Chapter 1 End of Chapter Problem Solutions

1.1

$\mathrm{n}=4 \times 10^{20}$ molecules $/ \mathrm{in}^{3}$
$\bar{v}=\sqrt{k g R T}=1.32 \times 10^{4} \mathrm{in} . / \mathrm{s}$
$\mathrm{A}=\frac{\pi}{4}\left(10^{-3} \mathrm{in}\right)^{2}$
$\mathrm{NA}=\frac{1}{4} \mathrm{n} \bar{v} \mathrm{~A}=1.04 \times 10^{8} \mathrm{~m} / \mathrm{s}$

1.2

Flow Properties: Velocity, Pressure Gradient, Stress

Fluid Properties: Pressure, Temperature, Density, Speed of Sound, Specific Heat

1.3

mass of solid $=\rho_{s} v_{s}$ mass of fluid $=\rho_{f} \mathrm{~V}_{\mathrm{f}}$

$$
\begin{aligned}
& X=\frac{\rho_{s} v_{s}}{\rho_{s V_{s}}+\rho_{f} v_{f}} \\
& \Rightarrow \frac{v_{f}}{v_{s}}=\frac{1-x}{x} \frac{\rho_{s}}{\rho_{f}}
\end{aligned}
$$

$$
\rho_{\mathrm{mix}}=\frac{\rho_{s} v_{s}+\rho_{f} v_{f}}{v_{s}+v_{f}}=\frac{\rho_{s}+\rho_{f}\left(\frac{v_{f}}{v_{s}}\right)}{1+\frac{v_{f}}{v_{s}}}
$$

$$
=\frac{\rho_{s} \rho_{f}}{x \rho_{f}+(1-x) \rho_{f}}
$$

1.4

Given $\frac{P+B}{P_{1}+B}=\left(\frac{\rho}{\rho_{1}}\right)^{7}$
For $\mathrm{P}_{1}=1 \mathrm{~atm} \quad \frac{\rho}{\rho_{1}}=1.01$
$\mathrm{P}=3001(1.01)^{7}-3000=217 \mathrm{~atm}$

1.5

At Constant Temperature

$$
\frac{P}{\rho_{T}}=\text { constant } \Rightarrow \frac{P}{\rho}=\text { constant }
$$

For 10\% increase in ρ
P must also increase by 10%

Since density varies as $\rho=\kappa P$
$\rho_{250,000 \mathrm{ft}}=\rho_{S . L .} \cdot \frac{P_{250,000 \mathrm{ft}}}{P_{S . L .}}$
\& $\rho=\mathrm{nM} \quad$ (M=Molecular wt.)
$\therefore \quad \mathrm{n}_{250,000}=\mathrm{n}_{\text {S.L. }}\left[\frac{1.5 \times 10^{-7}}{2.378 \times 10^{-3}}\right]=4 \times 10^{20}\left[\frac{1.5 \times 10^{-7}}{2.378 \times 10^{-3}}\right]=2.5 \times 10^{16}$
1.7
$\vec{e}_{r}=\left|\vec{e}_{r}\right|_{\mathrm{x}} \vec{e}_{x}+\left|\vec{e}_{r}\right|_{\mathrm{y}} \vec{e}_{y}$
$=\cos \theta \vec{e}_{x}+\sin \theta \vec{e}_{r}$
$\vec{e}_{\theta}=\left|\vec{e}_{\theta}\right|_{x} \vec{e}_{x}+\left|\vec{e}_{\theta}\right|_{y} \vec{e}_{y}$
$=-\sin \theta \vec{e}_{x}+\cos \theta \vec{e}_{y}$
Q.E.D.
1.8
$\frac{d \vec{e}_{r}}{d \theta}=-\sin \theta \quad \vec{e}_{x}+\cos \theta \vec{e}_{y}=\vec{e}_{\theta}$
$\frac{d \vec{e}_{r}}{d \theta}=-\cos \theta \vec{e}_{x}-\sin \theta \vec{e}_{r}=-\vec{e}_{r}$
Q.E.D.

