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Chapter 2

Problem 2.1

1. IT (2t +5) =11 (2 (t + %)) This indicates first we have to plot I1(2t) and then shift it to left
by % A plot is shown below:

IT(2t +5)

—

U
4

2. > n_oA(t —n) is a sum of shifted triangular pulses. Note that the sum of the left and right
side of triangular pulses that are displaced by one unit of time is equal to 1, The plot is given
below

x2(t)

1

-1

3. It is obvious from the definition of sgn(t) that sgn(2t) = sgn(t). Therefore x3(t) = 0.

4. x4(t) is sinc(t) contracted by a factor of 10.
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Problem 2.2

1. x[n] = sinc(3n/9) = sinc(n/3).
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3. x[n]=4u_1(n/4) - (§ —Du_1(n/4-1). Forn <0, x[n] =0,for 0 <n <3, x[n] = § and

forn=4,xn]l=7-4+1=1.
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Problem 2.3
x1[n] =1 and x2[n] = cos(21tn) = 1, for all n. This shows that two signals can be different but
their sampled versions be the same.

Problem 2.4

Let x1[n] and x2[n] be two periodic signals with periods N; and N, respectively, and let N =
LCM(N1,N>), and define x[n] = x1[n]+x2[n]. Then obviously x1[n+N] = x1[n] and x[n+N] =
xp[n], and hence x[n] = x[n + N], i.e., x[n] is periodic with period N.

For continuous-time signals x1(t) and x> (t) with periods T; and T> respectively, in general we
cannot find a T such that T = k;T; = k>T» for integers k; and k». This is obvious for instance if
T, = 1 and T> = 1r. The necessary and sufficient condition for the sum to be periodic is that % be a
rational number.

Problem 2.5
Using the result of problem 2.4 we have:

1. The frequencies are 2000 and 5500, their ratio (and therefore the ratio of the periods) is
rational, hence the sum is periodic.

2. The frequencies are 2000 and @. Their ratio is not rational, hence the sum is not periodic.

3. The sum of two periodic discrete-time signal is periodic.



4. The fist signal is periodic but cos[11000n] is not periodic, since there is no N such that
cos[11000(n + N)] = cos(11000n) for all n. Therefore the sum cannot be periodic.

Problem 2.6

D
et t>0 et t>0
x1(t) =7 —et t<0 = x1(-t) = el t<0 =-x1(t)
0 =0 0 t=0

Thus, x1(t) is an odd signal

2) x2(t) = cos (1201Tt + %) is neither even nor odd. We have cos (120Tl’t + %) = cos (%) cos(12071rt)—
sin (%) sin(1207rt). Therefore x2.(t) = cos (%) cos(1207rt) and x2,(t) = — sin(% sin(1207tt).
(Note: This part can also be considered as a special case of part 7 of this problem)

3)

~—

x3(t) = e = x3(—t) = 710 = eIt = x3(t)

Hence, the signal x3(t) is even.

4)
t t=0 0 t=0
xX4(t) = = x4(-t) =
0 t<O0 -t t<0

The signal x4(t) is neither even nor odd. The even part of the signal is

t
X4(t) +x4(—t 5 t=0 t
Xaeo(t) = 4(t) S a(=t) _ Et :|2|
5 t<0
The odd part is
t
x4(t) — x4(—t 5 t=0 t
Xao(t) = 4(t) 24( ) _ f -2
5 t<0

5)
x5(t) = x1(t) — x2(t) = x5(—t) = x1(—t) — x2(=t) = x1(t) + x2(t)

Clearly x5(—t) + x5(t) since otherwise x»>(t) = 0 Vt. Similarly x5(—t) + —x5(t) since otherwise
x1(t) = 0 Vt. The even and the odd parts of x5(t) are given by

Xs5(t) + x5(=t) _
2

t) - —t
x50 =30

Xs5,e(t) x1(t)

Xs5,0(t)




Problem 2.7
For the first two questions we will need the integral I = [ e%X cos? xdx.

1 1 1 .
I = = Jcos2 X de®™ = Ze% cos? x + — J e sin2x dx
a a a
1 1 .
= —e%cosx + — | sin2x de?*
a a
2

1 1 . 2
= —e*™™cos-x + —Ze“" sin2x — — e cos2x dx
a a a

1 1 . 2
= —e% cos?x + —=e™sin2x — — | e (2cos? x — 1) dx
a a? a?

1 1 . 2 4
= —e™cos®x + —e?sin2x — — | e dx - =1
a a a a

Thus,
I= 1 [(acos x +sin2x) + 2} ax
4+a? a
1)
7 7
Ey = lim J x2(t)dx = lim |~ e %' cos? tdt
T— o ,I T—o JO

NS

_ -2t
= 115{}08[( 2 cos? t-l—stt)—l]

0
1 T 3
= 1 —[—2 2 4+sinT -1 ‘T+3]=—
im 3 (—2cos > sin e 3
Thus x1 (t) is an energy-type signal and the energy content is 3/8
2)
T
Ey = hm J x3(t)dx = hm ., e 2l cos? tdt
-7 -7
0 z
= lim J e 2t cos? tdt + J e 2t cos? tdt
T—o00 7% 0
But,
0 1 0
lim e %tcos’tdt = lim = [(—2 cos?t + sin2t) — 1] e 2t
T—o0 7% T-o 8 7%

_ lim & [—3 + (2 cos? LA sinT)eT] = o
T—o0 8 2
since 2 + cos 0 + sin 0 > 0. Thus, Ex = o since as we have seen from the first question the second
integral is bounded. Hence, the signal x>(t) is not an energy-type signal. To test if x»(t) is a
power-type signal we find P,.
T
2

Py = hm TJ re tcos? dt + hm TJ tcos? dt

2



T
But lim7_« 7 [ e 2! cos? dt is zero and

lim L [2 cos? T +1+ sinT] el

lim TJ tcos? dt 5

T—o0 % T—o0o 8T

> hmle >hm—(1+T+T2)>hmT—oo
T T— T—

T— o0

Thus the signal x> (t) is not a power-type signal.

3)
T
E, = hm J__ x3(t)dx = hm J ;580 2(t)dt = hm _2_ dt = }1{1010 T =00
T 2
Py = liml sgn(t)dt—hm1 7(:lt—hmlT—l
T—oo T 7% T -5 T—oo T

The signal x3(t) is of the power-type and the power content is 1.

4)
First note that

hmJ Acos2mft)dt = Z AJ 1cos(ZTrft)dt:O
k=—o00

so that
T
lim A2 cos’(2mrft)dt

T—o 2

T
}im ; (A% + A% cos(2m2ft))dt

_r
2
T

= lim = L[ AZdt = hm 1A2
T— o0 2 T—o0 2

N

T
Ex = lim : (A% cos® (2T f1t) + B% cos® (2T fot) + 2AB cos (2T fit) cos(2T fot))dt

T—-o0 J)_

N,
NS

; B? cos® (2t fot)dt +

2

= }im A2 cos>(2mfit)dt + hmJ

S

7
AB lim J LLcos? 2T (f1 + f2) + cos® (2T (f1 — f2)]dt
—w )1
= o0+ +0=o00
Thus the signal is not of the energy-type. To test if the signal is of the power-type we consider two

cases f1 = f» and f1 # f». In the first case

T
P, = limjl, (A+B)2cos (2 f1)dt

T—o -3

T
_ L 2 _ 1 2
= hfl}o 2T(A+B) %dt (A+B)



If f1 + f> then

N~

P, = }im T J A% cos® (21T f1t) + B? cos® (2T fot) + 2AB cos (2T fit) cos(2Tt fot))dt
_ m L £+BZ_T _Ar B
T TeeT| 2 2 | 2 2

Thus the signal is of the power-type and if fi = f> the power content is (A + B)?/2 whereas if
f1 # f» the power content is 1 (A2 + B?)

Problem 2.8

1. Let x(t) = 2A (%) — A(t), then x;(t) = X,/__ x(t — 4n). First we plot x(t) then by shifting
it by multiples of 4 we can plot x;(t). x(t) is a triangular pulse of width 4 and height 2
from which a standard triangular pulse of width 1 and height 1 is subtracted. The result is a
trapezoidal pulse, which when replicated at intervals of 4 gives the plot of x1(t).

x1(t)

-6 -2 2 6

2. This is the sum of two periodic signals with periods 27 and 1. Since the ratio of the two
periods is not rational the sum is not periodic (by the result of problem 2.4)

3. sin[n] is not periodic. There is no integer N such that sin[n + N] = sin[n] for all n.

Problem 2.9
1)

T
Py = hm T,[ A? ‘eJ(Z"fo”e) dt = hm T Azdt = lim ;,AZT A?

T— o0 T— o

Thus x (t) = Ae/mfot+0) i5 3 power-type signal and its power content is A2.

2)

T a2

1 (2 A
’ B .
Py = 11{101o TJ A% cos® (2Tt fot + 0) dt = hm TJ —dt+}1£r(}o T o > cos(4rr fot + 20) dt

As T — oo, the there will be no contribution by the second integral. Thus the signal is a power-type
2
signal and its power content is AT.



3)

T T
1 (2 1 (2 1T 1
P =lim—J u?,(t)dt = lim = | " dt = lim == = =
x T—oo T ’TT _1() T—oo T 0 T—oo T 2 2

Thus the unit step signal is a power-type signal and its power content is 1/2

4)
T/2

T—c0 0

. % 2 . % 2,1 . 2,1
E, = hmJ x“(t)dt = lim Ket™2dt = lim 2K“t?2
T—o00 ’TT T—o JO
- lim VZK2T? = oo

Thus the signal is not an energy-type signal.

T T
2 Zz
Py = lim lj x2(t)dt = lim 1 K2t~ 2dt
T—oo T _TT T-o T Jo
R P N R I . ool
= lim =2K°t2 = lim =2K?%(T/2)2 = lim v2K°T 2 =0
T—oo T 0 T—o T T— o

Since Py is not bounded away from zero it follows by definition that the signal is not of the power-
type (recall that power-type signals should satisfy 0 < Py < o).

