Chapter 3 Understanding Money Management

3.1)

- Nominal interest rate:

$$
r=1.3 \% \times 12=15.6 \%
$$

- Effective annual interest rate:

$$
i_{a}=(1+0.013)^{12}-1=16.77 \%
$$

3.2)
(a) Monthly interest rate: $i=17.85 \% \div 12=1.4875 \%$

Annual effective rate: $i_{a}=(1+0.014875)^{12}-1=19.385 \%$
(b) $\$ 2,500(1+0.014875)^{2}=\$ 2,574.93$
$r=\frac{10,000-8,800}{8,800}=13.64 \%$
3.4)

Assuming weekly compounding:

$$
\begin{aligned}
& r=6.89 \% \\
& i_{a}=\left(1+\frac{0.0689}{52}\right)^{52}-1=0.07128
\end{aligned}
$$

3.5)

The effective annual interest rate :

$$
i_{a}=e^{0.087}-1=9.09 \%
$$

3.6)

Interest rate per week:

$$
\begin{aligned}
\$ 450 & =\$ 400(1+i) \\
i & =12.5 \% \text { per week }
\end{aligned}
$$

(a) Nominal interest rate:

$$
r=12.5 \% \times 52=650 \%
$$

(b) Effective annual interest rate

$$
i_{a}=(1+0.125)^{52}-1=45,602 \%
$$

3.7)

$$
\begin{aligned}
\$ 20,000 & =\$ 520(P / A, i, 48) \\
(P / A, i, 48) & =38.4615
\end{aligned}
$$

Use Excel to calculate i :
$i=0.9431 \%$ per month
$r=0.9431 * 12=11.32 \%$
3.8)

$$
\begin{aligned}
\$ 16,000 & =\$ 517.78(P / A, i, 36) \\
(P / A, i, 36) & =30.901155 \\
i & =0.85 \% \text { per month } \\
r & =0.85 \times 12=10.2 \%
\end{aligned}
$$

3.9)

The three options :
a) $i_{a}=r=6.12 \%$
b) $i_{a}=\left(1+\frac{0.06}{4}\right)^{4}-1=6.136 \%$
c) $i_{a}=e^{0.059}-1=6.078 \%$

Bank B is the best option.
3.10)
a) $i=\left(1+\frac{0.06}{12}\right)^{1}-1=0.5 \%$
b) $i=\left(1+\frac{0.06}{12}\right)^{3}-1=1.508 \%$
c) $i=\left(1+\frac{0.06}{12}\right)^{6}-1=3.038 \%$
d) $i=\left(1+\frac{0.06}{12}\right)^{12}-1=6.168 \%$
3.11)

$$
\begin{aligned}
i_{\text {quarter }} & =e^{0.09 / 4}-1 \\
& =0.022755(\text { or } 2.28 \%)
\end{aligned}
$$

3.12)
a) $i=\left(1+\frac{0.06}{12}\right)^{1}-1=0.5 \%$
b) $i=\left(1+\frac{0.06}{12}\right)^{3}-1=1.508 \%$
c) $i=\left(1+\frac{0.06}{12}\right)^{6}-1=3.038 \%$
d) $i=\left(1+\frac{0.06}{12}\right)^{12}-1=6.168 \%$
3.13)

$$
\begin{aligned}
\$ 25,000 & =\$ 563.44(P / A, i, 48) \\
(P / A, i, 48) & =44.3703 \\
i & =0.3256 \% \text { per month }
\end{aligned}
$$

3.14)
a) $i=\left(1+\frac{0.11}{1}\right)^{1}-1=11 \%$
b) $i=\left(1+\frac{0.08}{2}\right)^{2}-1=8.16 \%$
c) $i=\left(1+\frac{0.095}{4}\right)^{4}-1=9.844 \%$
d) $i=\left(1+\frac{0.075}{365}\right)^{365}-1=7.788 \%$
3.15)
(a)

$$
\begin{aligned}
F & =\$ 9,545\left(1+\frac{0.082}{2}\right)^{24}=\$ 9,545(F / P, 4.1 \%, 24) \\
& =\$ 25,037.64
\end{aligned}
$$

(b)

$$
\begin{aligned}
F & =\$ 6,500\left(1+\frac{0.06}{4}\right)^{40}=\$ 6,500(F / P, 1.5 \%, 40) \\
& =\$ 11,791.12
\end{aligned}
$$

(c)

$$
\begin{aligned}
F & =\$ 42,800\left(1+\frac{0.09}{12}\right)^{96}=\$ 42,000(F / P, 0.75 \%, 96) \\
& =\$ 87,693.83
\end{aligned}
$$

3.16)
(a)

$$
F=\$ 10,000(F / A, 4 \%, 20)=\$ 297,781
$$

(b)

$$
F=\$ 9,000(F / A, 2 \%, 24)=\$ 273,796.76
$$

(c)

$$
F=\$ 5,000(F / A, 0.75 \%, 168)=\$ 1,672,590.40
$$

3.17)
(a)

$$
A=\$ 11,000(A / F, 4 \%, 20)=\$ 369.60
$$

(b)

$$
A=\$ 3,000(A / F, 1.5 \%, 60)=\$ 31.18
$$

(c)

$$
A=\$ 48,000(A / F, 0.6125 \%, 60)=\$ 484.46
$$

(a) Quarterly effective interest rate $=2.25 \%$

$$
F=\$ 10,000(F / A, 2.25 \%, 60)=\$ 1,244,504
$$

(b) Quarterly effective interest rate $=2.267 \%$

$$
F=\$ 10,000(F / A, 2.267 \%, 60)=\$ 1,251,976
$$

3.19)

- Equivalent future worth of the receipts:

$$
\begin{aligned}
F_{1} & =\$ 1,500(F / P, 2 \%, 4)+\$ 2,500 \\
& =\$ 4,123.65
\end{aligned}
$$

- Equivalent future worth of deposits:

$$
\begin{aligned}
F_{2} & =A(F / A, 2 \%, 8)+A(F / P, 2 \%, 8) \\
& =9.7546 A
\end{aligned}
$$

\therefore Letting $F_{1}=F_{2}$ and solving for A yields $A=\$ 422.74$
3.20) (d)

Effective interest rate per

 payment period
3.21)
(b)
3.22)

$$
\begin{aligned}
A & =\$ 70,000(A / F, 0.5 \%, 36) \\
& =\$ 1,779.54
\end{aligned}
$$

- The balance just before the transfer:

$$
\begin{aligned}
F_{9} & =\$ 22,000(F / P, 0.5 \%, 108)+\$ 16,000(F / P, 0.5 \%, 72) \\
& +\$ 13,500(F / P, 0.5 \%, 48) \\
& =\$ 77,765.70
\end{aligned}
$$

Therefore, the remaining balance after the transfer will be $\$ 38,882.85$. This remaining balance will continue to grow at 6% interest compounded monthly. Then, the balance 6 years after the transfer will be:

$$
F_{15}=\$ 38,882.85(F / P, 0.5 \%, 72)=\$ 55,681.96
$$

- The funds transferred to another account will earn 8% interest compounded quarterly. The resulting balance six years after the transfer will be:

$$
F_{15}=\$ 38,882.85(F / P, 2 \%, 24)=\$ 62,540.63
$$

3.24)

Establish the cash flow equivalence at the end of 25 years. Let's define A as the required quarterly deposit amount. Then we obtain the following:

$$
\begin{gathered}
A(F / A, 1.5 \%, 100)=\$ 80,000(P / A, 6.136 \%, 15) \\
228.8030 A=\$ 770,104 \\
A=\$ 3,365.79
\end{gathered}
$$

3.25)

$$
\begin{aligned}
& C(F / A, 6.168 \%, 7)+C(F / P, 0.5 \%, 84) \\
= & \$ 1,600+\$ 1,400(F / P, 0.5 \%, 12)+\$ 1,200(F / P, 0.5 \%, 24) \\
& +\$ 1,000(F / P, 0.5 \%, 36) \\
= & 8.437 C+1.52 C=1,600+1,486.35+1,352.59+1,196.68 \\
9.957 C= & 5,635.62 \\
\therefore & C=\$ 566
\end{aligned}
$$

3.26)

$$
\begin{gathered}
\$ 200,000=\$ 2,000(P / A, 9 \% / 12, N) \\
N=186 \text { months } \\
N=15.5 \text { years }
\end{gathered}
$$

3.27)

To find the amount of quarterly deposit (A), we establish the following equivalence relationship:

$$
\begin{gathered}
i_{a}=\left(1+\frac{0.06}{4}\right)^{4}-1=0.06136 \\
A(F / A, 1.5 \%, 60)=\$ 60,000+\$ 60,000(P / A, 6.136 \%, 3) \\
A=\$ 219,978 / 96.2147 \\
A=\$ 2,286.32
\end{gathered}
$$

3.28)