1.9 Transformation from (x, y) to (r, θ)

$$
\begin{aligned}
& \frac{d}{d x}=\frac{d r}{d x} \frac{d}{d r}+\frac{d \theta}{d x} \frac{d}{d \theta} \\
& \frac{d}{d y}=\frac{d r}{d y} \frac{d}{d r}+\frac{d \theta}{d y} \frac{d}{d \theta} \\
& \mathrm{r}^{2}=\mathrm{x}^{2}+\mathrm{y}^{2} \\
& \theta=\tan ^{-1}(y / x) \\
& \mathrm{so}: \frac{d r}{d x}=\frac{x}{\left(x^{2}+y^{2}\right)^{1 / 2}}=\frac{r \cos \theta}{r}=\cos \theta \\
& \frac{d \theta}{d x}=-\frac{y}{x^{2}+y^{2}}=-\frac{r \sin \theta}{r^{2}}=-\frac{\sin \theta}{r} \\
& \frac{d r}{d y}=\sin \theta \\
& \Rightarrow \frac{d}{d x}=\cos \theta \frac{d}{d r}-\frac{\sin \theta}{r} \frac{d}{d \theta} \\
& \frac{d}{d y}=\sin \theta \frac{d}{d r}+\frac{\cos \theta}{r} \frac{d}{d \theta}
\end{aligned}
$$

$$
\begin{aligned}
& \nabla=\frac{d}{d x} \vec{e}_{x}+\frac{d}{d y} \vec{e}_{y}+\frac{d}{d z} \vec{e}_{z} \\
& =\left(\cos \theta \frac{d}{d r}-\frac{\sin \theta}{r} \frac{d}{d \theta}\right) \vec{e}_{x}+\left(\sin \theta \frac{d}{d r}+\frac{\cos \theta}{r} \frac{d}{d \theta}\right) \vec{e}_{y}+\frac{d}{d z} \vec{e}_{z} \\
& =\left(\vec{e}_{x} \cos \theta+\vec{e}_{y} \sin \theta\right) \frac{d}{d r}+\frac{1}{r}\left(-\vec{e}_{x} \sin \theta+\vec{e}_{y} \cos \theta\right) \frac{d}{d \theta}+\vec{e}_{z} \frac{d}{d z}
\end{aligned}
$$

Thus: $\nabla=\vec{e}_{r} \frac{d}{d r}+\frac{1}{r} \vec{e}_{\theta} \frac{d}{d \theta}+\vec{e}_{z} \frac{d}{d z}$

1.11

$$
\nabla \mathrm{P}=\frac{d P}{d x} \vec{e}_{x}+\frac{d P}{d y} \vec{e}_{y}
$$

$\nabla \mathrm{P}(\mathrm{a}, \mathrm{b})=\rho_{\infty} v_{\infty}{ }^{2}\left\{\left[\frac{1}{a} \cos 1 \sin 1+2\right] \vec{e}_{x}+\frac{1}{b}(\sin 1 \cos 1) \vec{e}_{y}\right\}$
$=\rho_{\infty} v_{\infty}^{2}\left\{\left[\frac{1}{a} \frac{\sin 2}{2}+2\right) \vec{e}_{x}+\frac{1}{b}\left(\frac{\sin 2}{2}\right) \vec{e}_{y}\right\}$

$$
\begin{aligned}
& \nabla \mathrm{T}(\mathrm{x}, \mathrm{y})=\mathrm{T}_{\mathrm{o}} \mathrm{e}^{-1 / 4}\left[\frac{1}{a}\left(\cos \frac{x}{a} \cosh \frac{y}{b}\right) \vec{e}_{x}+\frac{1}{b}\left(\sin \frac{x}{a} \sinh \frac{y}{b}\right) \vec{e}_{y}\right] \\
& \nabla \mathrm{T}(\mathrm{a}, \mathrm{~b})=\mathrm{T}_{\mathrm{o}} \mathrm{e}^{-1 / 4}\left[\frac{1}{a}(\cos 1 \cosh 1) \vec{e}_{x}+\frac{1}{b}(\sin 1 \sinh 1) \vec{e}_{y}\right] \\
& =\mathrm{T}_{\mathrm{o}} \mathrm{e}^{-1 / 4}\left[\frac{\cos 1\left(e+e^{-1}\right)}{2 a} \vec{e}_{x}+\frac{\sin 1\left(e+e^{-1}\right)}{2 b} \vec{e}_{y}\right] \\
& =\frac{T_{o} e^{-5 / 4}}{2}\left[\frac{\cos 1}{a}\left(1+\mathrm{e}^{-2}\right) \vec{e}_{x}+\frac{\sin 1}{b}\left(1-e^{-2}\right) \vec{e}_{y}\right]
\end{aligned}
$$