Problem 2.10

t+1, -1=<t=<0 1 t>0
At)=4 -t+1, 0<t<1 u_1(t)=4 1/2 t=0
0, 0.W. 0 t<O

Thus, the signal x(t) = A(t)u_1(t) is given by

0 t<0 0 t<-1
1/2 t=0 t+1 -1<t<0
x(t) = = x(-t) =
-t+1 O0=<t=<l1 1/2 t=0
0 t>1 0 t>0

The even and the odd part of x(t) are given by
x(t) +x(=t) 1

Xe(t) = 5 _EA(t)
( 0 t<-1
%‘1 -1<t<0
Xo(t) = M: 0 t=0
L o<t<1
0 1<t

10



Problem 2.11
1) Suppose that

x(t) = xk(t) + xL(t) = x2(t) + x2(t)

with x} (t), x2(t) even signals and x} (t), x} (t) odd signals. Then, x(—t) = x}(t) — xA(t) so that

1 _ox(t) +x(=t)
CoxZ(t) + x3(t) + x2(=t) + x2(~t)
B 2
2 204) _ A2
_ 2x5 (1) +x;(t) x5(t) _ xg(t)

Thus x} (t) = x2(t) and x}(t) = x(t) — x} (t) = x(t) — x2(t) = x2(t)
2) Let x}(t), x2(t) be two even signals and x}(t), x3(t) be two odd signals. Then,

y(t) =x t)x2(t) = y(-t) =xt(-t)x2(-t) = x (t)x2(t) = y(t)
z(t) = x (t)x3(t) = z(-t) = x (-t)x3(~t) = (—x2 () (=x3(t)) = z(t)

Thus the product of two even or odd signals is an even signal. For v (t) = x}(t)x/ (t) we have
V(=) = x5 (—D)xp(=1) = x; (1) (x5 (1)) = x5 (1) x5 (t) = —v(t)
Thus the product of an even and an odd signal is an odd signal.

2
3) One trivial example is t + 1 and tt+_1

Problem 2.12
1) x1(t) =T11(t) + II(—t). The signal I1(t) is even so that x(t) = 2I1(t)

11



2)

0, t<-1/2
1/4, t=-1/2
t+1, -1/2<t=<0
-t+1, 0<t<1/2
1/4, t=1/2

0, 1/2<t

x2(t) = A(t) - TI(t) = A

AN
e

[ J
l
[ J

N|—
N =

3) x3(t) = Xp-_ At = 2n)

5) x5(t) = sinc(t)sgn(t). Note that x5(0) = 0.

12



Problem 2.13
1) The value of the expression sinc(t)d(t) can be found by examining its effect on a function ¢ (t)
through the integral

J ¢ (t)sinc(t)o(t) = ¢p(0)sinc(0) = sinc(O)J d(t)o(t)
Thus sinc(t)6(t) has the same effect as the function sinc(0)6(t) and we conclude that

x1(t) = sinc(t)6(t) = sinc(0)6(t) = 6(t)
2) sinc(t)6(t — 3) = sinc(3)6(t —3) = 0.

3)

x3(t)

A(t) * > 8(t-2n)

n=—oo

- v Jw A(t - T)6(T - 2n)dT

N=—o00

= > Jw A(T - 1)8(T - 2n)dT

N=—o00

= > Alt-2n)

N=—o00

13



4)

xa(t) = A(t)*é’(t)=J At -1)§ (T)dT
’ 0 t< -1
1
o=
1 -1<t<O
d /
= (-1)=—A(t—-71) =AN{t)=4 O t=0
art T=0
-1 O<tx<l
1
_§ t:
0 1<t

5) x5(t) = cos (2t + %) 6(3t) = %cos (2t + %) o(t) = %cos (%) o(t). Hence xs(t) = %é(t).

6)
1 1 1
xg(t) = 6(5t) » 6(4t) = gé(t) * Zé(t) = %5(t)
7) .
J sinc(t)o(t)dt = sinc(0) =1
8)

o]

J sinc(t + 1)6(t)dt = sinc(1) =0

Problem 2.14
The impulse signal can be defined in terms of the limit

. 1 e
6(t):hm—(e T)
02T

But e“rﬂ is an even function for every T so that 6 (t) is even. Since §(t) is even, we obtain
O(t) =6(=t) = 6'(t) = =8 (~t)

Thus, the function &’ (t) is odd. For the function §™ (t) we have
[~ swsmna= o[ gwsmwar

where we have used the differentiation chain rule

ié‘(k—l)(_t) _ d

d
_ % sk Ly = (— (k) (_
dt d(—t)5 ( t)dt( B = (1) (=1)

14



Thus, if n = 21 (even)

Jm d(t)s™ (~t)dt = on d(t)s™ (t)dt

and the function 6™ (t) is even. If n = 21 + 1 (odd), then (-1)" = —1 and
J ()8 (—t)dt = —J (D)5 (1)dt

from which we conclude that §™ (t) is odd.

Problem 2.15

x(t) x M (t) = Jm x(T)6M (t — 1) dT

The signal 6™ (t) is even if n is even and odd if n is odd. Consider first the case that n = 21. Then,

3 le an
x(t) «» @D () = J_oox(T)(S(Zl)(T —t)dT = (—l)Zlmx(T) T Wx(t)
If n is odd then,

00 leJrl

x(t) » 6@ (1) = x(T) (- (1 - 1) dt = (-1) (1) ———=x (1)
o dTZlJrl T=t
d?’l

= arm* W

In both cases

x(t) * MW (t) = %x(t)

The convolution of x(t) with u_1 (t) is

x(t) xu_1(t) = J x(Mu_1(t—-T1)dT

But u_;(t — ) =0 for T > t so that

t
x(t) xu_q1(t) = J_ x(T)dT

Problem 2.16
1) Nonlinear, since the response to x(t) = 0 is not y(t) = 0 (this is a necessary condition for
linearity of a system, see also problem 2.21).

2) Nonlinear, if we multiply the input by constant —1, the output does not change. In a linear system
the output should be scaled by —1.

15



3) Linear, the output to any input zero, therefore for the input «xi(t) + Bx2(t) the output is zero
which can be considered as oy (t) + By2(t) = xx 0+ B x 0 = 0. This is a linear combination of the
corresponding outputs to x (t) and x> (t).

4) Nonlinear, the output to x(t) = 0 is not zero.

5) Nonlinear. The system is not homogeneous for if &« < 0 and x(t) > 0 then y(t) = T[ax(t)] =0
whereas z(t) = «T[x(t)] = «.

6) Linear. For if x(t) = oxq1 (t) + Bx2(t) then

(oxy (t) + Bxa(t))e™t
axi(t)e b + Bxa(t)e ™t = aT[x1(t)] + BT[x2(t)]

Tlox1(t) + Bx2(t)]

7) Linear. For if x(t) = ax1(t) + Bx2(t) then

Tlaxi(t) + Bx2(t)] (oxxy () + Bx2(t))u(t)

ox1 (B)u(t) + Bx(H)u(t) = aTx1(E)]1+ BT[x2(1)]

8) Linear. We can write the output of this feedback system as

[oe]

yt) =xt)+y(t-1)=> x(t-n)

n=0

Then for x(t) = ax1(t) + Bx2(t)

> (ax1(t —n) + Bxa(t — n))

y(t) =
n=0
= ay xi(t-n)+B > x2(t —n))
n=0 n=0

= ayi(t) + By(t)

9) Linear. Assuming that only a finite number of jumps occur in the interval (-, t] and that the
magnitude of these jumps is finite so that the algebraic sum is well defined, we obtain

N N
y(t) =Tlax ()] = > aJx(tn) = > Jx(tn) = «T[x(t)]
n=1 n=1

where N is the number of jumps in (-, t] and Jx(ty) is the value of the jump at time instant £,
that is
Jx(tn) = g{%(x(tn +€)—x(tn —€))

For x(t) = x1(t) + x2(t) we can assume that x1(t), x2(t) and x(t) have the same number of jumps
and at the same positions. This is true since we can always add new jumps of magnitude zero to
the already existing ones. Then for each ty, Jx(tn) = Jx; (tn) + Jx, (tn) and

N N N
()= D Jxtn) = D Jxi(tn) + D Jx(tn)

n=1 n=1 n=1

so that the system is additive.

16



Problem 2.17
Only if (=)
If the system 7T is linear then

T [oxy (t) + Bx2(t)] = o«T [x1(8)] + BT [x2(1)]
for all &, B and x(t)’s. If we set 8 = 0, then
Tlax1(t)] = «T [x:1(t)]
so that the system is homogeneous. If we let @ = 8 = 1, we obtain
T x1(t) +x2(0)]1 =T [x1(H)] + T [x2(t)]

and thus the system is additive.
If (=)
Suppose that both conditions 1) and 2) hold. Thus the system is homogeneous and additive. Then

T [oxy (t) + Bxa(t)]
Tlox1(t)] + T[Bx2(t)] (additive system)
T [x1(t)] + BT [x2(t)] (homogeneous system)

Thus the system is linear.

Problem 2.18

1. Neither homogeneous nor additive.
2. Neither homogeneous nor additive.
3. Homogeneous and additive.

4. Neither homogeneous nor additive.
5. Neither homogeneous nor additive.
6. Homogeneous but not additive.

7. Neither homogeneous nor additive.
8. Homogeneous and additive.

9. Homogeneous and additive.

17



10. Homogeneous and additive.
11. Homogeneous and additive.
12. Homogeneous and additive.
13. Homogeneous and additive.

14. Homogeneous and additive.

Problem 2.19
We first prove that
Tnx(t)] =nT [x(t)]

for n € 2N'. The proof is by induction on n. For n = 2 the previous equation holds since the system
is additive. Let us assume that it is true for n and prove that it holds for n + 1.

