not a power-type signal.

3)
: : z
E. = lim x3(t)dx = lim sgn’(1)dt = lim / dt = lim T = 00
T—o0 _% T—o00 _% T—o00 _g T—o0
N Y 1 1
P, = lim — sgn“(t)dt = lim — dt = lim =T =1
T—oo T -r T—oo T I T—oo T



The signal x3(¢) is of the power-type and the power content is 1.

4)
First note that
k77
hm / AcosQmft)dt = Z / cos2r ft)dt =0
so that
T
z 1
lim A’cos’Qrftydt = lim - (A2+A2cos(27r2 f)dt
T—o00 _% T—o0 2 %
T
1 [z 1
= lim = [ A%dt= lim —A’T = o0
T—oo 2 _g T—o0
E, = hm (A2 cos (27rf1t) + B?cos (angt) + 2A B cos(2m fit) cos(2m frt))dt

)~ N\'ﬂ

= lim A2cos Qrfitydt + lim / B? cos>(2m fot)dt +

T—o0

AB Tlim / j[cos2(2n( fi+ fo) +cos’Qu(fi — fo)ldt
= 00+ 00+ 02= 00

Thus the signal is not of the energy-type. To test if the signal is of the power-type we consider two cases
fi = frand fi # f. In the first case

P, = lim —/ (A + B)*cos (2nf1)dt

T—oo T

= 11m —(A+B)2/ t:E(A—i—B)z

T

2

If fl 75 f2 then

P, = lim — / (A% cos’(2m fit) + B2 cos*> (2 fot) + 2AB cos (27 fit) cos (27 fot))dt

T—oo T

S ta Tty

| A2 BT A%  B?
= lim — =
2 2

Thus the signal is of the power-type and if f; = f> the power content is (A + B)?/2 whereas if f; # f> the
power content is %(A2 + B?)

Problem 2.8

1. This is signal x4(¢) plotted in problem 2.1, as shown there it is obvious that the signal is periodic.
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2.0+ =YY" At-n+1)=Y"" At—m—1) =37 _ At —n)=x(). Hence
X, (t) is periodic with period 1.

3. This is the sum of two periodic signals with periods 2 and 1. Since the ratio of the two periods is not
rational the sum is not periodic (by the result of problem 2.4)

4. sin[n] is not periodic. There is no integer N such that sin[n 4+ N] = sin[n] for all n.

5. x50+ T) = Zzoz_ooy(t —nT +T) = Zfii_oo vyt —(n—DT) = Zsi_ooy(t —nT) = x5(1).
Therefore x5() is periodic with period T'.

Problem 2.9
D

T T
1 (2 : 1 (2 1
Py = lim — / A2 |0 gy = fim — / Aldt = lim — AT = A?
%T T %T T—oo T

=1l
T—o0 T—o0
Thus x(t) = Ae/ ®™/!+9) is a power-type signal and its power content is A2,

2)

N

cos(4rm fot + 20) dt

~

P, = li 1/§A2 2@nfot +60)dt = i 1/§ Azdt+ li 1/ A
= l1im — COS T = l1im — —_ m — —_—
* = 0 T—oco T 2 T 2

T—00 =T T—o00 =
2

|

As T — o0, the there will be no contribution by the second integral. Thus the signal is a power-type signal

. . A2
and its power content 18 5 -

3)

1T, 1 1T 1
P, = lim — u-,(t)dt = lim — dt = lim —— = -
T_TT TO

T—o00 T— o0 T—oo T 2 2

Thus the unit step signal is a power-type signal and its power content is 1/2

4)
7 7 | |72
E, = lim x2()dt = lim K?t72dt = lim 2K*t?
T—o0 *TT T—o00 Jg T— o0 0
= lim V2K’T? = 0
T—o0

Thus the signal is not an energy-type signal.

T T
. 1 z 2 . 1 2 2.1
P, = Ilim — x“(t)dt = lim — K“t™2dt
T—oo T —TT T—oo T Jo
. 1 2,1 1z . 1 2 1 . 21
= lim —2K%2| = lim —2K*(T/2)? = lim V2K?T"2 =0
T—00 0 T—oo T T—00
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Since P, is not bounded away from zero it follows by definition that the signal is not of the power-type (recall
that power-type signals should satisfy 0 < P, < 00).

Problem 2.10

t+1, —1<t<0 1 >0
A)y=9 —r+1, 0<r=<1 u-i(t) =4 1/2 1=0
0, 0.W. 0 <0

Thus, the signal x(t) = A(t)u_;(¢) is given by

0 t <0 0 r<-1
1/2  t=0 t+1 —1<t<0
x(t) = / = x(—1) =
—t+1 0<r<l1 1/2 t=0
0 t>1 0 >0

The even and the odd part of x(¢) are given by

x(t) +x(—1) _ 1

1) = T T = Al
X () > 5 (1)
0 r<-—1
_’2_1 —-1<t<0
x(t) —x(—1)
Xo(t) = f:‘ 0 t=0
“H 0<r<1
0 1<t

Problem 2.11
1) Suppose that

x(t) = xt) + x) (@) = x2(t) + x2(1)

with x!(#), x2(t) even signals and x!(¢), x!(¢) odd signals. Then, x(—1) = x!(t) — x(¢) so that

) x(1) +2x(—t)
X2 +x5() + x2(—1) + x5 (1)
B 2
2x2(1) + x2(1) — x2
_ 2@ x,é(t) X0 2(0)

Thus xe1 (1) = xez(t) and xa1 (1) =x@) — xel () =x(@) — xez(t) = xg(t)

12



2) Let xel (1), xf(t) be two even signals and xo1 (1), xoz(t) be two odd signals. Then,

y() =x Ox(t) = y(—1) = x (—0)x}(—1) = x, (D2 (1) = y(t)
2 =x,(Ox; (1) = (=) = x)(=Dx;(—1) = (—x ) (1)) (=x (1)) = 2(1)

Thus the product of two even or odd signals is an even signal. For v(¢) = xg (t)x; (t) we have
v(=1) = x, (=D)x, (—1) = x, (1) (=2, (1)) = —x; (1)x, (1) = —v (1)

Thus the product of an even and an odd signal is an odd signal.

3) One trivial example is # + 1 and tjr—zl
Problem 2.12
1) x1(t) = I1(¢) 4+ I1(—t). The signal I1(¢) is even so that x;(t) = 2I1(¢)
2
: 1 :
+ ................ +
1 1
2 2
2)
0, t<—1/2
1/2, t=1/2
1, —12<t<1/2
X)) =0@)—-T1(t —-1) = 0, t=1/2
-1, 1/2<t<3/2
—1/2, t=3/2
0, 3/2 <t
L
° .
* 3
S
-1

13



3)

0, t<-1/2
1/4, t=-1/2
t+1, —1/2<t<0
—t+1, 0<t<1/2

x3(1) = A@) - 11(1) =

14, t=1)2
0, 1/2<t
1
° ... e
_1 1
2 2
4 xy(t) = YAt —2n)
1
-3 —1 1 3
5)x5(t) =Y o (=D"A(t —n)
1

7) x7(t) = 1 4 sgn(¢). Note that x7(0) = 1.

14



8) xg(1) = sgn’(r). Note that xg(0) =0

9) x9(t) = sinc(r)sgn(t). Note that x9(0) = 0.

10) x10(2) = Y 02 (—=1)"né(t —n)

1) x11(1) = Y02, 5 T1(%) Note that for 1] < 1/2, x1(t) = n | 5 =1

15



Problem 2.13

1) The value of the expression sinc(#)§(¢) can be found by examining its effect on a function ¢ (¢) through
the integral

f ¢ (1)sinc(¢)é(t) = ¢ (0)sinc(0) = sinc(O)/ ¢ ()8(1)
Thus sinc(¢)3(¢) has the same effect as the function sinc(0)5(¢) and we conclude that

x1(t) = sinc(1)8(t) = sinc(0)§(¢r) = 6(¢)
2) sinc(¢)§(t — 3) = sinc(3)5(t — 3) = 0.

3) sinc(r — 2)8(t) = sinc(0 — 2)8(t) = 0.

4)

o0

x(t) = A@)* Z 8(t — 2n)

n=—oo

= Z /OO At — 1)8(t — 2n)dt

n=—o0oo

= Z foo A(r — )8(t — 2n)dt

n=—0o
o8]

= Z A(t —2n)

n=—oo

16



5)

o0
x5(1) = A@)*8@) :/ At —1)8(7)dt
—0o0
0 t<—1
1
E t:—l
J 1 —-1<t<0
= (-1)—A@l—1) =A@ = 0 t =
dt =0
-1 O0<t<l1
1
-3 t =
0 1<t

6)

x6(t) = cos(t)6(3t) = %cos(t)S(t) = %cos(O)S(t) = %8(0

7) x7(t) = cos (2t + £) 8(3t) = 3 cos (2t + %) 8(t) = 3 cos () 8(1). Hence x7(t) = £8(1).

8) xg(t) = cos(t)6(3t + 1) = cos(t)§(3(t + 1/3)) = %cos(t)(S(t +1/3) = %cos(—1/3)8(t +1/3) =
0.3155(t + 1/3)

9)

1 1 1
Xo(t) = 8(5t) x5(4t) = 580) * Z(S(t) = %S(I)

10) Note that the effect of the function 8" («t) on ¢ (¢) is

/ T o8P @ndr = © / " o (Lys'nar
—00 d J _xo o

1 n+1 d"
= (—) (—1)" ¢ )
=0 o d.x -0

X

ol
dt"¢&

1 n
= —(=D
o
Thus 6" (ar) = -8 (1) and

1 1 1
x10(t) = 8(5t) x8'(3t) = gé(t) * 58/(1‘) = ES/(I)

11) To see the effect of cos#8’(¢) on a function ¢ (¢) consider the integral

o d
/ ¢ (1) cos(t)d'(t)dt = (=17 (cos(1)d 1))

t=0

d
= (=D(=sin(®)¢ () + COS(I)EGW))

=0

COS(O)(—l)%Mt)

t=0

17



The effect is the same as that of the function cos(0)8’(¢) so that

x11(t) = cos(0)8'(t) = &'(1)

12)
t —/OOHtSZt l dt—/ooll'ltat l —l
xpp(t) = N (#)6(2( —2)) =/ .2 (1)o( —2)—4
13)
/OO sinc(1)8(t)dt = sinc(0) = 1
14)
/00 sinc(t 4+ 1)§(t)dt = sinc(1) =0
15)
©X 1t i N <1
/_OO E[z—nn(;)w(z)dz = 22— /_oo H(;)S(t)dt = 2 =1
16)
o0 o) ., o) 1 o0 o0 1
/_OO cos(?) {lea(z t):| dt = 21:2—/_00 cos(H)8()dt = : o = 1
Problem 2.14

The impulse signal can be defined in terms of the limit

N R
o=t 2 ()

But e“%‘ is an even function for every 7 so that §(¢) is even. Since §(¢) is even, we obtain
8(t) = 8(—t) = §' (1) = —8'(—1)

Thus, the function §'(¢) is odd. For the function 8 () we have
o0 o0

f ¢ ()™ (—t)dt = (=1)" / ¢ (1)8™ (1)d1
—00 —00

where we have used the differentiation chain rule

d d d
Lsh=n_py = L k=D —1) = (—1)s® (—
70 t)—d(_t>3 (=) (=) = (=D& (=1)

18



Thus, if n = 2/ (even)
/ " B8 (—0ydi = f " s (e
and the function 8™ (¢) is even. If n = 2/ 4+ 1 (odd), then (—1)" = —1 and
/ " 8" (—ndt = / " @0 yds

from which we conclude that §(¢) is odd.

Problem 2.15

x(@) x8™W (1) = /OO x()8™(t — 1) dt

—00

The signal §(¢) is even if n is even and odd if n is odd. Consider first the case that n = 2[. Then,

o0 21 n
x(t) %8 (1) = /;OOX(T)(S(ZZ)(‘L' —t)dt = (—1)21%;(@)'1_[ =

x(1)
If n is odd then,

00 2[+1
x(@) * 8% V@) = /oox(r)(—l)é(z“rl)(r—t)dr=(—1)(—1)21+1%x(t)‘ml

n

= 70

In both cases

x(t) * 8™ (1) = dn x(1)
dt"
The convolution of x () with u_;(t) is
x(t) xu_1(t) = / x(Du_1(t — 1)drt

Butu_;(t — ) = 0 for T > t so that

t

x(t)*u_l(t):/ x(t)drt

—00

Problem 2.16

1) Nonlinear, since the response to x(#) = 0 is not y(#) = O (this is a necessary condition for linearity of a
system, see also problem 2.21).
2) Nonlinear, if we multiply the input by constant —1, the output does not change. In a linear system the
output should be scaled by —1.

19



3) Linear, the output to any input zero, therefore for the input ax; (t) + Bx,(¢) the output is zero which can
be considered as ay;(t) + By.(t) = o x 0+ B x 0 = 0. This is a linear combination of the corresponding
outputs to x; () and x, ().

4) Nonlinear, the output to x(¢) = 0 is not zero.

5) Nonlinear. The system is not homogeneous for if @« < 0 and x(¢) > O then y(¢) = T[ax(¢)] = O whereas
z(t) =aT[x(t)] = .

6) Nonlinear. The system is not homogeneous for if x(¢) # O then

ax(t) x(1)
YO =Tl Ol = ol = ko
whereas
2(0) = aTlx ()] = ¢ -
lx(®)]
7) Nonlinear. The system is not homogeneous for if « < 0 then y(#) = Tlax(¢)] = |«||x(¢)| whereas

z(t) = aT[x(t)] = a|x(¢)|. The system is not additive either since |x(¢) 4+ x2(¢)| # |x1(¢)] + |x2(2)].

8) Linear. For if x(#) = ax(¢) + Bx,(¢) then

Tlaxi(t) + Bxo()] = (axi(t) + Bxa(t))e™’
= axi()e” + Bxa(t)e” = aT[x(1)] + BT [x2(1)]

9) Linear. For if x(t) = ax;(t) + Bx,(¢) then

Tlaxi (1) + ()] = (axi(t) + fxa2(0))u(r)
= axi(Ou(®) + proOu(t) = aT[x ()] + BT [x2(1)]

10) Linear.

y() = (axi(t) + Bx2(1))5(1) = (ax1(0) + fx2(0))3(r)
= ax1(0)8(r) + Bx2(0)8(r) = axi (1) (r) + Bxa2(1)8(1)

11) Linear.

Y = (axi()+ Bx2(1) ) 8¢ —nT)

n=—oQ
o

= ) (axi(nT) + Bxa(nT))8(t — nT)

n=—oo
o)

= Y a8 —nT)+ Y PrT)s —nT)

n=—oo n=—0oo

= axi(t) Y 8(t—nT)+pxs(t) > 8(t—nT)

n=—oo n=—oo

20



12) Linear. For if x () = ax;(t) + Bx,(¢) then

4 (ax) (1) + Bra(t)) >0
(axi(t) + Bxa(t)) t <0
0 t =

Tlaxi(t) + Bxa(1)]

adx (1) + BLxy(t) t>0
= axi(t) + Bxy(t) t <0
0 t=0
= aTla(O]+ BTlx(1)

13) Linear. We can write the output of this feedback system as

YO =x@) 4yt —1) =) xt—n)

n=0

Then for x () = ax;(t) + Bx,(t)

y() = ) (axi(t —n) + Bxy(t —n)
n=0

= « le(t —n)+ 8 sz(t —n))
n=0 n=0

= ay(t) + By(1)

14) Linear. Assuming that only a finite number of jumps occur in the interval (—oo, ] and that the magnitude
of these jumps is finite so that the algebraic sum is well defined, we obtain

N N
YO =Tlex()] =Y al(ty) =a Y Jo(ty) = aT[x(1)]

n=1 n=1
where N is the number of jumps in (—o0, ¢] and J,(%,) is the value of the jump at time instant ¢,, that is
Ji(ty) = lin})(x(tn +e€) —x(t, —€))
€—
For x(t) = x1(t) + x»(t) we can assume that x;(¢), x»(¢) and x(¢) have the same number of jumps and at the

same positions. This is true since we can always add new jumps of magnitude zero to the already existing
ones. Then for each t,,, J,(t,) = Jx, (t,) + Jy, (t,) and

N N N
YO =Y Tt = T ) + Y Ty (ta)
n=1 n=1 n=1

so that the system is additive.

Problem 2.17
Only if (=)
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If the system 7 is linear then
Tlaxi(t) + Bx2 ()] = aT [x1 ()] + BT [x2(1)]
for all o, B and x(¢)’s. If we set 8 = 0, then
Tlax ()] = aT[x(1)]
so that the system is homogeneous. If we let @ = = 1, we obtain
Tlxi () + x2(0)] = T ()] + Tlx2(1)]

and thus the system is additive.
If (<)
Suppose that both conditions 1) and 2) hold. Thus the system is homogeneous and additive. Then

Tlax(t) + Bxa(1)]
= Tlax;(t)] + T[Bx2(¢)] (additive system)
= a7 [x;(t)] + BT [x2(¢t)] (homogeneous system)

Thus the system is linear.

Problem 2.18

1. Neither homogeneous nor additive.
2. Neither homogeneous nor additive.
3. Homogeneous and additive.
4. Neither homogeneous nor additive.
5. Neither homogeneous nor additive.
6. Homogeneous but not additive.
7. Neither homogeneous nor additive.
8. Homogeneous and additive.
9. Homogeneous and additive.

10. Homogeneous and additive.

11. Homogeneous and additive.

12. Homogeneous and additive.

13. Homogeneous and additive.

14. Homogeneous and additive.
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Problem 2.19

We first prove that
Tlnx(t)] = nT[x(1)]

for n € N. The proof is by induction on n. For n = 2 the previous equation holds since the system is
additive. Let us assume that it is true for n and prove that it holds for n + 1.

Tl(n+ Dx(®)]
= Tlnx()+x()]
= T[nx(t)] + T [x(¢)] (additive property of the system)
= nT[x(t)] + T[x(2)] (hypothesis, equation holds for n)
= (m+ DT[x@®)]

Thus 7 [nx(t)] = n7 [x(t)] for every n. Now, let
x(t) = my(t)

This implies that

T [@} = Tly()]
m
and since 7 [x(¢)] = 7 [my(t)] = m7 [y(¢)] we obtain

T [@} = lT[x(z)]
m m

Thus, for an arbitrary rational « = % we have

Eolor [ (FOY] 2 ez [20] 2 &

Problem 2.20
Clearly, for any o

@20 gy 20 ={ S YOEO o

(1) = Tlax(t)] = { w0
0 x’(l‘) =0 0 )C/(l‘) -0

Thus the system is homogeneous and if it is additive then it is linear. However, if x(t) = x;(¢) + x,(¢) then
x'(t) = xj(t) + x5(t) and

(x1 (1) + x2(1))? 7éx%(t) x3 (1)
xy (1) + x5(1) X (1) x5(1)
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for some x;(¢), x»(¢). To see this let x,(#) = ¢ (a constant signal). Then

(1 (1) +¢)*  x7 (1) + 2¢x1(1) + ¢

Tha® + 0Ol = —5— = X0
1 1

and

xi (1)
x1(7)
Thus T'[x;(¢) + x2(t)] # T[x,(¢)] 4+ T [x2(¢)] unless ¢ = 0. Hence the system is nonlinear since the additive

property has to hold for every x; () and x; (7).
As another example of a system that is homogeneous but non linear is the system described by

Tlxi (O] + Tx2(0)] =

x(t)+x(t—1) x(@)x@t—1)>0

otherwise

Tx(®)]= {

Clearly T[ox(¢)] = aT[x(r)] but T[x;(t) + x2(t)] # Tx1(®)] + Tx2(2)]

Problem 2.21

Any zero input signal can be written as 0 - x(¢) with x(¢) an arbitrary signal. Then, the response of the linear
system is y(#) = L[0 - x(z)] and since the system is homogeneous (linear system) we obtain

y(@) =L[0-x)]=0-L[x®)] =0

Thus the response of the linear system is identically zero.

Problem 2.22

For the system to be linear we must have
Tloxi (1) + Bx2 ()] = aT [x1 ()] + BT [x2(1)]
for every «, f and x(7)’s.

Tlax;(t) + Bxa(t)] = (axi(t) + Bxa(t)) cos(2m for)
= ax(t)cos(2m fot) + Bxa(t) cos(2m fot)
= oT[x1(0)] + BT [x2(1)]

Thus the system is linear. In order for the system to be time-invariant the response to x (¢ — ) should be
y(t — tp) where y(¢) is the response of the system to x(¢). Clearly y(t — fp) = x(t — tp) cos2w fo(t — ty))
and the response of the system to x(t — 1y) is ¥'(t) = x(t — tp) cos(2m fot). Since cos(2m fo(t — 1)) is not
equal to cos(27 fyt) for all ¢, ty we conclude that y'(¢) # y(¢t — to) and thus the system is time-variant.

Problem 2.23

1) False. For if T [x(1)] = x3(t) and T»[x(t)] = x'/3(¢) then the cascade of the two systems is the identity
system 7 [x(t)] = x(¢) which is known to be linear. However, both T}[-] and 7>[-] are nonlinear.
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2) False. For if

tx(t) t#0
0 t=0

x(®) t#0

Tl[X(l)]Z{ 0 -0

Lx(®)] = {

Then T5[T1[x(¢)]] = x(¢) and the system which is the cascade of 7i[-] followed by T5[-] is time-invariant ,
whereas both 77[-] and 75[-] are time variant.

3) False. Consider the system

x(t) t>0
y@) =Tx®)] = {
1 t<0

Then the output of the system y(¢) depends only on the input x(7) for T < ¢ This means that the system is
causal. However the response to a causal signal, x(#) = 0 for r < 0, is nonzero for negative values of ¢ and
thus it is not causal.

Problem 2.24

1) Time invariant: The response to x(t — #y) is 2x (¢ — tp) + 3 which is y (¢t — 1y).

2) Time varying the response to x(t — ty) is (t + 2)x (¢t — ty) but y(t — ty) = (¢t — to + 2)x (¢t — ty), obviously
the two are not equal.

3) Time varying: The response to x (¢ — fy) is t + x(t — tp) whereas y(t — ty) = x(t — tp) +t — 1.

4) Time-varying system. The response y (¢ —y) is equal to x (—(t —1y)) = x(—t +1ty). However the response
of the system to x (¢ — fy) is z(t) = x(—t — ) which is not equal to y (¢t — fy)

5) Time-varying system. Clearly
y(t) =x(Ou_i(t) = y(t —10) = x( —to)u_i(t — o)

However, the response of the system to x (¢ — #y) is z(¢) = x(t — to)u_1(¢) which is not equal to y(t — ;)

6) Time-varying system. Clearly

y(t) = x(0)3(1) = y(t — fp) = x(t —10)3(t —10) = x(0)3(t — 1)
However, the response of the system to x (t —#y) is z(¢) = x(t —19)5(¢) = x(—1p)5(¢) which is different with
y(t —1o).

7) Time-varying system. It is true that y(# — fy) is the response to x(t — ty) for fo = mT. However, for the
system to be time-invariant this relation should hold for every #, which is not the case.

8) Time-invariant system. Clearly
t =1
y(t) = / x()dt = y(t —1y) = / x(r)dt
—00 —0oQ
The response of the system to x (¢ — fp) is

z(t) = / x(t —ty)dt = / 70x(v)dv =y —1t)

oo oo
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where we have used the change of variable v =t — 1.

o]

ne—oo X (I —n) we get

9) Time-invariant system. Writing y(¢) as

o0

Ye—t)= Y x(t—tg—n)=TIx{t — )]

n=—oo

10) Time-invariant system. The response of the system is simply y(¢#) = sgn(x(¢)). Thus y(t — ty) =
sgn(x(t — ty)) is the response of the system to x (¢t — #y).

Problem 2.25

The differentiator is a LTI system (see examples 2.19 and 2.1.21 in book). It is true that the output of a
system which is the cascade of two LTI systems does not depend on the order of the systems. This can be
easily seen by the commutative property of the convolution

hi(2) * ha(t) = ha(t) x hi (1)

Let /1, (¢) be the impulse response of a differentiator, and let y () be the output of the system /,(¢) with input
x(t). Then,
2(t) = ha(@) % X' (1) = ho(t) % (h1 (1) * x(1))
ho(t) * hy(t) % x(1) = hy (1) * ha (1) * x(1)
= h@*y@) =y®

Problem 2.26

The integrator is is a LTI system (why?). It is true that the output of a system which is the cascade of two LTI
systems does not depend on the order of the systems. This can be easily seen by the commutative property
of the convolution

hi(2) * ha(t) = ha(t) x hy (1)

Let i, (¢) be the impulse response of an integrator, and let y(¢) be the output of the system /,(¢) with input
x(t). Then,

(1) = hz(t)*/ x(1)dt = ha (1) * (hy (1) * x (1))

o]

= hy(t)*xh() xx(t) = h(t) x ho(t) x x(1)

t

_ h1<r>*y<t>=/ V(o) d

—0o0

Problem 2.27

The output of a LTI system is the convolution of the input with the impulse response of the system. Thus,

t

s8() = /OO h(f)e‘lx(t—r)uil(t —1)dt = / h(l—)e—a(t—r)dt

oo —00
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Differentiating both sides with respect to ¢ we obtain

t t

8'(t) = (—oz)e‘”/ h(r)e‘”dt-i—««f‘”i [f

o] dt o0
= (—a)8(t) + e “h(t)e” = (—a)d(t) + h(t)

h(r)e‘”dr]

Thus
h(t) =ad(t) +8'()

The response of the system to the input x(¢) is

e @]

y(1) = / x(r) [ad(t — 1) +68'(t — 1)]dr

8]

= a/oox(t)é(t—r)dr—i—/oox(r)(S’(t—r)dt

oo —00

= (t)~|-i )
= ax T

Problem 2.28

For the system to be causal the output at the time instant #y should depend only on x(¢) for t < .

1 to+T 1 o 1 to+T
y(ty) = —/ x(t)dt = —/ x(t)dt + —/ x(t)dt
2T Jio-1 2T Ji-1 2T J,,

We observe that the second integral on the right side of the equation depends on values of x (7) for T greater
than #y. Thus the system is non causal.

Problem 2.29

Consider the system

x() x()#0
1 x(@) =0

y@) =Tx(®)] =

This system is causal since the output at the time instant ¢ depends only on values of x (7) for T < ¢ (actually
it depends only on the value of x(t) for T = ¢, a stronger condition.) However, the response of the system
to the impulse signal 6(¢) is one for ¢ < 0 so that the impulse response of the system is nonzero for ¢t < 0.

Problem 2.30

1. Noncausal: Since for ¢t < 0 we do not have sinc(t) = 0.

2. This is a rectangular signal of width 6 centered at #, = 3, for negative ¢’s it is zero, therefore the system
is causal.

3. The system is causal since for negative #’s h(t) = 0.
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Problem 2.31

The output y(¢) of a LTI system with impulse response /(¢) and input signal u_;(¢) is

y(t) = /OO h(Du_1(t — t)dt = / h(t)u_1(t — t)dt + /00 h(t)u_1(t — t)dt

o0 —0o0

Butu_;(t — ) = 1for t < t so that

/ h(t)ul(t—t)dr=/ h(t)dt

oo —00

Similarly, since u_1(t — ) = 0 for T < ¢ we obtain

/Ooh(t)u_l(t —17)dt =0

Combining the previous integrals we have

y(t) = /OO h(Du_1(t — t)dt = / h(t)dt

o0 —0oQ

Problem 2.32

Let h(#) denote the the impulse response of a differentiator. Then for every input signal

d
t)yxh(t) = —x(t
x(1) * h(r) p - x(0)
If x(t) = 8(¢) then the output of the differentiator is its impulse response. Thus,
8(t) x h(r) = h(t) = 8'(r)

The output of the system to an arbitrary input x(¢) can be found by convolving x (¢) with &'(¢). In this case

o0

Y1) =x(t)x8'(t) = / x(1)8'(t — v)dt = %x(t)

—c0
Assume that the impulse response of a system which delays its input by 7 is /4 (¢). Then the response to
the input 6(¢) is
8(t) *xh(t) =6(t —to)
However, for every x(¢)
S(t) xx(t) = x(¢)

so that h(t) = §(t — tp). The output of the system to an arbitrary input x(¢) is

o0

y(t) =x(@)*x6(t — ) = / x(T)é(t —ty —1)dt = x(t — tp)

—00
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Problem 2.33

The response of the system to the signal ax;(t) + Bx,(t) is

yi(f) =/ (axi(t) + Bxa(1))dT =0t/ xl(r)dt+ﬁ/ xo(t)dt
—T — t—T

T
Thus the system is linear. The response to x (¢ — f) is
t t—1o
yi(t) = / x(t —to)dt = / x()dv = y(t — 10)
t—=T t—to—T

where we have used the change of variables v = v — . Thus the system is time invariant. The impulse
response is obtained by applying an impulse at the input.

t t t—T
h(t) = / S(t)ydr = / S(t)dr —/ S(tydt =u_1(t) —u_1(t—T)
T - _

oo oo

Problem 2.34
D

o0 t
e u_1(t)xe lu_i(t) = / e Tu_ (e "Vu_(t — t)dt = / e 'dt
_ 0

o0

_ te’! t>0
0 t <0

2)
o0
e u_1(t)*xu_i;(t) = f u_ (e "u_y(r — t)dt
- [
— f e UTIdr = e7et
0 0
l—e? >0
1o t <0
3)

1

’ A(v)dv

00 t+

1

—00 — -3

x(t) =TI@)*» A(t) = / E)A(t —0)do = /zl At —0)do :f
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3
t<—2 = x(0=0
3 1 e (L 411, 39
2<_ 2:>x() ./1 (v+ Ddv (2v+v)_l 2+2+8
1 1 0 t+%
——<t< - = x(t)=f (v-l—l)dv—i—/ (—v+ Ddv
2 2 -3 0
1 0 1 t+1
:(5v2+v)t_l+(—zv2+v)0 :—z2+4—1
2
1 3 ! 1 ! 1 3 9
—<t<=> 1) = —v + Ddv = (—=v? =12 Zt4-
5 < _2=>x() t_%( v+ Ddv (2v—|—v)t_% > 2+8
3
§<t = x(1)=0
Thus,
0 t<-3
w43+ —3<r<—1
x()y=q9 —1*+:2 —1 <<l
3 9 3
P —sttg 3<t=3
3
0 5<l
4)
t
x(t) = A(t)sgn(t) xu_y(t) = / A(T)sgn(t)dt
—00
t<—-1 = x(1)=0
1<t<0 = (z)—/t( 1)d—(12 )t—ltztl
< x(t) = . v v = 2v v _1— 3 >
0<t<1 = x(1) l+/t( + 1)d 1+( 12+)t 1t2+t !
< x(t) =—= —v V=—=+(—zv" +V)| =—= - =
2 ) 2 2 0 2 2
l<t = x()=0
5)

o0 t

x(t) = A(t) »sgn(t) = /

—00

A(T)sgn(t — 1)dt = f

—00

A(r)dt — /00 A(r)dt = x1(t) — x2(t)
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t<—1 = x()=0, x()=1andx(t)=—1

! 1 ! 1 1
“1<t<0 = xl(t)=/(v+1)dv=(—vz+v) =241+
. 2 2 2
0 1 1 0 1
xg(t)zf (v—i—l)dv—i—/ (—v+ Ddv=(=v>+v)| +=
' 0 2 . 2
1, 1
= —t"—t+ =
2 +2
x(1) = x1(t) — x2(t) = 1> + 21
0st=1 = n0=3 [(Corniv=1+ 3t | =-togiy!
> = X1 —20 v v—2 2v vo_ 2 >
(z)—/l( F Ddv = (—a0? + )l—lz2 o
xp(t) = t v v = 2v v t—2 >
x(1) = x1(t) — x2(t) = =12 + 21
1<t = xi(t) =1, x@)=0andx(r) =1
6)
o
x(t) = Au_i(t) *xI1(t) = f A()II(t — t)dt
0
Note that I1(r — ) = 1 for |t — 7| < 1/2 and zero otherwise. Thus
1
l<—§ — x(t)=0
1 1 SV 1, | , 13
—— <t <-— 1) = =(—= =—=t4+—t+ -
y SE= 2:>x() /0 (v)dr (2v+v)0 > +2+8
1 3 ! 1 ! 1 39
—<tr<<= 1 = A(r)dt = (—=0? =12 — 14—
5 S1=3 = x(1) /t_; (v)dr (ZU—H));—% 3 2+8
3
§<t = x()=0
Problem 2.35

The output of a LTI system with impulse response A (¢) is

(0.¢] o0
y(t) = f x(t —t)h(r)dtr = / x(t)h(t — t)dt
—00 —00
Using the first formula for the convolution and observing that 2(t) = 0, 7 < 0 we obtain
0 0 00
y(t) = / x(t —t)h(t)dt —I—/ x(t — t)h(t)dt = / x(t —t)h(t)dt
—00 0 0

Using the second formula for the convolution and writing

y(t) =/ x(‘c)h(t—t)dt+/oox(t)h(t—1:)dt

o0
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we obtain

y(t):/ x(D)h(t — 1)d7

o0

The last is true since 4(t — 7) = 0 for r < 7 so that ftoox(t)h(t —17)dt =0

Problem 2.36

In order for the signals v, (¢) to constitute an orthonormal set of signals in [«, o + Tp] the following condition
should be satisfied

atTo . 1 m=n
Y (0). Y (1)) = f Y (OYS (Ot = 8y =
o 0 m+#n
But
a+Tp 1 i 1 g,
(Un(@), Y (1)) = — T eI gy
o v To VT
a+Tp e
= i e 2t )tdt
To Ja

: (n—m)
Ifn = mthen ¢/ ™ ' =1 so that

0

1 a+Tp 1
W0, V(1)) = 7/ dr= L

When n # m then,

J2m (n—m)(a+To)/To

1
=0

(Y @), Yy (1)) = S—————¢"

e
j2m(n —m)

J2r(n—m)a/ Ty

Thus, (1, (¢), ¥, (t)) = 8,u, Which proves that v, (¢) constitute an orthonormal set of signals.

Problem 2.37

1) Since (a — b)?> > 0 we have that

at b
p<L 42
=5+

with equality if a = b. Let
1 1
n 2 n 2
a=[sa] . a=[3n]
i=1 i=1
Then substituting «; /A for a and B; /B for b in the previous inequality we obtain

C(,‘,B,'<1(Xi2 1,312
AB ~—2A? 2B?
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with equality if % = 4 = k or ; = kp; for all i. Summing both sides from i = 1 to n we obtain

B
Il G a? 1 p?
52p+52ﬁ

i=1 i=1
1

Zn a;Bi
‘—~ AB
i=1
- — 1
2 2 2 2

IA

Thus,

1

ﬁzaiﬂi <l= Zaiﬂi < |:Z%{| |:Z,3,2:|
i=1 i=1

i=1 i=1
Equality holds if o; = kgB;, fori = 1,... ,n.

2) The second equation is trivial since |x; y/| = |x;||y/|. To see this write x; and y; in polar coordinates as

Oy j0y. j (O, —0y.
x; = pye!® and y; = pye/®i. Then, [x;y7| = |py py,e! @i = pypy, = |xillyil = |xillyf]. We turn

now to prove the first inequality. Let z; be any complex with real and imaginary components z; g and z; ;

respectively. Then,
n n 2 n 2 n 2
Zzi,R +J ZZi,I = (Z Zi,R) + (Z Zi,])
i=l i=1 i=1 i=1
n n
= Z Z(Zi,RZm,R + Zi1Zm.1)

i=1 m=1

2

n
>s
i=1

Since (z; rRZm.1 — Zm’RZ[’])z > 0 we obtain
2 2 2 (.2 2
(Zi,RZm,R + Zi,IZm,I) =< (Zi,R + Z,‘J)(Zm,R + Zm,l)
Using this inequality in the previous equation we get
2

n n n
Z zi| = Z Z(Zi,RZm,R + Zi1Zm.1)
i=1

i=1 m=1

n n
2 234 2 2 4
Z Z(Zi,R + 25 )2 (G g + 2 )2

i=1 m=1

n n n 2
1 1 1
= (E (ZI'Z’R+ZI‘2’1)2) <§ (an,R'i‘Zi,])z) = (E (ZI'Z’R +Z%1)2>
i=1 m=1 i=1

IA

Thus

n 2 n 2 n n
2 2 \%
zi| < (zig +2ip) or Zi| < |Zi
i=1 i=1 i=1 i=1

The inequality now follows if we substitute z; = x;y;. Equality is obtained if ZZ’—’; = Zz’”—*’; =kyor Lz; =
Lim = 0. '

33



3) From 2) we obtain

2 n
<Y lxillyil
i=1

n

*
E Xiy;
i=1

But |x;|, |y;| are real positive numbers so from 1)

n n 2 n
> lxillyil < {Z |x,-|2] [Zw}
i=1 i=1 i=1

Combining the two inequalities we get
n 2 n n
D x| < [Z i |2} [Z |y |2}
i=1 i=1 i=1

From part 1) equality holds if &; = kB; or |x;| = k|y;| and from part 2) x;y¥ = |x;y|e/’. Therefore, the two
conditions are

D=

D=
D=

|xi| = klyil
Z.Xi —Zyl =0

which imply that for all i, x; = Ky; for some complex constant K.

4) The same procedure can be used to prove the Cauchy-Schwartz inequality for integrals. An easier approach
is obtained if one considers the inequality

|x(¢) +ay(t)| =0, for all o

Then

0 < / |x(t)+ay(t)|2dt=/ (x (1) + ay (@) (x*(t) + «y*(1))dt

o0

_ / r(t)Pdt +a / F(O)y(0)di +a” / X0y ()dt + laP / YO Pd

oo oo -

The inequality is true for [*_ x*(t)y(t)dt = 0. Suppose that [ x*(t)y(t)dt # 0 and set

[ 1x(@)]Pdt

[ x*(0)y(0)di
Then,
> 2 1x@)Pde? [7 |y(t)|*dt
0<-— DPdr + =2 o
/—oo o | [22 x(Oy*()dt]?
and

< [/w |x<t>|2dt}2 [/oo |y(r>|2dt}2
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Equality holds if x(r) = —ay(¢) a.e. for some complex «.

Problem 2.38

D
oo [
00 N N
/ (x(z)—Za,-qﬁi(r)) SNOED I HON KL
- i=1 j=1
00 N 00 N 00
= / x()dt =Y e / ¢ (O)x*()dt — Y o / ¢ (Dx(1)dt
- i=1 - j=1 —00
N N 00
+> ) ) / ¢ (D¢*d

i=1 j=1

00 N N 00 N 00
/ X(OPdt + > ol = > e / ¢i(Ox* (1)t =Y / ¢ ()x(1)d1
—o i=1 i=1 —% j=1 —%©
Completing the square in terms of «; we obtain

00 N 2 N
et = / ()Pt =y +y
- i=1 i=1

The first two terms are independent of «’s and the last term is always positive. Therefore the minimum is
achieved for

2
dt

N

x(0) = Y aii(0)
i=1

2

/OO o (t)x(t)dt

o — /OO ¢ (t)x(t)dt

o
o = / o (t)x(t)dt
—0o0o
which causes the last term to vanish.

2) With this choice of «;’s

2

/Oo o (t)x(t)dt

00 N
& = / e()Pdt =
- i=1

N

= [ wwrdr- Yl
- i=1

Problem 2.39

1) Using Euler’s relation we have
x1(t) = cos(2mt) + cos(4nt)

— % (eiZm‘ +e—j2m‘ +ej4nt +e—j4nt)
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Therefore forn = +£1, £2, x;, = % and for all other values of n, x; , = 0.
2) Using Euler’s relation we have

Xp(t) = cos(2mt) — cos(4mt 4+ m/3)
_ (ei2m 4 emiamt _ pitmitn/3) _ e—j(4m+n/3))

2
— %eiZm + %e—ﬂm + %e—j2n/36j4m + lejzn/3e_j4m

from this we conclude that x, 1| = % and x;, = x;fz = %e*ﬂ”ﬂ, and for all other values of n, x, , = 0.
3) We have x3(t) = 2cos(2nt) — sin(4rt) = 2cos(2wt) + cos(dmt + 7 /2). Using Euler’s relation as in
parts 1 and 2 we see that x3 .; = 1 and x3, = x;72 = j, and for all other values of n, x5, = 0.