1.13

In problem 1.12 $\mathrm{T}(\mathrm{x}, \mathrm{y})$ is dimensionally homogeneous (D.H.)
$\mathrm{P}(\mathrm{x}, \mathrm{y})$ in Prob 1.11 will be D.H. if $P_{\infty} \sim \frac{P}{v_{\infty}^{2}} \quad \mathrm{~L}_{\mathrm{Bf}} \mathrm{s}^{2} / \mathrm{ft}^{4}$
or using the conversion factor g_{c}

$$
1.14 \phi=3 x^{2} y+4 y^{2}
$$

A scalar field is given by the function: $\emptyset=3 x^{2} y+4 y^{2}$
(a) Find $\nabla \emptyset$ at the point $(3,5)$

$$
\emptyset=3 x^{2} y+4 y^{2}
$$

$\nabla \emptyset=\frac{\partial \emptyset_{i}}{\partial x}+\frac{\partial \emptyset_{j}}{\partial y}=(6 x y) i+\left(3 x^{2}+8 y\right) j$
For the value of $\nabla \varnothing$ at the point $(3,5)$

$$
\nabla \emptyset=(6 x y) i+\left(3 x^{2}+8 y\right) j=(6)(3)(5) i+\left[(3)(3)^{2}+(8)(5)\right] j=\mathbf{9 0} \boldsymbol{i}+\mathbf{6 7} \boldsymbol{j}
$$

(b) Find the component of $\nabla \emptyset$ that makes a $-60 \circ$ angle with the axis at the point $(3,5)$

Let the unit vector be represented by $e_{s}=\cos \theta_{i}+\sin \theta_{j}$
$\nabla \emptyset \cdot e_{s}=\left[(6 x y) i+\left(3 x^{2}+8 y\right) j\right] \cdot\left[\cos \theta_{i}+\sin \theta_{j}\right]$
At the point $(3,5)$ this becomes:

$$
\nabla \emptyset \cdot e_{s}=[90 i+67 j] \cdot[\cos (-60) i+\sin (-60) j]=90(0.5)+(67)(-0.866)=-\mathbf{1 3 . 0 2}
$$

1.15

For an ideal gas
$\mathrm{P}=\frac{\rho R T}{M}$

From Prob 1.3: $\rho=\frac{\rho_{m}(1-x)}{1-\frac{\rho_{m}}{\rho_{s}} x}$
$\therefore \quad P=\frac{\rho_{m}(1-x)}{1-\frac{\rho_{m}}{\rho_{s}} x} \frac{R T}{M}$

$$
\psi=\operatorname{Arsin} \theta\left(1-\frac{a^{2}}{r^{2}}\right)
$$

a) $\nabla \psi=\frac{d \psi}{d r} \vec{e}_{r}+\frac{1}{r} \frac{d \psi}{d \theta} \vec{e}_{\theta}=\operatorname{Asin} \theta\left(1-\frac{a^{2}}{r^{2}}\right) \vec{e}_{\theta}$
b) $|\nabla \psi|=\mathrm{A}\left[\sin ^{2} \theta\left(1+\frac{a^{2}}{r^{2}}\right)^{2}+\cos ^{2} \theta\left(1-\frac{a^{2}}{r^{2}}\right)^{2}\right]^{1 / 2}$
$|\nabla \psi|_{\max }$ is given by $\mathrm{d}|\nabla \psi|=0$ or $\frac{d}{d r}|\nabla \psi| \mathrm{dr}+\frac{d}{d \theta}|\nabla \psi| \mathrm{d} \theta=0$
Requiring $\frac{d}{d r}|\nabla \psi|=\frac{d}{d \theta}|\nabla \psi|=0$
For $\frac{d}{d r}|\nabla \psi|=0:-\sin ^{2} \theta\left(1+\frac{a^{2}}{r^{2}}\right)+\cos ^{2} \theta\left(1-\frac{a^{2}}{r^{2}}\right)=0$
And for $\frac{d}{d \theta}|\nabla \psi|=0: \sin \theta \cos \theta\left[\left(1+\frac{a^{2}}{r^{2}}\right)^{2}-\left(1-\frac{a^{2}}{r^{2}}\right)^{2}\right]$