Tln+1)x(t)]
= T[nx(t)+x(t)]
= T[nx(t)]+ T [x(t)] (additive property of the system)
= nT[x(t)]+ T[x(t)] (hypothesis, equation holds for n)
= (n+ 1T [x(®)]

Thus T [nx(t)] = nT [x(t)] for every n. Now, let
x(t) =my(t)

This implies that
x(t)]
7[5 Tro

and since 7 [x(t)] = T [my(t)] = mT [y(t)] we obtain
T [X0] - L 1)
m m

Thus, for an arbitrary rational « = % we have

T [gx(t)] -7 [k (%)] kT [%] - X TIx ()]

Problem 2.20
Clearly, for any «

X2 11y 20 @2t s (p) 4 0
x'(t) =0 0 x'(t) =0

y(t) = Tlax(t)] = { “X(’)“) =4 YW = «T[x(t)]

18



Thus the system is homogeneous and if it is additive then it is linear. However, if x(t) = x1(t) +
x2(t) then x'(t) = x7(t) + x5(t) and

(x1(t) +x2(t)2  x3(t)  x3(t)
xp(t) +x5(8) 7 xp(t)  xp(t)

for some x1(t), x2(t). To see this let x»(t) = ¢ (a constant signal). Then

(x1(t) + )2 _ x{(t) +2ex1(t) +¢?
x1 (1) X1 ()

T[x1(t) +x2(8)] =

and
x5 (t)
x1(t)
Thus T{x1(t) + x2(t)] = T[x1(t)] + T[x2(t)] unless ¢ = 0. Hence the system is nonlinear since the
additive property has to hold for every x; (t) and x> (t).
As another example of a system that is homogeneous but non linear is the system described by

Tlx1(O)]+ Tlx200)] =

x(t)+x(t-1) x(t)x(t-1)>0
T[x(t)] :{

otherwise

Clearly T[ax(t)] = «T[x(t)] but T[x1(t) + x2(t)] + T[x1(t)] + T[x2(t)]

Problem 2.21
Any zero input signal can be written as 0 - x(t) with x(t) an arbitrary signal. Then, the response
of the linear system is y(t) = L[0 - x(t)] and since the system is homogeneous (linear system) we
obtain

y()=L[0-x()]=0-L[x(t)]=0

Thus the response of the linear system is identically zero.

Problem 2.22
For the system to be linear we must have

T [oxy (E) + Bx2(t)] = o«T [x1(8)] + BT [x2(1)]
for every «, B and x(t)’s.
T o1 (t) + Bx2(t)] = (ox1(t) + Bx2(f)) cos(2m fot)
ax (t) cos(2m fot) + Bxo(t) cos(21T fut)
T [x1(0)] + BT [x2(t)]

Thus the system is linear. In order for the system to be time-invariant the response to x(t — tg)
should be y(t — tp) where y(t) is the response of the system to x(t). Clearly y(t — tg) = x(t —
to) cos(21 fo(t — tp)) and the response of the system to x(t — tg) is V' (t) = x(t — tg) cos(2m fot).
Since cos(21T fu(t — tp)) is not equal to cos(21 fot) for all t, tg we conclude that y'(t) + y(t — tg)
and thus the system is time-variant.

19



Problem 2.23

1) False. For if Ti[x(t)] = x3(t) and To[x(t)] = x!/3(t) then the cascade of the two systems is
the identity system T[x(t)] = x(t) which is known to be linear. However, both T1[-] and T»[-] are
nonlinear.

2) False. For if

tx(t) t=+0 Ix(t) t=+0
Ti[x(t)] = T2[x(t)] =
0 t=0 0 t=0

Then T>[T1[x(t)]] = x(t) and the system which is the cascade of T;[-] followed by T>[-] is time-
invariant , whereas both T;[-] and T>[-] are time variant.

3) False. Consider the system

x(t) t=0

y(t)=Tx(®)] = {
1 t<0

Then the output of the system y(t) depends only on the input x(t) for T < t This means that
the system is causal. However the response to a causal signal, x(t) = 0 for t < 0, is nonzero for
negative values of t and thus it is not causal.

Problem 2.24

1) Time invariant: The response to x(t — to) is 2x(t — tg) + 3 which is y(t — tp).

2) Time varying the response to x(t — tg) is (t + 2)x(t — to) but y(t — tg) = (t — to + 2)x(t — tp),
obviously the two are not equal.

3) Time-varying system. The response y(t — tg) is equal to x(—(t — tg)) = x(—t + tg). However the
response of the system to x(t — tg) is z(t) = x(—t — tg) which is not equal to y(t — tg)

4) Time-varying system. Clearly
y(t) =x({t)u-_1(t) = y(t —to) = x(t —to)u-_1(t — to)

However, the response of the system to x(t — tg) is z(t) = x(t — to)u_1(t) which is not equal to
y(t —to)
5) Time-invariant system. Clearly
t t—-to
y(t) = J x(T)dt = y(t —tgy) = J x(T)dT
The response of the system to x(t — tp) is
t—to

t
z(t) = J_ x(T —to)dTt = J x(v)dv = y(t — tg)

— 00
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where we have used the change of variable v = T — ty.

6) Time-invariant system. Writing v (t) as >.,,__ X (t — n) we get

[oe]

y(t—to) = > x(t—to—n)=T[x(t-ty)]

Nn=—oo

Problem 2.25

The differentiator is a LTI system (see examples 2.19 and 2.1.21 in book). It is true that the output
of a system which is the cascade of two LTI systems does not depend on the order of the systems.
This can be easily seen by the commutative property of the convolution

hi(t) x ha(t) = ha(t) x hi(t)

Let h1(t) be the impulse response of a differentiator, and let y(t) be the output of the system h(t)
with input x(t). Then,

z(t)

ho(t) x x'(t) = ha(t) x (hy(t) » x(t))
ho(t) x h1(t) » x(t) = h1(t) x ha(t) * x(t)
hi(t) = y(t) = y'(t)

Problem 2.26

The integrator is is a LTI system (why?). It is true that the output of a system which is the cascade
of two LTI systems does not depend on the order of the systems. This can be easily seen by the
commutative property of the convolution

hi(t) x ha(t) = ha(t) x hi(t)

Let h(t) be the impulse response of an integrator, and let y(t) be the output of the system ha(t)
with input x(t). Then,

z(t)

t
ha(t) * | x(0)dT = ha(t) + (ha(6) = x(0))
Ra(t) * ha(t) * x(0) = ha () * ha(t) * x (1)

t
) <y = [ yimdr

Problem 2.27
The output of a LTI system is the convolution of the input with the impulse response of the system.
Thus,

o0 t
5(t) = J h(T)e "Dy 4 (t - T)dT = J h(T)e *=Tgr
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Differentiating both sides with respect to t we obtain

o' (1)

t t
(—(x)e“"tj h(T)e"‘TdTJre“"t%[J h(T)e"‘TdT}

(—)S(t) + e *h(t)e*t = (—x)5(t) + h(t)

Thus
h(t) = ad(t) + 6’ (t)
The response of the system to the input x(t) is

J x(T) [ad(t —T) +6'(t —T)]dT

y(t)

x(T)8' (t —T)dT

O(J_: x(T)o(t —T)dT + J

d
ox(t) + Ex(t)

Problem 2.28
For the system to be causal the output at the time instant ¢ty should depend only on x (t) for t < to.

to+T to to+T

lJ' 1 1
to)) = — x(T)dT = — x(T)dT + — x(T)dTt
y(to) 2T Juyr (1) 2T Juyr (1) 2T ), (1)

We observe that the second integral on the right side of the equation depends on values of x(7) for
T greater than to. Thus the system is non causal.

Problem 2.29
Consider the system

x(t) x(t)=+0

y(t) =T[x(t)] = <|
1 x(t)=0

This system is causal since the output at the time instant ¢ depends only on values of x (1) for
T < t (actually it depends only on the value of x (1) for T = t, a stronger condition.) However, the
response of the system to the impulse signal §(t) is one for t < 0 so that the impulse response of
the system is nonzero for t < 0.

Problem 2.30

1. Noncausal: Since for t < 0 we do not have sinc(t) = 0.
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2. This is a rectangular signal of width 6 centered at ty = 3, for negative t’s it is zero, therefore
the system is causal.

3. The system is causal since for negative t’s h(t) = 0.

Problem 2.31
The output y(t) of a LTI system with impulse response h(t) and input signal u_; (t) is

y(t) = Jio h(tu-1(t —)dt = th h(Du_1(t —7)dTt + Loo h(u_1(t -1)dt
Butu_;(t — 1) =1 for T <t so that
Jtm h(t)u_1(t —Tt)dt = Jtm h(t)dT
Similarly, since u_,(t — 7) = 0 for T < t we obtain
Loo h(t)u_1(t-1)dt =0
Combining the previous integrals we have

0 t
y(t) = J_ h(t)u_1(t —T1)dt = J_ h(t)dr

Problem 2.32
Let h(t) denote the the impulse response of a differentiator. Then for every input signal

a
x(t) x h(t) = Ex(t)
If x(t) = 6(t) then the output of the differentiator is its impulse response. Thus,
8(t) x h(t) = h(t) =&'(t)

The output of the system to an arbitrary input x(t) can be found by convolving x (t) with 6’ (t). In
this case

[e )

Y(t) = x(t) * &' (t) = L X(T)5' (t — T)dT = %x(t)

Assume that the impulse response of a system which delays its input by tg is h(t). Then the
response to the input 6 (t) is
O(t) » h(t) = 6(t — tg)
However, for every x(t)
o(t) » x(t) = x(t)
so that h(t) = 6(t — tg). The output of the system to an arbitrary input x(t) is

[oe]

y(t) =x(t) * 6(t —tg) = J x(T)o(t —tg—T1)dT = x(t — to)
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Problem 2.33
The response of the system to the signal oxq (t) + Bx2(t) is

t

t t
yi(t) = J (xx1(T) + Bx2(T))dT = aJ x1(T)dT + BJ x2(T)dT
t-T t-T t-T

Thus the system is linear. The response to x(t — tg) is

t—to

t
yit) = J X(T = to)dT = J x(W)dv = y(t - to)
t-T t—to-T

where we have used the change of variables v = T — ty. Thus the system is time invariant.

impulse response is obtained by applying an impulse at the input.

t t t—T
h(t) = LfTé(T)dT = L o(t)dr — J onydr=u_1(t)—u_1(t-T)

— 00

The

Problem 2.34

1)
0o t
e tu_j(t) xetu_i;(t) = J e‘Tu_l(T)e‘(t‘T)u_l(t—T)d'r:J e tdr
o 0
te’t t>0
0 t<0
2)
o0 3 t+d
x(t):H(t)*A(t):J H(Q)A(t—@)d@zJ 1A(t—9)d@=J 1/\(v)dv
— -2 -5
3
t < —E = X(t) =0
3 1 t+% 1 ) t+% )
—§<ts—§ = x(t)—L1 (v+1)dv—(§v +v) ., _§t +§t+§
1 1 0 t+%
—§<ts§ = x(t)=J 1(v+1)dv-|—J (—v + 1)dv
1
_ (L '0 1o r 53
_(Zv +v) t_%+( 2v +v) . - t +4
1 3 1 1, ! 1, 3, 9
§<tS§ = X(t)—Jt%(—U+1)dU—(—§U +'U) t_%—zt —E +§
3

