Unit 2 Solutions

Unit 2 Problem Solutions

2.1
2.2 (a) In both cases, if $\mathrm{X}=0$, the transmission is 0 , and if $\mathrm{X}=1$, the transmission is 1 .

2.3 Answer is in FLD p. 731
2.4 (a) $F=[(A \cdot 1)+(A \cdot 1)]+E+B C D=A+E+B C D$
2.5 (a) $\quad(A+B)(C+B)\left(D^{\prime}+B\right)\left(A C D^{\prime}+E\right)$
$=(A C+B)\left(D^{\prime}+B\right)\left(A C D^{\prime}+E\right)$ By Dist. Law
$=\left(A C D^{\prime}+B\right)\left(A C D^{\prime}+E\right)$ By Dist. Law
$=A C D^{\prime}+B E$ By Dist. Law
2.6 (a) $A B+C^{\prime} D^{\prime}=\left(A B+C^{\prime}\right)\left(A B+D^{\prime}\right)$
$=\left(A+C^{\prime}\right)\left(B+C^{\prime}\right)\left(A+D^{\prime}\right)\left(B+D^{\prime}\right)$
2.6 (c) $A^{\prime} B C+E F+D E F^{\prime}=A^{\prime} B C+E\left(F+D F^{\prime}\right)$
$=A^{\prime} B C+E(F+D)=\left(A^{\prime} B C+E\right)\left(A^{\prime} B C+F+D\right)$
$=\left(A^{\prime}+E\right)(B+E)(C+E)\left(A^{\prime}+F+D\right)$
$(B+F+D)(C+F+D)$
2.6 (e) $A C D^{\prime}+C^{\prime} D^{\prime}+A^{\prime} C=D^{\prime}\left(A C+C^{\prime}\right)+A^{\prime} C$
$=D^{\prime}\left(A+C^{\prime}\right)+A^{\prime} C$ By Elimination Theorem
$=\left(D^{\prime}+A^{\prime} C\right)\left(A+C^{\prime}+A^{\prime} C\right)$
$=\left(D^{\prime}+A^{\prime}\right)\left(D^{\prime}+C\right)\left(A+C^{\prime}+A^{\prime}\right)$
By Distributive Law and Elimination Theorem
$=\left(A^{\prime}+D^{\prime}\right)\left(C+D^{\prime}\right)$
2.7 (a) $\quad(\underline{A+B+C}+D)(\underline{A+B+C}+E)(\underline{A+B+C}+F)$ $=\underline{A+B+C}+D E F$

Apply second Distributive Law twice

2.8 (a) $\left[(A B)^{\prime}+C^{\prime} D\right]^{\prime}=A B\left(C^{\prime} D\right)^{\prime}=A B\left(C+D^{\prime}\right)$ $=A B C+A B D^{\prime}$
2.8 (c) $\quad\left(\left(A+B^{\prime}\right) C\right)^{\prime}(A+B)(C+A)^{\prime}$

$$
\begin{aligned}
& =\left(A^{\prime} B+C^{\prime}\right)(A+B) C^{\prime} A^{\prime}=\left(A^{\prime} B+C^{\prime}\right) A^{\prime} B C^{\prime} \\
& =A^{\prime} B C^{\prime}
\end{aligned}
$$

2.9 (a) $F=\left[(A+B)^{\prime}+\left(A+(A+B)^{\prime}\right)\right]\left(A+(A+B)^{\prime}\right)^{\prime}$

$$
=\left(A+(A+B)^{\prime}\right)^{\prime}
$$

By Elimination Theorem with $X=(A+(A+B))^{\prime}=A^{\prime}(A+B)=A^{\prime} B$
2.2 (b) In both cases, if $\mathrm{X}=0$, the transmission is YZ , and if $\mathrm{X}=1$, the transmission is 1 .

2.4 (b) $\quad Y=\left(A B^{\prime}+(A B+B)\right) B+A=\left(A B^{\prime}+B\right) B+A$

$$
=(A+B) B+A=A B+B+A=A+B
$$

2.5 (b) $\left(A^{\prime}+B+C^{\prime}\right)\left(A^{\prime}+C^{\prime}+D\right)\left(B^{\prime}+D^{\prime}\right)$

$$
=\left(A^{\prime}+C^{\prime}+B D\right)\left(B^{\prime}+D^{\prime}\right)
$$

$\left\{\right.$ By Distributive Law with $\left.X=A^{\prime}+C^{\prime}\right\}$
$=A^{\prime} B^{\prime}+B^{\prime} C^{\prime}+B^{\prime} B D+A^{\prime} D^{\prime}+C^{\prime} D^{\prime}+B D D^{\prime}$
$=A^{\prime} B^{\prime}+A^{\prime} D^{\prime}+C^{\prime} B^{\prime}+C^{\prime} D^{\prime}$
2.6 (b) $W X+W Y^{\prime} X+Z Y X=X\left(W+W Y^{\prime}+Z Y\right)$

$$
\begin{aligned}
& =X(W+Z Y) \quad\{\text { By Absorption }\} \\
& =X(W+Z)(W+Y) \quad
\end{aligned}
$$

2.6 (d) $X Y Z+W^{\prime} Z+X Q^{\prime} Z=Z\left(X Y+W^{\prime}+X Q^{\prime}\right)$
$=Z\left[W^{\prime}+X\left(Y+Q^{\prime}\right)\right]$
$=Z\left(W^{\prime}+X\right)\left(W^{\prime}+Y+Q^{\prime}\right)$ By Distributive Law
2.6 (f) $\quad A+B C+D E$

$$
\begin{aligned}
& =(A+B C+D)(A+B C+E) \\
& =(A+B+D)(A+C+D)(A+B+E)(A+C+E)
\end{aligned}
$$

2.7 (b) $\quad W \underline{X Y Z}+V \underline{X Y Z}+U \underline{X Y Z}=\underline{X Y Z}(W+V+U)$

By first Distributive Law

2.8 (b) $\quad\left[A+B\left(C^{\prime}+D\right)\right]^{\prime}=A^{\prime}\left(B\left(C^{\prime}+D\right)\right)^{\prime}$

$$
=A^{\prime}\left(B^{\prime}+\left(C^{\prime}+D\right)^{\prime}\right)=A^{\prime}\left(B^{\prime}+C D^{\prime}\right)
$$

$$
=A^{\prime} B^{\prime}+A^{\prime} C D^{\prime}
$$

2.9 (b) $\mathrm{G}=\left\{\left[(\mathrm{R}+\mathrm{S}+\mathrm{T})^{\prime} \mathrm{PT}(\mathrm{R}+\mathrm{S})^{\prime}\right]^{\prime} \mathrm{T}\right\}^{\prime}$

$$
\begin{aligned}
& =(R+S+T)^{\prime} P T(R+S)^{\prime}+T^{\prime} \\
& =T^{\prime}+\left(R^{\prime} S^{\prime} T^{\prime}\right) P\left(R^{\prime} S^{\prime}\right) T=T^{\prime}+P R^{\prime} S^{\prime} T^{\prime} T=T^{\prime}
\end{aligned}
$$

2.10 (a)

2.10 (e)

2.11 (a) $\left(A^{\prime}+B^{\prime}+C\right)\left(A^{\prime}+B^{\prime}+C\right)^{\prime}=0 \quad$ By

Complementarity Law
2.11 (c) $A B+\left(C^{\prime}+D\right)(A B)^{\prime}=A B+C^{\prime}+D$ By Elimination Theorem
2.11 (e) $\begin{array}{r}{\left[A B^{\prime}+(C+D)^{\prime}+E^{\prime} F\right](C+D)} \\ =A B^{\prime}(C+D)+E^{\prime} F(C+D) \quad \text { Distributive Law }\end{array}$
2.12 (a) $\left(X+Y^{\prime} Z\right)+\left(X+Y^{\prime} Z\right)^{\prime}=1 \quad$ By Complementarity Law
2.12 (c) $\left(V^{\prime} W+U X\right)^{\prime}\left(U X+Y+Z+V^{\prime} W\right)=\left(V^{\prime} W+U X\right)^{\prime}$ $(Y+Z)$ By Elimination Theorem
2.12 (e) $\left(W^{\prime}+X\right)\left(Y+Z^{\prime}\right)+\left(W^{\prime}+X\right)^{\prime}\left(Y+Z^{\prime}\right)$
$=\left(Y+Z^{\prime}\right)$ By Uniting Theorem
2.13 (a) $F_{1}=A^{\prime} A+B+(B+B)=0+B+B=B$
2.13 (c) $F_{3}=\left[(A B+C)^{\prime} D\right][(A B+C)+D]$

$$
\begin{aligned}
& =(A B+C)^{\prime} D(A B+C)+(A B+C)^{\prime} D \\
& =(A B+C)^{\prime} D \text { By Absorption }
\end{aligned}
$$

2.14 (a) $A C F(B+E+D)$
2.15 (a) $f^{\prime}=\left\{[A+(B C D)]\left[(A D)^{\prime}+B\left(C^{\prime}+A\right)\right]\right\}^{\prime}$
$=[A+(B C D)]^{\prime}+\left[(A D)^{\prime}+B\left(C^{\prime}+A\right)\right]^{\prime}$
$=A^{\prime}(B C D)^{\prime \prime}+(A D)^{\prime \prime}\left[B\left(C^{\prime}+A\right)\right]^{\prime}$
$=A^{\prime} B C D+A D\left[B^{\prime}+\left(C^{\prime}+A\right)^{\prime}\right]$
$=A^{\prime} B C D+A D\left[B^{\prime}+C^{\prime \prime} A\right]$
$=A^{\prime} B C D+A D\left[B^{\prime}+C A^{\prime}\right]$
2.16 (a) $f^{\mathrm{D}}=[A+(B C D)]\left[(A D)^{\prime}+B\left(C^{\prime}+A\right)\right]^{D}$

$$
=[A(B+C+D)]+\left[(A+D)^{\prime}\left(B+C^{\prime} A\right)\right]
$$

2.17 (a) $f=\left[\left(A^{\prime}+B\right) C\right]+\left[A\left(B+C^{\prime}\right)\right]$
$=A^{\prime} C+B^{\prime} C+A B+A C^{\prime}$
$=A^{\prime} C+B^{\prime} C+A B+A C^{\prime}+B C$
$=A^{\prime} C+C+A B+A C^{\prime}=C+A B+A=C+A$
2.17 (c) $f=\left(A^{\prime}+B^{\prime}+A\right)(A+C)\left(A^{\prime}+B^{\prime}+C^{\prime}+B\right)$ $\left(B+C+C^{\prime}\right)=(A+C)$
2.10 (b)

2.10 (d)

2.10 (f)

2.11 (b) $A B\left(C^{\prime}+D\right)+B\left(C^{\prime}+D\right)=B\left(C^{\prime}+D\right)$ By

Absorption
2.11 (d) $\left(A^{\prime} B F+C D^{\prime}\right)\left(A^{\prime} B F+C E G\right)=A^{\prime} B F+C D^{\prime} E G$ By Distributive Law
2.11 (f) $A^{\prime}(B+C)\left(D^{\prime} E+F\right)^{\prime}+\left(D^{\prime} E+F\right)$
$=A^{\prime}(B+C)+D^{\prime} E+F \quad$ By Elimination
2.12 (b) $\left[W+X^{\prime}(Y+Z)\right]\left[W^{\prime}+X^{\prime}(Y+Z)\right]=X^{\prime}(Y+Z)$ By Uniting Theorem
2.12 (d) $\left(U V^{\prime}+W^{\prime} X\right)\left(U V^{\prime}+W^{\prime} X+Y^{\prime} Z\right)=U V^{\prime}+W^{\prime} X$ By Absorption Theorem
2.12 (f) $\left(V^{\prime}+U+W\right)[(W+X)+Y+U Z]+[(W+X)+$ $\left.U Z^{\prime}+Y\right]=(W+X)+U Z^{\prime}+Y$ By Absorption
2.13 (b) $F_{2}=A^{\prime} A^{\prime}+A B^{\prime}=A^{\prime}+A B^{\prime}=A^{\prime}+B^{\prime}$
2.13 (d) $Z=[(A+B) C]^{\prime}+(A+B) C D=[(A+B) C]^{\prime}+D$ By Elimination with $X=[(A+B) C]^{\prime}$ $=A^{\prime} B^{\prime}+C^{\prime}+D^{\prime}$
2.14 (b) $W+Y+Z+V U X$
2.15(b)