From Eq. 2: $\sin \theta \cos \theta 4 a^{2} / r^{2}=0$
If $\mathrm{a} \neq 0, \mathrm{r} \neq 0$ then $\sin \theta \cos \theta=0$ for which $\theta=0, \frac{\pi}{2}$
Subst. into Eq. $1 \quad \theta=0,1-\mathrm{a}^{2} / \mathrm{r}^{2}=0$
Giving $\mathrm{a}=\mathrm{r}$
For $\theta=\frac{\pi}{2} \quad 1+\mathrm{a}^{2} / \mathrm{r}^{2}=0 \sim$ impossible
Thus conditions for $|\nabla \psi|_{\max }$ are $\theta=0 \quad \mathrm{r}=\mathrm{a}$

$$
\begin{aligned}
& \mathrm{P}=\mathrm{P}_{\mathrm{o}}+\frac{1}{2} \rho v_{\infty}^{2}\left[\frac{2 x y z}{L^{3}}+3\left(\frac{x}{L}\right)^{2}+\frac{v_{\infty} t}{L}\right] \\
& \frac{d P}{d x} \vec{e}_{x}=\frac{1}{2} \rho v_{\infty}^{2}\left[\frac{2 y z}{L^{3}}+\frac{6 x}{L^{2}}\right] \vec{e}_{x} \\
& \frac{d P}{d y} \vec{e}_{y}=+\frac{1}{2} \rho v_{\infty}^{2}\left[\frac{2 x z}{L^{3}}\right] \vec{e}_{y} \\
& \frac{d P}{d z} \vec{e}_{z}=+\frac{1}{2} \rho v_{\infty}^{2}\left[\frac{2 x y}{L^{3}}\right] \vec{e}_{z}
\end{aligned}
$$

$$
\nabla \mathrm{P}=\frac{1}{2} \rho v_{\infty}^{2}\left[\left(\frac{2 y z}{L^{3}}+\frac{6 x}{L^{2}}\right) \vec{e}_{x}+\frac{2 x z}{L^{3}} \vec{e}_{y}+\frac{2 x y}{L^{3}} \vec{e}_{z}\right]
$$

1.18

Vertical cylinder $\mathrm{d}=10 \mathrm{~m}, \mathrm{~h}=6 \mathrm{~m}$

$$
\mathrm{V}=\frac{\pi}{4}(10 \mathrm{~m})^{2}(6 \mathrm{~m})=471.2 \mathrm{~m}^{3}
$$

$$
@ 20^{\circ} \mathrm{C} \rho_{\mathrm{w}}=998.2 \mathrm{~kg} / \mathrm{m}^{3}
$$

$$
\mathrm{m}=\rho_{\mathrm{w}} \mathrm{~V}=(998.2)(471.2)=470350 \mathrm{~kg}
$$

$$
@ 80^{\circ} \mathrm{C} \rho_{\mathrm{w}}=971.8 \mathrm{~kg} / \mathrm{m}^{3}
$$

$$
\mathrm{m}=(971.8)(471.2)=457910 \mathrm{~kg}
$$

$\Delta m=12440 \mathrm{~kg}$
1.19

Liquid $\quad \mathrm{V}=1200 \mathrm{~cm}^{3} @ 1.25 \mathrm{MPa}$
$\mathrm{V}=1188 \mathrm{~cm}^{3} @ 2.5 \mathrm{MPa}$
$\beta=-\mathrm{V}\left(\frac{d P}{d V}\right)_{\mathrm{T}} \cong-\mathrm{V} \frac{\Delta P}{\Delta V}$
$\mathrm{V}=1194 \mathrm{~cm}^{3}=1.194 \times 10^{-3} \mathrm{~m}^{3}$
$\Delta \mathrm{V}=-12 \mathrm{~cm}^{3}=-1.2 \times 10^{-7} \mathrm{~m}^{3}$
$\beta=-1.194 \times 10^{-3}\left[\frac{1.25 \mathrm{MPa}}{-1.2 \times 10^{-7}}\right]$
$=+12440 \mathrm{MPa}$
1.20

$$
\beta=-\mathrm{V}\left(\frac{d P}{d V}\right)_{\mathrm{T}} \cong-\mathrm{V} \frac{\Delta P}{\Delta V}
$$

$\mathrm{V}=0.25 \mathrm{~m}^{3}$
$\Delta \mathrm{V}=-0.005 \mathrm{~m}^{3}$
$\Delta \mathrm{P}=10 \mathrm{mPa}$
$\beta=-0.25\left[\frac{10}{-0.005}\right]=500 \mathrm{MPa}$

1.21

For $\mathrm{H}_{2} 0: \quad \beta=2.205 \mathrm{GPa}$
$\frac{\Delta V}{V}=-0.0075$
$\beta \cong-\mathrm{V} \frac{\Delta P}{\Delta V}$ or $\Delta \mathrm{P}=\beta \frac{\Delta V}{V}$
$\Delta \mathrm{P}=(2.205 \mathrm{GPa})(0.0075)=0.0165 \mathrm{GPa}=16.5 \mathrm{MPa}$
1.22

For $\mathrm{H}_{2} 0: \quad \mathrm{P}_{1}=100 \mathrm{kPa} \quad \mathrm{P}_{2}=120 \mathrm{MPa} \quad \beta=2.205$
$\beta=-\mathrm{V} \frac{\Delta P}{\Delta V}$ or $\quad \frac{\Delta \mathrm{V}}{V}=\frac{\Delta \mathrm{P}}{\beta}$

$$
\frac{\Delta \mathrm{V}}{V}=\frac{\Delta \mathrm{P}}{\beta}=\frac{(120000-100) k P a}{120 \times 10^{6} \mathrm{kPa}}=0.999 \times 10^{-3}=0.0999 \text { percent }
$$

1.23
$\mathrm{H}_{2} 0 @ 68^{\circ} \mathrm{C}(341 \mathrm{~K})$
$\sigma=0.123[1-0.00139(341)]=0.0647 \mathrm{~N} / \mathrm{m}$
In a clean tube- $\theta=0^{\circ}$
$\mathrm{h}=\frac{2 \sigma \cos \theta}{\rho g r}=\frac{2(.0647)}{979(981)\left(\frac{0.2875 \times 10^{-2}}{2}\right)}=9.37 \times 10^{-3} \mathrm{~m}=9.37 \mathrm{~mm}$

1.24

Parallel Glass Plates
Gap $=1.625 \mathrm{~mm}$
$\sigma=0.0735 \mathrm{~N} / \mathrm{m}$
For a unit depth:
Surface Tension Force $=2(1) \sigma \cos \theta$
Weight of $\mathrm{H}_{2} 0=\rho g h(1)\left(1.625 \times 10^{-3}\right)$
For clean glass $\cos \theta=1$
Equating Forces:
2(1) $\sigma=\rho g h(1)\left(1.625 \times 10^{-3}\right)$
$\mathrm{h}=\frac{2(0.0735)}{1000(9.81)\left(1.625 \times 10^{-3}\right)}=0.00922 \mathrm{~m}=9.22 \mathrm{~mm}$

1.25

Glass Tube: $\mathrm{d}_{\mathrm{i}}=0.25 \mathrm{~mm}$
$\mathrm{d}_{\mathrm{o}}=0.35 \mathrm{~mm}$
$\theta=130^{\circ}$
Surface Tension Force-
Inside: $2 \pi r_{\mathrm{i}} \sigma \cos \theta$
Outside: $2 \pi r_{\mathrm{o}} \sigma \cos \theta$
Total Upward Force
$\mathrm{F}=2 \pi \sigma \cos \theta\left(\mathrm{r}_{\mathrm{i}}+\mathrm{r}_{\mathrm{o}}\right)=2 \pi(0.44)\left(\cos 130^{\circ}\right)\left(\frac{0.25+0.35}{2} \times 10^{-3}\right)=5.33 \times 10^{-4} \mathrm{~N}$

1.26

$\mathrm{H}_{2} 0$-Air-Glass Interface $@ 40^{\circ} \mathrm{C}$
Tube Radius $=1 \mathrm{~mm}$
$\mathrm{h}=\frac{2 \sigma \cos \theta}{\rho g r} \quad \cos \theta=1$
$\sigma=0.123[1-0.0139(313)]=0.0695 \mathrm{~N} / \mathrm{m}$
$\mathrm{h}=\frac{2(0.0695)}{993(9.81)\left(1 \times 10^{-3}\right)}=0.0143 \mathrm{~m}(1.43 \mathrm{~cm})$
1.27

Soap Bubble- $\mathrm{T}=20^{\circ} \mathrm{C} \quad \mathrm{d}=4 \mathrm{~mm}$
$\sigma=0.025 \mathrm{~N} / \mathrm{m}$ (Table 1.2)
Force Balance for Bubble:
$\pi \mathrm{r}^{2} \Delta \mathrm{P}=2 \pi \mathrm{r} \sigma$
so $\Delta \mathrm{P}=\frac{2 \sigma}{r}=\frac{2(0.025)}{2 \times 10^{-3}}=25 \mathrm{~N} / \mathrm{m}^{2}=25 \mathrm{~Pa}$

1.28

Glass Tube in $\mathrm{Hg}(\mathrm{S} . \mathrm{G} .=13.6)$
For Hg/ Glass: $\sigma=0.44 \mathrm{~N} / \mathrm{m}$
$\theta=130^{\circ}$
$\mathrm{h}=\frac{2 \sigma}{\rho g r} \quad \mathrm{r}=3 \mathrm{~mm}$
$=\frac{2(0.44)}{13.6(1000)\left(1.5 \times 10^{-3}\right)}$
$=-0.0277 \mathrm{~m}$
$=2.77 \mathrm{~cm}$ Depression

1.29

$$
\begin{array}{ll}
@ 60^{\circ} \mathrm{C} & \sigma_{H 20}=0.0662 \mathrm{~N} / \mathrm{m} \\
& \sigma_{H g}=0.44 \mathrm{~N} / \mathrm{m}
\end{array}
$$

Tube Diameter $=0.55 \mathrm{~mm}$
$\mathrm{h}=\frac{2 \sigma \cos \theta}{\rho g r}$
For $\mathrm{H}_{2} 0: \quad h=\frac{2(0.0662) \cos (0)}{983(9.81)\left(\frac{0.55 \times 10^{-3}}{2}\right)}=0.0499 \mathrm{~m}(4.99 \mathrm{~cm}$ Rise $)$
For $\mathrm{Hg}: \quad h=\frac{2(0.44)\left(\cos 130^{\circ}\right)}{13.6(983)(9.81)\left(\frac{0.55 \times 10^{-3}}{2}\right)}=-0.0157 \mathrm{~m}(1.57 \mathrm{~cm}$ Depression $)$
1.30
$\mathrm{H}_{2} 0$ / Glass Interface
$\mathrm{T}=30^{\circ} \mathrm{C}$
$\sigma=0.123[1-0.0139(303)]=0.0712 \mathrm{~N} / \mathrm{m}$
$\rho=996 \mathrm{~kg} / \mathrm{m}^{3}$
$\mathrm{h} \leq 1 \mathrm{~mm}$
$\mathrm{h}=\frac{2 \sigma \cos \theta}{\rho g r} \quad \cos \theta=1$
$\mathrm{r}=\frac{2 \sigma}{\rho g h}=\frac{2(0.0712)}{996(9.81)\left(1 \times 10^{-3}\right)}=0.0146 \mathrm{~m}(1.457 \mathrm{~cm})$
$\mathrm{d}=2 \mathrm{r}=2.915 \mathrm{~cm}$