4) The signal x4(¢) is periodic with period Ty = 2. Thus

1! o 1! ,
Xop = = / At)e 772 dr = — / A(t)e /™ dt
2 ), 2 ),

1[0 . 1! .
= _/ (r+1)e””’dr+—/ (=t + e /™ dt
2J), 2 Jo

0 0

1/ 1 i
= —| =t —Jjmnt 4+ — —jmnt 4 _e—jzmt
2 (nn ¢ nznze . 27n =
1 ] —jmnt 1 —jmnt ] -] —jmnt l
— | ==t/ 4+ ——e7/ + e
2 \7n w’n? o 27n 0

1
m2n?  2n2n?

(/™" 4 eIy = (1 — cos(rn))

m2n?
When n = 0 then
1! 1
= — A)dt = -
X4,0 2/_1 (1) 5
Thus

1 =1
x4(t) = 3 +2 ; W(l — cos(mn)) cos(mnt)

5) x5(¢t) = 1. It follows then that xs o = 1 and x5, = 0, Vn # 0.

6) The signal is periodic with period Ty = 1. Thus

1 [T 4 o
Xen = — etefﬂnmdt — / e(712nn+l)tdt
To Jo 0
_ 1 (—j2an+1)t : e(—szrn+l) —1
 —j2nn+1 0_ —j2mn +1
e—1 e—1

= = (14 j2mn)

1 —j2nn 1+ 4n2n2
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7) The signal cos(¢) is periodic with period T} = 27 whereas cos(2.5¢) is periodic with period 7, = 0.87x.
It follows then that cos(#) + cos(2.5¢) is periodic with period 7" = 4. The trigonometric Fourier series of
the even signal cos(?) + cos(2.5¢) is

s n
t 2.5t) = N 2w —t
cos(t) + cos(2.5t) > ey cos( o )

n=1
o
n
= Z o, cos(zt)
n=1

By equating the coefficients of cos(5¢) of both sides we observe that @, = 0 for all n unless n = 2,5 in
which case a; = as = 1. Hence x7, = x75 = % and x7 , = O for all other values of n.

8) The signal xg(#) is periodic with period Ty = 1. Forn =0

1 1 1
= —t+ Ddt = (—=t>+1)| ==
50 /0<+> (570 =3

Forn #0
l .
Xgp = /(—t—i—l)e‘fz”’”dt
0
- _ .] te7j27rnt+ 1 €7j27mt 1+ -] efj27mtl
27n 472n? o 27n 0
_
N 2mn
Thus,

1 1
xg(t) = = + — sin 2w nt
8 =3 ;M

9) The signal x9(¢) is periodic with period Ty = 2T. We can write xo(¢) as

o0 o0
xo(t) = Z 8(t —n2T) — Z §(t — T — n2T)
n=—0o0 n=—0o0
1 o0 o0
- ejn%t o ejn%(th)
2T 2T
n=—oo n=—0o0
<1
— (1 _ pimny 21 gt
> (= e ™e
n=—0o0

However, this is the Fourier series expansion of x¢(f) and we identify x¢ , as

0 neven

1 nodd

~ La—em = Lo =
Y Zort T )Ty -
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10) The signal is periodic with period 7. Thus,

Xip = — S(z)e—ﬂ”%’dz

NH

_J27n

- 1 e —j2m gt
( ) . 2

11) The signal xg(¢) is real even and periodic with period 7y = ﬁ Hence, x5, = ag /2 or
41
Xsn = 2fo f " cos@r for) cos(rn2 for)dt
1
Ex0)

= f / rl" cos27 fo(1 + 2m)t)dt + fo / ? cos(27 fo(1 — 2n)t)dt

o 1o
1 . 0 1 : T
= — 2 1+20)0)|7° + —m48M8M— 2 1—=2n)H)|™°
22+ 2n) sin(27 fo(1 + 2n) )|% + (1= 2m) sin(27 fo( n) )|ﬁ

=D 1 1
oo |:(1+2n)+(1—2n)i|

12) The signal xy(#) = cos(2m fot) + | cos(2m fot)| is even and periodic with period Ty = 1/fp. Itis equal to

2 cos(2m fpt) in the interval [— -, 4}0] and zero in the interval [ s —=2_1. Thus

4f " Ify

1

=
Xop = 2f0/ 10 cos(2m fot) cosRmnfot)dt

Exry
= fo/ flo cos(2m fo(1 + n)t)dt +f0f 10 cos(2m fo(1 — n)t)dt
fo o

1 % T
= ——sin@afo(1 +m1)| P + sin(27 fo(1 — m)t)|*P
£y 4fo

27 (1 4+ n) 27(1 —n)
= i)+ ————sinE (1 - )
= n(1+n)sm2 n n(l_n)sm(z( n)

Thus x9 , is zero for odd values of n unless n = %1 in which case x9 1| = % When n is even (n = 2[) then

—D'T 1 L
X =
0.2l T |1+20 T 1-2

Problem 2.40

It follows directly from the uniqueness of the decomposition of a real signal in an even and odd part.
Nevertheless for a real periodic signal

x(t) = % + Z [an cos(Zn%t) + b, sin(Zn%t)]

n=1
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The even part of x(¢) is

x(t) +x(—1)
2

= —1 E (cos(2m T 1) (—27 T 1))
+ L, (cos(2 + cos
aop a,(co - 0s(—2 -

X, (1)

2

n=1

b, (sin(27 %z) + sin(—2n%t))>

o0
= %0 + Zan cos(Zn%t)

n=1
The last is true since cos(f) is even so that cos(d) + cos(—8) = 2cosf whereas the oddness of sin(9)

provides sin(6) + sin(—6) = sin(f) — sin(d) = 0.
The odd part of x(¢) is

00 = x(1) —2x(—t)
_ ib Sin(277 = 1)
n=1 ! TO

Problem 2.41
1) The signal y(t) = x(¢t — tp) is periodic with period T = Tj.

1 a+Ty

o= x(t —to)e 7" di
0 Ja

1 a—to+To

- — x(v)e 7T (v + 1p)dv
TO a—ty

a—to+To

—j2m At 1 —j2m v

= e’ Too—f x(v)e ' dv
TO a—ry

—j o

— xe 4/2”T0l0

where we used the change of variables v =t — §

2) For y(t) to be periodic there must exist 7 such that y(t+mT) = y(t). But y(t+T) = x(t+T)e/?>7fo gi?7foT
so that y(z) is periodic if T = Tj (the period of x(¢)) and foT = k for some k in Z. In this case

a+Ty o g
gy
o= x(r)e T I 27Nl gy
0 Ja
1 a+Tp Cipp k),
- F x(t)e T = Xn—k
0 Ja
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3) The signal y(¢) is periodic with period T = Ty /.

'B+T o ﬁ+7 i2 no
N —/ y(t)e T dr = T x(at)e ' dr
0

1 Ba+Ty

i
= — x(v)e JZHTovdvzxn
Ty

where we used the change of variables v = at.

4)
1 a+Ty P
wo= g X' (e T 4t
0 Ja
1 2 At atto 1 a+To n —j2m At
= —x(t J To _— — 27T— J To dt
Tox( )e ) /. (—J To)e
n a+Tp P
= j2n—— x(t)e Tyt qe =j2n£x,,
To 1o Jo Ty
Problem 2.42
1 a+To 1 a+To j27zn an
— Hy*()dt = — T 'dy
n ) xoro T > X Z yne
n=—0oo m=—0o0
i o a+Ty j2n(n m)
= T 'dt
:Z_OO,,,:Z_ ny /
o0 o0 o0
= D 2 mNbm= )
=—00 m=—00 n=—00
Problem 2.43

a) The signal is periodic with period 7. Thus

X, = —/ el Ty = / e U T gy

T

— ——e7(12nT+l)t — _; [ef(j27'[}’l+T) _ 1]
T (j2m2 +1) 0 j2nn+T
1 T — j2n

R I e

j2rn+T T? + 472n?
If we write x,, = @ we obtain the trigonometric Fourier series expansion coefficients as
2T 4mn
e L T
U= gt T T tampl —¢ ]
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b) The signal is periodic with period 27'. Since the signal is odd we obtain xo = 0. Forn # 0

T . T4
X, = — x(t)e 2Tt = — —e /¥t gt
2T ), 27T ), T
| Y
= ﬁ te /TT!dt
. 2 T
— L El *J”%t_i_ T e ITT!
272 2n? 7
2 2 ) 2
— 1 ]T €7j7m+ T ¢ j7T)’l+JT ejnn_ T ejnn
2T2 2n? n 2n?
= Ly
nn( )

The trigonometric Fourier series expansion coefficients are:

a, =0, b, = (_l)n_Hi
mn

¢) The signal is periodic with period 7. Forn =0

1 [z .,
xo—?fgx(t) t=—

If n # 0 then
X, = —f x(t)e 1T dt
3
T
= —/2e 2y ‘dt+—/ e 1T dt
T T
2 i
— —/27{ t 2 L _Jzn t
271n -z 27rn I
— 2.] [ —J]Tn e/nn+e jﬂz e jﬂz]
Tn
: (=) L (3)
= —sin(wr =) = =sinc(=
2 2 2

Note thatx, = 0 forn evenand x4 | = m (—1)!. The trigonometric Fourier series expansion coefficients
are:

2
=3, .ay=0, |, D', ,b,=0,V
aop a a1 = Y 1)( ), n

d) The signal is periodic with period 7. Forn =0

1 T
= — dt = —
X0 T/o x(t)
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If n # 0 then

1 (7 - 1 (53 .,
X, = —f x(t)eﬂ”Ttdtz—/ Zte Ty
T /) T ) T
2T
L[5 _ . 13 o
+?-/; e_jznTtdl-f—?-/;T (_?t+3)€_12”71dt
3 5
: > r
= 3 (IT  my T g\
T? \27n 4m2n? 0
. 2 T
3 (I my T ot
T2 \27n 47202 r
. 2r . T
4 i T3 IT g
2nn T T 2mn a
3 2nn
= 2 )

The trigonometric Fourier series expansion coefficients are:

4 3 2mn
do =7, an= n2n2[COS(T) —1], b, =0, Vn

e) The signal is periodic with period 7. Since the signal is odd xo = agp = 0. Forn # 0

7/—
J—

T T
1 Z 4 ; n 1 7 ; n
o ¢ —]ZNTtdt _f —]2n71dt
+T/_ e + T : e
2

T
2

T
1 (% o
x(t)dt:—/ —e 2Tt
T J_

r
2

o~

r T
7
4 (T . . T AN
- —te_-/2”7t+—e_12”7[
T? <2Jm 472n? 1

(T g
T \27n

T

_ L (T o\ |2
I e L

I T (271’71 )|

=~

For n even, sinc(%) =0and x, = nf—n The trigonometric Fourier series expansion coefficients are:

1 _
a, =0, Vn, bn:{_m n=2

2 2(=1) _
Frenyi Ui n(2l+l)] n=20+1

f) The signal is periodic with period T'. Forn = 0

T
3

1
xoz?/_gx(t)dtzl
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Forn #0

0

T
1 3 - 1 3 3 i
. = = 4 2)e T 4+ — — 1+ 2)e T dr
W= o G +7 [ e

- 2
_ 3 (JT te i 4 r oI
T2 \27n 472n?

[~

)

0

I~

1 2
_i ite_jZH%t + r e—jZn%t
T? \27n 477272

+2 jT
— e
T 2ntn

wiN

0

/ 3
—j2m it % -]T efj27r%t

I T 27n

3 1 (27111) n 1 . (27111)
= —— | = —cos(— — sin(——
2n? |2 3 Tn 3

0

The trigonometric Fourier series expansion coefficients are:

3 1 2nn 1 . 2nn
ap =2, a,=2 — —cos(—) )+ —sin(—) |, b,=0, Vn
mn 3

2n? \2 3

Problem 2.44

1) H(f) = 101'[(%). The system is bandlimited with bandwidth W = 2. Thus at the output of the system
only the frequencies in the band [—2, 2] will be present. The gain of the filter is 10 for all f in (-2, 2) and
5 at the edges f = £2.

a) Since the period of the signal is T = 1 we obtain

y() = 10[%O + ay cos(2nt) + by sin(27t)]
+5[a, cos(2mw2t) + by sin(27w2t)]
With
2 dmn
":—1__1’ bn:—l—_l
“ 1+4n2n2[ ¢ 1+4n2n2[ ¢
we obtain

" = (1—e |20+ cos(2mt) + 40—71 sin(2mt)
Y N 1+4r2

1 +4n2

@20+ —T_ Gin@r2n)
COS(<LTT —— SIN(Z7T
14 1672

+ 14 1672 16

b) Since the period of the signal is 27 = 2 and a,, = 0, for all n, we have

x(0) =Y b, sin(zngr)

n=1
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The frequencies 5 should satisfy |5| <2 orn < 4. With b, = (— 1! % we obtain

20 . 2mt 20 .
y() = —sin(—)— —sin(2mt)
b4 2 2
+20 ) (27r3t) 10 . (2n20)
I sin > - sin(2w
¢) The period of the signal is 7 = 1 and
3 0 2 -D!, ,b,=0,V
ag = D, ,dy = U, ,a = — 0 = ) sy Op = U, n
0 21 2041 Q2+ D)

Hence,

3 o0
X0 =2+ ;CIZH-] cos(27 (2 + 1)1)

At the output of the channel only the frequencies for which 2/ + 1 < 2 will be present so that

3 2
y() = 10= + 10— cos(2mt)
2 4

d) Since b, = 0 for all n, and the period of the signal is 7 = 1, we have

o0
x(1) = 02—0 + Z a, cos(2mnt)

n=1

With a9 = % and a, = #[COS(MTn) — 1] we obtain

20 30 2
y(t) = — + —(cos(—) — 1)cos(2rt)
3 2 3
+2 (cos(2Ty = 1) cos@r2)
—(COS(—— ) — COS(ZT
47?2 3
20

45 45
= 3= cos(2mt) — P cos(272t)

e) Witha, =0 foralln, T =1 and

_Lz n =21
bn = ”2 2y
n(21+1)[1 + 77(2[+1)] n=2+1
we obtain
y(t) = 10bysin2xt) + 5by sin(2m121)

2 2 1
= 10—+ —)sin(2wt) — 5— sin(2wt2t)
b4 b4 b4
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f) Similarly with the other cases we obtain

3 1 2 1 . 2nm
y(#) = 10+10-2| (= —cos(—) + — sin(—) | cos(27t)
722 3 T 3
152 2k~ eosP) + L sin(T) | cosanan
2| 155 —cos(5 5 sin(5) | cos(2m
3

3 3 3
= 10420 — + £ cosmt) + 10| — — £ cos(2m2t)
7 27 472 4x

2) In general

o
Y0 = Y wHEG)

n=—oo

The DC component of the input signal and all frequencies higher than 4 will be cut off.

a) For this signal 7 = 1 and x,, = 11;1]:%(1 — ¢ 1. Thus,
1 —j2n IR 1 — j2m2 o

YO = e DEDT g (L e
1 —j2n3 IO 1— j2r4 L
a2 (| ¢ DD e (1 e D e
14 j2n . —i2 14 j2m2 o
—(1 - Jemt L Sdairg IR jom2t
1+47T2( e )J€ + 1—|—47‘[24( e )]€
1+ 273 N 1+ j2n4 L
Tran T¢I g e e

4 2
= (1—¢ § :—”(sin(2nnt) — 27n cos(2mnt))
— 14+ 4m4n

b) With 7 = 2 and x, = =L (—1)" we obtain
8 ] -1 ]
t — L1 (= jmnt __ln-jnnt
y () ;m( )" (=j)e +n;8”"( )'je

8

-1
(_l)n jmnt § : 1 i

— E :_ n —(=1)" jmnt
mn ¢ + JTn( ) €

n=1 n=-—8

¢) In this case

(=1

= O’ =
X21 X2l+1 TR+ 1)
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Hence
1 . 2t 1 . j 27 3t
yit) = ==+ —(=D(—j)e’
T 3
+L(—1)j€7j27n + Lje*jZTr?)t
-7 —3r

1 1
= 5 sin(2mt) — P sin(27 31)

d) xo = % and x, = 52> (cos(¥%%) — 1). Thus

‘3 2mn }
y(i) = Z T (COS(T) — 1)(_j)ej2nnt

n=1

-1
3 2mn . it
¥ 2 o)~ DI

e) With x,, = #((—1)” — sinc(%’)) we obtain

4 | -1
Y0 = 30— (=" = sine() + Y —(=1)" = sine(3))

n=1 n=—4

f) Working similarly with the other cases we obtain

4

_ 3 (Y Amny Lo Zanll L
y(t) = ;[— (— cos(— ))+M sin( )}( je’

72n? \ 2 3
—1
3 1 2mn 1L 2an | . o
+n;4 |:712n2 (5 — cos(—3 )) + p— sm(—3 )i| jel*m

Problem 2.45

o]

|2
n=—00 °

Using Parseval’s relation (Equation 2.2.38), we see that the power in the periodic signal is given by [Xn

Since the signal has finite power

1 a+Toy

— lx(0))?dt = K < 0o
TO o

Thus, Y 02 |x,|*> = K < oo. The last implies that |x,| — 0 as n — oo. To see this write

00 -M M 00
2 2 2 2
Dol =)0 P+ Dl Y Il

n=—00 n=—00 n=—M n=M

Each of the previous terms is positive and bounded by K. Assume that |x,|> does not converge to zero as n
goes to infinity and choose € = 1. Then there exists a subsequence of x,, x,,, such that

X, > € =1, forny, > N>M
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Then

0 o0
Dl =) Il = P =00
n=M n=N ni

This contradicts our assumption that Y - - |x,|? is finite. Thus |x,|, and consequently x,, should converge

to zero as n — oQ.

Problem 2.46
1) Using the Fourier transform pair

o] F 20 20 1

e - =
a4+ 2nf)? 4712%4_]02

and the duality property of the Fourier transform: X (f) = F[x(¢)] = x(—f) = F[X (¢)] we obtain

<20{>}_ 1 alf|
el — ool
4r? e

With o = 27 we get the desired result

1 2l f]
]:[l—i-ﬂ} =me

2)
Flx@®)] = FIIO( —3)+ I(t + 3)]
= sinc(f)e /3 4 sine(f)e/ 3
= 2sinc(f) cosr3f)
3)

Flx(@)] = FI[AQt+3)+ AQBr—2)]

3 2
= FIAQ@1 + 5)) +AQ@ - 3)]
_ Yo o S s L 2 gt
= 2smc (2)e + 3s1nc (3)e 3

4) F[I1(t/4)] = 4sinc(4 f), hence F[4I1(¢/4)] = 16sinc(4 f). Using modulation property of FT we have
Fl4T1(t/4) cos(2m fot)] = 8sinc(4(f — fu)) + 8sinc(@(f + fv)).

5) We use a combination of scaling, time shift, and modulation properties to obtain the result. F [411 (52)] =
16e=7/*"/sinc(4 f) and

d [m <t :t 2) COS(27Tfot)} = 8e /U Wsinc(4(f — fo)) + 8¢ I Wsine(d(f + fo))
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6) T(f) = Flsinc’(r)] = Flsinc?(¢)sinc(r)] = A(f) » [1(f). But

00 1

2 f+i
A(f — 0)do = / A(v)dv
3 f-3

2

l'I(f)*A(f)=f H(Q)A(f—@)d@:/

—00 —

For f§—§:>T(f):0

f+% f+% 1

For S <fs-3 =T = [ @+hdv= Gty Fadpes
or —=— < —— = = (< == = -
) =/ =73 L PERT TV T2 Tl Ty
1 1 0 f+3
For ——<f§—:T(f)=/ (v—i—l)dv—i—/ (—v+ Ddv
2 2 f_% 0
I 0 I f+3 3
=GV +y)| (34| =+
2 o 0 4
2
1 3 ! 1, ! 1, 3. 9
For ~<f<-=T(=[ (—v+Ddv=(—v*+v)| =-f2-f+_
2 2 -l 2 PIE) 27 8
3
For §<f:>T(f):0
Thus,
3
0 f=-3
iy —des=—d
— 3 1 1
T(f)=3 —f*+3 —1<f<t
LP-if ey ders
3
7)

| ; 1 |
Flisine()] = —Flsin(ro)] = é [S(f +3)—8(f - E)]

The same result is obtain if we recognize that multiplication by ¢ results in differentiation in the frequency
domain. Thus

Flesine] = 2L () = L

1 1
a0 = 3 [0+ P =50 = D)

8)
jd (1 1
Flicos@f] = 50 <55(f ~ fo)+ 38(f + fo))
= ﬁ (§'Cf = fo) +8'(f + fo))
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9)

Fle=" cos(Br)] = 2o + 2
202+ @r(f-L£)r 2+ @r(f+ L))
10)
i d o o
Flre—all - J 4
[te COS(,Bf)] 2 df <a2+ (27.[(}0 _ %))2 + a2 + (27.[(]0 + %))2)
_ _j[ 2an(f — L) . 2an(f + L) }
(@+@r(f=£0)  (@+Cr(f+£)7)
Problem 2.47

x1(t) = —x(t)+x(t) cos(20007 t)+x(¢) (1 + cos(6000rt)) orx;(t) = x(t) cos(200071)+x (1) cos(60007¢).
Using modulation property, we have X (f) = 3 X (f — 1000) + 3 X (f 4 1000) + 3 X (f —3000) + 3 X (f +
3000). The plot is given below:

Problem 2.48

FISG(+ ) +80— )] = /m1®a+l)+ar ety
2 2 Sl ) 2 ¢
T . .
= E(e_-’”f + e ™) = cos(f)
Using the duality property of the Fourier transform:

X(f)=Flx()] = x(f) = FIX(-1)]
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we obtain
1 1 1
Fleos(—mt)] = Flcos(wt)] = 5(3(f + 5) +4(f — 5))

Note that sin(rr¢) = cos(rt + 7). Thus

. 1 1 1 Lo
Flsin(mn)] = Fleos(x(t + 5))] = 5(5(f + 5) +6(f — E))e’ ‘

2
= Ses(f 4 ) 4 e Ta(f - )
2 272 2
_ j5( 1 ja( 1
= 5 f+§)—§ f_i)

Problem 2.49
a) We can write x(¢) as x(r) = 2I1(§) — 2A(5). Then

Flx()] = .7:[21'[(2)] — ]:[ZA(%)] = 8sinc(4 f) — 4sinc’(2f)

b)

x(t) = 21'[(;1) — A(t) = Flx(t)] = 8sinc(4 f) — sinc?(f)

c)

00 0 1
X(f) = / x(t)e 7 dr = / (t + De 7?™dr + / (t — De /24y
PSS —1 0

j 1 —j2nft
= — J
(2nf * 4ﬂ2f2) ¢

0 . 0
4 J o= il

1 2nf -1
j 1 ' 1 ] ‘ 1

+ <—l + > e—]2nft _ _e—]erft
2nf | An2f? o 271f o

- n’—fu — sin(zf))

d) We can write x(¢) as x(t) = A(t + 1) — A(t — 1). Thus

X (f) = sinc®(f)e?> — sinc®(f)e /¥ = 2jsinc?(f) sin2r f)

e) We can write x(¢) as x(t) = A(t +1) + A(®) + A(t — 1). Hence,

X(f) = sinc>(f)(1 + /> 4 772y = sinc®(f) (1 + 2 cos(2n f)
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f) We can write x(¢) as

x(t) = [H <2f0(t — L)) —II <2f0(t — L))] sin(27 fot)

4 fo 4 fo
Then
X(f) = [%sine (%) e s %sinc (%)) eﬂ”%f]
0 0 0 0
sZG(f + o) = 8(F + fo))
= Lsinc (f + fo> sin <T[M) — Lsinc (f — fo) sin (nf _ fo)

2 fo 2 fo 2 fo 2 fo 2 fo 2 fo

Problem 2.50

(Convolution theorem:)
Flx@) * y(O)] = FlxOIF [yl = X(HY ()
Thus
sinc(f) x sinc(t) = F'[F[sinc(r) % sinc(?)]]
= F [ Flsinc(t)] - Flsinc(r)]]
= F OO = F ()]

= sinc(r)

Problem 2.51

Flxy®)] = / wx(r)y(z)e—ﬂ”f’dr

o0

= / ” < / ” X(@)eﬂ"%m) y(t)e 2 dy
= f h X(6) ( f N y(t)e I _9)’dt> do

= / X@O)Y(f —0)dd = X(f)*Y(f)

Problem 2.52
1) Clearly

oo o0

xi(t +kTy) = Z x(t +kTy — nTy) = Z x(t — (n —k)Ty)

n=—oo n=—0oo
(0.¢]

= D x(t—mTp) =x()

m=—0oQ
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where we used the change of variable m = n — k.

2)

x1(t) = x(1) * Z 8(t —nTy)
This is because

/OO x(1) Z 8(t — 1t —nTy)dt = Z /Oo x(1)8(t — 7 — nTp)dt = Z x(t —nTy)
3)
Fla®] = Flx@* Y 8¢ —nTy)l=FlxOIFL Y 8t —nTp)]
- n - n n
= “ﬂiQ;“ﬂﬁ?ZEE;“i”“—ﬁ>

Problem 2.53

1) By Parseval’s theorem

/ b sinc’ (1)dt = f h sinc? (7)sinc?(1)dt = / h AHOT(fHdf

o0 —00 —

where
T(f) = Flsinc’(1)] = Flsinc?(t)sinc(r)] = I1(f) * A(f)
But

2 f+3
1A(f—@)d@ 2/ 1 A(v)dv

2

o0

l'I(f)*A(f)=/ H(@)A(f—e)dezf

—00 —

For f§—§:>T(f)=O

2
F. ) f< 1:>T(f) /H( +Ddv = (o 4 )f% 1f2+3f+9
or — < —— = v vV=(=-v v = — — —
2 -2 i 2 4 2 2 8
1 1 0 f+3
For ——<f§—:>T(f):/ (v+1)dv+/ (—v+ Ddv
2 2 -4 0
1, [ 1, |/ , 3
=Gv+ty)| +(zv+v) =—-fT+-
2 pal 2 0 4
2
1 3 ! 1, : 1, 3.9
For - < f<-=T(f)= (—v+ Ddv =(—=v"+0v) =—f"—=f4+-
2 2 - 2 s 20 27 T8
3
For §<f:>T(f)=0
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Thus,

~

[
/\ /\ = W |/\
|

~ =~ A A

i
—f2+%

1 2 3
37— 3

IN 1A
ST

RI= |

T(f)=

A T Th o

[NS]O8]

Hence,

o0 = 3 9 0 3
/ AHT()df / TGP AU N+ [ P DU s
+fé(—f2 O f 4 1>df+/1<1f2 e D r ey
0 4 1 2 2 8
41
64

2)

/ e sinc(t)dt u_; (t)sinc(t)dt
0

o
—0o0

o0 1
[ g -

1/2

=—1In

df

o+ jm
o

Lo+ j2nf

|
) = —tan
b4

1 . T
_—ln(a+]27rf)| —
j2m o

3)

o0
/ e “'sinc?(r)dt ay 1 (t)sinc? (r)dt
0

A(HHdfdf
1
)

0

Ol+]2 f
f+1
1Ol+]7Tf

—f+1
o+ juf

af

[«
[
[

X X
a+bx Timdx = b

0
/ e sinc?(r)dt
0

But [ i In(a + bx) so that

S % .
(E + mln(oz + j2mf))
f

_(]E + 4— In(x + j27 f))

—1

1 1 1
+——In(a + j27f)
j2m

0 -1

1
—tan~ (== +—
F14 (oz) 272
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4)

/ooe_‘” cos(Bt)ydt = /00 e “u_(t) cos(Bt)dt
0 _

oo

Y 1 B B
- 5f_mm(a(f )48+ e
. l[ 1 1 o

2at B la—ip @t

Problem 2.54
Using the convolution theorem we obtain

1 1

Y(f) = X(HH() = (a+j2nf)(ﬂ+j2nf)
1 1 1 1
T B-watjnf B-w)p+j2nf
Thus
y(0) =F Y (Nl = F—a) [e™ — e P u_i(0)
Ifa = Bthen X(f) = H(f) = —5—. In this case

a+j2rf”

_ —1 _ —1 1 27 —at
yo) =F [Y(HlI=F [(—a T j2nf) I=te™u_y(1)

The signal is of the energy-type with energy content

T T
i : 2 i ’ ! —at —Bt\2
) = H|dr =1 _— — dt
E, Tlgr;ofgly()l ngofo e =
T2 T/2 T/2
= lim ; _Le—Zat — ie_zﬁt + 2 e—(a+ﬂ)t
ree (f-e) | 2 o 2P 0 (@ +B) 0

I NS S B A
N 20 28 a+pB  2aB+p)

(B —)?

Problem 2.55

x(t) a<t<a+T

xa(t) =

0 otherwise

Thus
o0 . a+Tp )
Xo(f) = / Xo(1)e P dr = / x(t)e I dt
oo ;
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Evaluating X, (f) for f = %0 we obtain

n a+Ty e
Xo(7) = / x(te TN dr = Tyx,
TO a

where x,, are the coefficients in the Fourier series expansion of x(¢). Thus X, ( %) is independent of the
choice of «.