<t = x(t)=0
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Thus,

0 t<-3

243t +d —3<t<-3
x(t) =4 —t2+3 —F<ts<gy

J2-3t+3 L<t<3

0 %<t

Problem 2.35
The output of a LTI system with impulse response h(t) is

[oe] (o]

) = | _x(t-mhmdr = | x(mhit=T)dr

Using the first formula for the convolution and observing that h(1) = 0, T < 0 we obtain

0 © o0
y(t) = Loox(t —1T)h(T)dT + Jo x(t-1)h(t)dTt = Jo x(t-1)h(T)dT

Using the second formula for the convolution and writing

(o]

t
y(t) = J_ x(T)h(t —T)dT + L x(T)h(t — T)dT

we obtain ,
y(t) = J x(T)h(t —-T)dT

The last is true since h(t — 1) = 0 for t < T so that [ x(T)h(t — T)dT =0

Problem 2.36
In order for the signals y,, (t) to constitute an orthonormal set of signals in [, & + Ty ] the following
condition should be satisfied

a+To 1 m=n
Wn(O,0m(®) = | wnOwi(Odt = Sun =
& 0 m=n
But
o 1 jppne 1 _jopmy
t ) = —! T T dt
(Wn(t), gm(t)) N \/Toe 0 me 0
1 x+Tp jom (n-m) t
= - e To “dt
TO o
; (n-m)
If n = m then ¢/*™ T ' = 1 so that
1 x+Tp 1 «+Tp
<wn<t>,wn<t>>=?j dr— L¢| U2
0 Ju To |«
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When n # m then,
1 N jermr(m—-m)(x+To)/ Ty
(Yn(t), (1) = ——e€ =0
Wn(l), Ym Jj2mn—m) | jenm-mya/T

Thus, (Yn(t), Yy (t)) = Omn Which proves that ,, (t) constitute an orthonormal set of signals.

Problem 2.37
1) Since (a — b)? > 0 we have that

with equality if a = b. Let

N =

Then substituting «;/A for a and B;/B for b in the previous inequality we obtain

aifi_1oq 187
A B 2A2 2B?

with equality if % = % = k or &; = kp; for all i. Summing both sides from i = 1 to n we obtain

sabi  1go 158
i=1 AB - 2 i=1 A2 2 i=1 B2
1 & 5, 1 2 I » 1 5
- > L N B2 A2y - _p2_
2A? ; &+ op2 ;Bl oAzttt op2

Thus,

i=1

ﬁi_lailsi <12 b= [_z ag} [z B?]

Equality holds if o; = ki, fori=1,...,n

2) The second equation is trivial since Ixiyi*l = |xil] yi*l. To see this write x; and y; in polar
coordinates as x; = px,e/%i and y; = p,,e/%i. Then, |x;¥| = |px;pye’ % %) = py.p,. =
[xillyvil = x4l yi* |. We turn now to prove the first inequality. Let z; be any complex with real and

imaginary components z; g and z; r respectively. Then,

2

n 2
ZZlR+JZZlI =

i=1 i=1

(§es) (B

n n
= > > (ZirZmR + ZiiZm,1)
i=1m=1

26



Since (zi gzZm.1 — Zm,rZi,1)° = 0 we obtain
2 2 (52 2
(zirzZmR + ZigzZm))* < (i + 20 ) (Zpy g + Zi.p)

Using this inequality in the previous equation we get
2

n
Z (ZirRZm,R + Zi,1Zm,1)
1

Il
.MS

-
Il
[

IA
M=
?M: 3

n
>z
i-1

1 1
(ZE,R + Zi2,I) 2 (an,R + 21241,1) 2

1 1

.
I

in1 m=1 i=1

Thus

2 n 1 2
) 2 2\ %
zi| < z(zi,R + Zi,1)2 or

i=1

n
2.
i=1

n
2.z
i=1

n
= Z |z
i=1

The inequality now follows if we substitute z; = x;y;". Equality is obtained if ?—R =

Lzi=Lzm = 0.

3) From 2) we obtain
n

Z illyil

n
> xiyvf
i=1

But |x;l, |v;| are real positive numbers so from 1)

z Ixillyil < [2 |xl|2y [émﬁ]é

2 1 1
n 2 n 2
< [Z |Xi|2:| [Z |yi|2:|
i=1 i=1

Combining the two inequalities we get

n
> xiyvi
i=1

(Z( 1R+211)2> ( Z (Zgn,R +Z$n,1)%> = (Z(Z%RJFZ%,I)%

i

Zm,R
Zm,

= k; or

From part 1) equality holds if «; = kB; or |x;| = k|y;| and from part 2) xiyl |xi y1 |e/?. Therefore,

the two conditions are
Ixil = klyil
ZXi — Z_’)/i =0

which imply that for all i, x; = Ky; for some complex constant K.

4) The same procedure can be used to prove the Cauchy-Schwartz inequality for integrals. An easier

approach is obtained if one considers the inequality
[x(t) + oy (t)| =0, for all «
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Then

(o]

J Ix(t) + oy (t)|?dt = Jm (x(t) + axy (b)) (x*(t) + a*y*(t))dt

r;o |x(t)]?dt + (xJ .

o
IA

[oe] (o] [oe]

x*(t)y(t)dt+o<*J x(t)y*(t)dt+|a|2J |y (t)]%dt

The inequality is true for [*, x*(t)y(t)dt = 0. Suppose that [~ x*(t)y(t)dt # 0 and set

15 Ix () 2dt

X =

T X () y(t)dt
then o0 e lx (@) 2dt]? [ t)%dt
0<-— Lm |x(t)]%dt + o ||Xj(°°:|x(t)]y>{_(;o)|6§;?2)|
and ) )
U:X(t)y*(t)dt‘ <[ wwra] [ vora
Equality holds if x(t) = —axy(t) a.e. for some complex «.

Problem 2.38

1)
- [

) N N
J (x(t) - O(id)i(t)) (x*(t) -2 cxj-‘cbjf(t)) dt
w =

i=1

2
dt

o)
Il

N
x(t) = > aiepi(t)
i=1

© N © N 00
J lx(t)12dt — > aiJ Pi()x*()dt — > ajj ¢F (H)x()dt
- i=1 - j=1 -

N N )
LY Y aar | et

i=1j=1

o N N o N o
[ xwprars Yial - Y| ddoxrmode- Yo [ groxwar
- i=1 i=1 - j=1 -
Completing the square in terms of «; we obtain
€ = J x(t)2dt - > U qbf(t)x(t)dt' S '(xi —J ¢f‘(t)x(t)dt'
- i=1'77%® i=1 -

The first two terms are independent of «’s and the last term is always positive. Therefore the
minimum is achieved for

o = Joo b ()x(t)dt
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which causes the last term to vanish.

2) With this choice of «;’s

2

.
Il

% N o oo
2 J ) |x(t)2dt - gl ‘Lw bF ()x(t)dt

0 N
[ xwrac- 3 e

- i=1

Problem 2.39
1) Using Euler’s relation we have

x1(t) = cos(21rt) + cos(4rrt)

_1 (eiZTTt b emdamt | pidmt e—j41rt>
2

Therefore for n = +1,+2, x1 4 = % and for all other values of n, x1,, = 0.
2) Using Euler’s relation we have

x> (t) = cos(21rt) — cos(4rrt + 11/3)

_1 (eiZTrt L g2t _ pitamtimy3) _ efj(47'rt+1r/3))

2
= %eiZTTt + %e—jZTTt + le—j2n/38j4rrt + %ejzn/Be_j4"t

from this we conclude that x2.1 = 3 and x2,2 = x§_, = 3¢ /273, and for all other values of n,

X2,7’L = 0

3) We have x3(t) = 2cos(27rt) — sin(41rt) = 2 cos(27rt) + cos(4rrt + 11/2). Using Euler’s relation as
in parts 1 and 2 we see that x3,+1 =1 and x32 = x§_2 = j, and for all other values of n, x3, = 0.
4) The signal x4 (t) is periodic with period Ty = 2. Thus

1 . n 1 .
Xan lj A(t)e‘JZ"Ttdt=lJ A(t)e J™ qt
’ 2 ) 2 )1

1(° , 1! ,
—J (t+1)e /™Gt + —J (=t + e /™™gt
2 )1 2 Jo

. 0 : 0
l(itefjrmt_l_ 1 efjrmt>‘ + J efjrrnt

2 \1tn T2n? 1 2mm 1
. 1 . 1
_l Lt —jmnt L —jmnt L —jmnt
e + e + e
2 \1mn T n 0 2Tn 0

1 1

_ (ej‘lTn + e—jTTn) _
mn2  2mln?

(1 — cos(1Tn))

Ten?

When n = 0 then .
1 1
X4,0 = E J_lA(t)dt = E
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Thus

x4(t) = —+2 2

7T2 2 — cos(ttn)) cos(mrnt)

5) The signal x5(t) is periodic with period Ty = 1. For n = 0

1 1 L |
XSO:J (~t+1)dt = (—=t>+t)| ==
' 0 2 o 2

Forn =0
1 P
Xsn = J(—t+1)e’12"”tdt
0
. 1 . 1
__(_J o —jennt 1 —j21'rnt)' J  —jomnt
(21Tnte * 4mren2® 0 * 2mn® 0
_ ]
T 2mn
Thus,
I < 1
t) == —— sin2mnt
x5 (t) > grr sin21n

6) The signal xg(t) is real even and periodic with period Ty = ﬁ Hence, x¢n = agmn/2 or

1
Xon = 2f0J4‘fq cos(271t fot) cos(2mrn2 fot)dt

7%

L
_ foj ? cos(27Tf0(1+2n)t)dt+f0J " cos(2mfo(1 - 2m)t)dt

4f0 4f0

1 . 7 . i
= - - 2 1-2n)t
S o7 sin(27r fo (1 +2n)t)|ﬁ + Sl =2 sin (27t fo ( n) ”ﬁ

. (-pn 1 1
— [(1+2n)+(1—2n)]

Problem 2.40
It follows directly from the uniqueness of the decomposition of a real signal in an even and odd
part. Nevertheless for a real periodic signal

ap < n _ n
x(t) = > + z [ancos(2rr?0t) +bnsm(2rr?0t)]

n=1
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The even part of x(t) is

x(t) +x(-t)

Xe(t) = 5

1 ® n n
> (ao + n; an(c05(2n?0t) + COS(—ZW?Ot))

. n . n
+bn(sm(27'r?0t) + sm(—ZTr?Ot)))

a > n
- 70 + ngl an cos(ZTr?Ot)

The last is true since cos(0) is even so that cos(0) + cos(—0) = 2cos 0 whereas the oddness of
sin(@) provides sin(0) + sin(—0) = sin(0) — sin(9) = 0.
The odd part of x(t) is

x(t) —x(-t)
2

- z by sin(ZTrit)
- To
n=1

Xo(t) =

Problem 2.41
1) The signal y(t) = x(t — to) is periodic with period T = Tj.