Setting the equivalence relationship at the end of 20 years gives

$$
\begin{aligned}
i_{\text {semiannual }} & =\left(1+\frac{0.06}{4}\right)^{2}-1=3.0225 \% \\
A\left(F / A, \frac{6 \%}{4}, 80\right) & =\$ 40,000(P / A, 3.0225 \%, 20) \\
152.71 A & =\$ 593,862.93 \\
A & =\$ 3,888.81
\end{aligned}
$$

- Monthly installment amount:

$$
A=\$ 22,000(A / P, 0.75 \%, 60)=\$ 456.68
$$

- The lump-sum amount for the remaining balance:

$$
P_{24}=\$ 456.68(P / A, 0.75 \%, 36)=\$ 14,361.13
$$

3.30)

Given $i=\frac{5 \%}{12}=0.417 \%$ per month

$$
\begin{aligned}
A & =\$ 500,000(A / P, 0.417 \%, 120) \\
& =\$ 5,303.26
\end{aligned}
$$

First compute the equivalent present worth of the energy cost savings during the first operating cycle:

$$
\begin{aligned}
P & =\$ 70(P / A, 0.5 \%, 3)(P / F, 0.5 \%, 1)+\$ 80(P / A, 0.5 \%, 3)(P / F, 0.5 \%, 7) \\
& =\$ 436.35
\end{aligned}
$$

Then, compute the total present worth of the energy cost savings over 5 years.

$$
\begin{aligned}
P= & \$ 436.35+\$ 436.35(P / F, 0.5 \%, 12)+\$ 436.35(P / F, 0.5 \%, 24) \\
& +\$ 436.35(P / F, 0.5 \%, 36)+\$ 436.35(P / F, 0.5 \%, 48) \\
& =\$ 1,942.55
\end{aligned}
$$

3.32)

- Option 1

$$
\begin{aligned}
i & =\left(1+\frac{.06}{4}\right)^{1}-1=1.5 \% \\
F & =\$ 1,000(F / A, 1.5 \%, 40)(F / P, 1.5 \%, 60)=\$ 132,587
\end{aligned}
$$

- Option 2

$$
\begin{aligned}
i & =\left(1+\frac{.06}{4}\right)^{4}-1=6.136 \% \\
F & =\$ 6,000(F / A, 6.136 \%, 15)=\$ 141,111
\end{aligned}
$$

- Option 2 - Option $1=\$ 141,110-132,587=\$ 8,523$
- \quad Select (b)
3.33)

Given: $r=7 \%$ compounded daily, $N=25$ years

- Since deposits are made at year end, find the effective annual interest rate:

$$
i_{a}=(1+0.07 / 365)^{365}-1=7.25 \%
$$

- Then, find the total amount accumulated at the end of 25 years:

$$
\begin{aligned}
F & =\$ 3,250(F / A, 7.25 \%, 25)+\$ 150(F / G, 7.25 \%, 25) \\
& =\$ 3,250(F / A, 7.25 \%, 25)+\$ 150(P / G, 7.25 \%, 25)(F / P, 7.25 \%, 25) \\
& =\$ 297,016.95
\end{aligned}
$$

(a) Quarterly interest rate $=2.25 \%$

$$
\begin{aligned}
3 P & =P(1+0.0225)^{N} \\
\log 3 & =N \log 1.0225 \\
N & =49.37 \text { quarters }=12.34 \text { years }
\end{aligned}
$$

(b) Monthly interest rate $=0.75 \%$

$$
\begin{aligned}
3 P & =P(1+0.0075)^{N} \\
\log 3 & =N \log 1.0075 \\
N & =147.03 \text { months }=12.25 \text { years }
\end{aligned}
$$

(c)

$$
\begin{aligned}
3 & =e^{0.09 N} \\
\ln (3) & =0.09 \mathrm{~N} \\
N & =12.20 \text { years }
\end{aligned}
$$

3.35)
(a) Quarterly effective interest rate $=1.5 \%$

$$
F=\$ 10,000(F / A, 1.5 \%, 60)=\$ 962,147
$$

(b) Quarterly effective interest rate $=1.508 \%$

$$
F=\$ 10,000(F / A, 1.508 \%, 60)=\$ 964,722
$$

(c) Quarterly effective interest rate $=1.511 \%$

$$
F=\$ 10,000(F / A, 1.511 \%, 60)=\$ 965,690
$$

3.36)

$$
\begin{aligned}
F & =P e^{r N}=\$ 5,000 e^{(0.09 \times 5)} \\
& =\$ 7,841.56
\end{aligned}
$$

