FIFTH EDITION

Fundamentals of Electric Circuits

Charles K. Alexander |Matthew N. O. Sadiku

Chapter 1, Solution 1

(a) $\mathrm{q}=6.482 \times 10^{17} \mathrm{x}\left[-1.602 \times 10^{-19} \mathrm{C}\right]=\mathbf{- 1 0 3 . 8 4} \mathbf{~ m C}$
(b) $\mathrm{q}=1.24 \times 10^{18} \times\left[-1.602 \times 10^{-19} \mathrm{C}\right]=-198.65 \mathrm{mC}$
(c) $\mathrm{q}=2.46 \times 10^{19} \times\left[-1.602 \times 10^{-19} \mathrm{C}\right]=-3.941 \mathrm{C}$
(d) $\mathrm{q}=1.628 \times 10^{20} \mathrm{x}\left[-1.602 \times 10^{-19} \mathrm{C}\right]=-26.08 \mathrm{C}$

Chapter 1, Solution 2

(a) $\mathrm{i}=\mathrm{dq} / \mathrm{dt}=3 \mathrm{~mA}$
(b) $\mathrm{i}=\mathrm{dq} / \mathrm{dt}=(16 \mathrm{t}+4) \mathrm{A}$
(c) $\mathrm{i}=\mathrm{dq} / \mathrm{dt}=\left(-3 \mathrm{e}^{-t}+10 \mathrm{e}^{-2 \mathrm{t}}\right) \mathrm{nA}$
(d) $\mathrm{i}=\mathrm{dq} / \mathrm{dt}=1200 \pi \cos 120 \pi t \mathrm{pA}$
(e) $\mathrm{i}=\mathrm{dq} / \mathrm{dt}=-e^{-4 t}(80 \cos 50 t+1000 \sin 50 t) \mu \mathbf{A}$

Chapter 1, Solution 3

(a) $\mathrm{q}(\mathrm{t})=\int \mathrm{i}(\mathrm{t}) \mathrm{dt}+\mathrm{q}(0)=(\underline{\mathrm{t}}+1) \mathrm{C}$
(b) $\mathrm{q}(\mathrm{t})=\int(2 \mathrm{t}+\mathrm{s}) \mathrm{dt}+\mathrm{q}(\mathrm{v})=\underline{\left(\mathrm{t}^{2}+5 \mathrm{t}\right) \mathrm{mC}}$
(c) $\mathrm{q}(\mathrm{t})=\int 20 \cos (10 \mathrm{t}+\pi / 6)+\mathrm{q}(0)=\underline{(2 \sin (10 t+\pi / 6)+1) \mu \mathrm{C}}$
(d) $q(t)=\int 10 e^{-30 t} \sin 40 t+q(0)=\frac{10 e^{-30 t}}{900+1600}(-30 \sin 40 t-40 \cos t)$
$=-\mathrm{e}^{-30 \mathrm{t}}(0.16 \cos 40 \mathrm{t}+0.12 \sin 40 \mathrm{t}) \mathrm{C}$

Chapter 1, Solution 4

$$
\mathrm{q}=\mathrm{it}=7.4 \times 20=\underline{\mathbf{1 4 8} \mathbf{C}}
$$

Chapter 1, Solution 5

$q=\int i d t=\int_{0}^{10} \frac{1}{2} t d t=\left.\frac{t^{2}}{4}\right|_{0} ^{10}=\underline{25 \mathrm{C}}$

Chapter 1, Solution 6
(a) At t $=1 \mathrm{~ms}, \mathrm{i}=\frac{\mathrm{dq}}{\mathrm{dt}}=\frac{30}{2}=\underline{\mathbf{1 5} \mathbf{A}}$
(b) At $t=6 \mathrm{~ms}, \mathrm{i}=\frac{\mathrm{dq}}{\mathrm{dt}}=\underline{\mathbf{0} \mathbf{A}}$
(c) At t $=10 \mathrm{~ms}, \mathrm{i}=\frac{\mathrm{dq}}{\mathrm{dt}}=\frac{-30}{4}=\underline{-7.5 \mathrm{~A}}$

