Fundamentals of Microelectronics 2nd Edition Razavi Solutions Manual

ch3

















Ip, = 0 for all Vx (:: VB >0, D, is reverse - biased)



(F)

(8)

























2)

×



























6/

c)









(19) a)

b)































b/

÷





































6/





L

$$\begin{array}{rcl}
(32) & a) & Vout &= i \times R_i \\
&= 0.1 \, \text{mA} \times 1 \, k \, \Omega \\
&= 0.1 \, V \end{array}$$

b/ 
$$r_{d_1} = r_{d_2} = \frac{26 \text{ mV}}{3 \text{ mA.}}$$
 (Eq. 3.58)  
 $\approx 8.67 \Omega$ .

$$V_{ont} = i \times (R_i + r_{d_2})$$
  
= 0.1 mA (1.00867 kR)

2 1.009 × 10-1 V

c) 
$$V_{0n+} = i \times r_{d_2}$$
  
= 0.1 mA × 8.67 (from (b))  
= 0.867 mV  
d)  $V_{0n+} = i \times (R_2 // r_{d_2})$   
 $\approx i \times r_{d_2} (:: R_2 >> r_{d_2})$   
= 0.867 mV

33 a/  $i_1 = i_{in}$ = 0.1 mA

$$\frac{1}{r_1} = \frac{1}{r_1}$$
$$= 0.1 mF$$

$$c/(i_r) = i_{in}$$
  
= 0.1 mA

d) 
$$ir_1 = in_1$$
  
= 0.1 mA.





(36) From eq. (3.80),

Ripple amplitude,  $V_R \approx \frac{V_P - V_{P,on}}{R_L \subset f_{in}}$ 

$$= \frac{3.5 - 0.8}{10 \ 1000 \times 10^{-6} \times 60}$$

= 0.45V



From Eq. (3.83),  $V_{R} = \frac{I_{L}}{C f_{in}}$   $V_{R} \leq 300 \text{ mV}$   $\frac{I_{L}}{C f_{in}} \leq 300 \text{ mV}$   $i \leq F_{in} \leq 300 \text{ mV}$   $i \leq F_{in} \leq 300 \text{ mV}$   $i \leq C \geq \frac{I_{L}}{f_{in} \times 0.3}$   $C \geq \frac{0.5}{60 \times 0.3}$ 

i.e. C ≥ 0.278F









- V04

Pac! ton Cases. has no effect in the above two

(41) Using Eq. (3:94)

$$V_{R} = \frac{1}{2} \cdot \frac{V_{P} - 2 V_{P, oN}}{R_{L} c_{1} f_{in}}$$
  
=  $\frac{1}{2} \cdot \frac{3 - 2 \times 0.8}{3 \circ \times 1000 \times 10^{-6} \times 60}$ 



- -With the two negative terminals shorted together, the sircuit behaves like a half-wave restifier.
- When Vin+>Vin-, D3 and D4 conjuct as usual. There will be an additional path that by passes D4, since Vin- and Vone-are shorted. But this additional path causes no change to the Vont waveform.
  When Vin->Vin+, both Vone + and Vone-track Vin-. Vone+ connects to Vin- through Pij Vone- connect to Vin- through the additional shorted path.
- Thus (Vone +) (Vone -) = 0, ie. Vone = 0



The circuit can

First, find rd:

 $Y_{d} = \frac{V_{T}}{I_{D}} \qquad (from eq. 3.60)$  $= \frac{26mV}{5mA}$  $= 5.2 \Omega$ 

Since  $i_R = +1 mA$ .  $i_d = -1mA$ .

: change in Vone,  
i.e. Voue = 
$$(-1mA)(3 \times 5.2)$$
  
=  $-15.6 mV$ 

as !

) a) From Eq. (3.94),  
the ripple amplitude, 
$$V_R = \frac{1}{2} \cdot \frac{V_{P-2}V_{P,on}}{R_1C, f_{in}}$$
  
 $= \frac{1}{2} \cdot \frac{5 - 2 \times 0.8}{1000 \times 100 \times 10^{-6} \times 60}$   
 $= 0.283 V$ 

b) The ripple across the load,  $V_R = i \times 3r_d$ , where i is the change in current flowing through R, in series with the 3 dio des.  $Y_d = \frac{V_T}{I_p}$   $\approx \frac{26mV}{5/R_1} = 5.2\Omega$   $i \approx \frac{V_R}{R_1 + 3r_d}$  = 0.279 mA $V_R = 0.279 \text{ mA}$ 

(45) With positive theshold = 
$$+2.2V$$
,  
 $V_{B1} = 2.2 - 0.8$   
 $= +1.4V$   
with negative three hold =  $-1.9V$ ,  
 $-V_{B2} = -1.9 + 0.8$   
 $= -1.1V$ .  
 $V_{B2} = 1.1V$   
To meet the maximum current criterion,  
Since  $I_{R_1} = I_{D_1}$  or  $I_{D_2}$ ,  
 $I_{D_1}$  or  $I_{D_2}$  is at max when  
 $I_{R_1}$  is at max.  
 $I_{R_1}$  is at max.  
 $I_{R_1}$  is at max.  
 $I_{R_1}$  is at max.  
 $I_{R_1} \leq 2 -1.9$   
 $= 3.1V$ .  
Since  $I_{R_1} \leq 2 -1.9$   
 $= 3.1V$ .  
 $Since I_{R_1} \leq 2 -1.9$   
 $= 3.1V$ .



(47)

The required circuit is:





To find Rz. For Vin > 2V, Vour has a slope of 0.5. This implies R2 = R, (R, and R2 form a volt. divider) Similarly,  $R_3 = R$ . Thus, set  $R_1 = R_2 = R_3 = 1 k \Omega$ . The resulting circuit is : IKR Vin E 1.2V Vont

(43) For 
$$|Vin| < 4V$$
, the Vone -Vin characteristic  
is similar to prob. (47).  
To get Voltage limiting characteristic  
for Vin >4V, and Vin < -4V,  
we can shunt the circule used in prob(47)  
with two antiparellel diodes as below:  
 $Vin 1.2v + 1.$ 

Resulting circuit is:



