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Chapter 2 
 

 

1. The speed (assumed constant) is v = (90 km/h)(1000 m/km)  (3600 s/h) = 25 m/s. 

Thus, in 0.50 s, the car travels a distance d = vt = (25 m/s)(0.50 s)  13 m.  

 

2. (a) Using the fact that time = distance/velocity while the velocity is constant, we 

find 

avg 73.2 m 73.2 m
3.05 m1.22 m/s

73.2 m 73.2 m
1.74 m/s.v


 


 

 

(b) Using the fact that distance = vt while the velocity v is constant, we find 

 

vavg

 m / s)(60 s)  m / s)(60 s)

 s
 m / s.




( . ( .
.

122 305

120
214  

 

(c) The graphs are shown below (with meters and seconds understood). The first 

consists of two (solid) line segments, the first having a slope of 1.22 and the second 

having a slope of 3.05. The slope of the dashed line represents the average velocity (in 

both graphs). The second graph also consists of two (solid) line segments, having the 

same slopes as before — the main difference (compared to the first graph) being that 

the stage involving higher-speed motion lasts much longer. 

 

 
 

3. THINK This one-dimensional kinematics problem consists of two parts, and we 

are asked to solve for the average velocity and average speed of the car.   

 

EXPRESS Since the trip consists of two parts, let the displacements during first and 

second parts of the motion be x1 and x2, and the corresponding time intervals be t1 

and t2, respectively. Now, because the problem is one-dimensional and both 

displacements are in the same direction, the total displacement is simply x = x1 + 

x2, and the total time for the trip is t = t1 + t2. Using the definition of average 

velocity given in Eq. 2-2, we have  

1 2
avg

1 2

.
x xx

v
t t t

 
 
  
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To find the average speed, we note that during a time t if the velocity remains a 

positive constant, then the speed is equal to the magnitude of velocity, and the 

distance is equal to the magnitude of displacement, with | | .d x v t     

 

ANALYZE 

(a) During the first part of the motion, the displacement is x1 = 40 km and the time 

taken is 

t1

40
133 

(
.

 km)

(30 km / h)
 h.  

Similarly, during the second part of the trip the displacement is x2 = 40 km and the 

time interval is 

t2

40
0 67 

(
.

 km)

(60 km / h)
 h.  

 

The total displacement is x = x1 + x2 = 40 km + 40 km = 80 km, and the total time 

elapsed is t = t1 + t2 = 2.00 h. Consequently, the average velocity is 

 

avg

(80 km)
40 km/h.

(2.0 h)

x
v

t


  


 

 

(b) In this case, the average speed is the same as the magnitude of the average 

velocity: avg 40 km/h.s   

 

(c) The graph of the entire trip, shown below, consists of two contiguous line 

segments, the first having a slope of 30 km/h and connecting the origin to (t1, x1) = 

(1.33 h, 40 km)  and the second having a slope of 60 km/h and connecting (t1, x1) 

to (t, x) = (2.00 h, 80 km).  

 

 
 

From the graphical point of view, the slope of the dashed line drawn from the origin 

to (t, x) represents the average velocity.  

 

LEARN The average velocity is a vector quantity that depends only on the net 

displacement (also a vector) between the starting and ending points. 

 

4. Average speed, as opposed to average velocity, relates to the total distance, as 

opposed to the net displacement. The distance D up the hill is, of course, the same as 

the distance down the hill, and since the speed is constant (during each stage of the 
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motion) we have speed = D/t. Thus, the average speed is 

 

D D

t t

D

D

v

D

v

up down

up down

up down








2
 

 

which, after canceling D and plugging in vup = 40 km/h and vdown = 60 km/h, yields 48 

km/h for the average speed. 

 

5. THINK In this one-dimensional kinematics problem, we’re given the position 

function x(t), and asked to calculate the position and velocity of the object at a later 

time.  

 

EXPRESS The position function is given as x(t) = (3 m/s)t – (4 m/s
2
)t

2
 + (1 m/s

3
)t

3
. 

The position of the object at some instant t0 is simply given by x(t0). For the time 

interval 1 2t t t  , the displacement is 2 1( ) ( )x x t x t   . Similarly, using Eq. 2-2, 

the average velocity for this time interval is 

 2 1
avg

2 1

( ) ( )
.

x t x tx
v

t t t


 
 

 

 

ANALYZE (a) Plugging in t = 1 s into x(t) yields  

 

x(1 s) = (3 m/s)(1 s) – (4 m/s
2
)(1 s)

2
 + (1 m/s

3
)(1 s)

3
 = 0. 

 

(b) With t = 2 s we get x(2 s) = (3 m/s)(2 s) – (4 m/s
2
) (2 s)

2 
+ (1 m/s

3
)(2 s)

3 
= –2 m.  

 

(c) With t = 3 s we have x (3 s) = (3 m/s)(3 s) – (4 m/s
2
) (3 s)

2 
+ (1 m/s

3
)(3 s)

3 
= 0 m. 

 

(d) Similarly, plugging in t = 4 s gives  

 

x(4 s) = (3 m/s)(4 s) – (4 m/s
2
)(4 s)

2 
+ (1 m/s

3
) (4 s)

3
 = 12 m. 

 

(e) The position at t = 0 is x = 0. Thus, the displacement between t = 0 and t = 4 s is 

(4 s) (0) 12 m 0 12 m.x x x       

 

(f) The position at t = 2 s is subtracted from the position at t = 4 s to give the 

displacement: (4 s) (2 s) 12 m ( 2 m) 14 mx x x       . Thus, the average velocity 

is 

avg

14 m
7 m/s.

2 s

x
v

t


  


 

 

(g) The position of the object for the interval 0  t  4 is plotted below. The straight 

line drawn from the point at (t, x) = (2 s, –2 m) to (4 s, 12 m) would represent the 

average velocity, answer for part (f). 

 



CHAPTER 2 

 

26 

 

 
 

LEARN Our graphical representation illustrates once again that the average velocity 

for a time interval depends only on the net displacement between the starting and 

ending points. 

 

6. Huber’s speed is  

v0 = (200 m)/(6.509 s) =30.72 m/s = 110.6 km/h, 

 

where we have used the conversion factor 1 m/s = 3.6 km/h. Since Whittingham beat 

Huber by 19.0 km/h, his speed is v1 = (110.6 km/h + 19.0 km/h) = 129.6 km/h, or 36 

m/s (1 km/h = 0.2778 m/s). Thus, using Eq. 2-2, the time through a distance of 200 m 

for Whittingham is 

1

200 m
5.554 s.

36 m/s

x
t

v


     

 

7. Recognizing that the gap between the trains is closing at a constant rate of 60 km/h, 

the total time that elapses before they crash is t = (60 km)/(60 km/h) = 1.0 h. During 

this time, the bird travels a distance of x = vt = (60 km/h)(1.0 h) = 60 km. 

 

8. The amount of time it takes for each person to move a distance L with speed sv  is 

/ st L v  . With each additional person, the depth increases by one body depth d  

 

(a) The rate of increase of the layer of people is  

 

 
(0.25 m)(3.50 m/s)

0.50 m/s
/ 1.75 m

s

s

dvd d
R

t L v L
    


 

(b) The amount of time required to reach a depth of 5.0 mD  is 

 
5.0 m

10 s
0.50 m/s

D
t

R
    

 

9. Converting to seconds, the running times are t1 = 147.95 s and t2 = 148.15 s, 

respectively. If the runners were equally fast, then 

 

1 2
avg avg1 2

1 2

     .
L L

s s
t t

    

From this we obtain 
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2
2 1 1 1 1

1

148.15
1 1  0.00135 1.4 m

147.95

t
L L L L L

t

   
         

  
 

 

where we set L1  1000 m in the last step. Thus, if L1 and L2 are no different than 

about 1.4 m, then runner 1 is indeed faster than runner 2. However, if L1 is shorter 

than L2 by more than 1.4 m, then runner 2 would actually be faster. 

 

10. Let 
wv be the speed of the wind and 

cv  be the speed of the car. 

 

(a) Suppose during time interval 
1t , the car moves in the same direction as the wind. 

Then the effective speed of the car is given by
,1eff c wv v v  , and the distance traveled 

is ,1 1 1( )eff c wd v t v v t   . On the other hand, for the return trip during time interval t2, 

the car moves in the opposite direction of the wind and the effective speed would be 

,2eff c wv v v  . The distance traveled is ,2 2 2( )eff c wd v t v v t   . The two expressions 

can be rewritten as 

1 2

andc w c w

d d
v v v v

t t
     

Adding the two equations and dividing by two, we obtain 
1 2

1

2
c

d d
v

t t

 
  

 
. Thus, 

method 1 gives the car’s speed
cv a in windless situation. 

 

(b) If method 2 is used, the result would be 

  
2

2 2

1 2 1 2

2 2
1

( ) / 2

c w w
c c

c c

c w c w

v v vd d d
v v

d dt t t t v v

v v v v

  
        

      
 

. 

The fractional difference is  

2

2 4(0.0240) 5.76 10c c w

c c

v v v

v v

 
    
 

. 

11. The values used in the problem statement make it easy to see that the first part of 

the trip (at 100 km/h) takes 1 hour, and the second part (at 40 km/h) also takes 1 hour.  

Expressed in decimal form, the time left is 1.25 hour, and the distance that remains is 

160 km. Thus, a speed v = (160 km)/(1.25 h) = 128 km/h is needed. 

 

12. (a) Let the fast and the slow cars be separated by a distance d at t = 0. If during the 

time interval / (12.0 m) /(5.0 m/s) 2.40 sst L v   in which the slow car has moved 

a distance of 12.0 mL  , the fast car moves a distance of vt d L   to join the line 

of slow cars, then the shock wave would remain stationary. The condition implies a 

separation of 

 (25 m/s)(2.4 s) 12.0 m 48.0 m.d vt L      

 

(b) Let the initial separation at 0t   be 96.0 m.d   At a later time t, the slow and 
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the fast cars have traveled 
sx v t  and the fast car joins the line by moving a distance 

d x . From 

 ,
s

x d x
t

v v


   

we get   

5.00 m/s
(96.0 m) 24.0 m,

25.0 m/s 5.00 m/s

s

s

v
x d

v v
  

 
 

 

which in turn gives (24.0 m) /(5.00 m/s) 4.80 s.t    Since the rear of the slow-car 

pack has moved a distance of 24.0 m 12.0 m 12.0 mx x L      downstream, the 

speed of the rear of the slow-car pack, or equivalently, the speed of the shock wave, is 

 

 
shock

12.0 m
2.50 m/s.

4.80 s

x
v

t


    

(c) Since x L , the direction of the shock wave is downstream. 

 

13. (a) Denoting the travel time and distance from San Antonio to Houston as T and D, 

respectively, the average speed is 

 

avg1

(55 km/h)( /2) (90 km/h)( / 2)
72.5 km/h

D T T
s

T T


    

 

which should be rounded to 73 km/h. 

 

(b) Using the fact that time = distance/speed while the speed is constant, we find 

 

avg2 / 2 / 2
55 km/h 90 km/h

68.3 km/h
D D

D D
s

T
  


 

 

which should be rounded to 68 km/h. 

 

(c) The total distance traveled (2D) must not be confused with the net displacement 

(zero). We obtain for the two-way trip 

avg

72.5 km/h 68.3 km/h

2
70 km/h.

D D

D
s  


 

 

(d) Since the net displacement vanishes, the average velocity for the trip in its entirety 

is zero. 

 

(e) In asking for a sketch, the problem is allowing the student to arbitrarily set the 

distance D (the intent is not to make the student go to an atlas to look it up); the 

student can just as easily arbitrarily set T instead of D, as will be clear in the following 

discussion. We briefly describe the graph (with kilometers-per-hour understood for 

the slopes): two contiguous line segments, the first having a slope of 55 and 

connecting the origin to (t1, x1) = (T/2, 55T/2) and the second having a slope of 90 and 

connecting (t1, x1) to (T, D) where D = (55 + 90)T/2. The average velocity, from the 
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graphical point of view, is the slope of a line drawn from the origin to (T, D). The 

graph (not drawn to scale) is depicted below: 

 

 
 

14. Using the general property d
dx

bx b bxexp( ) exp( ) , we write 

 

v
dx

dt

d t

dt
e t

de

dt

t
t

 
F
HG
I
KJ   

F
HG
I
KJ


( )

( )
19

19 .  

 

If a concern develops about the appearance of an argument of the exponential (–t) 

apparently having units, then an explicit factor of 1/T where T = 1 second can be 

inserted and carried through the computation (which does not change our answer). 

The result of this differentiation is 

v t e t  16 1( )  

 

with t and v in SI units (s and m/s, respectively). We see that this function is zero 

when t = 1 s.  Now that we know when it stops, we find out where it stops by 

plugging our result t = 1 into the given function x = 16te
–t

 with x in meters. Therefore, 

we find x = 5.9 m. 

 

15. We use Eq. 2-4 to solve the problem. 

 

(a) The velocity of the particle is 

 

v
dx

dt

d

dt
t t t        ( ) .4 12 3 12 62  

 

Thus, at t = 1 s, the velocity is v = (–12 + (6)(1)) = –6 m/s. 

 

(b) Since v  0, it is moving in the –x direction at t = 1 s. 

 

(c) At t = 1 s, the speed is |v| = 6 m/s. 

 

(d) For 0  t  2 s, |v| decreases until it vanishes. For 2  t  3 s, |v| increases from 

zero to the value it had in part (c). Then, |v| is larger than that value for t  3 s. 

 

(e) Yes, since v smoothly changes from negative values (consider the t = 1 result) to 

positive (note that as t  + , we have v  + ). One can check that v = 0 when 

2 s.t   
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(f) No. In fact, from v = –12 + 6t, we know that v  0 for t  2 s. 

 

16. We use the functional notation x(t), v(t), and a(t) in this solution, where the latter 

two quantities are obtained by differentiation: 

 

v t
dx t

dt
t a t

dv t

dt
b g b g b g b g     12 12and  

 

with SI units understood. 

 

(a) From v(t) = 0 we find it is (momentarily) at rest at t = 0. 

 

(b) We obtain x(0) = 4.0 m. 

 

(c) and (d) Requiring x(t) = 0 in the expression x(t) = 4.0 – 6.0t
2
 leads to t = 0.82 s 

for the times when the particle can be found passing through the origin. 

 

(e) We show both the asked-for graph (on the left) as well as the “shifted” graph that 

is relevant to part (f). In both cases, the time axis is given by –3  t  3 (SI units 

understood). 

 
 

(f) We arrived at the graph on the right (shown above) by adding 20t to the x(t) 

expression. 

 

(g) Examining where the slopes of the graphs become zero, it is clear that the shift 

causes the v = 0 point to correspond to a larger value of x (the top of the second curve 

shown in part (e) is higher than that of the first). 

 

17. We use Eq. 2-2 for average velocity and Eq. 2-4 for instantaneous velocity, and 

work with distances in centimeters and times in seconds. 

 

(a) We plug into the given equation for x for t = 2.00 s and t = 3.00 s and obtain x2 = 

21.75 cm and x3 = 50.25 cm, respectively. The average velocity during the time 

interval 2.00  t  3.00 s is 

v
x

t
avg 

 cm  cm

 s  s
 









50 25 2175

300 2 00

. .

. .
 

which yields vavg = 28.5 cm/s. 

 

(b) The instantaneous velocity is v tdx
dt

  4 5 2. , which, at time t = 2.00 s, yields v = 

(4.5)(2.00)
2
 = 18.0 cm/s. 
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(c) At t = 3.00 s, the instantaneous velocity is v = (4.5)(3.00)
2
 = 40.5 cm/s. 

 

(d) At t = 2.50 s, the instantaneous velocity is v = (4.5)(2.50)
2
 = 28.1 cm/s. 

 

(e) Let tm stand for the moment when the particle is midway between x2 and x3 (that is, 

when the particle is at xm = (x2 + x3)/2 = 36 cm). Therefore, 

 

x t tm m m   9 75 15 25963. . .       

 

in seconds. Thus, the instantaneous speed at this time is v = 4.5(2.596)
2
 = 30.3 cm/s. 

 

(f) The answer to part (a) is given by the slope of the straight line between t = 2 and t 

= 3 in this x-vs-t plot. The answers to parts (b), (c), (d), and (e) correspond to the 

slopes of tangent lines (not shown but easily imagined) to the curve at the appropriate 

points. 

 
 

18. (a) Taking derivatives of x(t) = 12t
2
 – 2t

3
 we obtain the velocity and the 

acceleration functions: 

v(t) = 24t – 6t
2
   and   a(t) = 24 – 12t 

 

with length in meters and time in seconds. Plugging in the value t = 3 yields 

(3) 54 mx  . 

 

(b) Similarly, plugging in the value t = 3 yields v(3) = 18 m/s. 

 

(c) For t = 3, a(3) = –12 m/s
2
.   

  

(d) At the maximum x, we must have v = 0; eliminating the t = 0 root, the velocity 

equation reveals t = 24/6 = 4 s for the time of maximum x.  Plugging t = 4 into the 

equation for x leads to x = 64 m for the largest x value reached by the particle. 

 

(e) From (d), we see that the x reaches its maximum at t = 4.0 s.   

 

(f) A maximum v requires a = 0, which occurs when t = 24/12 = 2.0 s. This, inserted 

into the velocity equation, gives vmax = 24 m/s. 

 

(g) From (f), we see that the maximum of v occurs at t = 24/12 = 2.0 s. 

 

(h) In part (e), the particle was (momentarily) motionless at t = 4 s. The acceleration at 

that time is readily found to be 24 – 12(4) = –24 m/s
2
. 
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(i) The average velocity is defined by Eq. 2-2, so we see that the values of x at t = 0 

and t = 3 s are needed; these are, respectively, x = 0 and x = 54 m (found in part (a)).  

Thus, 

vavg = 
54 0

3 0




 = 18 m/s. 

 

19. THINK In this one-dimensional kinematics problem, we’re given the speed of a 

particle at two instants and asked to calculate its average acceleration.  

 

EXPRESS We represent the initial direction of motion as the +x direction. The 

average acceleration over a time interval 
1 2t t t  is given by Eq. 2-7:   

 

2 1
avg

2 1

( ) ( )
.

v t v tv
a

t t t


 
 

 

 

ANALYZE Let v1 = +18 m/s at 1 0t  and v2 = –30 m/s at t2 = 2.4 s. Using Eq. 2-7 

we find 

22 1
avg

2 1

( ) ( ) ( 30 m/s) ( 1m/s)
20 m/s

2.4 s 0

v t v t
a

t t

   
   

 
. 

 

LEARN The average acceleration has magnitude 20 m/s
2
 and is in the opposite 

direction to the particle’s initial velocity. This makes sense because the velocity of the 

particle is decreasing over the time interval. With 1 0t  , the velocity of the particle 

as a function of time can be written as  

 
2

0 (18 m/s) (20 m/s )v v at t    . 

 

20. We use the functional notation x(t), v(t) and a(t) and find the latter two quantities 

by differentiating: 

v t
dx t

t
t a t

dv t

dt
tb g b g b g b g      15 20 302 and  

 

with SI units understood. These expressions are used in the parts that follow. 

 

(a) From 0 15 202  t , we see that the only positive value of t for which the 

particle is (momentarily) stopped is t  20 15 12/ . s . 

 

(b) From 0 = – 30t, we find a(0) = 0 (that is, it vanishes at t = 0). 

 

(c) It is clear that a(t) = – 30t is negative for t > 0.  

 

(d) The acceleration a(t) = – 30t is positive for t < 0. 

 

(e) The graphs are shown below. SI units are understood. 
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21. We use Eq. 2-2 (average velocity) and Eq. 2-7 (average acceleration). Regarding 

our coordinate choices, the initial position of the man is taken as the origin and his 

direction of motion during 5 min  t  10 min is taken to be the positive x direction. 

We also use the fact that  x v t '  when the velocity is constant during a time 

interval t ' . 

 

(a) The entire interval considered is t = 8 – 2 = 6 min, which is equivalent to 360 s, 

whereas the sub-interval in which he is moving is only 8 5 3min 180 s.t'      

His position at t = 2 min is x = 0 and his position at t = 8 min is x v t    

(2.2)(180) 396 m . Therefore, 

vavg

 m

 s
 m / s




396 0

360
110. .  

 

(b) The man is at rest at t = 2 min and has velocity v = +2.2 m/s at t = 8 min. Thus, 

keeping the answer to 3 significant figures, 

 

aavg

2 m / s

 s
 m / s




2 2 0

360
0 00611

.
. .  

 

(c) Now, the entire interval considered is t = 9 – 3 = 6 min (360 s again), whereas the 

sub-interval in which he is moving is 9 5 4min 240 st     ). His position at 

3 mint  is x = 0 and his position at t = 9 min is (2.2)(240) 528 mx v t    . 

Therefore, 

vavg

 m

 s
m / s.




528 0

360
147.  

 

(d) The man is at rest at t = 3 min and has velocity v = +2.2 m/s at t = 9 min. 

Consequently, aavg = 2.2/360 = 0.00611 m/s
2
 just as in part (b). 

 

(e) The horizontal line near the bottom of this 

x-vs-t graph represents the man standing at x = 0 

for 0  t < 300 s and the linearly rising line for 

300  t  600 s represents his constant-velocity 

motion. The lines represent the answers to part (a) 

and (c) in the sense that their slopes yield those 

results. 

 

The graph of v-vs-t is not shown here, but would 

consist of two horizontal “steps” (one at v = 0 for 

0  t < 300 s and the next at v = 2.2 m/s for 300  
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t  600 s). The indications of the average accelerations found in parts (b) and (d) 

would be dotted lines connecting the “steps” at the appropriate t values (the slopes of 

the dotted lines representing the values of aavg). 

 

22. In this solution, we make use of the notation x(t) for the value of x at a particular t. 

The notations v(t) and a(t) have similar meanings. 

 

(a) Since the unit of ct
2
 is that of length, the unit of c must be that of length/time

2
, or 

m/s
2
 in the SI system.  

 

(b) Since bt
3
 has a unit of length, b must have a unit of length/time

3
, or m/s

3
. 

 

(c) When the particle reaches its maximum (or its minimum) coordinate its velocity is 

zero. Since the velocity is given by v = dx/dt = 2ct – 3bt
2
, v = 0 occurs for t = 0 and 

for 

t
c

b
  

2

3

2 30

3 2 0
10

( . )

( . )
.

 m / s

 m / s
 s .

2

3
 

 

For t = 0, x = x0 = 0 and for t = 1.0 s, x = 1.0 m > x0. Since we seek the maximum, we 

reject the first root (t = 0) and accept the second (t = 1s). 

 

(d) In the first 4 s the particle moves from the origin to x = 1.0 m, turns around, and 

goes back to 

x( ( . )( . ( . )( .4 30 4 0 2 0 4 0 802 s)  m / s  s)  m / s  s)  m .2 3 3     

 

The total path length it travels is 1.0 m + 1.0 m + 80 m = 82 m. 

 

(e) Its displacement is x = x2 – x1, where x1 = 0 and x2 = –80 m. Thus, 80 mx  . 

 

The velocity is given by v = 2ct – 3bt
2
 = (6.0 m/s

2
)t – (6.0 m/s

3
)t

2
.  

 

(f) Plugging in t = 1 s, we obtain  

 
2 3 2(1 s) (6.0 m/s )(1.0 s) (6.0 m/s )(1.0 s) 0.v     

 

(g) Similarly, 2 3 2(2 s) (6.0 m/s )(2.0 s) (6.0 m/s )(2.0 s) 12m/s .v      

 

(h) 2 3 2(3 s) (6.0 m/s )(3.0 s) (6.0 m/s )(3.0 s) 36 m/s .v      

 

(i) 2 3 2(4 s) (6.0 m/s )(4.0 s) (6.0 m/s )(4.0 s) 72 m/s  .v      

 

The acceleration is given by a = dv/dt = 2c – 6b = 6.0 m/s
2
 – (12.0 m/s

3
)t. 

 

(j) Plugging in t = 1 s, we obtain 2 3 2(1 s) 6.0 m/s (12.0 m/s )(1.0 s) 6.0 m/s .a      

 

(k) 2 3 2(2 s) 6.0 m/s (12.0 m/s )(2.0 s) 18 m/s .a      
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(l) 2 3 2(3 s) 6.0 m/s (12.0 m/s )(3.0 s) 30 m/s .a      

 

(m) 2 3 2(4 s) 6.0 m/s (12.0 m/s )(4.0 s) 42 m/s .a      

 

23. THINK The electron undergoes a constant acceleration. Given the final speed of 

the electron and the distance it has traveled, we can calculate its acceleration.   

 

EXPRESS Since the problem involves constant acceleration, the motion of the 

electron can be readily analyzed using the equations given in Table 2-1: 

 

0

2

0 0

2 2

0 0

(2 11)

1
(2 15)

2

2 ( ) (2 16)

v v at

x x v t at

v v a x x

  

   

   

 

 

The acceleration can be found by solving Eq. 2-16. 

 

ANALYZE With 5

0 1.50 10 m/sv   , 65.70 10 m/sv   , x0 = 0 and x = 0.010 m, we 

find the average acceleration to be 

 

 
2 2 6 2 5 2

15 20 (5.7 10 m/s) (1.5 10 m/s)
1.62 10  m/s .

2 2(0.010 m)

v v
a

x

   
     

 

LEARN It is always a good idea to apply other equations in Table 2-1 not used for 

solving the problem as a consistency check. For example, since we now know the 

value of the acceleration, using Eq. 2-11, the time it takes for the electron to reach its 

final speed would be  
6 5

90

15 2

5.70 10  m/s 1.5 10  m/s
3.426 10  s

1.62 10  m/s

v v
t

a

   
   


 

 

Substituting the value of t into Eq. 2-15, the distance the electron travels is  

 

2 5 9 15 2 9 2

0 0

1 1
0 (1.5 10 m/s)(3.426 10 s) (1.62 10 m/s )(3.426 10 s)

2 2

0.01 m

x x v t at           


 

This is what was given in the problem statement. So we know the problem has been 

solved correctly. 

 

24. In this problem we are given the initial and final speeds, and the displacement, and 

are asked to find the acceleration. We use the constant-acceleration equation given in 

Eq. 2-16, v
2
 = v

2
0 + 2a(x – x0). 

 

(a) Given that 0 0v  , 1.6 m/s,v   and 5.0 m,x    the acceleration of the spores 

during the launch is  
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2 2 2
5 2 40

6

(1.6 m/s)
2.56 10  m/s 2.6 10

2 2(5.0 10  m)

v v
a g

x 


     


 

 

(b) During the speed-reduction stage, the acceleration is  

 
2 2 2

3 2 20

3

0 (1.6 m/s)
1.28 10  m/s 1.3 10

2 2(1.0 10  m)

v v
a g

x 

 
       


 

 

The negative sign means that the spores are decelerating. 

 

25. We separate the motion into two parts, and take the direction of motion to be 

positive. In part 1, the vehicle accelerates from rest to its highest speed; we are given 

v0 = 0; v = 20 m/s and a = 2.0 m/s
2
. In part 2, the vehicle decelerates from its highest 

speed to a halt; we are given v0 = 20 m/s; v = 0 and a = –1.0 m/s
2
 (negative because 

the acceleration vector points opposite to the direction of motion). 

 

(a) From Table 2-1, we find t1 (the duration of part 1) from v = v0 + at. In this way, 

120 0 2.0t  yields t1 = 10 s. We obtain the duration t2 of part 2 from the same      

equation. Thus, 0 = 20 + (–1.0)t2 leads to t2 = 20 s, and the total is t = t1 + t2 = 30 s. 