1 «+Top o n
Yn = ?J x(t - to)e Tt dr
0 Jx

1 x—to+Tp

= — x(v)e7j2"ﬁ(v+to)dv
To Ja-to

, a—to+Tp
e*]ZTI’%to 1
To Ja—to
_q n
J2'ITTOt()

x(v)eijznﬁvdv
= Xne
where we used the change of variables v =t — £

2) For y(t) to be periodic there must exist T such that y(t + mT) = y(t). But y(t + T) = x(t +
T)ei2mfotei2mfoT go that y(t) is periodic if T = Tj (the period of x(t)) and foT = k for some k in Z.
In this case

1 x+Ty o n .
Yno= x(t)e Tt ei2mfot gt

0 Jx

1 x+To

o (n—k)
= — x(t)e 2Ty tdt:xn_k
TO oy
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3) The signal y(t) is periodic with period T = Ty/ .

B+T - g+%o o
= %JB y(t)e 2TTldt = TKL; x(at)e * ot dt
0

1 Ba+Ty o
N ?Jg x()e TV dv = xp
0 104

where we used the change of variables v = «t.

Problem 2.42

x+Top 1 oc+Tp j2mn g Jj2mm

L * - T * , " Ty ¢
To L x(E)y*(t)dt To xpe To m;myme o “dt

N=—00
= 2 2 xnymT O‘+Toej2"%_m)tdt
N=—00 M=—00
o0 o0 (o]
= z z XnYmOmn = z Xnn

N=—00 M=—00 n=—oco

Problem 2.43
a) The signal is periodic with period T. Thus

TJ e*t 71277 tdt = IJ *(JZTI’TJrl)tdt

X‘n =
T
_ o b Gempene) 1 [e-tizmne) _ 1]
T(JZT(T+1> 0 jern + T
1 _ T - j21tn _
= —— (1-e =2 [1-¢T
j2mn + T[ ] T2 + 4772n2[ ]
If we write x;,, = a”_z—jb” we obtain the trigonometric Fourier series expansion coefficients as
2T 4N
an = —————=[1-e 1], bp=————[1-eT
L 4172112[ ] L 4172112[ ]

b) The signal is periodic with period 2T. Since the signal is odd we obtain xg = 0. Forn = 0
Xn = L JT x(t)e J2martgt = L JT Lot gy
" 2T J_r 2T )1 T

1 r i n
= E?Q'J te JTTl At

. 1 JT —j‘lTﬂt T2 —jTTﬂt ‘T
Y ( te T+ e T T

T2 2
— 1 JT efjrrn_l_ efjrrn_l_ JT ejrrn_ T ejn'n
272 T2n?2 ™ 2n2

- L(—l)"
m™
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The trigonometric Fourier series expansion coefficients are:

an=0, by=(-Dr2
™

c) The signal is periodic with period T. For n = 0

T
1 (2 3
X0 = TJ_gX(t)dt— E

If n = 0 then
1 (2

Xp = ?ng(t)eﬂ"Ttdt

T

L

- 7|

J _-jemlit
2nne

e 2Tt dr 4 % J4T e 2Tt gt

4

nS

~
L

2 1 .
n J e—JZW%t
T 2mn

1~

_ L[e—jrrn_ejrrn_’_e—jn%_e—jn%]
21N
1 . n 1 . n

= ﬁsm(nz)—zsmc(z)

Note that x; = 0 for n even and x»;,1 = m(—l)l. The trigonometric Fourier series expansion

coefficients are:
2

_ —1)! =
y A214+1 = Tr(2l+ 1)( 1) ’ ;bn 0) Vn

ap=3, ,ap =0,

d) The signal is periodic with period T. For n = 0

1 (T 2
X0 = Tjo x(t)dt = =

3
If n = 0 then
Xpn = 1 JTx(t)eJZW%tdt = ng ite’jzw%tdt
" T Jo Tl T
1 (5 1 (T 3
L —j2m it L 9 —j2m it
+TJ§ e Tdt+TJ2%T( Tt+3)e T dt
_ B (T emte, TP jemi :
T2 \ 21T 4112n? 0
3 ( jT . _iopn T2 Lon )T
= | L _pedmyt .~ p-jlemyt
T? (21T1’l ¢ amen2® a

53T T

L) -jemit
T T2mn

2N

3 21N
- annz[cos( 3 ) - 1]
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The trigonometric Fourier series expansion coefficients are:

3 21N

1 o
X, = Tjg x(t)dt = = J —e 2Tl 4t

T
eJZTI' t)‘ 4+l(JTeJ2TI' t)
T T \2mn

(
_ L[( e ZSln(TrTn):|: J [( 1)"—smc(—)]

™

I
2
T
1

For n even, sinc(%) =0and x, = # The trigonometric Fourier series expansion coefficients are:

—% n=21

2

an = 0, V?’l, bn = 2 71)
mern L+ worn] n=2l+1

f) The signal is periodic with period T. For n = 0

1 (3
Forn =0

T
1 (% 3 ) 1 (3, 3 _jomh
Xn = TLI(TtJrZ)e JZ’Trth?JO (-5t +2)e 2ty

3 (T T2 5o\ |0
= te—J2mTt 4 jemgt I
(2Trn € amren2® _

3 JjT T?  ,on
_ = jemtt jem=t
(2Trnte " a2 ' )

2JTe12Trt0
T2mn

3 1 2TTNn 1 2N

= ERE Sl BT

wlmy WIS

0

2 T 2
+ = eJ"t
-I T2

+

0

The trigonometric Fourier series expansion coefficients are:

ap = 2, an=2[ 3 (1 (27T—n))+ism(2n—n)] b,=0,Vn
m2n2 \2 ™ 3
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Problem 2.44

1) H(f) = lOH(JZC). The system is bandlimited with bandwidth W = 2. Thus at the output of the
system only the frequencies in the band [-2, 2] will be present. The gain of the filter is 10 for all f
in (-2, 2) and 5 at the edges f = *2.

a) Since the period of the signal is T = 1 we obtain

y(t) = 10[% + aj cos(2Trt) + by sin(271t)]

+5[ap cos(2m2t) + bo sin(21r2t) ]

With > 4
I R S | __amm . -
dn 1 +47‘r2112[1 el bn 1 +47‘r2112[1 el
we obtain
20 4071t
= — -1 _— [EE— <]
y(t) (1—-e) [20 + 15 a2 cos(2trt) + 15 a2 sin(271rt)
40717 .
+ mCOS(ZTFZt) + m Sln(27T2t):|

b) Since the period of the signal is 2T = 2 and a,, = 0, for all n, we have

x(t) = S by sin(ZTr%t)

n=1
The frequencies % should satisfy | 5| < 2 or n < 4. With by, = (—1)"*1% we obtain

20 . 2Tt 20 .
y(t) = ?sm( > )—Znsm(ZTrt)
20 . 2713t 10 .
+§ SIH(T) - E sin(27r2t)

c) The period of the signal is T = 1 and

2

- g Y -

ap = 31 yap| = O, s A2l+1 =

Hence,

+ > app+1 cos(2mr(2l + 1)t)
1=0

x(t) =

N W

At the output of the channel only the frequencies for which 21 + 1 < 2 will be present so that

3 2
y(t) = 10§ + 10; cos(2Trt)
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d) Since b,, = 0 for all n, and the period of the signal is T = 1, we have

x(t) = % + Z a, cos(2mnt)

n=1

With ag = % and a, = ﬁ[cos(z%‘) — 1] we obtain

20 30 21T
y(t) = ?‘F?(COS(?)—I)COS(z‘ITt)
15 4T
+H(COS(T) - 1) COS(21T2t)
20 45 45
= 3 - ﬁcos(ert) — Wcos(2rr2t)

e) Witha,, =0foralln, T =1 and

—% n =21
bn = 2 2(-1)!
mennll + Fopn] n=20+1

we obtain

10b, sin(271rt) + 5bo sin(21t2t)

(1)

103(1 + 3) sin(2mt) — 5l sin(2mrt2t)
T T T

f) Similarly with the other cases we obtain

10+10-2 [i(l — Cos(z—n) + l sin(z—n)] cos(2rrt)
22 3 T 3

3 1 41 1 . A4
+5-2 [m - — COS(T) + — sm(T)] cos(2T1r2t)

2 21T
3 ﬁ} cos(2trt) + 10 [i — ﬁ} cos(2T1r2t)

y(t)

10*”[?*% a? " am

2) In general

y(t)= 3 xnH(Z)elmit

Nn=—oo

The DC component of the input signal and all frequencies higher than 4 will be cut off.
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a) For this signal T = 1 and xp, = ~=2T% (1 — ¢~1). Thus,

1+412n2
_1-j2m _ e y(Zf)es2mt 4 —Jj2m2 | jom2t
y(t) = 71+4n2(1 e )(=je 71“1 (1-e")(=je
1-—j2m3 1y i\ aj2m3t 1-—j2m4 =1\ (_ i\ ,j2mat
smzg (1= NN s s (- e (e

L+j2m oy gt LHJ2m2 o . iomoe
Tramz L e gl —e)je
L+j2m3 oy ojem3e, 1G24 g omar
T am (1 e je + 1+4Tr216(1 e )je

4
= (1-ehH z ﬁ(sin&nnt) — 21T cos(2mrnt))
=1

b) With T = 2 and x, = -L-(~1)" we obtain

-1 .
1)"(—j)ej"mt+ Z #(_l)njejrmt

s
o

E ‘g.