$$
\begin{aligned}
f^{\prime} & =\left[A B^{\prime} C+\left(A^{\prime}+B+D\right)\left(A B D^{\prime}+B^{\prime}\right)\right]^{\prime} \\
& =\left(A B^{\prime} C\right)^{\prime}\left[\left(A^{\prime}+B+D\right)\left(A B D^{\prime}+B^{\prime}\right]^{\prime}\right. \\
& =\left(A^{\prime}+B^{\prime \prime}+C^{\prime}\right)\left[\left(A^{\prime}+B+D\right)^{\prime}+\left(A B D^{\prime}\right)^{\prime} B^{\prime}\right] \\
& =\left(A^{\prime}+B+C^{\prime}\left[A^{\prime \prime} B^{\prime} D^{\prime}+\left(A^{\prime}+B^{\prime}+D^{\prime \prime}\right) B\right]\right. \\
& =\left(A^{\prime}+B+C^{\prime}\right)\left[A B^{\prime} D^{\prime}+\left(A^{\prime}+B^{\prime}+D\right) B\right]
\end{aligned}
$$

2.16 (b) $f^{\mathrm{D}}=\left[A B^{\prime} C+\left(A^{\prime}+B+D\right)\left(A B D^{\prime}+B^{\prime}\right)\right]^{\mathrm{D}}$
$=\left(A+B^{\prime}+C\right)\left[A^{\prime} B D+\left(A+B+D^{\prime}\right) B^{\prime}\right)$
2.17 (b) $f=A^{\prime} C+B^{\prime} C+A B+A C^{\prime}=A+C$
2.18 (a) product term, sum-of-products, product-of-sums)

Unit 2 Solutions
2.18 (b) sum-of-products
2.18 (d) sum term, sum-of-products, product-of-sums
2.19

2.20 (c) $F=D\left[\left(A^{\prime}+B^{\prime}\right) C+A C^{\prime}\right]$

$$
\begin{aligned}
& =D\left(A^{\prime}+B^{\prime}+A C^{\prime}\right)\left(C+A C^{\prime}\right) \\
& =D\left(A^{\prime}+B^{\prime}+C^{\prime}\right)(C+A)
\end{aligned}
$$

2.22 (a) $A^{\prime} B^{\prime}+A^{\prime} C D+A^{\prime} D E^{\prime}$
$=A^{\prime}\left(B^{\prime}+C D+D E^{\prime}\right)$
$=A^{\prime}\left[B^{\prime}+D\left(C+E^{\prime}\right)\right]$
$=A^{\prime}\left(B^{\prime}+D\right)\left(B^{\prime}+C+E^{\prime}\right)$
2.22 (b) $H^{\prime} I^{\prime}+J K$
$=\left(H^{\prime} I^{\prime}+J\right)\left(H^{\prime} I^{\prime}+K\right)$
$=\left(H^{\prime}+J\right)\left(I^{\prime}+J\right)\left(H^{\prime}+K\right)\left(I^{\prime}+K\right)$
2.22 (c) $A^{\prime} B C+A B^{\prime} C+C D^{\prime}$
$=C\left(A^{\prime} B+A B^{\prime}+D^{\prime}\right)$
$=C\left[(A+B)\left(A^{\prime}+B^{\prime}\right)+D^{\prime}\right]$
$=C\left(A+B+D^{\prime}\right)\left(A^{\prime}+B^{\prime}+D^{\prime}\right)$
2.23 (a) $W+U^{\prime} Y V=\left(W+U^{\prime}\right)(W+Y)(W+V)$
2.23 (c) $A^{\prime} B^{\prime} C+B^{\prime} C D^{\prime}+B^{\prime} E^{\prime}=B^{\prime}\left(A^{\prime} C+C D^{\prime}+E^{\prime}\right)$

$$
\begin{aligned}
& =B^{\prime}\left[E^{\prime}+C\left(A^{\prime}+D^{\prime}\right)\right] \\
& =B^{\prime}\left(E^{\prime}+C\right)\left(E^{\prime}+A^{\prime}+D^{\prime}\right)
\end{aligned}
$$

2.18 (c) none apply
2.18 (e) product-of-sums
2.20 (a) $F=D\left[\left(A^{\prime}+B^{\prime}\right) C+A C^{\prime}\right]$
2.20 (b) $F=D\left[\left(A^{\prime}+B^{\prime}\right) C+A C^{\prime}\right]$
$=A^{\prime} C D+B^{\prime} C D+A C^{\prime} D$

2.21

A	B	C	H	F	G
0	0	0	0	0	0
0	0	1	1	1	x
0	1	0	1	0	1
0	1	1	1	1	x
1	0	0	0	0	0
1	0	1	1	0	1
1	1	0	0	0	0
1	1	1	1	1	x

2.22 (d) $A^{\prime} B^{\prime}+\left(C D^{\prime}+E\right)=A^{\prime} B^{\prime}+(C+E)\left(D^{\prime}+E\right)$
$=\left(A^{\prime} B^{\prime}+C+E\right)\left(A^{\prime} B^{\prime}+D^{\prime}+E\right)$
$=\left(A^{\prime}+C+E\right)\left(B^{\prime}+C+E\right)$
$\left(A^{\prime}+D^{\prime}+E\right)\left(B^{\prime}+D^{\prime}+E\right)$
2.22 (e) $A^{\prime} B^{\prime} C+B^{\prime} C D^{\prime}+E F^{\prime}=A^{\prime} B^{\prime} C+B^{\prime} C D^{\prime}+E F^{\prime}$
$=B^{\prime} C\left(A^{\prime}+D^{\prime}\right)+E F^{\prime}$
$=\left(B^{\prime} C+E F^{\prime}\right)\left(A^{\prime}+D^{\prime}+E F^{\prime}\right)$
$=\left(B^{\prime}+E\right)\left(B^{\prime}+F^{\prime}\right)(C+E)\left(C+F^{\prime}\right)$

$$
\left(A^{\prime}+D^{\prime}+E\right)\left(A^{\prime}+D^{\prime}+F^{\prime}\right)
$$

2.22 (f) $\quad W X^{\prime} Y+W^{\prime} X^{\prime}+W^{\prime} Y^{\prime}=X^{\prime}\left(W Y+W^{\prime}\right)+W^{\prime} Y^{\prime}$
$=X^{\prime}\left(W^{\prime}+Y\right)+W^{\prime} Y^{\prime}$
$=\left(X^{\prime}+W^{\prime}\right)\left(X^{\prime}+Y^{\prime}\right)\left(W^{\prime}+Y+W^{\prime}\right)\left(W^{\prime}+Y+Y^{\prime}\right)$
$=\left(X^{\prime}+W^{\prime}\right)\left(X^{\prime}+Y^{\prime}\right)\left(W^{\prime}+Y\right)$
2.23 (b) $T W+U Y^{\prime}+V$

$$
=(T+U+Z)\left(T+Y^{\prime}+V\right)(W+U+V)\left(W+Y^{\prime}+V\right)
$$

2.23 (d) $A B C+A D E^{\prime}+A B F^{\prime}=A\left(B C+D E^{\prime}+B F^{\prime}\right)$

$$
\begin{aligned}
& =A\left[D E^{\prime}+B\left(C+F^{\prime}\right)\right] \\
& =A\left(D E^{\prime}+B\right)\left(D E^{\prime}+C+F^{\prime}\right) \\
& =A(B+D)\left(B+E^{\prime}\right)\left(C+F^{\prime}+D\right)\left(C+F^{\prime}+E^{\prime}\right)
\end{aligned}
$$