 

(b) For part 1, taking x0 = 0, we use the equation v
2
 = v

2
0 + 2a(x – x0) from Table 2-1 

and find 

 
2 2 2 2

0

2

(20 m/s) (0)
100 m

2 2(2.0 m/s )

v v
x

a

 
   . 

 

This position is then the initial position for part 2, so that when the same equation is     

used in part 2 we obtain 
2 2 2 2

0

2

(0) (20 m/s)
100 m

2 2( 1.0 m/s )

v v
x

a

 
  


. 

 

Thus, the final position is x = 300 m. That this is also the total distance traveled 

should be evident (the vehicle did not "backtrack" or reverse its direction of motion). 

 

26. The constant-acceleration condition permits the use of Table 2-1. 

 

(a) Setting v = 0 and x0 = 0 in 2 2

0 02 ( )v v a x x   , we find 

 
2 6 2

0

14

1 1 (5.00 10 )
0.100 m .

2 2 1.25 10

v
x

a


    

 
 

 

Since the muon is slowing, the initial velocity and the acceleration must have opposite 

signs. 

 

(b) Below are the time plots of the position x and velocity v of the muon from the 

moment it enters the field to the time it stops. The computation in part (a) made no 

reference to t, so that other equations from Table 2-1 (such as v v at 0 and  
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x v t at 0
1
2

2) are used in making these plots. 

 

 
 

27. We use v = v0 + at, with t = 0 as the instant when the velocity equals +9.6 m/s. 

 

(a) Since we wish to calculate the velocity for a time before t = 0, we set t = –2.5 s. 

Thus, Eq. 2-11 gives 

v    ( . . ( . .9 6 32 2 5 16 m/ s)  m/ s   s)  m/ s.2c h  

 

(b) Now, t = +2.5 s and we find v   ( . . ( .9 6 32 2 5 18 m/ s)  m/ s   s)  m/ s.2c h  

 

28. We take +x in the direction of motion, so v0 = +24.6 m/s and a = – 4.92 m/s
2
. We 

also take x0 = 0. 

 

(a) The time to come to a halt is found using Eq. 2-11: 

 

0 2

24.6 m/s
0 5.00 s

4.92 m/s
.v at t


      

 

(b) Although several of the equations in Table 2-1 will yield the result, we choose Eq. 

2-16 (since it does not depend on our answer to part (a)). 

 

 

2
2

0 2

(24.6 m/s)
0 2 61.5 m

2 4.92 m/s
.v ax x


       

 

(c) Using these results, we plot 21
0 2

v t at  (the x graph, shown next, on the left) and 

v0 + at (the v graph, on the right) over 0  t  5 s, with SI units understood. 
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29. We assume the periods of acceleration (duration t1) and deceleration (duration t2) 

are periods of constant a so that Table 2-1 can be used. Taking the direction of motion 

to be +x then a1 = +1.22 m/s
2
 and a2 = –1.22 m/s

2
. We use SI units so the velocity at t 

= t1 is v = 305/60 = 5.08 m/s. 

 

(a) We denote x as the distance moved during t1, and use Eq. 2-16: 

 
2

2 2

0 1 2

(5.08 m/s)
2     

2(1.22 m/s )
v v a x x      10.59 m 10.6 m.   

(b) Using Eq. 2-11, we have 

0
1 2

1

5.08 m/s
4.17 s.

1.22 m/s

v v
t

a


    

 

The deceleration time t2 turns out to be the same so that t1 + t2 = 8.33 s. The distances 

traveled during t1 and t2 are the same so that they total to 2(10.59 m) = 21.18 m. This 

implies that for a distance of 190 m – 21.18 m = 168.82 m, the elevator is traveling at 

constant velocity. This time of constant velocity motion is 

 

t3

16882

508
3321 

.

.
.

 m

 m / s
 s.  

 

Therefore, the total time is 8.33 s + 33.21 s  41.5 s. 

 

30. We choose the positive direction to be that of the initial velocity of the car 

(implying that a < 0 since it is slowing down). We assume the acceleration is constant 

and use Table 2-1. 

 

(a) Substituting v0 = 137 km/h = 38.1 m/s, v = 90 km/h = 25 m/s, and a = –5.2 m/s
2
 

into v = v0 + at, we obtain 

 

t 





25 38

52
2 5

2

m / s m / s

m / s
s

.
. .  

 

(b) We take the car to be at x = 0 when the brakes 

are applied (at time t = 0). Thus, the coordinate of 

the car as a function of time is given by 

 

   2 21
38 m/s 5.2 m/s

2
x t t    

 

in SI units. This function is plotted from t = 0 to t 

= 2.5 s on the graph to the right. We have not 

shown the v-vs-t graph here; it is a descending 

straight line from v0 to v. 

 

31. THINK The rocket ship undergoes a constant acceleration from rest, and we want 

to know the time elapsed and the distance traveled when the rocket reaches a certain 

speed.  
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EXPRESS Since the problem involves constant acceleration, the motion of the rocket 

can be readily analyzed using the equations in Table 2-1: 

0

2

0 0

2 2

0 0

(2 11)

1
(2 15)

2

2 ( ) (2 16)

v v at

x x v t at

v v a x x

  

   

   

 

 

ANALYZE (a) Given that 29.8 m/sa  , 
0 0v   and 70.1 3.0 10 m/sv c   , we can 

solve 0v v at   for the time: 

7
60

2

3.0 10  m/s 0
3.1 10  s

9.8 m/s

v v
t

a

  
     

 

which is about 1.2 months. So it takes 1.2 months for the rocket to reach a speed of 

0.1c starting from rest with a constant acceleration of 9.8 m/s
2
. 

 

(b) To calculate the distance traveled during this time interval, we evaluate 

x x v t at  0 0
1
2

2 , with x0 = 0 and 0 0v . The result is 

 2 6 2 131
9.8 m/s (3.1 10 s) 4.6 10  m.

2
x      

 

LEARN In solving parts (a) and (b), we did not use Eq. (2-16): 2 2

0 02 ( )v v a x x   . 

This equation can be used to check our answers. The final velocity based on this 

equation is 

  
2 2 13 7

0 02 ( ) 0 2(9.8 m/s )(4.6 10  m 0) 3.0 10 m/sv v a x x         , 

 

which is what was given in the problem statement. So we know the problems have 

been solved correctly. 

 

32. The acceleration is found from Eq. 2-11 (or, suitably interpreted, Eq. 2-7). 

 

a
v

t
 

F
HG

I
KJ






1020
1000

3600

14
202 4 2

km / h
m / km

s / h

s
m / s

b g
.

. . 

 

In terms of the gravitational acceleration g, this is expressed as a multiple of 9.8 m/s
2
 

as follows: 
2

2

202.4 m/s
21 .

9.8 m/s
a g g

 
  
 

 

 

33. THINK The car undergoes a constant negative acceleration to avoid impacting a 

barrier. Given its initial speed, we want to know the distance it has traveled and the 

time elapsed prior to the impact.   
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EXPRESS Since the problem involves constant acceleration, the motion of the car 

can be readily analyzed using the equations in Table 2-1: 

 

0

2

0 0

2 2

0 0

(2 11)

1
(2 15)

2

2 ( ) (2 16)

v v at

x x v t at

v v a x x

  

   

   

 

 

We take x0 = 0 and v0 = 56.0 km/h = 15.55 m/s to be the initial position and speed of 

the car. Solving Eq. 2-15 with t = 2.00 s gives the acceleration a. Once a is known, the 

speed of the car upon impact can be found by using Eq. 2-11. 

 

ANALYZE (a) Using Eq. 2-15, we find the acceleration to be 

  

  20

2 2

2 (24.0 m) (15.55 m/s)(2.00 s)2( )
3.56m/s ,

(2.00 s)

x v t
a

t


     

 

or 2| | 3.56 m/sa  . The negative sign indicates that the acceleration is opposite to the 

direction of motion of the car; the car is slowing down. 

 

(b) The speed of the car at the instant of impact is 

 
2

0 15.55 m/s ( 3.56 m/s )(2.00 s) 8.43 m/sv v at       

 

which can also be converted to30.3 km/h. 

 

LEARN In solving parts (a) and (b), we did not use Eq. 1-16. This equation can be 

used as a consistency check. The final velocity based on this equation is 

  

2 2 2

0 02 ( ) (15.55 m/s) 2( 3.56 m/s )(24 m 0) 8.43 m/sv v a x x        , 

 

which is what was calculated in (b). This indicates that the problems have been solved 

correctly. 

 

34. Let d be the 220 m distance between the cars at t = 0, and v1 be the 20 km/h = 50/9 

m/s speed (corresponding to a passing point of x1 = 44.5 m) and v2 be the 40 km/h 

=100/9 m/s speed (corresponding to a passing point of x2 = 76.6 m) of the red car.  

We have two equations (based on Eq. 2-17): 

 

d – x1 = vo t1  + 
1

2
 a t1

2
    where t1 = x1  v1 

 

d – x2 = vo t2  + 
1

2
 a t2

2
    where t2 = x2   v2 

 

We simultaneously solve these equations and obtain the following results: 
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(a) The initial velocity of the green car is vo =  13.9 m/s. or roughly  50 km/h (the 

negative sign means that it’s along the –x direction). 

 

(b) The corresponding acceleration of the car is a =  2.0 m/s
2
 (the negative sign 

means that it’s along the –x direction). 

 

35. The positions of the cars as a function of time are given by 

 

 

2 2

0

0

1 1
( ) ( 35.0 m)

2 2

( ) (270 m) (20 m/s)

r r r r

g g g

x t x a t a t

x t x v t t

    

   

 

 

where we have substituted the velocity and not the speed for the green car. The two 

cars pass each other at 12.0 st   when the graphed lines cross. This implies that  

 

21
(270 m) (20 m/s)(12.0 s) 30 m ( 35.0 m) (12.0 s)

2
ra      

 

which can be solved to give 20.90 m/s .ra   

 

36. (a) Equation 2-15 is used for part 1 of the trip and Eq. 2-18 is used for part 2:  

 

  x1 = vo1 t1 + 
1

2
 a1 t1

2
     where a1 = 2.25 m/s

2
 and x1 = 

900

4
 m 

 

      x2 = v2 t2  
1

2
 a2 t2

2
      where a2 = 0.75 m/s

2
 and x2 = 

3(900)

4
 m 

 

In addition, vo1 = v2 = 0. Solving these equations for the times and adding the results 

gives t = t1 + t2 = 56.6 s. 

  

(b) Equation 2-16 is used for part 1 of the trip: 

 

v
2
 = (vo1)

2
 + 2a1x1 = 0 + 2(2.25)

900

4

 
 
 

= 1013 m
2
/s

2
 

 

which leads to v = 31.8 m/s for the maximum speed. 

 

37. (a) From the figure, we see that x0 = –2.0 m. From Table 2-1, we can apply  

 

x – x0 = v0t + 1
2

at
2
 

 

with t = 1.0 s, and then again with t = 2.0 s. This yields two equations for the two 

unknowns, v0 and a: 
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     

     

2

0

2

0

1
0.0 2.0 m 1.0 s 1.0 s

2

1
6.0 m 2.0 m 2.0 s 2.0 s .

2

v a

v a

   

   

 

 

Solving these simultaneous equations yields the results v0 = 0 and a = 4.0 m/s
2
.  

 

(b) The fact that the answer is positive tells us that the acceleration vector points in 

the +x direction. 

 

38. We assume the train accelerates from rest ( v0 0  and x0 0 ) at 

a1

2134  . m / s  until the midway point and then decelerates at a2

2134  . m/ s  

until it comes to a stop v2 0b g  at the next station. The velocity at the midpoint is v1, 

which occurs at x1 = 806/2 = 403m. 

 

(a) Equation 2-16 leads to 

 

  2 2 2

1 0 1 1 12 2 1.34 m/s 403 mv v a x v    32.9 m/s.  

 

(b) The time t1 for the accelerating stage is (using Eq. 2-15) 

 

 2

1 0 1 1 1 1 2

2 403 m1
24.53 s

2 1.34 m/s
x v t a t t     . 

 

Since the time interval for the decelerating stage turns out to be the same, we double 

this result and obtain t = 49.1 s for the travel time between stations. 

 

(c) With a “dead time” of 20 s, we have T = t + 20 = 69.1 s for the total time between 

start-ups. Thus, Eq. 2-2 gives 

vavg

m

s
m / s . 

806

691
117

.
.  

 

(d) The graphs for x, v and a as a function of t are shown below. The third graph, a(t), 

consists of three horizontal “steps” — one at 1.34 m/s
2
  during 0 < t < 24.53 s, and 

the next at –1.34 m/s
2
 during 24.53 s < t < 49.1 s and the last at zero during the “dead 

time” 49.1 s < t < 69.1 s).  
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39. (a) We note that vA = 12/6 = 2 m/s (with two significant figures understood).  

Therefore, with an initial x value of 20 m, car A will be at x = 28 m when t = 4 s.  

This must be the value of x for car B at that time; we use Eq. 2-15: 

 

28 m = (12 m/s)t + 
1

2
 aB t

2
    where t = 4.0 s . 

 

This yields aB = – 2.5 m/s
2
. 

 

(b) The question is: using the value obtained for aB in part (a), are there other values 

of t (besides t = 4 s) such that xA = xB ? The requirement is 

 

20 + 2t = 12t + 
1

2
 aB t

2
 

 

where B 5/ 2.a   There are two distinct roots unless the discriminant 

10
2
  2(20)(aB)  is zero. In our case, it is zero – which means there is only one root.  

The cars are side by side only once at t = 4 s.  

  

(c) A sketch is shown below. It consists of a straight line (xA) tangent to a parabola (xB) 

at t = 4. 

 
 

(d) We only care about real roots, which means 10
2
  2(20)(aB)  0.  If  |aB| > 5/2 

then there are no (real) solutions to the equation; the cars are never side by side. 

 

(e) Here we have 10
2
  2(20)(aB) > 0    two real roots.  The cars are side by side 

at two different times. 

 

40. We take the direction of motion as +x, so a = –5.18 m/s
2
, and we use SI units, so 

v0 = 55(1000/3600) = 15.28 m/s. 
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(a) The velocity is constant during the reaction time T, so the distance traveled during 

it is  

dr = v0T – (15.28 m/s) (0.75 s) = 11.46 m. 

 

We use Eq. 2-16 (with v = 0) to find the distance db traveled during braking: 

 

 

2
2 2

0 2

(15.28 m/s)
2

2 5.18 m/s
b bv v ad d    


 

 

which yields db = 22.53 m. Thus, the total distance is dr + db = 34.0 m, which means 

that the driver is able to stop in time. And if the driver were to continue at v0, the car 

would enter the intersection in t = (40 m)/(15.28 m/s) = 2.6 s, which is (barely) 

enough time to enter the intersection before the light turns, which many people would 

consider an acceptable situation. 

 

(b) In this case, the total distance to stop (found in part (a) to be 34 m) is greater than 

the distance to the intersection, so the driver cannot stop without the front end of the 

car being a couple of meters into the intersection. And the time to reach it at constant 

speed is 32/15.28 = 2.1 s, which is too long (the light turns in 1.8 s). The driver is 

caught between a rock and a hard place. 

 

41. The displacement (x) for each train is the “area” in the graph (since the 

displacement is the integral of the velocity).  Each area is triangular, and the area of 

a triangle is 1/2(base) × (height). Thus, the (absolute value of the) displacement for 

one train (1/2)(40 m/s)(5 s) = 100 m, and that of the other train is (1/2)(30 m/s)(4 s) = 

60 m. The initial “gap” between the trains was 200 m, and according to our 

displacement computations, the gap has narrowed by 160 m. Thus, the answer is 

200 – 160 = 40 m. 

 

42. (a) Note that 110 km/h is equivalent to 30.56 m/s. During a two-second interval, 

you travel 61.11 m. The decelerating police car travels (using Eq. 2-15) 51.11 m. In 

light of the fact that the initial “gap” between cars was 25 m, this means the gap has 

narrowed by 10.0 m – that is, to a distance of 15.0 m between cars. 

 

(b) First, we add 0.4 s to the considerations of part (a). During a 2.4 s interval, you 

travel 73.33 m. The decelerating police car travels (using Eq. 2-15) 58.93 m during 

that time. The initial distance between cars of 25 m has therefore narrowed by 14.4 m.  

Thus, at the start of your braking (call it t0) the gap between the cars is 10.6 m. The 

speed of the police car at t0 is 30.56 – 5(2.4) = 18.56 m/s. Collision occurs at time t 

when xyou = xpolice (we choose coordinates such that your position is x = 0 and the 

police car’s position is x = 10.6 m at t0). Eq. 2-15 becomes, for each car: 

 

        xpolice – 10.6 = 18.56(t  t0) – 
1

2
 (5)(t  t0)

2 

               xyou = 30.56(t  t0) – 
1

2
 (5)(t  t0)

2
  . 

Subtracting equations, we find  

 

10.6 = (30.56 – 18.56)(t  t0)    0.883 s = t  t0. 
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At that time your speed is 30.56 + a(t  t0) = 30.56 – 5(0.883)  26 m/s (or 94 km/h).   

 

43. In this solution we elect to wait until the last step to convert to SI units. Constant 

acceleration is indicated, so use of Table 2-1 is permitted. We start with Eq. 2-17 and 

denote the train’s initial velocity as vt and the locomotive’s velocity as v  (which is 

also the final velocity of the train, if the rear-end collision is barely avoided). We note 

that the distance x consists of the original gap between them, D, as well as the 

forward distance traveled during this time by the locomotive v t . Therefore, 

 

v v x

t

D v t

t

D

t
vt   


  


2


.  

 

We now use Eq. 2-11 to eliminate time from the equation. Thus, 

 

v v D

v v a
vt

t










2 b g /  

which leads to 

a
v v

v
v v

D D
v vt t

t



F
HG

I
KJ

F
HG
I
KJ   





2

1

2

2
 b g .  

Hence, 

a   
F
HG

I
KJ  

1

2 0 676
29 161 12888

2

2

( .  km)

km

h

km

h
 km / h  

 

which we convert as follows: 

a  
F
HG

I
KJ
F
HG
I
KJ  12888

1000

1

1

3600
0 9942

2

2 km / h
 m

 km

 h

 s
 m / sc h .  

 

so that its magnitude is |a| = 0.994 m/s
2
. A graph is 

shown here for the case where a collision is just 

avoided (x along the vertical axis is in meters and t 

along the horizontal axis is in seconds). The top 

(straight) line shows the motion of the locomotive 

and the bottom curve shows the motion of the 

passenger train. 

 

The other case (where the collision is not quite 

avoided) would be similar except that the slope of 

the bottom curve would be greater than that of the 

top line at the point where they meet. 

 

44. We neglect air resistance, which justifies setting a = –g = –9.8 m/s
2
 (taking down 

as the –y direction) for the duration of the motion. We are allowed to use Table 2-1 

(with y replacing x) because this is constant acceleration motion. The ground level 

is taken to correspond to the origin of the y axis. 

 

(a) Using y v t gt 0
1
2

2 , with y = 0.544 m and t = 0.200 s, we find 
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2 2 2

0

/ 2 0.544 m (9.8 m/s ) (0.200 s) / 2
3.70 m/s .

0.200 s

y gt
v

t

 
    

 

(b) The velocity at y = 0.544 m is 

 
2

0 3.70 m/s (9.8 m/s )(0.200 s) 1.74 m/s .v v gt      

 

(c) Using 2 2

0 2v v gy   (with different values for y and v than before), we solve for 

the value of y corresponding to maximum height (where v = 0). 

 
2 2

0

2

(3.7 m/s)
0.698 m.

2 2(9.8 m/s )

v
y

g
    

 

Thus, the armadillo goes 0.698 – 0.544 = 0.154 m higher. 

 

45. THINK As the ball travels vertically upward, its motion is under the influence of 

gravitational acceleration. The kinematics is one-dimensional. 

 

EXPRESS We neglect air resistance for the duration of the motion (between 

“launching” and “landing”), so a = –g = –9.8 m/s
2
 (we take downward to be the –y 

direction). We use the equations in Table 2-1 (with y replacing x) because this is a 

= constant motion: 

0

2

0 0

2 2

0 0

(2 11)

1
(2 15)

2

2 ( ) (2 16)

v v gt

y y v t gt

v v g y y

  

   

   

 

 

We set y0 = 0. Upon reaching the maximum height y, the speed of the ball is 

momentarily zero (v = 0). Therefore, we can relate its initial speed v0 to y via the 

equation 2 2

00  2 .v v gy    The time it takes for the ball to reach maximum height is 

given by 0 0v v gt   , or 0 /t v g . Therefore, for the entire trip (from the time it 

leaves the ground until the time it returns to the ground), the total flight time is 

02 2 / .T t v g   

 

ANALYZE (a) At the highest point v = 0 and v gy0 2 .  With y = 50 m, we find 

the initial speed of the ball to be 

 2

0 2 2(9.8 m/s )(50 m) 31.3 m/s.v gy    

 

(b) Using the result from (a) for v0, the total flight time of the ball is 

 

0

2

2 2(31.3 m/s)
6.39 s

9.8 m/s

v
T

g
    

 



 

 

47 

 

(c) The plots of y, v and a as a function of time are shown below. The acceleration 

graph is a horizontal line at –9.8 m/s
2
. At t = 3.19 s, y = 50 m. 

 

 

    

LEARN In calculating the total flight time of the ball, we could have used Eq. 2-15. 

At 0t T  , the ball returns to its original position ( 0y  ). Therefore, 

  

2 0
0

21
0   

2

v
y v T gT T

g
      

 

46. Neglect of air resistance justifies setting a = –g = –9.8 m/s
2
 (where down is our –y 

direction) for the duration of the fall. This is constant acceleration motion, and we 

may use Table 2-1 (with y replacing x). 

 

(a) Using Eq. 2-16 and taking the negative root (since the final velocity is downward), 

we have 

2 2

0 2 0 2(9.8 m/s )( 1700 m) 183 m/sv v g y          . 

 

Its magnitude is therefore 183 m/s. 

 

(b) No, but it is hard to make a convincing case without more analysis. We estimate 

the mass of a raindrop to be about a gram or less, so that its mass and speed (from part 

(a)) would be less than that of a typical bullet, which is good news. But the fact that 

one is dealing with many raindrops leads us to suspect that this scenario poses an 

unhealthy situation. If we factor in air resistance, the final speed is smaller, of course, 

and we return to the relatively healthy situation with which we are familiar. 

 

47. THINK The wrench is in free fall with an acceleration a = –g = –9.8 m/s
2
. 

 

EXPRESS We neglect air resistance, which justifies setting a = –g = –9.8 m/s
2
 

(taking down as the –y direction) for the duration of the fall. This is constant 

acceleration motion, which justifies the use of Table 2-1 (with y replacing x): 

  

0

2

0 0

2 2

0 0

(2 11)

1
(2 15)

2

2 ( ) (2 16)

v v gt

y y v t gt

v v g y y

  

   

   

 

 

Since the wrench had an initial speed v0 = 0, knowing its speed of impact allows us to 

apply Eq. 2-16 to calculate the height from which it was dropped.  
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ANALYZE (a) Using 2 2

0 2v v a y   , we find the initial height to be  

2 2 2

0

2

0 ( 24 m/s)
29.4 m.

2 2( 9.8 m/s )

v v
y

a

  
   


 

 

So that it fell through a height of 29.4 m. 

 

(b) Solving v = v0 – gt for time, we obtain a flight time of 

 

0

2

0 ( 24 m/s)
2.45 s.

9.8 m/s

v v
t

g

  
    

 

(c) SI units are used in the graphs, and the initial position is taken as the coordinate 

origin. The acceleration graph is a horizontal line at –9.8 m/s
2
. 

 

 

 

       

LEARN As the wrench falls, with 0a g   , its speed increases but its velocity 

becomes more negative, as indicated by the second graph above. 

 

48. We neglect air resistance, which justifies setting a = –g = –9.8 m/s
2
 (taking down 

as the –y direction) for the duration of the fall. This is constant acceleration motion, 

which justifies the use of Table 2-1 (with y replacing x). 

 

(a) Noting that y = y – y0 = –30 m, we apply Eq. 2-15 and the quadratic formula 

(Appendix E) to compute t: 




y v t gt t
v v g y

g
   

 
0

2 0 0

2
1

2

2
     

 

which (with v0 = –12 m/s since it is downward) leads, upon choosing the positive root 

(so that t > 0), to the result: 

 
2 2

2

12 m/s ( 12 m/s) 2(9.8 m/s )( 30 m)
1.54 s.

9.8 m/s
t

    
   

 

(b) Enough information is now known that any of the equations in Table 2-1 can be 

used to obtain v; however, the one equation that does not use our result from part (a) 

is Eq. 2-16: 

v v g y  0

2 2 271 .  m / s  
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where the positive root has been chosen in order to give speed (which is the 

magnitude of the velocity vector). 

 

49. THINK In this problem a package is dropped from a hot-air balloon which is 

ascending vertically upward. We analyze the motion of the package under the 

influence of gravity.  

 

EXPRESS We neglect air resistance, which justifies setting a = –g = –9.8 m/s
2
 

(taking down as the –y direction) for the duration of the motion. This allows us to use 

Table 2-1 (with y replacing x):  

0

2

0 0

2 2

0 0

(2 11)

1
(2 15)

2

2 ( ) (2 16)

v v gt

y y v t gt

v v g y y

  

   

   

 

 

We place the coordinate origin on the ground and note that the initial velocity of the 

package is the same as the velocity of the balloon, v0 = +12 m/s and that its initial 

coordinate is y0 = +80 m. The time it takes for the package to hit the ground can be 

found by solving Eq. 2-15 with y = 0. 

 

ANALYZE (a) We solve 21
0 0 2

0 y y v t gt     for time using the quadratic 

formula (choosing the positive root to yield a positive value for t): 

 

  2 22

0 0 0

2

12 m/s (12 m/s) 2 9.8 m/s 80 m2
5.45 s

9.8 m/s

v v gy
t

g

  
   . 

 

(b) The speed of the package when it hits the ground can be calculated using Eq. 2-11. 

The result is  

 2

0 12 m/s (9.8 m/s )(5.447 s) 41.38 m/sv v gt      . 

 

Its final speed is 41.38 m/s. 

 

LEARN Our answers can be readily verified by using Eq. 2-16 which was not used in 

either (a) or (b). The equation leads to 

 

2 2 2

0 02 ( ) (12 m/s) 2(9.8 m/s )(0 80 m) 41.38 m/sv v g y y           

 

which agrees with that calculated in (b).  

 

50. The y coordinate of Apple 1 obeys y – yo1 = – 
1

2
 g t

2
 where y = 0 when t = 2.0 s.  

This allows us to solve for yo1, and we find yo1 = 19.6 m.   

 

The graph for the coordinate of Apple 2 (which is thrown apparently at t = 1.0 s with 



CHAPTER 2 

 

50 

 

velocity v2) is 

y – yo2 = v2(t – 1.0) – 
1

2
 g (t – 1.0)

2
 

 

where yo2 = yo1 = 19.6 m and where y = 0 when t = 2.25 s. Thus, we obtain |v2| = 9.6 

m/s, approximately. 

 

51. (a) With upward chosen as the +y direction, we use Eq. 2-11 to find the initial 

velocity of the package:  

                

v = vo + at    0 = vo – (9.8 m/s
2
)(2.0 s) 

  

which leads to vo = 19.6 m/s. Now we use Eq. 2-15: 

 

y = (19.6 m/s)(2.0 s) + 
1

2
 (–9.8 m/s

2
)(2.0 s)

2
  20 m . 