y(t)

-1
eJTmt_l_ z _%( l)nJeJnnt

n=1 n=-8
¢) In this case
= = (-
xz1 =0, X2141 = (Zl " 1)( )
Hence
y(t) = l(_j)eJ'ZTTt+L(_1)(_j)ej2rr3t
™ 31T

1 ; 1 -
4+ (=1)jeJemt 4 io—J2m3t
—1T( je —3m7¢

= € sin(21rt) — 1 sin(271r3t)
21T 61T

d) xo = % and xy = 555 (cos(Z"") —1). Thus

21Tn

4
yit) = S =2 (cos(2T) _ 1)(—jjeszmnt

3 2N ;
_ - j2mnt
+ ni T— (cos( 3 ) —1)je

e) With x,, = n%t((—l)” — sinc(%)) we obtain

4 -1
1 n N -1 no oo N
y(t) = z ﬁ((—l) - SlnC(E)) + z ﬁ((—l) —SlnC(E))

n=1 n=—4
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f) Working similarly with the other cases we obtain

4

3 1 21N 1 21N ;
- _ i L j2mnt
+n:§_ [ (2 cos( 3 )) + " sin( 3 )] Jje

Problem 2.45
Using Parseval’s relation (Equation 2.2.38), we see that the power in the periodic signal is given by
S _e |xn|?. Since the signal has finite power

1 «+To
TJ Ix(t)|?dt = K < o
0 Jux

Thus, >, _ o |xn|? = K < co. The last implies that |x,| — 0 as n — . To see this write
0 -M M )
Z |Xn|2 = Z |Xn|2 + z |Xn|2 + z |Xn|2
n=M

n=—oco n=—oco n=-M

Each of the previous terms is positive and bounded by K. Assume that |x;, |2 does not converge to
zero as n goes to infinity and choose € = 1. Then there exists a subsequence of xy, xy,, such that

[xXn, | >€=1, forng >N=M
Then

[oe] (o]
z Ixnl? > z |Xn|222|xnk|2:°°
n=M n=N Nk

This contradicts our assumption that >.)’_s, |x, |2 is finite. Thus | x5 |, and consequently x;, should
converge to zero as n — .

Problem 2.46
1) Using the Fourier transform pair

o2+ (2mf)2  4m? % + f2

o-altl F, 2x 2x 1

and the duality property of the Fourier transform: X(f) = F[x(t)] = x(—f) = F[X(t)] we obtain

- f - =e x

With & = 21T we get the desired result

f[ 1 ]:m—zn\f\

1+1¢t2
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2)

Flx()]

FIIN(E - 3) + II(t + 3)]
Sin(:(f)e_jZ’Tf3 + Sinc(f)ejznf:‘}

2sinc(f) cos(213f)

3) FIII(t/4)] = 4sinc(4f), hence F[4I1(t/4)] = 16sinc(4f). Using modulation property of FT we
have F[4I1(t/4) cos(21 fot)] = 8sinc(4(f — fo)) + 8sinc(4(f + fo)).

4)
- _ L _J o sop 1
Fltsinc(t)] = Trjf[sm(rrt)] =5 [5(f+ 2) o(f 2)]

The same result is obtain if we recognize that multiplication by t results in differentiation in the
frequency domain. Thus

J
Fltsinc] = de(f) S [5(f+—)—5(f——)}
5)
_ J 4
Fltcos(mfot)] = anf< o(f - fo) + 3 5(f+f0)>

= 477 (6" (f — fo) + 6" (f + fo))

Problem 2.47

x1(t) = —x(t)+x(t) cos(20001rt)+x(t) (1 + cos(600071Tt)) or x1(t) = x(t) cos(20007rt) +x(t) cos(60007rt).
Using modulation property, we have X; (f) = %X(f— 1000) + %X(f +1000) + %X(f— 3000) + %X(f+

3000). The plot is given below:
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Problem 2.48

1 1 ;
- - _ = —j2mft
_mz(é(t+2)+6(t 2))e dat

= %(e’j"f + e I/ = cos(mrf)

1 1 1 |
FIZ6+5) +6—501 = |

Using the duality property of the Fourier transform:
X(f) = Flx(t)] = x(f) = FIX(-1)]

we obtain 1 1 1
Flecos(—1t)] = Flcos(mt)] = 5(5(f+ 5) +0(f - E))

Note that sin(rrt) = cos(rrt + 7). Thus
. 1 1 1 1. iny
Flsin(mrt)] = Flcos(m(t + 5))] = 5(5(f + E) +0(f - E))ef
1 1 101 e 1
= Eej 25(f+§)+zej 26(f 2)

_ Ly _Jsr-L
= 50(f+5)=58(f-3)

Problem 2.49
a) We can write x(t) as x(t) = 2I1(+) — 2A(%). Then

Flx()] = f[zn(ﬁ)] - j—"[2A(%)] _ 8sinc(4f) — 4sinc?(2.f)

b)
x(t) = 21'[(%) —A(t) = Flx(t)] = 8sinc(4f) — sinc®(f)
)
w , 0 , 1 ,
X(f) = J x(t)e 12mftge = J (t + e /2mftge 4+ J (t — e /2™t gt
o -1 0
B J 1 _jompe|° J o —jerpe®
B (2Tl’ft+41T2f2>e _1+21Tfe 1
J 1 _jemft 1_ J —jemft !
+(2Trft+4rr2f2>e 0 2Tl’fe 0

e
= 7Tf(l sin(rf))
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d) We can write x(t) as x(t) = A(t + 1) — A(t — 1). Thus
X(f) = sinc?(f)e/?™f —sinc?(f)e 72™f = 2jsinc? (f) sin(21f)

e) We can write x(t) as x(t) = A(t +1) + A(t) + A(t — 1). Hence,

X(f) = sinc®(f) (1 + e/2™F 4 e=72Tfy — sinc? (f) (1 + 2 cos (21 f)

f) We can write x(t) as

1 1 .
x(t) = [H (Zfo(t — 4—fo)> -1I (Zfo(t - 4—fo)>] sin(27t fot)

Then

(N emdy L ) jemf
X(f) = |:2f0 simc (2f0> e 4fo 2 fo sinc <2f0)> e ify :|

*%(6(f + o) = 5(f + fo))

|
)
=}
(@)
VS
kh
>
N—————
1]
=}
VS
|
kﬁ
+
>
N—————
|
)
=
(@)
N
kﬁ
|
>
N—————
®
=
VRS
|

Problem 2.50
(Convolution theorem:)

Flx@) » y®)]1=FixOIF Iy O] =XY(S)
Thus
sinc(t) = sinc(t) = f‘l[f[sinc(t) * sinc(t)]]
= F ' Flsinc(t)] - Flsinc(t)]]
= FHUINOMO] = FHINN]

= sinc(t)

Problem 2.51

(o]

J_oox(t)y(t)e‘ﬂ"ftdt
ﬁo (foooX(G)efz""tdQ) y(t)e i2mft gt
Jio X(0) (Jio y(t)e*jZW(ffe)tdt) 40

J_ X(0)Y(f - 0)d0 = X(f) * Y(f)

Flx®)y(t)]
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Problem 2.52
1) Clearly

> x(t+kTo-nTo) = > x(t-(n-kTo)

>, x(t=mTp) = x1(t)

m=—co

x1(t + kTp)

where we used the change of variable m = n — k.
2)

x1(t) =x(t) » > &(t—nTo)

N=—o00
This is because
00 [e3) 00

J x(T) z O(t -1 —nTy)dTt = z Joo x(T)6(t — T —nTp)dT = Z x(t —nTy)

N=-—0o0 n=—oco v N=-—0o0

3)

Flx@) « > 8t -nTo)]l=FlxOIF[ > 8 —-nTp)]

Nn=-—o00 n=-—o0

Flx1(t)]

1 < n 1 < n n
X(f)?o > 5(f—?0):?0n;mx(?0)5(f—?0)

n=—oo

Problem 2.53
1) By Parseval’s theorem

[oe] [ee]

J sinc® (t)dt =J sinc3 (t)sinc? (t)dt = Jm AS)T(fdf

where

T(f) = Flsinc3(t)] = Flsinc(t)sinc(t)] = TI(f) * A(f)

But
0 3 f+3
N0« AU = | @A -00do = [* A -odo= |
oo - f-1

2

A(v)dv
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For

For

For

For

For

Thus,

Hence,

fe-3 =T =
3
2

1
2

0 f+
=(%v2+v)‘ +(—1v2+v)‘ o2y

1
2

2

Tf)

—<fsg=>T(f)

0

1 frz
__<f5_§:>T(f):J,1 (v+1)dv—( v2 4+ )

——<fs%:>T(f)

§<f:T(f)=O

:J; (= v+1)dv—(—%v +v)'
2

1
L2

1

0 f+§
:J 1(v+1)dv+J (-v +1dv
f-4 0

2

2 4
1., 3, 9
L ey

1
2

0 fs—%
Pedfed -i<rs-

S ks B RV
bre-dfed ber<s
kO %<f

[~ apripar - J:f(%f2+§f+g)(f+l)df+J (F2 4 D)+ Daf

Jo e *tginc(t)dt

3)

2

J (—f2 + —)( f+1>df+J< f2——f+—>( _frDdf

41
64

[oe]

J e %y _1(t)sinc(t)dt

1
a Jma+12nfn(f)df J’J o<+12rrfdf
_ ) 12 1 x+jmr, 1 M
= —j2nln(o<+12rrf)|,1/2——jznln(i(x_jn)—Trtan o<

J;o e %t cos(Bt)dt

Joo ey _q(t) cos(Bt)dt

1(” B
EJOOO(+J2Trf(5(f_—)+5(f+

LS U S
2'a+jB x—jB o+ B2

£ ))dt
21
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Problem 2.54
Using the convolution theorem we obtain

1 1

Y(f) = X(f)H(f):((x+j2nf)([3+j2nf)
1 1 1
 B-x)x+j2mf (B-o) B+ jmrf
Thus 1
_ -1 _ -at _ ,—Bt
y(t) =F Y] (B_(X)[e e P u_1(t)
If(x:BthenX(f):H(f)=m.lnthiscase
_ -1 _ o1 1 21 _ 4 —at
yt)=F ' Y(HI=F [((x+j2Trf) ] =te *u_y(t)
The signal is of the energy-type with energy content
T z 20 _ 1 %# —at -Bty2
E, = }%Jg'y(tﬂdt_}l}}; o (B—(x)z(e e Phcdt
o 1 R L v 2 (Bt T/Z}
- Thi“?o(zs—(xﬂ[ 20 1o T28° o T+ Bt 0
IR NS SRS W B
-2 2x 2B «+B 2xB(x+P)