Problem 2.56
Z x(t —nTy) = x(t)* Z S(t—nTx):Tix(t)* Z ks
_ 1 S _n
= Ef [X(f)nzz_oow R)}
ol S o (s
A [n;wx(rs)‘s(f Ts)}

1 & n
- x (= ejZHTLSt
r 2 x(7)

If we set t = 0 in the previous relation we obtain Poisson’s sum formula

i x(—nT;) = i X(st)=TiS i X(%)

n=—oo m=—0oQ n=—oo

Problem 2.57
1) We know that

Applying Poisson’s sum formula with 7; = 1 we obtain

o0 oo

—|\n 2
YoM=Y

n=—oo n=—oo

2) Use the Fourier transform pair I1(z) — sinc(f) in the Poisson’s sum formula with 7; = K. Then

o]

3 n@K) :% i sinc(%)

n=—0o n=—0oo

But [InK) = 1 forn = 0 and [I(nK) = O for |n] > 1 and K € {1,2,...}. Thus the left side of the
previous relation reduces to 1 and

o0

K = Z sinc(%)

n=—oQ
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3) Use the Fourier transform pair A(f) — sinc?( f) in the Poisson’s sum formula with 7; = K. Then

oo

3 AGmK) :% i sincz(%)

n=—0oo n=—0oo

Reasoning as before we see that Y o- A(nK) = 1since for K € {1,2,...}

n=—0oo

1 n=0

0 otherwise

A(nK) =

Thus, K =Y 7 sinc(%)

n=—oo

Problem 2.58
Let H(f) be the Fourier transform of /(¢). Then

1
H()Fle “u_1(t)] = FI§(1)] = H(f)m =l= H(f)=a+j2nf

The response of the system to e~ cos(Bt)u_(t) is

y(0) = F[H(f)Fle ™ cos(Bryu—(1)]]

But
Fle™ cos(Btyu_ ()] = f[%e—“’u,l(t)efﬂf + %e‘“’uq(t)e‘f""]
1 1 1
T2 |:oe+j2n(f “E axon(r %)}
so that
Y(f)=Fly@®)] = - +£2nf L +j2n1(f —- £ + o+ j2n1(f + %)}

Using the linearity property of the Fourier transform, the Convolution theorem and the fact that 8'(z) N
j2m f we obtain

y(@) = ae *cos(Bu_i(t) + (e " cos(Bt)u_i(t)) » 8'(t)
e ¥ cos(Bt)8(t) — Be * sin(Bt)u_;(t)
8(1) — Be ™ sin(Br)u_ (1)

Problem 2.59

1) Using the result of Problem 2.50 we have sinc(#) % sinc(¢) = sinc(f).
2)

y() = x(@)*h(t) =x(t)* () + 8 (1)
= x(t)—i—%x(t)
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With x (1) = e~*"l we obtain y(t) = e~*I"l — ae~Isgn(t).

3)
y(t) = /OO h(t)x(t — t)dt
= / e e P = e‘ﬂ’/ e @ Prge
0 0
If a=p=y({t)=te “u_i(t)
a#B=y0)=e e P U (1) = [ — e P Ju (1)
_ . _
4)
y@) = /00 e T cos(yDu_1(1)e P Du_(t — 1)dr
= / e %" cos(yt)e PUi"dr = e_ﬂ’/ P~ cos(yr)dt
0 0
t e P
fa=8=ylt) = e_ﬁ"/ cos(yt)dru_(t) = sin(yt)u_,(t)
0
lfa=8=y@t) = e_ﬂt/ P~ cos(yr)dtu_ (1)
0
—ﬁl 1
= —(,3 _2)2 2 (B —a)cos(yt) + y sin(y1)) eP=" Ou,l(t)
e*al )
= G-ari)? ((B — ) cos(yt) + y sin(y1)) u_ (1)
e P (B —a)
TEmar e
5)

o0 t
y(t) = / e e U=y (1 — v)dT = / e tle=Pl=D gy
—0Q —0oQ

Consider first the case that o # B. Then

t
1
Ift <0= y(t e’g’/ PAGRIILY) P e
y() N ot p
0 '
Ift <0= y(t) = / T e P g +/ e YT P g p
—00 0
0 —pBt t
_ pethr| L € e
o+ B e B
Qe P e ¥

F-a ' pa

e Pt

0
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Thus

1

ﬂﬂz{

Ift <0= y@)

In the case of @ = 8

Ift <0= y(@)

6) Using the convolution theorem we obtain

Y(f) =TI(HA) =

a+tp

ot

r<0

20e P! e !

m t>0

ﬂz_az

0

/

—at
2ot

e
200

t

1
e2ard_[ — ¥

0 20

t
e—ateZardT +/ e—ath
0

0

o0

+ z,efoll

—00

1
A fle ™
[2oz +t]e

0 5 <Ifl
f+1 —1<f=<0
—f+1 0<f<1

Thus
1
2 . .
o = Frin= [ vineas
-2
0 . 2 ,
= /l(f+1)ef2”f’df—|—/ (—f + e/ 'df
_1 0
2
1 2nf 1 2nf ’ 2 f ’
— - fp2mft L j2nft j2nft
(jZTL’tfe * an22® ) 1 j2m‘e 1
1 Felft 4 U janse : janfi :
— e e —e
Jj2mt 4m2t? o Jj2mt 0
1
= m[l —cos(mt)] + I sin(rrt)
Problem 2.60

Let the response of the LTI system be /(¢) with Fourier transform H ( f). Then, from the convolution theorem

we obtain

Y(f)=H(HX(f) = A(f) =TI(HH(S)

However, this relation cannot hold since I1(f) =

Ofor% < |f| whereas A(f) #0for1 < |f| < 1/2.
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Problem 2.61

1) No. The input I1(#) has a spectrum with zeros at frequencies f = k, (k # 0, k € Z) and the information
about the spectrum of the system at those frequencies will not be present at the output. The spectrum of the
signal cos(2rrt) consists of two impulses at f = +1 but we do not know the response of the system at these
frequencies.

2)

hi(t)=T1(¢) = TI(@)~I1(t) = A(@¢)
ho(t) *» T1(¢) = (I1(¢) + cos(2mt)) » I1(¢)

= AW+ %.7—"‘1 [8(f — Dsinc®(f) + 8(f + Dsinc®(f)]

1 . .
= A(t)+§]-" "[8(f — Dsinc*(1) + 8(f + Dsinc®(—1)]

= A1)

Thus both signals are candidates for the impulse response of the system.

) Flu_i1(t)] = %8( f)+ ﬁ Thus the system has a nonzero spectrum for every f and all the frequencies

of the system will be excited by this input. Fle “u_;(¢)] = aﬂ;ﬁr}‘ Again the spectrum is nonzero for all

f and the response to this signal uniquely determines the system. In general the spectrum of the input must
not vanish at any frequency. In this case the influence of the system will be present at the output for every
frequency.

Problem 2.62

o . 1 Jomf 5t 1 —j2mf 50
FlAsinQ2rfor +60)] = —jsgn(f)A —2—j§(f+fo)€ Mo+ 2—j5(f — fo)e o

A s o
-2 [Sgn(—fo)5(f + fo)e’ 20 — sgn(—fo)8(f — fore fzfo]

A . 0 . 0
= =3 [8(F + e 5 — fiye I |
= —AF[cosmfot +6)]

Thus, A sin(27 fo + 6) = — A cos(27 fot + 6)

Problem 2.63

Taking the Fourier transform of e/27/0" we obtain

Fleimi] = —jsgn(£)8(f — fo) = —jsen(£)8(f — fo)

Thus,

et = F[— jsgn(fo)(f — fo)] = —jsgn( fo)e 2"
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Problem 2.64

d ——
f{—x(r)} = Flx@)»80] = —jsgn(/)FLx(1) »8'(1)]

dt
= —jsgn(N)j2nfX(f) =2nfsgn(f)X(f)
= 2x|fIX(f)

Problem 2.65
We need to prove that x/’i?) = (x()).
FIXD] = Flx@x80)] = —jsgn(/)Fx@) »8'(1)] = —jsgn(/)X (f)j2nf
= FlxM]j2nf = FI(E ()]

Taking the inverse Fourier transform of both sides of the previous relation we obtain, x/’i?) = (x(1))

Problem 2.66
1) The spectrum of the output signal y(#) is the product of X (f) and H(f). Thus,
Y(f) = H(HX(f) = X(DAfo)e/ O D)

y(t) is a narrowband signal centered at frequencies f = =+ fy. To obtain the lowpass equivalent signal we
have to shift the spectrum (positive band) of y(¢) to the right by f,. Hence,

Yi(f) = u(f + fo) X (f + f)A(fo)e! ORI Dli=n) = X, (£)A( fo)e! 0 Dlr=n)

2) Taking the inverse Fourier transform of the previous relation, we obtain

@) = F! [X,(f)A(fo)eJ'@(fo)ejfe’(f>|f=f0]

1 /
= A(fo)xi(t + ZQ (r=5)
With y(1) = Re[y;(¢)e/>™/'] and x;(t) = V,(t)e/®® we get
y(t) = Rely/(t)e/> "]

1 S
= Re |:A(f0)xl (t + —2 9/(f)|f=f0)ej0(f0)e~/2nf0t:|
T
1 _ ‘ /
= Re [A(fO)Vx (t+ —2 9’(f)|f=f0)ejznf0tej(:)x(t+§9 (f)|ff0):|
JT

1
= A(fo)Vx(t —1g) cos2m for +6(fo) + O (r + Ee/(f)lf':fo))

0 (fo)
27 fo

1
= A(fo)Ve(t —1p) cosQm fo(r — 1) + O, (r + EG/(fo:fo))

= A(fo)Vi(t —1g) cos2m fo(r +

1
)+ O, + EQ’(f)lf:fo))
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where

ey 160

2 fo 2m f |y

lg = _Ee/(f)|f=fov Iy =

3) 1, can be considered as a time lag of the envelope of the signal, whereas ¢, is the time corresponding
to a phase delay of % Q(f%

Problem 2.67
1) We can write Hy(f) as follows

cosf — jsin6 f >0
Hy(f)=14 0 f=0 =cos® — jsgn(f)sin6
cosf + jsinf f <O

Thus,
ho(t) = F U Hy(f)] = cos08(t) + % sin 6
2)
xo(t) = x(t)*xhg(t) = x(t) % (cosO5(t) + % sin6)
= cosOx(t)*6(t) + sin@% * x (1)
= cosOx(r) + sinOx(r)
3)

o0 o
/ Ixe(O)|*dt = / | cos Ox (1) + sin 0% (¢)|dt

oo oo

= cos’f / lx(1)|*dt + sin® 6 f 1% (0)|*dt

oo oo

o0 o
+ cos 0 sin 0 / x(O)X*(r)dr + cos 0 sin 6 / x*(®)x(t)dt
o _

oo

But [% |x(0)|*dt = [ |X(1)|*dt = Ex and [ x(t)£*(t)dr = 0 since x(r) and X(¢) are orthogonal.
Thus,

E., =FE, (cos2 0 + sin? 0) = E,
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