1.31

Bubble Diameter $=0.25 \mathrm{~cm}=0.0025 \mathrm{~m}$, and so Radius $=0.00125 \mathrm{~m}$ Capillary Tube: Diameter $=0.2 \mathrm{~cm}=0.002 \mathrm{~m}$, and so Radius $=0.001 \mathrm{~m}$

Beginning with:

$$
\Delta P=\frac{2 \sigma}{R}
$$

Rearrange and remember the unit conversion $\mathrm{Pa}=\mathrm{kg} / \mathrm{ms}^{2}$,

$$
\sigma=\frac{\left(P-P_{0}\right) R}{2}=\frac{(101453 \mathrm{~Pa}-101325 \mathrm{~Pa})(0.00125 \mathrm{~m})}{2}=0.08 \mathrm{~Pa} \cdot \mathrm{~m}=0.08 \mathrm{~kg} / \mathrm{s}^{2}
$$

Next, we can calculate the height of the fluid in the tube:

$$
h=\frac{2 \sigma \cos \theta}{\rho g r}=\frac{2\left(0.08 \mathrm{~kg} / \mathrm{s}^{2}\right) \cos (30)}{\left(750 \frac{\mathrm{~kg}}{\mathrm{~m}^{3}}\right)\left(9.8 \frac{\mathrm{~m}}{\mathrm{~s}}\right)(0.001 \mathrm{~m})}=0.01885 \mathrm{~m}=1.885 \mathrm{~cm}
$$

1.32

First, calculate the surface tension of water using the temperature of the water:
$T=80^{\circ} \mathrm{C}=353 \mathrm{~K}$
$\sigma=0.123(1-0.00139 T)$
$\sigma=0.123(1-0.00139(353))=0.06265 \mathrm{~N} / \mathrm{m}$
Next, using the equation for the height of a fluid in a capillary,
$h=\frac{2 \sigma \cos \theta}{\rho g r}$
Rearranging and solving for the radius:

$$
\begin{aligned}
& r=\frac{2 \sigma \cos \theta}{\rho g h} \\
& =\frac{2(0.06265 \mathrm{~N} / \mathrm{m}) \cos (0)}{\left(\left(\frac{97.18 \mathrm{~g}}{100 \mathrm{mls}}\right)\left(\frac{\mathrm{kg}}{1000 \mathrm{~g}}\right)\left(\frac{1000 \mathrm{ml}}{\text { liter }}\right)\left(\frac{28.32 \mathrm{l}}{0.028317 \mathrm{~m}^{3}}\right)\right)\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)(17.5 \mathrm{~mm})\left(\frac{\mathrm{m}}{1000 \mathrm{~mm}}\right)} \\
& =7.509 \times 10^{-4} \text { meters }=0.7509 \mathrm{~mm}
\end{aligned}
$$

Diameter is 2 r so $\mathrm{D}=1.50 \mathrm{~mm}$

1.32

First, calculate the surface tension of water using the equation for the height:
$h=\frac{2 \sigma \cos \theta}{\rho g r}$
Rearrange, solving for σ,

$$
\begin{aligned}
\sigma=\frac{h \rho g r}{2 \cos \theta}= & \frac{(1.88 \mathrm{~cm})\left(\frac{\mathrm{m}}{100 \mathrm{~cm}}\right)\left(987 \mathrm{~kg} / \mathrm{m}^{3}\right)\left(9.81 \mathrm{~m} / \mathrm{s}^{2}\right)\left(\frac{1.5 \mathrm{~mm}}{2}\right)\left(\frac{\mathrm{m}}{1000 \mathrm{~mm}}\right)}{2 \cos 0} \\
& =0.0683 \frac{\mathrm{~kg}}{\mathrm{~s}^{2}}=0.0683 \mathrm{~N} / \mathrm{m}
\end{aligned}
$$

Now use the surface tension to calculate the temperature:

$$
\begin{aligned}
& \sigma=0.123(1-0.00139 T) \\
& 0.0683 \mathrm{~N} / \mathrm{m}=0.123(1-0.00139 T) \\
& T=320.2 K=47.02^{\circ} \mathrm{C}
\end{aligned}
$$