 

We note that the “2.0 s” in this second computation refers to the time interval 2 < t < 4 

in the graph (whereas the “2.0 s” in the first computation referred to the 0 < t < 2 time 

interval shown in the graph). 

  

(b) In our computation for part (b), the time interval (“6.0 s”) refers to the 2 < t < 8 

portion of the graph: 

 

y = (19.6 m/s)(6.0 s) + 
1

2
 (–9.8 m/s

2
)(6.0 s)

2
  –59 m , 

or | | 59 my  . 

 

52. The full extent of the bolt’s fall is given by  

 

y – y0 = –
1

2
 g t

2
 

 

where y – y0 = –90 m (if upward is chosen as the positive y direction). Thus the time 

for the full fall is found to be t = 4.29 s. The first 80% of its free-fall distance is given 

by –72 = –g 
2
/2, which requires time  = 3.83 s. 

 

(a) Thus, the final 20% of its fall takes t –  = 0.45 s. 

 

(b) We can find that speed using v = g.  Therefore, |v| = 38 m/s, approximately. 

 

(c) Similarly, vfinal = g t    |vfinal| = 42 m/s. 

 

53. THINK This problem involves two objects: a key dropped from a bridge, and a 

boat moving at a constant speed. We look for conditions such that the key will fall 

into the boat.  

 

EXPRESS The speed of the boat is constant, given by vb = d/t, where d is the distance 

of the boat from the bridge when the key is dropped (12 m) and t is the time the key 

takes in falling.  
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To calculate t, we take the time to be zero at the instant the key is dropped, we 

compute the time t when y = 0 using y y v t gt  0 0
1
2

2 , with 0 45 m.y   Once t is 

known, the speed of the boat can be readily calculated.  

 

ANALYZE Since the initial velocity of the key is zero, the coordinate of the key is 

given by 21
0 2

.y gt  Thus, the time it takes for the key to drop into the boat is 

0

2

2 2(45 m)
3.03 s .

9.8 m/s

y
t

g
    

Therefore, the speed of the boat is 
12 m

4.0 m/s.
3.03 s

bv    

LEARN From the general expression 
00

22 /
b

d d g
v d

t yy g
   , we see that 

01/bv y . This agrees with our intuition that the lower the height from which the 

key is dropped, the greater the speed of the boat in order to catch it.  

 

54. (a) We neglect air resistance, which justifies setting a = –g = –9.8 m/s
2
 (taking 

down as the –y direction) for the duration of the motion. We are allowed to use Eq. 

2-15 (with y replacing x) because this is constant acceleration motion. We use 

primed variables (except t) with the first stone, which has zero initial velocity, and 

unprimed variables with the second stone (with initial downward velocity –v0, so that 

v0 is being used for the initial speed). SI units are used throughout. 

 

 

    

2

2

0

1
0

2

1
1 1

2

y t gt

y v t g t

  

     

 

 

Since the problem indicates y’ = y = –43.9 m, we solve the first equation for t 

(finding t = 2.99 s) and use this result to solve the second equation for the initial speed 

of the second stone: 

 

      
22

0

1
43.9 m 1.99 s 9.8 m/s 1.99 s

2
v     

which leads to v0 = 12.3 m/s. 

 

(b) The velocity of the stones are given by  
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0

( ) ( )
,         ( 1)y y

d y d y
v gt v v g t

dt dt

 
          

The plot is shown below: 

 
 

55. THINK The free-falling moist-clay ball strikes the ground with a non-zero speed, 

and it undergoes deceleration before coming to rest. 

 

EXPRESS During contact with the ground its average acceleration is given by 

a
v

t
avg 




, where v is the change in its velocity during contact with the ground and 

320.0 10  st    is the duration of contact. Thus, we must first find the velocity of the 

ball just before it hits the ground (y = 0).  

 

ANALYZE (a) Now, to find the velocity just before contact, we take t = 0 to be when 

it is dropped. Using Eq. 2-16 with 
0 15.0 my  , we obtain 

 

2 2

0 02 ( ) 0 2(9.8 m/s )(0 15 m) 17.15 m/sv v g y y           

 

where the negative sign is chosen since the ball is traveling downward at the moment 

of contact. Consequently, the average acceleration during contact with the ground is 

 

2

avg 3

0 ( 17.1m/s)
857 m/s .

20.0 10 s

v
a

t 

  
  
 

 

 

(b) The fact that the result is positive indicates that this acceleration vector points 

upward.  

 

LEARN Since t  is very small, it is not surprising to have a very large acceleration 

to stop the motion of the ball. In later chapters, we shall see that the acceleration is 

directly related to the magnitude and direction of the force exerted by the ground on 

the ball during the course of collision. 

 

56. We use Eq. 2-16,  

vB
2
 = vA

2
 + 2a(yB – yA), 

 

with a = –9.8 m/s
2
, yB – yA = 0.40 m, and vB = 

1

3
 vA. It is then straightforward to solve: 

vA = 3.0 m/s, approximately. 

 

57. The average acceleration during contact with the floor is aavg = (v2 – v1) / t, 
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where v1 is its velocity just before striking the floor, v2 is its velocity just as it leaves 

the floor, and t is the duration of contact with the floor (12  10
–3

 s).  

 

(a) Taking the y axis to be positively upward and placing the origin at the point where 

the ball is dropped, we first find the velocity just before striking the floor, using 
2 2

1 0 2v v gy  . With v0 = 0 and y = – 4.00 m, the result is 

 

2

1 2 2(9.8 m/s )( 4.00 m) 8.85 m/sv gy          

 

where the negative root is chosen because the ball is traveling downward. To find the 

velocity just after hitting the floor (as it ascends without air friction to a height of 2.00 

m), we use 2 2

2 02 ( )v v g y y    with v = 0, y = –2.00 m (it ends up two meters 

below its initial drop height), and y0 = – 4.00 m. Therefore, 

 

2

2 02 ( ) 2(9.8 m/s )( 2.00 m 4.00 m) 6.26 m/s .v g y y       

 

Consequently, the average acceleration is 

 

3 22 1
avg 3

6.26 m/s ( 8.85 m/s)
1.26 10 m/s .

12.0 10 s

v v
a

t 

  
   

 
 

 

(b) The positive nature of the result indicates that the acceleration vector points 

upward. In a later chapter, this will be directly related to the magnitude and direction 

of the force exerted by the ground on the ball during the collision. 

 

58. We choose down as the +y direction and set the coordinate origin at the point 

where it was dropped (which is when we start the clock). We denote the 1.00 s 

duration mentioned in the problem as t – t' where t is the value of time when it lands 

and t' is one second prior to that. The corresponding distance is y – y' = 0.50h, where y 

denotes the location of the ground. In these terms, y is the same as h, so we have h –y' 

= 0.50h or 0.50h = y' . 

 

(a) We find t' and t from Eq. 2-15 (with v0 = 0): 

 

2

2

1 2

2

1 2
.

2

y
y gt t

g

y
y gt t

g


   

  

 

 

Plugging in y = h and y' = 0.50h, and dividing these two equations, we obtain 

 

t

t

h g

h g


 

2 050

2
050

. /

/
. .

b g
 

 

Letting t' = t – 1.00 (SI units understood) and cross-multiplying, we find 
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t t t   


100 050
100

1 050
. .

.

.
 

which yields t = 3.41 s. 

 

(b) Plugging this result into y gt 1
2

2  we find h = 57 m. 

 

(c) In our approach, we did not use the quadratic formula, but we did “choose a root” 

when we assumed (in the last calculation in part (a)) that 050.  = +0.707 instead 

of –0.707. If we had instead let 050.  = –0.707 then our answer for t would have 

been roughly 0.6 s, which would imply that t' = t – 1 would equal a negative number 

(indicating a time before it was dropped), which certainly does not fit with the 

physical situation described in the problem. 

 

59. We neglect air resistance, which justifies setting a = –g = –9.8 m/s
2
 (taking down 

as the –y direction) for the duration of the motion. We are allowed to use Table 2-1 

(with y replacing x) because this is constant acceleration motion. The ground level 

is taken to correspond to the origin of the y-axis.  

 

(a) The time drop 1 leaves the nozzle is taken as t = 0 and its time of landing on the 

floor t1 can be computed from Eq. 2-15, with v0 = 0 and y1 = –2.00 m. 

 

2

1 1 1 2

1 2 2( 2.00 m)
    0.639 s .

2 9.8 m/s

y
y gt t

g

  
       

 

At that moment, the fourth drop begins to fall, and from the regularity of the dripping 

we conclude that drop 2 leaves the nozzle at t = 0.639/3 = 0.213 s and drop 3 leaves 

the nozzle at t = 2(0.213 s) = 0.426 s.  Therefore, the time in free fall (up to the 

moment drop 1 lands) for drop 2 is t2 = t1 – 0.213 s = 0.426 s. Its position at the 

moment drop 1 strikes the floor is 

 

 2 2 2

2 2

1 1
(9.8 m/s )(0.426 s) 0.889 m,

2 2
y gt       

 

or about 89 cm below the nozzle. 

 

(b) The time in free fall (up to the moment drop 1 lands) for drop 3 is t3 = t1 –0.426 s 

= 0.213 s. Its position at the moment drop 1 strikes the floor is 

 

2 2 2

3 3

1 1
(9.8 m/s )(0.213 s) 0.222 m,

2 2
y gt       

 

or about 22 cm below the nozzle.  

 

60. To find the “launch” velocity of the rock, we apply Eq. 2-11 to the maximum 

height (where the speed is momentarily zero) 
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  2

0 00 9.8 m/s 2.5 sv v gt v      

 

so that v0 = 24.5 m/s (with +y up). Now we use Eq. 2-15 to find the height of the 

tower (taking y0 = 0 at the ground level) 

 

     
22 2

0 0

1 1
0 24.5 m/s 1.5 s 9.8 m/s 1.5 s .

2 2
y y v t at y        

 

Thus, we obtain y = 26 m. 

 

61. We choose down as the +y direction and place the coordinate origin at the top of 

the building (which has height H). During its fall, the ball passes (with velocity v1) the 

top of the window (which is at y1) at time t1, and passes the bottom (which is at y2) at 

time t2. We are told y2 – y1 = 1.20 m and t2 – t1 = 0.125 s. Using Eq. 2-15 we have 

 

y y v t t g t t2 1 1 2 1 2 1

21

2
    b g b g  

which immediately yields 

 

  
221

2

1

1.20 m 9.8 m/s 0.125 s
8.99 m/s.

0.125 s
v


   

 

From this, Eq. 2-16 (with v0 = 0) reveals the value of y1: 

 
2

2

1 1 1 2

(8.99 m/s)
2 4.12 m.

2(9.8 m/s )
v gy y     

 

It reaches the ground (y3 = H) at t3. Because of the symmetry expressed in the 

problem (“upward flight is a reverse of the fall’’) we know that t3 – t2 = 2.00/2 = 1.00 

s. And this means t3 – t1 = 1.00 s + 0.125 s = 1.125 s. Now Eq. 2-15 produces 

 

2

3 1 1 3 1 3 1

2 2

3

1
( ) ( )

2

1
4.12 m (8.99 m/s) (1.125 s) (9.8 m/s ) (1.125 s)

2

y y v t t g t t

y

    

  

 

 

which yields y3 = H = 20.4 m. 

 

62. The height reached by the player is y = 0.76 m (where we have taken the origin of 

the y axis at the floor and +y to be upward). 

 

(a) The initial velocity v0 of the player is 

 
2

0 2 2(9.8 m/s )(0.76 m) 3.86 m/s .v gy    

 

This is a consequence of Eq. 2-16 where velocity v vanishes. As the player reaches y1 
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= 0.76 m – 0.15 m = 0.61 m, his speed v1 satisfies v v gy0

2

1

2

12  , which yields 

 

2 2 2

1 0 12 (3.86 m/s) 2(9.80 m/s )(0.61 m) 1.71 m/s .v v gy      

 

The time t1 that the player spends ascending in the top y1 = 0.15 m of the jump can 

now be found from Eq. 2-17: 

 

 
 

1 1 1 1

2 0.15 m1
0.175 s

2 1.71m/s 0
y v v t t     


 

 

which means that the total time spent in that top 15 cm (both ascending and 

descending) is 2(0.175 s) = 0.35 s = 350 ms. 

 

(b) The time t2 when the player reaches a height of 0.15 m is found from Eq. 2-15: 

 

2 2 2

0 2 2 2 2

1 1
0.15 m (3.86 m/s) (9.8 m/s )  ,

2 2
v t gt t t     

 

which yields (using the quadratic formula, taking the smaller of the two positive roots) 

t2 = 0.041 s = 41 ms, which implies that the total time spent in that bottom 15 cm 

(both ascending and descending) is 2(41 ms) = 82 ms. 

 

63. The time t the pot spends passing in front of the window of length L = 2.0 m is 

0.25 s each way. We use v for its velocity as it passes the top of the window (going 

up). Then, with a = –g = –9.8 m/s
2
 (taking down to be the –y direction), Eq. 2-18 

yields 

L vt gt v
L

t
gt    

1

2

1

2

2 .  

 

The distance H the pot goes above the top of the window is therefore (using Eq. 2-16 

with the final velocity being zero to indicate the highest point) 

 

   
22 22

2

2.00 m / 0.25 s (9.80 m/s )(0.25 s) / 2/ / 2
2.34 m.

2 2 2(9.80 m/s )

L t gtv
H

g g


     

 

64. The graph shows y = 25 m to be the highest point (where the speed momentarily 

vanishes). The neglect of “air friction” (or whatever passes for that on the distant 

planet) is certainly reasonable due to the symmetry of the graph. 

 

(a) To find the acceleration due to gravity gp on that planet, we use Eq. 2-15 (with +y 

up) 

    
22

0

1 1
25 m 0 0 2.5 s 2.5 s

2 2
p py y vt g t g        

 

so that gp = 8.0 m/s
2
. 

 

(b) That same (max) point on the graph can be used to find the initial velocity. 
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     0 0 0

1 1
25 m 0 0 2.5 s

2 2
y y v v t v        

 

Therefore, v0 = 20 m/s. 

 

65. The key idea here is that the speed of the head (and the torso as well) at any given 

time can be calculated by finding the area on the graph of the head’s acceleration 

versus time, as shown in Eq. 2-26: 

 

1 0

0 1

area between the acceleration curve
  

 and the time axis, from  o 
v v

t t t

 
   

 
 

 

(a) From Fig. 2.15a, we see that the head begins to accelerate from rest (v0 = 0) at t0 = 

110 ms and reaches a maximum value of 90 m/s
2
 at t1 = 160 ms. The area of this 

region is 

  3 21
area (160 110) 10 s 90 m/s 2.25 m/s

2

      

 

which is equal to v1, the speed at t1.  

 

(b) To compute the speed of the torso at t1=160 ms, we divide the area into 4 regions: 

From 0 to 40 ms, region A has zero area. From 40 ms to 100 ms, region B has the 

shape of a triangle with area  

 2

B

1
area (0.0600 s)(50.0 m/s ) 1.50 m/s

2
  . 

From 100 to 120 ms, region C has the shape of a rectangle with area  

2

Carea   (0.0200 s) (50.0 m/s ) = 1.00 m/s.  

From 110 to 160 ms, region D has the shape of a trapezoid with area 

2

D

1
area   (0.0400 s) (50.0  20.0) m/s  1.40 m/s.

2
    

Substituting these values into Eq. 2-26, with v0 = 0 then gives 

 

 1 0 0 1 50 m/s + 1.00 m/s + 1.40 m/s = 3.90 m/s,v .    

or 1 3 90 m/s.v .  

 

66. The key idea here is that the position of an object at any given time can be 

calculated by finding the area on the graph of the object’s velocity versus time, as 

shown in Eq. 2-30: 

1 0

0 1

area between the velocity curve
   

 and the time axis, from  o 
x x .

t t t

 
   

 
 

 

(a) To compute the position of the fist at t = 50 ms, we divide the area in Fig. 2-37 

into two regions. From 0 to 10 ms, region A has the shape of a triangle with area  
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A

1
area  = (0.010 s) (2 m/s) = 0.01 m.

2
 

      

From 10 to 50 ms, region B has the shape of a trapezoid with area  

B

1
area  = (0.040 s) (2 + 4) m/s = 0.12 m.

2
 

 

Substituting these values into Eq. 2-30 with x0 = 0 then gives 

 

 1 0 0 0 01 m + 0.12 m = 0.13 m,x .    

or 
1 0 13 m.x .  

 

(b) The speed of the fist reaches a maximum at t1 = 120 ms. From 50 to 90 ms, region 

C has the shape of a trapezoid with area  

 

C

1
area  = (0.040 s) (4 + 5) m/s = 0.18 m.

2
 

      

From 90 to 120 ms, region D has the shape of a trapezoid with area  

 

D

1
area  = (0.030 s) (5 + 7.5) m/s = 0.19 m.

2
 

 

Substituting these values into Eq. 2-30, with x0 = 0 then gives 

 

 1 0 0 0 01 m + 0.12 m + 0.18 m + 0.19 m = 0.50 m,x .    

or 1 0 50 m.x .  

 

67. The problem is solved using Eq. 2-31:  

 

1 0

0 1

area between the acceleration curve
    

 and the time axis, from  o 
v v

t t t

 
   

 
 

 

To compute the speed of the unhelmeted, bare head at t1 = 7.0 ms, we divide the area 

under the a vs. t graph into 4 regions: From 0 to 2 ms, region A has the shape of a 

triangle with area 

 2

A

1
area  = (0.0020 s) (120 m/s ) = 0.12 m/s.

2
 

From 2 ms to 4 ms, region B has the shape of a trapezoid with area  

 

2

B

1
area  = (0.0020 s) (120 + 140) m/s  = 0.26 m/s.

2
 

      



 

 

59 

 

From 4 to 6 ms, region C has the shape of a trapezoid with area  

2

C

1
area  = (0.0020 s) (140 + 200) m/s  = 0.34 m/s.

2
 

 

From 6 to 7 ms, region D has the shape of a triangle with area 

  

2

D

1
area (0.0010 s) (200 m/s ) 0.10 m/s.

2
   

 

Substituting these values into Eq. 2-31, with v0=0 then gives 

 

 unhelmeted 0 12 m/s 0.26 m/s 0.34 m/s 0.10 m/s 0.82 m/s.v .      

 

Carrying out similar calculations for the helmeted head, we have the following 

results: From 0 to 3 ms, region A has the shape of a triangle with area 

 2

A

1
area  = (0.0030 s) (40 m/s ) = 0.060 m/s.

2
 

From 3 ms to 4 ms, region B has the shape of a rectangle with area  

 
2

Barea (0.0010 s) (40 m/s ) 0.040 m/s.   

      

From 4 to 6 ms, region C has the shape of a trapezoid with area  

2

C

1
area  = (0.0020 s) (40 + 80) m/s  = 0.12 m/s.

2
 

From 6 to 7 ms, region D has the shape of a triangle with area 

2

D

1
area (0.0010 s) (80 m/s ) 0.040 m/s.

2
   

 

Substituting these values into Eq. 2-31, with v0 = 0 then gives 

 

helmeted 0 060 m/s 0.040 m/s 0.12 m/s 0.040 m/s 0.26 m/s.v .      

 

Thus, the difference in the speed is 

 

 unhelmeted helmeted 0 82 m/s 0.26 m/s 0.56 m/s.v v v .       

 

68. This problem can be solved by noting that velocity can be determined by the 

graphical integration of acceleration versus time. The speed of the tongue of the 

salamander is simply equal to the area under the acceleration curve: 

 

 

2 2 2 2 2 2 21 1 1
area (10 s)(100 m/s ) (10 s)(100 m/s 400 m/s ) (10 s)(400 m/s )

2 2 2

5.0 m/s.

v       


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69. Since /v dx dt  (Eq. 2-4), then x v dt z  , which corresponds to the area 

under the v vs t graph. Dividing the total area A into rectangular (baseheight) and 

triangular 1
2

base heightb g  areas, we have 

 

 

   

A A A A A
t t t t

   

   
F
HG

I
KJ 

       0 2 2 10 10 12 12 16

1

2
2 8 8 8 2 4

1

2
2 4 4 4( )( ) ( )( ) ( )( ) ( )( ) ( )( )

 

 

with SI units understood. In this way, we obtain x = 100 m. 

 

70. To solve this problem, we note that velocity is equal to the time derivative of a 

position function, as well as the time integral of an acceleration function, with the 

integration constant being the initial velocity. Thus, the velocity of particle 1 can be 

written as  

  21
1 6.00 3.00 2.00 12.0 3.00

dx d
v t t t

dt dt
      . 

 

Similarly, the velocity of particle 2 is  

 2

2 20 2 20.0 ( 8.00 ) 20.0 4.00 .v v a dt t dt t         

The condition that 1 2v v  implies 

 
2 212.0 3.00 20.0 4.00 4.00 12.0 17.0 0t t t t        

which can be solved to give (taking positive root) ( 3 26) / 2 1.05 s.t      Thus, 

the velocity at this time is 1 2 12.0(1.05) 3.00 15.6 m/s.v v     

 

71. (a) The derivative (with respect to time) of the given expression for x yields the 

“velocity” of the spot: 

v(t) = 9 – 
9

4
 t

2
 

 

with 3 significant figures understood. It is easy to see that v = 0 when t = 2.00 s. 

 

(b) At t = 2 s, x = 9(2) – ¾(2)
3
 = 12. Thus, the location of the spot when v = 0 is 12.0 

cm from left edge of screen. 

 

(c) The derivative of the velocity is a = – 
9

2
 t, which gives an acceleration of 

29.00 cm/m  (negative sign indicating leftward) when the spot is 12 cm from the 

left edge of screen. 

 

(d) Since v > 0 for times less than t = 2 s, then the spot had been moving rightward. 

 



 

 

61 

 

(e) As implied by our answer to part (c), it moves leftward for times immediately after 

t = 2 s.  In fact, the expression found in part (a) guarantees that for all t > 2, v < 0 

(that is, until the clock is “reset” by reaching an edge). 

 

(f) As the discussion in part (e) shows, the edge that it reaches at some t > 2 s cannot 

be the right edge; it is the left edge (x = 0). Solving the expression given in the 

problem statement (with x = 0) for positive t yields the answer: the spot reaches the 

left edge at t = 12 s  3.46 s. 

 

72. We adopt the convention frequently used in the text: that "up" is the positive y 

direction. 

 

(a) At the highest point in the trajectory v = 0. Thus, with t = 1.60 s, the equation 

v = v0 – gt yields v0 = 15.7 m/s. 

 

(b) One equation that is not dependent on our result from part (a) is y – y0 = vt + 
1

2
gt

2
; 

this readily gives ymax – y0 = 12.5 m for the highest ("max") point measured relative to 

where it started (the top of the building). 

 

(c) Now we use our result from part (a) and plug into y y0 = v0t + 
1

2
gt

2
 with t = 6.00 

s and y = 0 (the ground level). Thus, we have 

 

0 – y0 = (15.68 m/s)(6.00 s) – 
1

2
 (9.8 m/s

2
)(6.00 s)

2
. 

 

Therefore, y0 (the height of the building) is equal to 82.3 m. 

 

73. We denote the required time as t, assuming the light turns green when the clock 

reads zero. By this time, the distances traveled by the two vehicles must be the same. 

 

(a) Denoting the acceleration of the automobile as a and the (constant) speed of the 

truck as v then 

x at vt
F
HG
I
KJ 

1

2

2

car
truck
b g  

which leads to 

 

 
2

2 9.5 m/s2
8.6 s .

2.2 m/s

v
t

a
    

Therefore, 

  9.5 m/s 8.6 s 82 m .x vt     

 

(b) The speed of the car at that moment is 

 

  2

car 2.2 m/s 8.6 s 19 m/s .v at    

 

74. If the plane (with velocity v) maintains its present course, and if the terrain 

continues its upward slope of 4.3°, then the plane will strike the ground after traveling 
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x
h

 

 

tan
.



35
4655

 m

tan 4.3
 m 0.465  km. 

 

This corresponds to a time of flight found from Eq. 2-2 (with v = vavg since it is 

constant) 

t
x

v
   
 0 465

0 000358
.

.
 km

1300 km / h
 h 1.3 s.  

 

This, then, estimates the time available to the pilot to make his correction. 

 

75. We denote tr as the reaction time and tb as the braking time. The motion during tr 

is of the constant-velocity (call it v0) type. Then the position of the car is given by 

 

x v t v t atr b b  0 0

21

2
 

 

where v0 is the initial velocity and a is the acceleration (which we expect to be 

negative-valued since we are taking the velocity in the positive direction and we know 

the car is decelerating). After the brakes are applied the velocity of the car is given by 

v = v0 + atb. Using this equation, with v = 0, we eliminate tb from the first equation 

and obtain 

x v t
v

a

v

a
v t

v

a
r r    


0

0

2

0

2

0
0

21

2 2
. 

 

We write this equation for each of the initial velocities: 

 
2 2

01 02
1 01 2 02

1 1
, .

2 2
r r

v v
x v t x v t

a a
     

 

Solving these equations simultaneously for tr and a we get 

 

t
v x v x

v v v v
r 





02

2

1 01

2

2

01 02 02 01b g  
and 

a
v v v v

v x v x
 





1

2

02 01

2

01 02

2

02 1 01 2

.  

 

(a) Substituting x1 = 56.7 m, v01 = 80.5 km/h = 22.4 m/s, x2 = 24.4 m and v02 = 48.3 

km/h = 13.4 m/s, we find 

 
2 2 2 2

02 1 01 2

01 02 02 01

(13.4 m/s) (56.7 m) (22.4 m/s) (24.4 m)

( ) (22.4 m/s)(13.4 m/s)(13.4 m/s 22.4 m/s)

0.74 s.

r

v x v x
t

v v v v

 
 

 



 

 

(b) Similarly, substituting x1 = 56.7 m, v01 = 80.5 km/h = 22.4 m/s, x2 = 24.4 m, and 
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v02 = 48.3 km/h = 13.4 m/s gives 

 
2 2 2 2

02 01 01 02

02 1 01 2

2

1 1 (13.4 m/s)(22.4 m/s) (22.4 m/s)(13.4 m/s)

2 2 (13.4 m/s)(56.7 m) (22.4 m/s)(24.4 m)

6.2 m/s .

v v v v
a

v x v x

 
   

 

 

 

 

The magnitude of the deceleration is therefore 6.2 m/s
2
. Although rounded-off values 

are displayed in the above substitutions, what we have input into our calculators are 

the “exact” values (such as v02
161
12

  m/s). 

 

76. (a) A constant velocity is equal to the ratio of displacement to elapsed time. Thus, 

for the vehicle to be traveling at a constant speed pv  over a distance 23D , the time 

delay should be 
23 / .pt D v   

 

(b) The time required for the car to accelerate from rest to a cruising speed pv  is 

0 /pt v a . During this time interval, the distance traveled is 2 2

0 0 / 2 / 2 .px at v a    

The car then moves at a constant speed pv  over a distance 12 0D x d   to reach 

intersection 2, and the time elapsed is 1 12 0( ) / pt D x d v   . Thus, the time delay at 

intersection 2 should be set to 

 

 

2

1212 0
total 0 1

12

( / 2 )

1

2

p p p

r r r

p p

p

r

p

v v D v a dD x d
t t t t t t

a v a v

v D d
t

a v

  
        


  

 

 

77. THINK The speed of the rod changes due to a nonzero acceleration. 

 

EXPRESS Since the problem involves constant acceleration, the motion of the rod 

can be readily analyzed using the equations given in Table 2-1. We take +x to be in the 

direction of motion, so 

v 
F
HG

I
KJ  60

1000

3600
16 7km / h

m / km

s / h
m / sb g .  

 

and a > 0. The location where the rod starts from rest (v0 = 0) is taken to be x0 = 0. 

 

ANALYZE (a) Using Eq. 2-7, we find the average acceleration to be 

 

 20
avg

0

16.7 m/s 0
3.09 m/s

5.4 s 0

v vv
a

t t t

 
   
  

. 

 

(b) Assuming constant acceleration 
2

avg 3.09 m/sa a  , the total distance traveled 

during the 5.4-s time interval is  
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2 2 2

0 0

1 1
0 0 (3.09 m/s )(5.4 s) 45 m

2 2
x x v t at        

 

(c) Using Eq. 2-15, the time required to travel a distance of x = 250 m is: 

 

 2

2

2 250 m1 2
12.73 s

2 3.1 m/s

x
x at t

a
      

 

LEARN The displacement of the rod as a function of time can be written as 

2 21
( ) (3.09 m/s )

2
x t t . Note that we could have chosen Eq. 2-17 to solve for (b): 

    0

1 1
16.7 m/s 5.4 s 45 m.

2 2
x v v t     

 

78. We take the moment of applying brakes to be t = 0. The deceleration is constant so 

that Table 2-1 can be used. Our primed variables (such as 0 72 km/h = 20 m/sv  ) refer 

to one train (moving in the +x direction and located at the origin when t = 0) and 

unprimed variables refer to the other (moving in the –x direction and located at x0 = 

+950 m when t = 0). We note that the acceleration vector of the unprimed train points 

in the positive direction, even though the train is slowing down; its initial velocity is 

v0 = –144 km/h = –40 m/s. Since the primed train has the lower initial speed, it should 

stop sooner than the other train would (were it not for the collision). Using Eq 2-16, it 

should stop (meaning 0v  ) at 

 

   
2 2

2
0

2

0 (20 m/s)
200 m .

2 2 m/s

v v
x

a

  
   

 
 

 

The speed of the other train, when it reaches that location, is 

 

    
22 2

0 2 40 m/s 2 1.0 m/s 200 m 950 m

10 m/s

v v a x      



 

 

using Eq 2-16 again. Specifically, its velocity at that moment would be –10 m/s since 

it is still traveling in the –x direction when it crashes. If the computation of v had 

failed (meaning that a negative number would have been inside the square root) then 

we would have looked at the possibility that there was no collision and examined how 

far apart they finally were. A concern that can be brought up is whether the primed 

train collides before it comes to rest; this can be studied by computing the time it 

stops (Eq. 2-11 yields t = 20 s) and seeing where the unprimed train is at that moment 

(Eq. 2-18 yields x = 350 m, still a good distance away from contact). 

 

79. The y coordinate of Piton 1 obeys y – y01 = – 
1

2
 g t

2
 where y = 0 when t = 3.0 s. 

This allows us to solve for yo1, and we find y01 = 44.1 m. The graph for the coordinate 

of Piton 2 (which is thrown apparently at t = 1.0 s with velocity v1) is  
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y – y02 = v1(t–1.0) – 
1

2
 g (t – 1.0)

2
 

 

where y02 = y01 + 10 = 54.1 m and where (again) y = 0 when t = 3.0 s.  Thus we 

obtain |v1| = 17 m/s, approximately. 

 

80. We take +x in the direction of motion. We use subscripts 1 and 2 for the data. Thus, 

v1 = +30 m/s, v2 = +50 m/s, and x2 – x1 = +160 m. 

 

(a) Using these subscripts, Eq. 2-16 leads to 

 

   

2 2 2 2
22 1

2 1

(50 m/s) (30 m/s)
5.0 m/s .

2 2 160 m

v v
a

x x

 
  


 

 

(b) We find the time interval corresponding to the displacement x2 – x1 using Eq. 2-17: 

 

   2 1

2 1

1 2

2 2 160 m
4.0 s .

30 m/s 50 m/s

x x
t t

v v


   

 
 

 

(c) Since the train is at rest (v0 = 0) when the clock starts, we find the value of t1 from 

Eq. 2-11: 

1 0 1 1 2

30 m/s
6.0 s .

5.0 m/s
v v at t      

 

(d) The coordinate origin is taken to be the location at which the train was initially at 

rest (so x0 = 0).  Thus, we are asked to find the value of x1. Although any of several 

equations could be used, we choose Eq. 2-17: 

 

    1 0 1 1

1 1
30 m/s 6.0 s 90 m .

2 2
x v v t     

 

(e) The graphs are shown below, with SI units understood. 

 

 
 

81. THINK The particle undergoes a non-constant acceleration along the +x-axis. An 

integration is required to calculate velocity.   

 

EXPRESS With a non-constant acceleration ( ) /a t dv dt , the velocity of the 
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particle at time 
1t  is given by Eq. 2-27:

1

0
1 0 ( )

t

t
v v a t dt   , where v0 is the velocity at 

time t0. In our situation, we have 5.0 .a t  In addition, we also know that 

0 17 m/sv   at 
0 2.0 s.t   

 

ANALYZE Integrating (from t = 2 s to variable t = 4 s) the acceleration to get the 

velocity and using the values given in the problem, leads to  

 

 
0 0

2 2

0 0 0 0

1
(5.0 ) (5.0)( )

2

t t

t t
v v adt v t dt v t t        = 17 + 

1

2
 (5.0)(4

2
 – 2

2
) = 47 m/s. 

 

LEARN The velocity of the particle as a function of t is 

 

2 2 2 2

0 0

1 1
( ) (5.0)( ) 17 (5.0)( 4) 7 2.5

2 2
v t v t t t t         

in SI units (m/s). Since the acceleration is linear in t, we expect the velocity to be 

quadratic in t, and the displacement to be cubic in t.    

 

82. The velocity v at t = 6 (SI units and two significant figures understood) is 
6

given
2

v adt


  .  A quick way to implement this is to recall the area of a triangle (
1

2
  

base × height). The result is v = 7 m/s + 32 m/s = 39 m/s. 

 

83. The object, once it is dropped (v0 = 0) is in free fall (a = –g = –9.8 m/s
2
 if we take 

down as the –y direction), and we use Eq. 2-15 repeatedly. 

 

(a) The (positive) distance D from the lower dot to the mark corresponding to a 

certain reaction time t is given by y D gt    1
2

2 , or D = gt
2
/2. Thus, 

for 1 50.0 mst  ,  

D1

3
2

9 8 50 0 10

2
0 0123




. .
.

m / s s
m = 1.23 cm.

2c h c h
 

 

(b) For t2 = 100 ms, 
   

2
2 3

2 1

9.8m/s 100 10 s
0.049m = 4 .

2
D D


   

 

(c) For t3 = 150 ms, 
   

2
2 3

3 1

9.8m/s 150 10 s
0.11m =9 .

2
D D


   

 

(d) For t4 = 200 ms, 
   

2
2 3

4 1

9.8m/s 200 10 s
0.196m =16 .

2
D D


   

 

(e) For t4 = 250 ms, D D5

3
2

9 8 250 10

2
0 306 25




.
.

m / s s
m = .

2

1

c h c h
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84. We take the direction of motion as +x, take x0 = 0 and use SI units, so v = 

1600(1000/3600) = 444 m/s. 

 

(a) Equation 2-11 gives 444 = a(1.8) or a = 247 m/s
2
. We express this as a multiple of 

g by setting up a ratio: 
2

2

247 m/s
25 .

9.8 m/s
a g g

 
  
 

 

(b) Equation 2-17 readily yields 

 

    0

1 1
444 m/s 1.8 s 400 m.

2 2
x v v t     

 

85. Let D be the distance up the hill. Then 

 

   average speed = 
total distance traveled

total time of travel
  = 

2D

D

20 km/h
 + 

D

35 km/h

   25 km/h . 

 

86. We obtain the velocity by integration of the acceleration: 

 

0
0
(6.1 1.2 )

t

v v t dt    . 

Lengths are in meters and times are in seconds. The student is encouraged to look at 

the discussion in Section 2-7 to better understand the manipulations here. 

 

(a) The result of the above calculation is 2

0 6.1 0.6 ,v v t t   where the problem 

states that v0 = 2.7 m/s. The maximum of this function is found by knowing when its 

derivative (the acceleration) is zero (a = 0 when t = 6.1/1.2 = 5.1 s) and plugging that 

value of t into the velocity equation above. Thus, we find 18 m/sv  . 

 

(b) We integrate again to find x as a function of t: 

 2 2 3

0 0 0
0 0

( 6.1 0.6 ) 3.05 0.2
t t

x x v dt v t t dt v t t t            . 

 

With x0 = 7.3 m, we obtain x = 83 m for t = 6. This is the correct answer, but one has 

the right to worry that it might not be; after all, the problem asks for the total distance 

traveled (and x  x0 is just the displacement). If the cyclist backtracked, then his total 

distance would be greater than his displacement. Thus, we might ask, "did he 

backtrack?" To do so would require that his velocity be (momentarily) zero at some 

point (as he reversed his direction of motion). We could solve the above quadratic 

equation for velocity, for a positive value of t where v = 0; if we did, we would find 

that at t = 10.6 s, a reversal does indeed happen. However, in the time interval we are 

concerned with in our problem (0 ≤ t ≤ 6 s), there is no reversal and the displacement 

is the same as the total distance traveled. 

 

87. THINK In this problem we’re given two different speeds, and asked to find the 

difference in their travel times.   
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EXPRESS The time is takes to travel a distance d with a speed v1 is 
1 1/t d v . 

Similarly, with a speed v2 the time would be 2 2/t d v . The two speeds in this 

problem are 

1

2

1609 m/mi
55 mi/h (55 mi/h) 24.58 m/s

3600 s/h

1609 m/mi
65 mi/h (65 mi/h) 29.05 m/s

3600 s/h

v

v

  

  

 

 ANALYZE With 5700 km 7.0 10  md    , the time difference between the two is 

 

5

1 2

1 2

1 1 1 1
(7.0 10  m) 4383 s

24.58 m/s 29.05 m/s

73 min

t t t d
v v

   
           

  



 

 

or about 1.2 h. 

 

LEARN The travel time was reduced from 7.9 h to 6.9 h. Driving at higher speed 

(within the legal limit) reduces travel time.  

 

88. The acceleration is constant and we may use the equations in Table 2-1. 

 

(a) Taking the first point as coordinate origin and time to be zero when the car is there, 

we apply Eq. 2-17: 

     0 0

1 1
15.0 m/s 6.00 s .

2 2
x v v t v     

 

With x = 60.0 m (which takes the direction of motion as the +x direction) we solve for 

the initial velocity: v0 = 5.00 m/s. 

 

(b) Substituting v = 15.0 m/s, v0 = 5.00 m/s, and t = 6.00 s into a = (v – v0)/t (Eq. 2-11), 

we find a = 1.67 m/s
2
. 

 

(c) Substituting v = 0 in 2 2

0 2v v ax   and solving for x, we obtain 

 

 

2 2

0

2

(5.00 m/s)
7.50m

2 2 1.67 m/s

v
x

a
      , 

or | | 7.50 mx  . 

 

(d) The graphs require computing the time when v = 0, in which case, we use v = v0 + 

at' = 0. Thus, 

0

2

5.00 m/s
3.0s

1.67 m/s

v
t

a

 
     

 

indicates the moment the car was at rest. SI units are understood. 
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89. THINK In this problem we explore the connection between the maximum height 

an object reaches under the influence of gravity and the total amount of time it stays 

in air.  

 

EXPRESS Neglecting air resistance and setting a = –g = –9.8 m/s
2
 (taking down as 

the –y direction) for the duration of the motion, we analyze the motion of the ball 

using Table 2-1 (with y replacing x). We set y0 = 0. Upon reaching the maximum 

height H, the speed of the ball is momentarily zero (v = 0). Therefore, we can relate its 

initial speed v0 to H via the equation 
2 2

0 00  2 2v v gH v gH     . 

 

The time it takes for the ball to reach maximum height is given by 0 0v v gt   , or 

0 / 2 /t v g H g  .  

 

ANALYZE If we want the ball to spend twice as much time in air as before, i.e., 

2t t  , then the new maximum height H   it must reach is such that 2 /t H g  . 

Solving for H   we obtain 

 2 2 21 1 1
(2 ) 4 4

2 2 2
H gt g t gt H

 
     

 
. 

 

LEARN Since 2H t , doubling t means that H must increase fourfold. Note also 

that for 2t t  , the initial speed must be twice the original speed: 0 02v v  .   

 

90. (a) Using the fact that the area of a triangle is 1
2

(base) (height) (and the fact that 

the integral corresponds to the area under the curve) we find, from t = 0 through t = 5 

s, the integral of v with respect to t is 15 m. Since we are told that x0 = 0 then we 

conclude that x = 15 m when t = 5.0 s. 

 

(b) We see directly from the graph that v = 2.0 m/s when t = 5.0 s. 

 

(c) Since a = dv/dt = slope of the graph, we find that the acceleration during the 

interval 4 < t < 6 is uniformly equal to –2.0 m/s
2
. 

 

(d) Thinking of x(t) in terms of accumulated area (on the graph), we note that x(1) = 1 

m; using this and the value found in part (a), Eq. 2-2 produces 
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avg

(5) (1) 15 m 1 m
3.5 m/s.

5 1 4 s

x x
v

 
  


 

 

(e) From Eq. 2-7 and the values v(t) we read directly from the graph, we find 

 

avg

(5) (1) 2 m/s 2 m/s
0.

5 1 4 s

v v
a

 
  


 

 

91. Taking the +y direction downward and y0 = 0, we have y v t gt 0
1
2

2 , which 

(with v0 = 0) yields t y g 2 / . 

 

(a) For this part of the motion, y1 = 50 m so that 1 2

2(50 m)
3.2 s .

9.8 m/s
t    

 

(b) For this next part of the motion, we note that the total displacement is y2 = 100 m. 

