Fundamentals of Microelectronics 2nd Edition Razavi Solutions Manual $ch3$

 $\overline{()}$

 $\circled{3}$

ï

 $I_{P,}$ = 0 f_{or} all V_{x} $\therefore V_B > 0,$ D, is reverse-biased)

 $\begin{pmatrix} 1 \\ 1 \end{pmatrix}$

 \mathcal{S}

 $d/$

 $\tilde{\epsilon}$

 $\widetilde{\mathcal{A}}$

 \circ)

 $\cdot b$

 (19) a)

 b

 $\widehat{\left(2\right)}$

a

 I_{R_1} $h/$ $\sqrt{1}$ \rightarrow I:n

 $\tilde{\epsilon}$

 $b/$

 $b/$

 $d/$

 30

 α)

 $b/$

3) a) when
$$
V_{in}
$$
 changes from +2.4V to +2.5V,
\n p_{i} is on *Hronflow* the change.
\n $V_{in} = 0.8V$,
\n $i.e.,$ $V_{out} = 0.8V$,
\ni.e., V_{out} changes from +1.6V to +1.7V.
\nb) when V_{in} changes from +2.4V to +2.5V,
\np, and p_{2} are both on
\n \therefore $V_{in} = V_{out, p_{1}}$,
\ni.e., V_{out} changes from +1.6V to +2.5V,
\np, and p_{2} are both onx.
\n $V_{out} = V_{out, p_{2}}$,
\ni.e., V_{out} stages from +2.4V to +2.5V,
\n1.2.1 V to
\n $V_{out} = V_{out, p_{2}}$,
\ni.e., V_{out} shapes from +2.4V to +2.5V,
\n p_{2} is onX.
\n \therefore $V_{out} = V_{out, p_{2}}$,
\ni.e., V_{out} shows at +0.8V

 \mathfrak{t}

 \mathbb{R}^n . The set of \mathbb{R}^n

b)
$$
r_{d_1} = r_{d_2} = \frac{26 mV}{3 m A}
$$
 (Eq. 3.58)
 $\approx 8.67 \Omega$

$$
U_{out}
$$
 = $i \times (R_i + r_{di})$
= 0.1 mA (1.00867 kR)

$$
\approx 1.009 \times 10^{-1}
$$
 V

c)
$$
Var = i * r_{d_{2}}
$$

\n
$$
= 0.1 mA * 8.67 (from (b))
$$
\n
$$
= 0.867 mV
$$
\n
$$
= i * (R_{2} / T_{d_{2}})
$$
\n
$$
= i * r_{d_{2}} (T_{2} > r_{d_{2}})
$$
\n
$$
= 0.867 mV
$$

 $\circled{33}_{\alpha}$ \vec{i}_{\odot} = \vec{i}_{in}
= 0.1 m A

$$
b / \qquad i_{r_1} = i_{i_1}
$$

= 0.1 m A

c)
$$
i_{r_1} = i_{in}
$$

$$
= 0.1 mA
$$

$$
d / \quad i_{r_1} = i_{r_2}
$$

= 0.1 mA.

(36) From eg. (3.80),

 $R:pple$ amplitude, $V_R = \frac{V_P - V_{P,on}}{R_L \subset F_{in}}$

$$
= \frac{3.5 - 0.8}{10 \quad 1000 \times 10^{-6} \times 60}
$$

 $= 0.45V$

From $E_{4.}$ (3.83), $V_R = \frac{I_L}{C f_{in}}$ V_R S 300 mV $\frac{I_{L}}{C f_{L}}$ 5300 mV. $C \geqslant \frac{z}{f_{in} \times 0.3}$ $C \geq \frac{0.5}{60 \times 0.3}$

 $i.e. C \ge 0.278F$

63. This circuit would fail to function as a full-wave rectifier.

\na full-wave rectifier.

\n-It only rectifies for
$$
V_{in-} > V_{in+}
$$

\n(Current flows through P_{i} and P_{i})

\n(Current for $V_{in+} > V_{in-}$, there is no

\ncontation path through the load.

\n- Thus, this circuit be have like a

\nhalf-wave rectifier.