3.37)
(a) Quarterly effective interest rate $=2.25 \%$

$$
F=\$ 4,000(F / A, 2.25 \%, 40)=\$ 255,145
$$

(b) Quarterly effective interest rate $=2.2669 \%$

$$
F=\$ 4,000(F / A, 2.2669 \%, 40)=\$ 256,093
$$

(c) Quarterly effective interest rate $=2.2755 \%$

$$
F=\$ 4,000(F / A, 2.2755 \%, 40)=\$ 256,577
$$

3.38)

$$
\begin{aligned}
i_{a} & =e^{0.086 / 4}-1=2.1733 \% \\
A & =\$ 10,000(A / P, 2.1733 \%, 20) \\
& =\$ 621.84
\end{aligned}
$$

(a) Monthly effective interest rate $=0.74444 \%$

$$
F=\$ 1,500(F / A, 0.74444 \%, 96)=\$ 209,170
$$

(b) Monthly effective interest rate $=0.75 \%$

$$
F=\$ 1,500(F / A, 0.75 \%, 96)=\$ 209,784
$$

(c) Monthly effective interest rate $=0.75282 \%$

$$
F=\$ 1,500(F / A, 0.75282 \%, 96)=\$ 210,097
$$

3.40)

Effective interest rate per month $=e^{0.0975 / 12}-1=0.8158 \%$

$$
A=\$ 48,000(A / P, 0.8158 \%, 60)=\$ 1,014.90
$$

3.41)

Effective interest rate per quarter $=e^{0.0688 / 4}-1=1.7349 \%$

$$
P=\$ 2,500(P / A, 1.7349 \%, 20)=\$ 41,944
$$

3.42)

$$
\begin{aligned}
& i=e^{0.0225}-1=2.2755 \% \\
& F=\$ 5,000(F / A, 2.2755 \%, 40)=\$ 320,721 \\
& F=\$ 320,721(F / P, 2.2755 \%, 20)=\$ 502,990
\end{aligned}
$$

3.43)

$$
\begin{align*}
i & =\left(1+\frac{0.12}{12 \cdot 1}\right)^{1}-1=1 \% \text { per month } \\
P & =\$ 2,000(F / P, 1 \%, 2)=\$ 2,040.20
\end{align*}
$$

- Effective interest rate for Bank A

$$
i=\left(1+\frac{0.18}{4}\right)^{4}-1=19.252 \%
$$

- Effective interest rate for Bank B

$$
i=\left(1+\frac{0.175}{365}\right)^{365}-1=19.119 \%
$$

- Select (c)
3.45)

$$
\begin{aligned}
& i_{m}=2.9 \% / 12=0.2417 \%, 17 \% / 12=1.417 \% \\
& \$ 3,000(F / P, 0.2417 \%, 6)(F / P, 1.417 \%, 6) \\
& -\$ 100[(F / A, 0.2417 \%, 6)(F / P, 0.2417 \%, 6)+(F / A, 1.417 \%, 6)] \\
& =\$ 2,077.79
\end{aligned}
$$

3.46) (a)

- Bank A: $i_{a}=(1+0.0155)^{12}-1=20.27 \%$ per year
- Bank B: $i_{a}=(1+0.195 / 12)^{12}-1=21.34 \%$ per year
(b) Given $i=6 \% / 365=0.01644 \%$ per day, find the total cost of credit card usage for each bank over 24 months. We first need to find the effective interest rate per payment period (month-30 days per month):

$$
i=(1+0.0001644)^{30}-1=0.494 \%
$$

- Monthly interest payment:

Bank A: \$300 $(0.0155)=\$ 4.65 /$ month
Bank B: $\$ 300\left(\frac{0.195}{12}\right)=\$ 4.875 /$ month
We also assume that the $\$ 300$ remaining balance will be paid off at the end of 24 months.

- Bank A:

$$
\begin{aligned}
P & =\$ 20+\$ 4.65(P / A, 0.494 \%, 24)+\$ 20(P / F, 0.494 \%, 12) \\
& =\$ 143.85
\end{aligned}
$$

- Bank B:

$$
P=\$ 4.875(P / A, 0.494 \%, 24)=\$ 93.25
$$

Select Bank B
3.47)
(a) $i_{m}=\left(1+\frac{0.12}{12 \cdot 1}\right)^{1}-1=1 \%$
(b) $\$ 10,000(A / P, 1 \%, 48)=10,000(0.0263)=\$ 263 /$ month
(c) Remaining balance at the beginning of $20^{\text {th }}$ month is
$\$ 263(P / A, 1 \%, 29)=\$ 263(25.0658)=\$ 6,592.31$
So, the interest payment for the $20^{\text {th }}$ payment is $\$ 6,592.31 * 1 \%=\$ 65.92$.
(d) $\$ 263$ x 48months = \$12,624

So, the total interest paid over the life of the loan is $\$ 2,624$.
3.48) Loan repayment schedule: $A=\$ 20,000(A / P, 0.5 \%, 36)=\$ 608.44$

End of month	Interest Payment	Principal Payment	Remaining Balance
0	$\$ 0.00$	$\$ 0.00$	$\$ 20,000.00$
1	$\$ 100.00$	$\$ 508.44$	$\$ 19,491.56$
2	$\$ 97.46$	$\$ 510.98$	$\$ 18,980.58$
13	$\$ 68.64$	$\$ 539.80$	$\$ 13,188.31$
24	$\$ 38.20$	$\$ 570.24$	$\$ 7,069.38$
36	$\$ 3.03$	$\$ 605.41$	$\$ 0$

Given: $P=\$ 120,000, N=360$ months, $i=9 \% / 12=0.75 \%$ per month
(a)

$$
A=\$ 120,000(A / P, 0.75 \%, 360)=\$ 965.55
$$

(b) If $r=9.75 \%$ APR after 5 years, then $i=9.75 \% / 12=0.8125 \%$ per month.

- The remaining balance after the $60^{\text {th }}$ payment:

$$
B_{60}=\$ 965.55(P / A, 0.75 \%, 300)=\$ 115,056.50
$$

- Then, we determine the new monthly payments as

$$
A=\$ 115,056.50(A / P, 0.8125 \%, 300)=\$ 1,025.31
$$

3.50)
(a)
(i) $\$ 10,000(A / P, 0.75 \%, 24)$
(b)
(iii) $B_{12}=A(P / A, 0.75 \%, 12)$
3.51)

Given information:

$$
i=9.45 \% / 365=0.0259 \% \text { per day }, N=36 \text { months. }
$$

- Effective monthly interest rate, $i=(1+0.000259)^{30}-1=0.78 \%$ per month
- Monthly payment, $A=\$ 13,000(A / P, 0.78 \%, 36)=\$ 415.58$ per month
- Total interest payment, $I=\$ 415.58 \times 36-\$ 13,000=\$ 1,960.88$
3.52)

Given Data: $P=\$ 25,000, r=9 \%$ compounded monthly, $N=36$ month, and $i=0.75 \%$ per month.

- Required monthly payment:

$$
A=\$ 25,000(A / P, 0.75 \%, 36)=\$ 795
$$

- The remaining balance immediately after the $20^{\text {th }}$ payment:

$$
B_{20}=\$ 795(P / A, 0.75 \%, 16)=\$ 11,944.33
$$

Given Data: $P=\$ 250,000-\$ 50,000=\$ 200,000$.

- Option 1:
$N=15$ years $\times 12=180$ months
APR $=4.25 \%$
$\therefore A=\$ 200,000(A / P, 4.25 \% / 12,180)=\$ 1,504.56$
- Option 2:
$N=30$ years $\times 12=360$ months
APR $=5 \%$
$\therefore A=\$ 200,000(A / P, 5 \% / 12,360)=\$ 1,073.64$
\therefore Difference $=\$ 1,504.56-\$ 1,073.64=\$ 430.92$
3.54)

$$
A=\$ 400,000\left(A / P, \frac{9 \%}{12}, 180\right)=\$ 4,057.07
$$

- Total payments over the first 5 years (60 months)

$$
\$ 4,057.07 \times 60=\$ 243,424.20
$$

- Remaining balance at the end of 5 years:

$$
B_{60}=\$ 4,057.07(P / A, 0.75 \%, 120)=\$ 320,271.97
$$

- \quad Reduction in principal $=\$ 400,000-\$ 320,271.97=\$ 79,728.03$
- Total interest payments $=\$ 243,424.20-\$ 79,728.03=\$ 163,696.17$
3.55)

The amount to finance $=\$ 300,000-\$ 45,000=\$ 255,000$

$$
A=\$ 255,000(A / P, 0.5 \%, 360)=\$ 1,528.85
$$

Then, the minimum acceptable monthly salary (S) should be

$$
S=\frac{A}{0.25}=\frac{\$ 1,528.85}{0.25}=\$ 6,115.42
$$

Given Data: purchase price $=\$ 150,000$, down payment (sunk equity) $=\$ 30,000$, interest rate $=0.75 \%$ per month, $N=360$ months,

- Monthly payment:

$$
A=\$ 120,000(A / P, 0.75 \%, 360)=\$ 965.55
$$

- Balance at the end of 5 years (60 months):

$$
B_{60}=\$ 965.55(P / A, 0.75 \%, 300)=\$ 115,056.50
$$

- Realized equity = sales price - balance remaining - sunk equity:
\$185,000 - \$115,056.60-\$30,000 = \$39,943.50

Note: For tax purpose, we do not consider the time value of money on $\$ 30,000$ down payment made five years ago.
3.57)

Given Data: interest rate $=0.75 \%$ per month, each individual has the identical remaining balance prior to their $20^{\text {th }}$ payment, that is, $\$ 80,000$. With equal remaining balances, all will pay the same interest for the $20^{\text {th }}$ mortgage payment.

$$
\$ 80,000(0.0075)=\$ 600
$$

Given Data: loan amount $=\$ 130,000$, point charged $=3 \%, N=360$ months, interest rate $=0.75 \%$ per month, actual amount loaned $=\$ 126,100$:

- Monthly repayment:

$$
A=\$ 130,000(A / P, 0.75 \%, 360)=\$ 1,046
$$

- Effective interest rate on this loan

$$
\begin{aligned}
\$ 126,100 & =\$ 1,046(P / A, i, 360) \\
i & =0.7787 \% \text { per month }
\end{aligned}
$$

$$
\therefore i_{a}=(1+0.007787)^{12}-1=9.755 \% \text { per year }
$$

3.59)
(a)

$$
\begin{aligned}
& \$ 50,000=\$ 7,500(P / A, i, 5)+\$ 2,500(P / G, i, 5) \\
& i=6.914 \%
\end{aligned}
$$

(b)
$P=\$ 50,000$
Total payments $=\$ 7,500+\$ 10,000+\ldots+\$ 17,500=\$ 62,500$
Interest payments $=\$ 3,456.87+\ldots+\$ 1,131.66=\$ 12,500$

End of month	Interest Payment	Principal Payment	Remaining Balance
0	$\$ 0.00$	$\$ 0.00$	$\$ 50,000.00$
1	$\$ 3,456.87$	$\$ 4,043.13$	$\$ 45,956.87$
2	$\$ 3,177.34$	$\$ 6,822.66$	$\$ 39,134.21$
3	$\$ 2,705.64$	$\$ 9,794.36$	$\$ 29,339.85$
4	$\$ 2,028.48$	$\$ 12,971.52$	$\$ 16,368.34$
5	$\$ 1,131.66$	$\$ 16,368.34$	$\$ 0$

3.60)
(a) Amount of dealer financing $=\$ 15,458(0.90)=\$ 13,912$

$$
A=\$ 13,912(A / P, 11.5 \% / 12,60)=\$ 305.96
$$

(b) Assuming that the remaining balance will be financed over 56 months,

$$
\begin{aligned}
& B_{4}=\$ 305.96(P / A, 11.5 \% / 12,56)=\$ 13,211.54 \\
& A=\$ 13,211.54(A / P, 10.5 \% / 12,56)=\$ 299.43
\end{aligned}
$$

(c) Interest payments to the dealer:

$$
I_{\text {dealer }}=\$ 305.96 \times 4+\$ 13,211.54-\$ 13,912=\$ 523.38
$$

Interest payments to the credit union:

$$
I_{\text {union }}=\$ 299.43 \times 56-\$ 13,211.54=\$ 3,556.54
$$

3.61)

- The monthly payment to the bank: Deferring the loan payment for 6 months is equivalent to borrowing

$$
\$ 16,000(F / P, 0.75 \%, 6)=\$ 16,733.64
$$

To pay off the bank loan over 36 months, the required monthly payment is

$$
A=\$ 16,733.64(A / P, 0.75 \%, 36)=\$ 532.13 \text { per month }
$$

- The remaining balance after making the $16^{\text {th }}$ payment:

$$
\$ 532.13(P / A, 0.75 \%, 20)=\$ 9,848.67
$$

- The loan company will pay off this remaining balance and will charge $\$ 308.29$ per month for 36 months. The effective interest rate for this new arrangement is:

$$
\begin{gathered}
\$ 9,848.67=\$ 308.29(P / A, i, 36) \\
(P / A, i, 36)=31.95 \\
i=0.66 \% \text { per month } \\
\therefore r=0.66 \% \times 12=7.92 \% \text { per year }
\end{gathered}
$$