2.28 (a) $F=A B C+A^{\prime} B C+A B^{\prime} C+A B C^{\prime}$

$$
=B C+A B^{\prime} C+A B C^{\prime}(\text { By Uniting Theorem })
$$

$$
=C\left(B+A B^{\prime}\right)+A B C^{\prime}=C(A+B)+A B C^{\prime}
$$

(By Elimination Theorem)

$$
=A C+B C+A B C^{\prime}=A C+B\left(C+A C^{\prime}\right)
$$

$$
=A C+B(A+C)=A C+A B+B C
$$

$$
\begin{aligned}
& 2.24 \text { (a) }\left[\left(X Y^{\prime}\right)^{\prime}+\left(X^{\prime}+Y\right)^{\prime} Z\right]=X^{\prime}+Y+\left(X^{\prime}+Y\right)^{\prime} Z \\
& =X^{\prime}+Y^{\prime}+Z \text { By Elimination Theorem with } X \\
& =\left(X^{\prime}+Y\right) \\
& 2.24 \text { (c) } \begin{array}{r}
{\left[\left(A^{\prime}+B^{\prime}\right)^{\prime}+\left(A^{\prime} B^{\prime} C\right)^{\prime}+C^{\prime} D\right]^{\prime}} \\
\\
=\left(A^{\prime}+B^{\prime}\right) A^{\prime} B^{\prime} C\left(C+D^{\prime}\right)=A^{\prime} B^{\prime} C
\end{array} \\
& 2.25 \text { (a) } F(P, Q, R, S)^{\prime}=\left[\left(R^{\prime}+P Q\right) S\right]^{\prime}=R\left(P^{\prime}+Q^{\prime}\right)+S^{\prime} \\
& =R P^{\prime}+R Q^{\prime}+S^{\prime} \\
& 2.25 \text { (c) } F(A, B, C, D)^{\prime}=\left[A^{\prime}+B^{\prime}+A C D\right]^{\prime} \\
& =\left[A^{\prime}+B^{\prime}+C D\right]^{\prime}=A B\left(C^{\prime}+D^{\prime}\right) \\
& 2.26 \text { (a) } F=\left[\left(A^{\prime}+B\right)^{\prime} B\right]^{\prime} C+B=\left[A^{\prime}+B+B\right] C+B \\
& =C+B \\
& 2.26 \text { (c) } H=\left[W^{\prime} X^{\prime}\left(Y^{\prime}+Z^{\prime}\right)\right]^{\prime}=W+X+Y Z
\end{aligned}
$$

2.24 (b) $\quad\left(X+\left(Y^{\prime}(Z+W)^{\prime}\right)^{\prime}\right)^{\prime}=X^{\prime} Y^{\prime}(Z+W)^{\prime}=X^{\prime} Y^{\prime} Z^{\prime} W^{\prime}$
2.24 (d) $\quad(A+B) C D+(A+B)^{\prime}=C D+(A+B)^{\prime}$
$\left\{\right.$ By Elimination Theorem with $\left.X=(A+B)^{\prime}\right\}$ $=C D+A^{\prime} B^{\prime}$
2.25 (b) $\quad F(W, X, Y, Z)^{\prime}=\left[X+Y Z\left(W+X^{\prime}\right)\right]^{\prime}$
$=\left[X+X^{\prime} Y Z+W Y Z\right]^{\prime}$
$=[X+Y Z+W Y Z]^{\prime}=[X+Y Z]^{\prime}$
$=X^{\prime} Y^{\prime}+X^{\prime} Z^{\prime}$
2.26 (b) $G=\left[(A B)^{\prime}(B+C)\right]^{\prime} C=\left(A B+B^{\prime} C^{\prime}\right) C=A B C$
2.27 $F=(\underline{V+X}+W)(\underline{V+X}+Y)(V+Z)$
$=(V+X+W Y)(V+Z)=V+Z(X+W Y)$
By Distributive Law with $X=V$