4D Using Eg. (3:94)

$$
V_R
$$
 $\approx \frac{1}{2} \cdot \frac{V_{P} - 2 V_{P,ON}}{R_{L} C_{1} f_{in}}$
 $\approx \frac{3 - 2 \times 0.8}{30 \times 1000 \times 10^{-6} \times 60}$

$$
= 0.389V
$$

- With the two negative terminals shorted together, the sircuit behaves like a half-wave rectifier.
- When $V_{in+} > V_{in}$, D_3 and D_4 contuct as usual. There will be an additional path that by passes D4, since Vin- and Vontare shorted. But this additional path causes no change to the Vont waveform. When V_{in} - $>V_{in+}$, both V_{out+} and V_{out-} track Vin-. Vouet connects to Vin through P. / Vone - connect to Vin- through the additional shorted path.
- Thus $(V_{onf} +) (V_{onf} -) = 0$, ie. Vont = 0

tor

Comment Contractor

The circuit can k

 \mathfrak{i}_{ℓ} V_{out}

 $First, Find r_d :$

 $r_d = \frac{V_7}{I_p}$ (from eg. 3.60) $=\frac{26mV}{5mA}$ $= 5.2 \Omega$

Since i_{ℓ} = + 1 mA. $i_d = -1 m A$.

$$
\therefore
$$
 change in V_{out} ,
is. $V_{\text{out}} = (-1 \text{ mA}) (3 \times S.2)$

 $2 - 15.6 mV$

$$
\frac{4}{\pi} \int \frac{dy}{dx} = \frac{3.94}{2}
$$
\n
$$
= \frac{1}{2} \cdot \frac{16 - 2V_{Ron}}{R_{L}C_{r}} = \frac{1}{2} \cdot \frac{16 - 2V_{Ron}}{1000 \times 100 \times 10^{-6} \times 60}
$$
\n
$$
= 0.283 V
$$

b) The ripple across the load, $V_R = i \times 3r_d$ where i is the change in current flowing through R., inseries with the 3 dio des. \therefore $Y_{d} = \frac{V_{T}}{I_{g}}$ $\approx \frac{26mV}{5/k_1} = 5.2 \Omega$ $i = \frac{V_R}{R_1 + 3 r_4}$ $= 0.279 m A$ $V_R = 0.279 mAx 3 \times 5.2$ $= 4.35$ mV

 (45) With positive theshold = +2.2V, $V_{\rm B1}$ = 2.2-0.8 $= 1.4V/$ with negative threshold = $-1.9v$, $-V_{B2} = -1.9 + 0.8$ $2 - 1.1V$ $V_{B2} = 1.1V$ To meet the maximum current criterion, Since $I_{R_1} = I_{D_1}$ or I_{D_2} I_{P1} or I_{P2} is at max when Z_{R_1} is at max. I_{R_1} is a max when $|V_R|$ is max, ie. $|V_R| = 5 - 1.9$ $= 3.1V$ Since $I_{R_1} \leq 2 mA$. $R_1 \geq \frac{3.1}{2m}$, ie. $R_1 \geq 1550 \frac{n}{2}$

 $(47$

The required circuit is:

 $Sim.$ $lar \tto Example$ 3.34, V_{B1} = V_{B2} = $(2 - 0.8) / V$ = $1.2V$

To find
$$
R_2
$$
,
\nFor $V_{in} > 2V$, $\frac{V_{on+}}{V_{in}}$ has a slope of 0.5.
\n $R_{1:3}$ implies $R_2 = R_1$
\n $(R_{on}) = R_2$ form a volt. dividey)

$$
S:m: |a_{r}| \qquad R_{3} = R
$$

Thus, set $R_1 = R_2 = R_3 = 1 kR$.

The resulting circuit is:

48) For
$$
|V_{in}| < 4V
$$
, the $V_{out} - V_{in}$ characteristic
\nis similar to *prob*. (47).
\nTo get voltage $lim:ting$ characteristic
\nfor $V_{in} > 4V$, and $V_{in} < -4V$,
\nwe can shunt the circuite used in $Prob(47)$
\nwith two ant: parallel disks as below:
\n $\sqrt{8}$
\n \sqrt

Resulting circuit \mathcal{S} :