3.62)

$$
\begin{aligned}
\$ 18,000 & =A(P / A, 0.667 \%, 12)+A(P / A, 0.75 \%, 12)(P / F, 0.667 \%, 12) \\
& =A(11.4958)+A(11.4349)(0.9234) \\
& =22.05479 A \\
A & =\$ 816.15
\end{aligned}
$$

Given: $i=9 \% / 12=0.75 \%$ per month, deferred period $=6$ months, $N=36$ monthly payments, first payment due at the end of $7^{\text {th }}$ month, the amount of initial loan $=$ \$15,000
(a) First, find the loan adjustment required for the 6-month grace period.

$$
\$ 15,000(F / P, 0.75 \%, 6)=\$ 15,687.78
$$

Then, the new monthly payments should be

$$
A=\$ 15,687.78(A / P, 0.75 \%, 36)=\$ 498.87
$$

(b) Since there are 10 payments outstanding, the loan balance after the $26^{\text {th }}$ payment is

$$
B_{26}=\$ 498.87(P / A, 0.75 \%, 10)=\$ 4,788.95
$$

(c) The effective interest rate on this new financing is

$$
\begin{aligned}
\$ 4,788.95 & =\$ 186(P / A, i, 30) \\
i & =1.0161 \% \text { per month } \\
r & =1.0161 \% \times 12=12.1932 \% \\
i_{a} & =(1+0.010161)^{12}-1=12.90 \%
\end{aligned}
$$

3.64)
(a) Using the bank loan at 9.2% compound monthly

Purchase price $=\$ 22,000$, Down payment $=\$ 1,800$

$$
A=\$ 20,200(A / P,(9.2 / 12) \%, 48)=\$ 504.59
$$

(b)

Using the dealer's financing,
Purchase price = \$22,000, Down payment = \$2,000, Monthly payment = \$505.33, $N=48$ end of month payments.
Find the effective interest rate:

$$
\begin{aligned}
\$ 505.33 & =\$ 20,000(A / P, i, 48) \\
i & =0.8166 \% \text { per month } \\
\operatorname{APR}(r) & =0.8166 \% \times 12=9.80 \%
\end{aligned}
$$

3.65)

- 24-month lease plan:

$$
\begin{aligned}
& P=(\$ 2,500+\$ 520)+\$ 500+\$ 520(P / A, 0.5 \%, 23) \\
& -\$ 500(P / F, 0.5 \%, 24) \\
& =\$ 13,884.13
\end{aligned}
$$

- Up-front lease plan:

$$
\begin{aligned}
P & =\$ 12,780+\$ 500-\$ 500(P / F, 0.5 \%, 24) \\
& =\$ 12,836.4
\end{aligned}
$$

Select the single up-front lease plan.
3.66)

Given: purchase price $=\$ 155,000$, down payment $=\$ 25,000$

- Option 1: $i=7.5 \% / 12=0.625 \%$ per month,$N=360$ months
- Option 2: For the assumed mortgage, $P_{1}=\$ 97,218$,
$i_{1}=5.5 \% / 12=0.458 \%$ per month , $N_{1}=300$ months, $A_{1}=\$ 597$ per month; For the $2^{\text {nd }}$ mortgage $P_{2}=\$ 32,782$, $i_{2}=9 \% / 12=0.75 \%$ per month , $N_{2}=120$ months
(a) For the second mortgage, the monthly payment will be

$$
\begin{aligned}
& A_{2}=P_{2}\left(A / P, i_{2}, N_{2}\right)=\$ 32,782(A / P, 0.75 \%, 120)=\$ 415.27 \\
& \$ 130,000=\$ 597(P / A, i, 300)+\$ 415.27(P / A, i, 120) \\
& i=0.5005 \% \text { per month } \\
& r=0.5005 \% \times 12=6.006 \% \text { per year } \\
& i_{a}=6.1741 \%
\end{aligned}
$$

(b) Monthly payment

- Option 1: $A=\$ 130,000(A / P, 0.625 \%, 360)=\$ 908.97$
- Option 2: $\$ 1,012.27$ ($=\$ 597+\$ 415.27$) for 120 months, then $\$ 597$ for remaining 180 months.
(c) Total interest payment
- Option 1: $I=\$ 908.97 \times 360-\$ 130,000=\$ 197,229.20$
- Option 2: $I=\$ 228,932.4-\$ 130,000=\$ 98,932.4$
(d) Equivalent interest rate:

$$
\begin{aligned}
& \$ 908.97(P / A, i, 360)=\$ 597(P / A, i, 300)+\$ 415.27(P / A, i, 120) \\
& \quad i=1.2016 \% \text { per month } \\
& r=1.2016 \% \times 12=14.419 \% \text { per year } \\
& i_{a}=15.4114 \%
\end{aligned}
$$

3.67) No answers given

$$
\begin{align*}
P & =\$ 50(P / A, 3 \%, 14)+\$ 1,000(P / F, 3 \%, 14) \\
& =\$ 1,225.92
\end{align*}
$$

If you left the $\$ 15,000$ in your savings account, the total balance at the end of 48 months at 8% interest compounded monthly would be

$$
F_{I}=\$ 15,000(F / P, 8 \% / 12,48)=\$ 20,635
$$

The earned interest during this period is then

$$
I=\$ 20,635-\$ 15,000=\$ 5,635
$$

Now if you borrowed $\$ 15,000$ from the dealer at interest 11% compounded monthly over 48 months, the monthly payment would be

$$
A=\$ 15,000(A / P, 11 \% / 12,48)=\$ 388
$$

You can easily find the total interest payment over 48 months under this financing by

$$
I=(\$ 388 \times 48)-\$ 15,000=\$ 3,624
$$

It appears that you save about $\$ 2,011$ in interest (\$5,635-\$3,624). However, reasoning this line neglects the time value of money for the portion of principal payments. Since your money is worth $8 \% / 12$ interest per month, you may calculate the total equivalent loan payment over the 48 -month period. This is done by calculating the equivalent future worth of the loan payment series.

$$
F_{I I}=\$ 388(F / A, 8 \% / 12,48)=\$ 21,863.77
$$

Now compare F_{I} with $F_{I I}$. The dealer financing would cost $\$ 1,229$ more in future dollars at the end of the loan period.
3.70 (a) $A=\$ 60,000(A / P, 13 \% / 12,360)=\$ 664$
(b)

$$
\begin{aligned}
\$ 60,000= & \$ 522.95(P / A, i, 12) \\
& +\$ 548.21(P / A, i, 12)(P / F, i, 12) \\
& +\$ 574.62(P / A, i, 12)(P / F, i, 24) \\
& +\$ 602.23(P / A, i, 12)(P / F, i, 36) \\
& +\$ 631.09(P / A, i, 12)(P / F, i, 48) \\
& +\$ 661.24(P / A, i, 300)(P / F, i, 60)
\end{aligned}
$$

Solving for i by trial and error yields

$$
\begin{aligned}
i & =1.0028 \% \\
i_{a} & =(1+0.010028)^{12}-1=12.72 \%
\end{aligned}
$$

Comments: With Excel, you may enter the loan payment series and use the IRR(range, guess) function to find the effective interest rate. Assuming that the loan amount ($\$ 60,000$) is entered in cell A1 and the following loan repayment series in cells A2 through A361, the effective interest rate is found with a guessed value of $11.5 / 12 \%$:

$$
=\operatorname{IRR}(A 1: A 361,0.95833 \%)=0.010028
$$

(c) Compute the mortgage balance at the end of 5 years:

- Conventional mortgage:

$$
B_{60}=\$ 664(P / A, 13 \% / 12,300)=\$ 58,873.84
$$

- FHA mortgage (not including the mortgage insurance):

$$
B_{60}=\$ 635.28(P / A, 11.5 \% / 12,300)=\$ 62,498.71
$$

(d) Compute the total interest payment for each option:

- Conventional mortgage(using either Excel or Loan Analysis Program at the book’s website-http://www.prenhall.com/park):

$$
I=\$ 178,937.97
$$

- FHA mortgage:

$$
I=\$ 163,583.28
$$

(e) Compute the equivalent present worth cost for each option at $i=6 \% / 12=0.5 \%$ per month:

- Conventional mortgage:

$$
P=\$ 664(P / A, 0.5 \%, 360)=\$ 110,749.63
$$

- FHA mortgage including mortgage insurance:

$$
\begin{aligned}
P & =\$ 522.95(P / A, 0.5 \%, 12) \\
& +\$ 548.21(P / A, 0.5 \%, 12)(P / F, 0.5 \%, 12) \\
& +\$ 574.62(P / A, 0.5 \%, 12)(P / F, 0.5 \%, 24) \\
& +\$ 602.23(P / A, 0.5 \%, 12)(P / F, 0.5 \%, 36) \\
& +\$ 631.09(P / A, 0.5 \%, 12)(P / F, 0.5 \%, 48) \\
& +\$ 661.24(P / A, 0.5 \%, 300)(P / F, 0.5 \%, 60) \\
& =\$ 105,703.95
\end{aligned}
$$

The FHA option is more desirable (least cost).