2.28 (b) Beginning with the answer to (a):

$$
F=A(B+C)+B C
$$

Alternate solutions:

$$
\begin{aligned}
& F=A B+C(A+B) \\
& F=A C+B(A+C)
\end{aligned}
$$

2.29 (b)	XYZ	$X+Y$	$Y+Z$	$X^{\prime}+Z$	$\begin{aligned} & (X+Y) \\ & (Y+Z) \\ & \left(X^{\prime}+Z\right) \end{aligned}$	$\begin{aligned} & (X+Y) \\ & \left(X^{\prime}+Z\right) \end{aligned}$
	000	0	0	1	0	0
	001	0	1	1	0	0
	010	1	1	1	1	1
	011	1	1	1	1	1
	100	1	0	0	0	0
	101	1	1	1	1	1
	110	1	1	0	0	0
	111	1	1	1	1	1

Unit 2 Solutions

2-29 (c) | X | Y | Z | $X Y$ | $Y Z$ | $X^{\prime} Z$ | $X Y+Y Z+X^{\prime} Z$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | 0 | 0 | 0 |
| 0 | 0 | 1 | 0 | 0 | 1 | 1 |
| 0 | 1 | 0 | 0 | 0 | 0 | 0 |
| 0 | 1 | 1 | 0 | 1 | 1 | 1 |
| 1 | 0 | 0 | 0 | 0 | 0 | 0 |
| 1 | 0 | 1 | 0 | 0 | 0 | 0 |
| 1 | 1 | 0 | 1 | 0 | 0 | 1 |
| 1 | 1 | 1 | 1 | 1 | 0 | 1 |

2.29 (d)

$A)_{A} B$	$A+C$	$A B+C^{\prime}$	$(A+C)$ $\left(A B+C^{\prime}\right)$	$A B$	$A C^{\prime}$	$A B$ $+A C^{\prime}$
000	0	1	0	0	0	0
0001	1	0	0	0	0	0
0010	0	1	0	0	0	0
011	1	0	0	0	0	0
100	1	1	1	0	1	1
100	1	0	0	0	0	0
1010	1	1	1	1	1	1
11	1	1	1	1	0	1

2.29 (e)

$W X Y Z$	$W^{\prime} X Y$	$W Z$	$W^{\prime} X Y+W Z$	$W^{\prime}+Z$	$W+X Y$	$\left(W^{\prime}+Z\right)(W+X Y)$
0000	0	0	0	1	0	0
0001	0	0	0	1	0	0
0010	0	0	0	1	0	0
0011	0	0	0	1	0	0
0100	0	0	0	1	0	0
0101	0	0	0	1	0	0
0110	1	0	1	1	1	1
0111	1	0	1	1	1	1
1000	0	0	0	0	1	0
1001	0	1	1	1	1	1
1010	0	0	0	0	1	0
1011	0	1	1	1	1	1
1100	0	0	0	0	1	0
1101	0	1	1	1	1	1
1110	0	0	0	0	1	0
1111	0	1	1	1	1	1

2.30

$$
\begin{aligned}
F & =\left(X+Y^{\prime}\right) Z+X^{\prime} Y Z^{\prime} \\
& =\left(X+Y^{\prime}+X^{\prime} Y Z^{\prime}\right)\left(Z+X^{\prime} Y Z^{\prime}\right) \\
& =\left(X+Y^{\prime}+X^{\prime}\right)\left(X+Y^{\prime}+Y\right)\left(X+Y^{\prime}+Z^{\prime}\right)\left(Z+X^{\prime}\right)(Z+Y)\left(Z+Z^{\prime}\right) \\
& =\left(1+Y^{\prime}\right)(X+1)\left(X+Y^{\prime}+Z^{\prime}\right)\left(Z+X^{\prime}\right)(Z+Y)(1) \\
& =(1)(1)\left(X+Y^{\prime}+Z^{\prime}\right)\left(Z+X^{\prime}\right)(Z+Y)(1) \\
& =\left(X+Y^{\prime}+Z^{\prime}\right)\left(Z+X^{\prime}\right)(Z+Y)
\end{aligned}
$$

$$
G=\left(X+Y^{\prime}+Z^{\prime}\right)\left(X^{\prime}+Z\right)(Y+Z)
$$

(from the circuit)
(Distributive Law)
(Distributive Law)
(Complementation Laws)
(Operations with 0 and 1)
(Operations with 0 and 1)
(from the circuit)

Unit 2 Solutions