Problem 2.55

x(t) x=zt<oa+Ty
xXu(l) = ]
0 otherwise

Thus

0 x+To

Xua(f) = J X(x(t)esznftdt = J X(t)e*jz""ftdt

- (64
Evaluating X (f) for f = T% we obtain

n «+Tp ion
Xol-) = J x(t)e Tt dt = Toxp
0

(04

where x,, are the coefficients in the Fourier series expansion of x(t). Thus Xa(%) is independent
of the choice of «.
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Problem 2.56

[ee]

Z x(t —nTs) x(t) * Z 5(t—nT5)——x(t)* Z eI T,

n=—oo n=—oo Nn=—oo

[X(f) > 6(f——)}

Nn=—oo

¥
- T Lz_mx( )5<f——>}
1

n 2 Lt
LS
PRI

If we set t = 0 in the previous relation we obtain Poisson’s sum formula

[ee] (o]

1
> x(-nTs) = > x(mTs) = = X (ﬂ)
N=—00 Mm=—oc0 T Nn=—o T
Problem 2.57
1) We know that
pmaltl Fo 20
2 + 412 f2
Applying Poisson’s sum formula with Ts = 1 we obtain
Z e~ &inl — Z ==
N N &2+ 41202

2) Use the Fourier transform pair I1(t) — sinc(f) in the Poisson’s sum formula with Ts = K. Then

> M(nkK) = Z smc(—)

n=—oo K, =

ButII(nK) =1 forn = 0 and II(nK) = 0 for [n| = 1 and K € {1, 2,...}. Thus the left side of the
previous relation reduces to 1 and

Z smc(—)

NnN=—o0
3) Use the Fourier transform pair A(t) — sinc?(f) in the Poisson’s sum formula with T = K. Then

> A(mK) = Z sinc (—)

n=-—oo Tl——oo

Reasoning as before we see that > ,,__., A(nK) = 1 since for K € {1,2,...}

n=0
A(nK) =
0 otherwise

Thus, K = > Sincz(%)
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Problem 2.58
Let H(f) be the Fourier transform of h(t). Then

H() Fle “u_1(t)] = FIS(H)] = H(f)ﬁ

o f =1= H(f) =0+ j2rf

The response of the system to e~ *t cos(Bt)u_1(t) is

y(t) = FHHF)Fle ™ cos(Byu1(1)]]

But
Fle * cos(Bt)u_y(t)] = f[%e‘“tuq(t)ejﬁt + %e‘“tuq(t)e‘fﬁt]
1 1 1
T2 [(x+j27'r(f—%) " (x+j2rr(f+%)}
so that
Y(f) =Fly@®)] = (szznf [(x+j27'rl(f— I + (X+J_27Tl(f+ %)]

Using the linearity property of the Fourier transform, the Convolution theorem and the fact that
o' (t) ER j2tt f we obtain

e cos(Bt)u_1(t) + (e cos(Bt)u_1(t)) = &' (t)
e % cos(Bt)S(t) — Be X sin(Bt)u_1(t)
= 5(t) — Be~*sin(Bt)u—_1(t)

y(t)

Problem 2.59
1) Using the result of Problem 2.50 we have sinc(t) x sinc(t) = sinc(t).
2)

y(t) x(t) x h(t) = x(t) = (6(t) +6'(t)

d
= x(t)+ Ex(t)
With x (t) = e~ %/tl we obtain y(t) = e~ Il — xe~*Itlsgn(t).

3)

y(t)

Joo h(t)x(t —T)dT

t t
J e T Bl-T) gt = e‘BtJ e (=PTgr
0 0
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If x=B=>y(t)=te *u_i(t)
1
B -«

t
x#B =yt = e’BtB_L(Xe’(“’B)t Ou71(if) = [ef‘xt - efﬁt] u-1(t)

Problem 2.60
Let the response of the LTI system be h(t) with Fourier transform H (f). Then, from the convolution
theorem we obtain

Y(f) =H()X(f) = Af) =TI(NHH(S)

However, this relation cannot hold since IT(f) = 0 for % < |f| whereas A(f) # 0 for1 < |f] <1/2.

Problem 2.61

1) No. The input II(t) has a spectrum with zeros at frequencies f = k, (k # 0, k € Z) and the
information about the spectrum of the system at those frequencies will not be present at the output.
The spectrum of the signal cos(21rt) consists of two impulses at f = +1 but we do not know the
response of the system at these frequencies.

2)

hi(t) = II(t)
ho(t) * II(t)

II(t) = II(t) = A(t)
(TI(t) + cos(2Trt)) = II(t)

= A(t) + %f*l [8(f - D)sinc?(f) + 8(f + Dsinc?(f) ]

- At) + %jf‘l [5(f — 1)sinc®(1) + §(f + 1)sinc2(—1)]
- A(b)

Thus both signals are candidates for the impulse response of the system.

3) Flu-_1(t)] = %5(f) + ﬁ Thus the system has a nonzero spectrum for every f and all the fre-
quencies of the system will be excited by this input. Fle *u_;(t)] = m Again the spectrum
is nonzero for all f and the response to this signal uniquely determines the system. In general the
spectrum of the input must not vanish at any frequency. In this case the influence of the system

will be present at the output for every frequency.
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Problem 2.62

FIAsin(21 fot + 0)]

—jsgn(f)A [—Zij&f + foelmIm 2ij5<f ~ foye 7 T]

o -
) ? [sgn(—fo)a(f * fO)eJZWf% —sgn(—fo)o(f — fo)e_ﬂ"f%}

A
2

807+ fo)e™™ 55 +5(f — fore 23 ]
= —AF[cosT fot + 0)]

Thus, A sin(mt +0) = —Acos(2m fot + 0)

Problem 2.63

—

Taking the Fourier transform of e/2mfot we obtain

Fleizmht] = —jsgn(£)5(f — fo) = —jsgn(fo)8(f — fo)

Thus,

—

ei2mfot = F1[—jsgn(f0)5(f — fo)] = —jsgn(fo)es2fot

Problem 2.64

Flx(t) = 5" ()] = —jsgn(f) Flx(t) « &' (1)]

d/\
F [Ex(t)}

—Jjsgn(f)j2rfX(f) = 2m fsgn(f)X(f)
2mr| f1X(f)

Problem 2.65 -
We need to prove that x’(t) = (x(t))’.

FIX'(D] = Flx() * 6" ()] = —jsgn(f) Flx(t) 8 ()] = —jsgn(F)X(f)j2mf
= FIRD]j2mf = FLEE)']

Taking the inverse Fourier transform of both sides of the previous relation we obtain, x'(t) =

(x(t))
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Problem 2.66
1) The spectrum of the output signal y(t) is the product of X(f) and H(f). Thus,

Y(f) =H(f)X(f) = X(f)A(fo)ej(9(fo)+(f—fo)9'(f)\f:fo)

y(t) is a narrowband signal centered at frequencies f = =fy. To obtain the lowpass equivalent
signal we have to shift the spectrum (positive band) of y(t) to the right by fy. Hence,

Yi(f) = ulf + fOX(f + fo)Alfo)e! OO T Dmn) = xy(f)A(fo)el OO i=s0)

2) Taking the inverse Fourier transform of the previous relation, we obtain

i) = FLHXU(F)A(fo)el W0 el O Dlrp |

1,
A(fo)xi(t + EQ Ol r=so)

With y(t) = Re[y;(t)e/2™fol] and x;(t) = Vi (t)e/Ox (D) we get

y(t) = Re[y(t)el2mfot]
= Re [A(fo)xl(t + %9'(f)|f:f0)ej(9(fo)ej2nfot]
= Re |:A(f0)vx(t + %ef(f)|f:f0)eJ'ZTTfOtej@x(tJr%@’(f)\f:fo):l
1
= A(fo)Vx(t —tg) cos2m fot + 0(fo) + Ox (L + E@ =)
0 (fo) 1,
= A(fo)Vx(t —tg) cos2mfo(t + 27TfO) + Oy (t + EQ Pl pso))
L
= A(fO)Vx(t - tg) COS(27Tf0(t — tp) + O (t + ﬁe (f)|f=fo))
where . Lot Lo
___~ _ 1 o _ 1
3) ty can be considered as a time lag of the envelope of the signal, whereas t, is the time

corresponding to a phase delay of %%{)‘))

Problem 2.67
1) We can write Hg(f) as follows

cosf —jsin® f>0
Ho(f) =7 0 f=0 =cos0— jsgn(f)sin6
cos@ +jsin® f<0
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Thus,
ho(t) = F ' [Hp(f)] = cos 05(t) + % sin 0

2)
xp(t) = x(t) x ho(t) =x(t) x (cos06(t) + %sin@)
= cosOx(t) x6(t) + sin@% * x(t)
= cosSOx(t)+sinOx(t)
3)

(o]

| xowizar

(o]

J | cos Ox (t) + sin 0% () |2dt

cos? ej | (t)|2dt + sin? ej |%(t)]%dt

+C0$9$in9J x(t)fc*(t)dt-kcos@sinej x* () x(t)dt

But [%, [x(t)|°dt = [Z, |X(t)]?dt = Ex and [, x(t)X*(t)dt = 0 since x(t) and X (¢) are orthogonal.
Thus,
Ex, = Ex(cos? 0 + sin® 0) = Ey

Computer Problems

Computer Problem 2.1
1) To derive the Fourier series coefficients in the expansion of x(t), we have

1t
Xp = ZJ e—]2nnt/4 dt
-1

_ 1 [efj21rn/4 B ej27'rn/4] @2.1)
—-2jmn

= % sinc (g) (2.2)

where sinc(x) is defined as

sinc(x) = sin(mx) (2.3)

X
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Figure 2.1: Various Fourier series approximations for the rectangular pulse

2) Obviously, all the x;,’s are real (since x(t) is real and even), so

’a = sinc (E)
" 2

bn:O

2)

Cn = ‘sinc (
2

\Qn:O,Tr

(2.4)

Note that for even n’s, x,, = 0 (with the exception of n = 0, where ag = ¢co = 1 and xg = %). Using

these coefficients, we have

(o]
S L sinc (ﬂ) j2rnt/4
2

x(t)

2

n) cos (27‘rtE

(2.5)

)

4

A plot of the Fourier series approximations to this signal over one period for n = 0,1,3,5,7,9 is

shown in Figure 2.11

3) Note that x;, is always real. Therefore, depending on its sign, the phase is either zero or 7r. The
magnitude of the x’s is % ‘sinc (%) ‘ . The discrete and phase spectrum are shown in Figure [2.21
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Figure 2.2: The discrete and phase spectrum of the signal
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Computer Problem 2.2

1) We have
1 (Tor2 ,
Xn = —J x (t)e~f2mnt/To gy (2.6)
To J-1y/2
1 (! ,
= Elex(t)w"”talt (2.7)
e :
= 5 A(t)e I™ gt (2.8)
1
= Ef[A(t)]f:n/Z (2.9)
I S
= 2sm(:(2) (2.10)
(2.11)

where we have used the facts that A(t) vanishes outside the [—-1, 1] interval and that the Fourier
transform of A(t) is sinc?(f). This result can also be obtained by using the expression for A(t)
and integrating by parts. Obviously, we have x;, = 0 for all even values of n except for n = 0.