Chapter 1, Solution 7
$\mathrm{i}=\frac{\mathrm{dq}}{\mathrm{dt}}=\left[\begin{array}{ll}25 \mathrm{~A}, & 0<\mathrm{t}<2 \\ -25 \mathrm{~A}, & 2<\mathrm{t}<6 \\ 25 \mathrm{~A}, & 6<\mathrm{t}<8\end{array}\right.$
which is sketched below:

$-25 \mathrm{~A} \mid$ ـ

Chapter 1, Solution 8
$\mathrm{q}=\int \mathrm{idt}=\frac{10 \times 1}{2}+10 \times 1=\underline{15 \mu \mathrm{C}}$

Chapter 1, Solution 9
(a) $\mathrm{q}=\int \mathrm{idt}=\int_{0}^{1} 10 \mathrm{dt}=\underline{10 \mathrm{C}}$
(b) $\mathrm{q}=\int_{0}^{3} \mathrm{idt}=10 \times 1+\left(10-\frac{5 \times 1}{2}\right)+5 \times 1$

$$
=15+7.5+5=\underline{22.5 \mathrm{C}}
$$

(c) $\mathrm{q}=\int_{0}^{5} \mathrm{idt}=10+10+10=\underline{30 \mathrm{C}}$

Chapter 1, Solution 10

$$
\mathrm{q}=\mathrm{it}=10 \times 10^{3} \times 15 \times 10^{-6}=\underline{\mathbf{1 5 0} \mathbf{~ m C}}
$$

Chapter 1, Solution 11

$$
\begin{aligned}
& \mathrm{q}=\mathrm{it}=90 \times 10^{-3} \times 12 \times 60 \times 60=3.888 \mathbf{k C} \\
& \mathrm{E}=\mathrm{pt}=\mathrm{ivt}=\mathrm{qv}=3888 \times 1.5=\mathbf{5 . 8 3 2} \mathbf{~ k J}
\end{aligned}
$$

Chapter 1, Solution 12

For $0<\mathrm{t}<6 \mathrm{~s}$, assuming $\mathrm{q}(0)=0$,
$q(t)=\int_{0}^{t} i d t+q(0)=\int_{0}^{t} 3 t d t+0=1.5 t^{2}$
At $t=6, q(6)=1.5(6)^{2}=54$
For $6<t<10$ s,
$q(t)=\int_{6}^{t} i d t+q(6)=\int_{6}^{t} 18 d t+54=18 t-54$
At $\mathrm{t}=10, \mathrm{q}(10)=180-54=126$
For $10<t<15 \mathrm{~s}$,
$q(t)=\int_{10}^{t} i d t+q(10)=\int_{10}^{t}(-12) d t+126=-12 t+246$
At $t=15, q(15)=-12 \times 15+246=66$
For $15<t<20$ s,
$q(t)=\int_{15}^{t} 0 d t+q(15)=66$
Thus,

$$
q(t)=\left\{\begin{array}{c}
1.5 t^{2} \mathbf{C}, \mathbf{0}<\mathbf{t}<\mathbf{6 s} \\
18 t-54 \mathbf{C}, \mathbf{6}<\mathbf{t}<\mathbf{1 0 s} \\
-12 t+246 \mathbf{C}, \mathbf{1 0}<\mathbf{t}<\mathbf{1 5 s} \\
66 \mathbf{C}, \mathbf{1 5}<\mathbf{t}<\mathbf{2 0 s}
\end{array}\right.
$$

The plot of the charge is shown below.

Chapter 1, Solution 13

(a) $i=[\mathrm{dq} / \mathrm{dt}]=20 \pi \cos (4 \pi \mathrm{t}) \mathrm{mA}$
$p=v i=60 \pi \cos ^{2}(4 \pi \mathrm{t}) \mathrm{mW}$
At $\mathrm{t}=0.3 \mathrm{~s}$,

$$
p=v i=60 \pi \cos ^{2}(4 \pi 0.3) \mathrm{mW}=123.37 \mathbf{~ m W}
$$

(b) $W=\int p d t=60 \pi \int_{0}^{a \epsilon} \cos ^{2}(4 \pi t) d t=30 \pi \int_{0}^{a c}[1+\cos (8 \pi t)] d t$

$$
W=30 \pi[0.6+(1 /(8 \pi))[\sin (8 \pi 0.6)-\sin (0)]]=\mathbf{5 8 . 7 6} \mathbf{~ m J}
$$

Chapter 1, Solution 14
(a) $\mathrm{q}=\int \mathrm{idt}=\int_{0}^{1} 0.02\left(1-\mathrm{e}^{-0.5 t}\right) \mathrm{dt}=0.02\left(\mathrm{t}+2 \mathrm{e}^{-0.5 \mathrm{t}}\right)_{0}^{1}=0.02\left(1+2 \mathrm{e}^{-0.5}-2\right)=4.261 \mathrm{mC}$
(b) $\quad \mathrm{p}(\mathrm{t})=\mathrm{v}(\mathrm{t}) \mathrm{i}(\mathrm{t})$
$\mathrm{p}(1)=10 \cos (2) \times 0.02\left(1-e^{-0.5}\right)=(-4.161)(0.007869)$
$=-32.74 \mathrm{~mW}$

Chapter 1, Solution 15
(a) $\mathrm{q}=\int \mathrm{idt}=\int_{0}^{2} 0.006 \mathrm{e}^{-2 \mathrm{t}} \mathrm{dt}=\left.\frac{-0.006}{2} \mathrm{e}^{2 t}\right|_{0} ^{2}$

$$
=-0.003\left(e^{-4}-1\right)=
$$

2.945 mC
(b) $\quad \mathrm{v}=\frac{10 \mathrm{di}}{\mathrm{dt}}=-0.012 \mathrm{e}^{-2 \mathrm{t}}(10)=-0.12 \mathrm{e}^{-2 \mathrm{t}} \quad \mathrm{V}$ this leads to $\mathrm{p}(\mathrm{t})=\mathrm{v}(\mathrm{t}) \mathrm{i}(\mathrm{t})=$ $\left(-0.12 e^{-2 t}\right)\left(0.006 e^{-2 t}\right)=-720 e^{-4 t} \boldsymbol{\mu} \mathbf{W}$
(c) $\mathrm{w}=\int \mathrm{pdt}=-0.72 \int_{0}^{3} \mathrm{e}^{-4 \mathrm{t}} \mathrm{dt}=\left.\frac{-720}{-4} \mathrm{e}^{-4 \mathrm{t}} 10^{-6}\right|_{0} ^{3}=-\mathbf{1 8 0} \boldsymbol{\mu} \mathbf{J}$

Chapter 1, Solution 16

(a)

$$
\begin{aligned}
& i(t)=\left\{\begin{array}{c}
30 t \mathrm{~mA}, 0<\mathrm{t}<2 \\
120-30 \mathrm{~mA}, 2<\mathrm{t}<4
\end{array}\right. \\
& v(t)=\left\{\begin{array}{l}
5 \mathrm{~V}, 0<\mathrm{t}<2 \\
-5 \mathrm{~V}, 2<\mathrm{t}<4
\end{array}\right. \\
& p(t)=\left\{\begin{array}{c}
150 \mathrm{~mW}, 0<\mathrm{t}<2 \\
-600+150 \mathrm{t} \mathrm{~mW}, 2<\mathrm{t}<4
\end{array}\right.
\end{aligned}
$$

which is sketched below.

(b) From the graph of p ,

$$
W=\int_{0}^{4} p d t=\underline{0 \mathrm{~J}}
$$

Chapter 1, Solution 17
$\Sigma_{\mathrm{p}}=0 \rightarrow-205+60+45+30+\mathrm{p}_{3}=0$
$\mathrm{p}_{3}=205-135=70 \mathrm{~W}$
Thus element 3 receives $70 \mathbf{W}$.

Chapter 1, Solution 18

$$
\begin{aligned}
& \mathrm{p}_{1}=30(-10)=-\mathbf{3 0 0} \mathbf{~ W} \\
& \mathrm{p}_{2}=10(10)=100 \mathrm{~W} \\
& \mathrm{p}_{3}=20(14)=280 \mathrm{~W} \\
& \mathrm{p}_{4}=8(-4)=-32 \mathrm{~W} \\
& \mathrm{p}_{5}=12(-4)=-48 \mathrm{~W}
\end{aligned}
$$