2) A plot of the discrete spectrum of x(t) is presented in Figure [2.3]

3) A plot of the discrete spectrum {y,} is presented in Figure [2.4]

The MATLAB script for this problem is given next.

% MATLAB script for Computer Problem 2.2.
echo on

n=[-20:1:20];

% Fourier series coefficients of x(t) vector
x=.5*(sinc(n/2)).A2;

% sampling interval

ts=1/40;

% time vector

t=[-.5:ts:1.5];

% impulse response

fs=1/ts;
h=[zeros(1,20),t(21:61),zeros(1,20)];
% transfer function

H=fft(h)/fs;

% frequency resolution

df=fs/80;

f=[0:df:fs]-fs/2;

% rearrange H

H1=fftshift(H);

y=x."H1(21:61);

% Plotting commands follow.
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Figure 2.3: The discrete spectrum of the signal
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Figure 2.4: The discrete spectrum of the signal
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Figure 2.5: The common magnitude spectrum of the signals x; (t) and x (t)

Computer Problem 2.3

The common magnitude spectrum is presented in Figure 2,51 The two phase spectrum of the two
signals plotted on the same axes are given in Figure

The MATLAB script for this problem follows.

% MATLAB script for Computer Problem 2.3.

df=0.01;

fs=10;

ts=1/fs;

t=[-5:ts:5];

x1=zeros(size(t));

X1(41:51)=t(41:51)+1;

x1(52:61)=0ones(size(x1(52:61)));

x2=zeros(size(t));

x2(51:71)=x1(41:61); 10
[X1,x11,df1]=fftseq(x1,ts,df);

[X2,x21,df2]=fftseq(x2,ts,df);

X11=X1/fs;

X21=X2/fs;

f=[0:df1:df1*(length(x11)—1)]-fs/2;

plot(f,fftshift(abs(X11)))

figure
plot(f(500:525),fftshift(angle(X11(500:525))),f(500:525),fftshift(angle(X21(500:525))),” --")
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Figure 2.6: The phase spectrum of the signals Ax; (t) and Axy(t)
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Computer Problem 2.4
The Fourier transform of the signal x (t) is

1
1+ j2mf
Figures [2.7] and [2.8] present the magnitude and phase spectrum of the input signal x (t).
2) The fourier transform of the output signal y(t) is

1
0 otherwise

y(f) =

The magnitude and phase spectrum of y(t) is given in Figures and [2.10] respectively.
3) The inverse Fourier transform of the output signal is parented in Figure
The MATLAB script for this problem is given next

% MATLAB script for Computer Problem 2.4.
df= 0.01;

f = —4:df:4;

x_f = 1./(0+2*pi*i*f);

plot(f, abs(x_f));

figure;

plot(f, angle(x_f));

indH = find(abs(f) <= 1.5);

H_f = zeros(1, length(x_f));

H_f(indH) = cos(pi*f(indH)./3); 10
y_f = x_f.*H_f;
figure;

plot(f,abs(y_f));
axis([-1.5 1.5 0 16));
figure;

plot(f, angle(y_f));

y_f(401) = 10A30;

y_t = ifft(y_f, ’symmetric’);

figure; 20
plot(y-t)

Computer Problem 2.5

Choosing the sampling interval to be t; = 0.001 s, we have a sampling frequency of f¢ = 1/ts = 1000
Hz. Choosing a desired frequency resolution of d f = 0.5 Hz, we have the following.

1) Plots of the signal and its magnitude spectrum are given in Figures and respectively.
Plots are generated by Matlab.
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Figure 2.7: Magnitude spectrum of x(t)
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Figure 2.8: Phase spectrum of x(t)
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Figure 2.9: Magnitude spectrum of y(t)
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Figure 2.10: Phase spectrum of y(t)
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Figure 2.11: Inverse Fourier transform
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Figure 2.12: The signal x(t)
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Figure 2.13: The magnitude spectrum of x(t)
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2) Choosing fo = 200 Hz, we find the lowpass equivalent to x(t) by using the loweq.m function.
Then using fftseq.m, we obtain its spectrum; we plot its magnitude spectrum in Figure [2.14l The
MATLAD functions loweq.m and fftseq.m are given next.

function [M,m,df]=fftseq(m,ts,df)
% [M,m,df]=fftseq(m,ts,df)
% [M,m,df]=fftseq(m,ts)
%FFTSEQ generates M, the FFT of the sequence m.
% The sequence is zero-padded to meet the required frequency resolution df.
% ts is the sampling interval. The output df is the final frequency resolution.
% Output m is the zero-padded version of input m. M is the FFT.
fs=1/ts;
if nargin ==
nl=0;
else
nl=fs/df;
end
n2=length(m);
n=2A(max(nextpow?2(nl),nextpow2(n2)));
M=fft(m,n);
m=[m,zeros(1,n—n2)];
df=fs/n;

function xl=loweq(x,ts,f0)

% xl=loweq(x,ts,f0)

%LOWEQ returns the lowpass equivalent of the signal x
% f0 is the center frequency.

% ts is the sampling interval.

%
t=[0:ts:ts*(length(x)—1)];
z=hilbert(x);
xl=z.*exp(—j*2*pi*fO*t);

It is seen that the magnitude spectrum is an even function in this case because we can write

x(t) = Re[sinc(100t)e/*400mt] (2.12)
Comparing this to
x(t) = Re[x(t)el?™fot] (2.13)
we conclude that
x1(t) = sinc(100t) (2.14)

which means that the lowpass equivalent signal is a real signal in this case. This, in turn, means
that x.(t) = x;(t) and x(t) = 0. Also, we conclude that

V(t)

|xc ()]
0, x:(t)=0 (2.15)

e) =
m, Xx:(t) <0
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Figure 2.14: The magnitude spectrum of x;(t)

67

500



0.8 b

0.6

0.4

X0

0.2

|
o
N

T

L

Figure 2.15: The signal xc(t)

Plots of x.(t) and V (t) are given in Figures[2.15]and [2.16] respectively. Note that choosing fy to be
the frequency with respect to which X(f) is symmetric result in these figures.

Computer Problem 2.6

The Remez algorithm requires that we specify the length of the FIR filter M, the passband edge
frequency fp, the stopband edge frequency fs, and the ratio 62 /5. Here, 81 and 62 denote passband
and stopband ripples, respectively. The filter length M can be approximated using

M- —20logyg /0102 — 13
14.6Af
where Af is the transition bandwidth Af = fs — fp
1) Figure [Z.17] shows the impulse response coefficients of the FIR filter.
2) Figures [2.18] and show the magnitude and phase of the frequency response of the filter,
respectively.
The MATLAB script for this problem is given next

+1

% MATLAB script for Computer Problem 2.6.
fp = 0.4;
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Figure 2.16: The signal V (t)
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Figure 2.17: Impulse response coefficients of the FIR filter

fs = 0.5;

df = fs—fp;

Rp = 0.5;

As = 40;
deltal=(10A(Rp/20)—1)/(10ARp/20)+1);
delta2=(1+deltal)*(10A(—-As/20));
%Calculate approximate filter length
Mhat=ceil((—20*log10(sqrt(deltal*delta2))—13)/(14.6*df)+1);
f=[0 fp fs 1];

m=[1 1 0 O],

w=[delta2/deltal 1];
h=remez(Mhat+20,f,m,w);
[H,W]=freqz(h,[1],3000);

db = 20*log10(abs(H));

% plot results

stem(h);

figure;

plot(W/pi, db)

figure;

plot(W/pi, angle(H));
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Figure 2.18: Magnitude of the frequency response of the FIR filter
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Figure 2.19: Phase of the frequency response of the FIR filter
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Figure 2.20: The impulse response coefficients of the filter

Computer Problem 2.7

1) The impulse response coefficients of the filter is presented in Figure 2.20]

2) The magnitude of the frequency response of the filter is given in Figure [2.211
The MATLAB script for this problem is given next

% MATLAB script for Computer Problem 2.7.
f=[0 0.01 0.1 0.5 0.6 1];
m=[0011 0 0]

deltal = 0.01;
delta2 = 0.01;
df = 0.1 — 0.01;

Mhat=ceil((—20*log10(sqrt(deltal*delta2))—13)/(14.6*df)+1);
w=[1 delta2/deltal 1];
h=remez(Mhat+20,f,m,w,’ hilbert’);

[H,W]=freqz(h,[1],3000);
db = 20*log10(abs(H));
% plot results

stem(h);
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Figure 2.21: The magnitude of the frequency response of the filter
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Figure 2.22: Impulse response of the filter

figure;

plot(W/pi, db)
figure;

plot(W/pi, angle(H));

Computer Problem 2.8

1) The impulse response of the filter is given in Figure [2.221

2) The magnitude of the frequency response of the filter is presented in Figure 2,231

3) The filter output y(n) and x(n) are presented in Figure [2.24] It should be noted that y(n) is the
derivative of x(n).
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Figure 2.23: Magnitude of the frequency response of the filter
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