Therefore, the total time is 

2 2

2(100 m)
4.5 s .

9.8 m/s
t    

 

The difference between this and the answer to part (a) is the time required to fall 

through that second 50 m distance: 2 1t t t    4.5 s – 3.2 s = 1.3 s. 

 

92. Direction of +x is implicit in the problem statement. The initial position (when the 

clock starts) is x0 = 0 (where v0 = 0), the end of the speeding-up motion occurs at x1 = 

1100/2 = 550 m, and the subway train comes to a halt (v2 = 0) at x2 = 1100 m. 

 

(a) Using Eq. 2-15, the subway train reaches x1 at 

 

 
1

1 2

1

2 550 m2
30.3 s .

1.2 m/s

x
t

a
    

 

The time interval t2 – t1 turns out to be the same value (most easily seen using Eq. 

2-18 so the total time is t2 = 2(30.3) = 60.6 s. 

 

(b) Its maximum speed occurs at t1 and equals v v a t1 0 1 1 363   . .m/ s  

 

(c) The graphs are shown below: 
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93. We neglect air resistance, which justifies setting a = –g = –9.8 m/s
2
 (taking down 

as the –y direction) for the duration of the stone’s motion. We are allowed to use Table 

2-1 (with x replaced by y) because the ball has constant acceleration motion (and we 

choose y0 = 0). 

 

(a) We apply Eq. 2-16 to both measurements, with SI units understood. 

 

 
2

2 2 2

0 0

2 2 2 2

0 0

1
2 2 3

2

2 2

B B A

A A A

v v gy v g y v

v v gy v gy v

 
      

 

    

 

 

We equate the two expressions that each equal v0

2  and obtain 

 

1

4
2 2 3 2 2 3

3

4

2 2 2v gy g v gy g vA A     b g b g  

 

which yields v g 2 4 885b g . m / s.  

 

(b) An object moving upward at A with speed v = 8.85 m/s will reach a maximum 

height y – yA = v
2
/2g = 4.00 m above point A (this is again a consequence of Eq. 2-16, 

now with the “final” velocity set to zero to indicate the highest point). Thus, the top of 

its motion is 1.00 m above point B. 

 

94. We neglect air resistance, which justifies setting a = –g = –9.8 m/s
2
 (taking down 

as the –y direction) for the duration of the motion. We are allowed to use Table 2-1 

(with y replacing x) because this is constant acceleration motion. The ground level 

is taken to correspond to the origin of the y-axis. The total time of fall can be 

computed from Eq. 2-15 (using the quadratic formula). 

 




y v t gt t
v v g y

g
   

 
0

2 0 0

2
1

2

2
     

 

with the positive root chosen. With y = 0, v0 = 0, and y0 = h = 60 m, we obtain 

 

t
gh

g

h

g
  

2 2
35.  s . 

 

Thus, “1.2 s earlier” means we are examining where the rock is at t = 2.3 s: 

 

2

0

1
(2.3 s) (2.3 s)     34 m

2
y h v g y      

 

where we again use the fact that h = 60 m and v0 = 0. 

 

95. THINK This problem involves analyzing a plot describing the position of an 

iceboat as function of time. The boat has a nonzero acceleration due to the wind. 
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EXPRESS Since we are told that the acceleration of the boat is constant, the 

equations of Table 2-1 can be applied. However, the challenge here is that v0, v, and a 

are not explicitly given. Our strategy to deduce these values is to apply the kinematic 

equation 21
0 0 2

x x v t at    to a variety of points on the graph and solve for the 

unknowns from the simultaneous equations.   

 

ANALYZE (a) From the graph, we pick two points on the curve: 

( , ) (2.0 s,16 m)t x   and (3.0 s,27 m) . The corresponding simultaneous equations 

are 

16 m – 0 = v0(2.0 s) + 
1

2
 a(2.0 s)

2
 

27 m – 0 = v0(3.0 s) + 
1

2
 a(3.0 s)

2
 

 

Solving the equations lead to the values v0 = 6.0 m/s and a = 2.0 m/s
2
. 

 

(b) From Table 2-1,  

x – x0 = vt – 
1

2
at

2
    27 m – 0 = v(3.0 s) – 

1

2
 (2.0 m/s

2
)(3.0 s)

2
 

 

which leads to v = 12 m/s. 

 

(c) Assuming the wind continues during 3.0 ≤ t ≤ 6.0, we apply x – x0 = v0t + 
1

2
at

2
 to 

this interval (where v0 = 12.0 m/s from part (b)) to obtain 

 

x = (12.0 m/s)(3.0 s) + 
1

2
 (2.0 m/s

2
)(3.0 s)

2
 = 45 m. 

 

LEARN By using the results obtained in (a), the position and velocity of the iceboat 

as a function of time can be written as 

 

2 21
( ) (6.0 m/s) (2.0 m/s )

2
x t t t   and 2( ) (6.0 m/s) (2.0 m/s ) .v t t   

One can readily verify that the same answers are obtained for (b) and (c) using the 

above expressions for ( )x t  and ( )v t .  

 

96. (a) Let the height of the diving board be h. We choose down as the +y direction 

and set the coordinate origin at the point where it was dropped (which is when we 

start the clock). Thus, y = h designates the location where the ball strikes the water. 

Let the depth of the lake be D, and the total time for the ball to descend be T. The 

speed of the ball as it reaches the surface of the lake is then v = 2gh  (from Eq. 

2-16), and the time for the ball to fall from the board to the lake surface is t1 = 

2h g/  (from Eq. 2-15). Now, the time it spends descending in the lake (at constant 

velocity v) is 

t
D

v

D

gh
2

2
  . 
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Thus, T = t1 + t2 = 
2h

g
 + 

D

gh2
, which gives 

 

       22 2 4.80 s 2 9.80 m/s 5.20 m 2 5.20 m 38.1 m .D T gh h      

 

(b) Using Eq. 2-2, the magnitude of the average velocity is 

 

avg

38.1 m 5.20 m
9.02 m/s

4.80 s

D h
v

T

 
    

 

(c) In our coordinate choices, a positive sign for vavg means that the ball is going 

downward. If, however, upward had been chosen as the positive direction, then this 

answer in (b) would turn out negative-valued. 

 

(d) We find v0 from 21
0 2

y v t gt    with t = T and y = h + D. Thus, 

 

  2

0

9.8 m/s 4.80 s5.20 m 38.1 m
14.5 m/s

2 4.80 s 2

h D gT
v

T

 
      

 

(e) Here in our coordinate choices the negative sign means that the ball is being 

thrown upward. 

 

97. We choose down as the +y direction and use the equations of Table 2-1 (replacing 

x with y) with a = +g, v0 = 0, and y0 = 0. We use subscript 2 for the elevator reaching 

the ground and 1 for the halfway point. 

 

(a) Equation 2-16, v v a y y2

2

0

2

2 02  b g , leads to 

 

  2

2 22 2 9.8 m/s 120 m 48.5 m/s .v gy    

 

(b) The time at which it strikes the ground is (using Eq. 2-15) 

 

 
2

2 2

2 120 m2
4.95 s .

9.8 m/s

y
t

g
    

 

(c) Now Eq. 2-16, in the form v v a y y1

2

0

2

1 02  b g , leads to 

 
2

1 12 2(9.8 m/s )(60 m) 34.3m/s.v gy    

 

(d) The time at which it reaches the halfway point is (using Eq. 2-15) 
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1
1 2

2 2(60 m)
3.50 s .

9.8 m/s

y
t

g
    

 

98. Taking +y to be upward and placing the origin at the point from which the objects 

are dropped, then the location of diamond 1 is given by y gt1
1
2

2   and the location 

of diamond 2 is given by y g t2
1
2

2
1  b g . We are starting the clock when the first 

object is dropped. We want the time for which y2 – y1 = 10 m. Therefore, 

 

       
1

2
1

1

2
10 10 05 15

2 2g t gt t gb g b g/ . . s.  

 

99. With +y upward, we have y0 = 36.6 m and y = 12.2 m. Therefore, using Eq. 2-18 

(the last equation in Table 2-1), we find 

 
21

0 2
    22.0 m/s y y vt gt v       

 

at t = 2.00 s. The term speed refers to the magnitude of the velocity vector, so the 

answer is |v| = 22.0 m/s. 

 

100. During free fall, we ignore the air resistance and set a = –g = –9.8 m/s
2
 where we 

are choosing down to be the –y direction. The initial velocity is zero so that Eq. 2-15 

becomes y gt  1
2

2  where y represents the negative of the distance d she has 

fallen. Thus, we can write the equation as d gt 1
2

2  for simplicity. 

 

(a) The time t1 during which the parachutist is in free fall is (using Eq. 2-15) given by 

 

d gt t1 1

2

1

250
1

2
9 80 m =

1

2
m / s2.c h  

 

which yields t1 = 3.2 s. The speed of the parachutist just before he opens the parachute 

is given by the positive root 2

1 12v gd , or 

 

v gh1 12 2 9 80 50 31  b gc hb g. m / s m m / s.2  

 

If the final speed is v2, then the time interval t2 between the opening of the parachute 

and the arrival of the parachutist at the ground level is 

 

t
v v

a
2

1 2 31 30
14







m / s m / s

2 m / s
s.

2

.
 

 

This is a result of Eq. 2-11 where speeds are used instead of the (negative-valued) 

velocities (so that final-velocity minus initial-velocity turns out to equal initial-speed 

minus final-speed); we also note that the acceleration vector for this part of the motion 

is positive since it points upward (opposite to the direction of motion — which makes 

it a deceleration). The total time of flight is therefore t1 + t2 = 17 s. 
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(b) The distance through which the parachutist falls after the parachute is opened is 

given by 

d
v v

a






1

2

2

2 2 2

2

31 30

2 2 0
240

m / s m / s

m / s
m.

2

b g b g
b gc h

.

.
 

 

In the computation, we have used Eq. 2-16 with both sides multiplied by –1 (which 

changes the negative-valued y into the positive d on the left-hand side, and switches 

the order of v1 and v2 on the right-hand side). Thus the fall begins at a height of h = 50 

+ d  290 m. 

 

101. We neglect air resistance, which justifies setting a = –g = –9.8 m/s
2
 (taking down 

as the –y direction) for the duration of the motion. We are allowed to use Table 2-1 

(with y replacing x) because this is constant acceleration motion. The ground level 

is taken to correspond to y = 0. 

 

(a) With y0 = h and v0 replaced with –v0, Eq. 2-16 leads to 

 

2 2

0 0 0( ) 2 ( ) 2  .v v g y y v gh       

 

The positive root is taken because the problem asks for the speed (the magnitude of 

the velocity). 

 

(b) We use the quadratic formula to solve Eq. 2-15 for t, with v0 replaced with –v0, 

 




y v t gt t
v v g y

g
          

   
0

2 0 0

2
1

2

2( )
 

 

where the positive root is chosen to yield t > 0. With y = 0 and y0 = h, this becomes 

 

t
v gh v

g


 0

2

02
.  

 

(c) If it were thrown upward with that speed from height h then (in the absence of air 

friction) it would return to height h with that same downward speed and would 

therefore yield the same final speed (before hitting the ground) as in part (a). An 

important perspective related to this is treated later in the book (in the context of 

energy conservation). 

 

(d) Having to travel up before it starts its descent certainly requires more time than in 

part (b). The calculation is quite similar, however, except for now having +v0 in the 

equation where we had put in –v0 in part (b). The details follow: 

 




y v t gt t
v v g y

g
   

 
0

2 0 0

2
1

2

2
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with the positive root again chosen to yield t > 0. With y = 0 and y0 = h, we obtain 

 

t
v gh v

g


 0

2

02
.  

102. We assume constant velocity motion and use Eq. 2-2 (with vavg = v > 0). 

Therefore, 

 x v t 
F
HG

I
KJ

F
HG

I
KJ  303

1000
100 10 8 43km

h

m / km

3600 s / h
s m.c h .  

 

103. Assuming the horizontal velocity of the ball is constant, the horizontal 

displacement is x v t , where x is the horizontal distance traveled, t is the time, 

and v is the (horizontal) velocity. Converting v to meters per second, we have 160 

km/h = 44.4 m/s. Thus 




t
x

v
  

18 4

44 4
0 414

.

.
.

 m

 m / s
 s.  

 

The velocity-unit conversion implemented above can be figured “from basics” (1000 

m = 1 km, 3600 s = 1 h) or found in Appendix D. 

 

104. In this solution, we make use of the notation x(t) for the value of x at a particular 

t. Thus, x(t) = 50t + 10t
2
 with SI units (meters and seconds) understood. 

 

(a) The average velocity during the first 3 s is given by 

 

v
x x

t
avg  m / s.




 


( ) ( ) ( )( ) ( )( )3 0 50 3 10 3 0

3
80

2


 

 

(b) The instantaneous velocity at time t is given by v = dx/dt = 50 + 20t, in SI units. At 

t = 3.0 s, v = 50 + (20)(3.0) = 110 m/s. 

 

(c) The instantaneous acceleration at time t is given by a = dv/dt = 20 m/s
2
. It is 

constant, so the acceleration at any time is 20 m/s
2
. 

 

(d) and (e) The graphs that follow show the coordinate x and velocity v as functions of 

time, with SI units understood. The dashed line marked (a) in the first graph runs from 

t = 0, x = 0 to t = 3.0s, x = 240 m. Its slope is the average velocity during the first 3s 

of motion. The dashed line marked (b) is tangent to the x curve at t = 3.0 s. Its slope is 

the instantaneous velocity at t = 3.0 s. 
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105. We take +x in the direction of motion, so v0 = +30 m/s, v1 = +15 m/s and a < 0. 

The acceleration is found from Eq. 2-11: a = (v1 – v0)/t1 where t1 = 3.0 s. This gives a 

= –5.0 m/s
2
. The displacement (which in this situation is the same as the distance 

traveled) to the point it stops (v2 = 0) is, using Eq. 2-16, 

 
2

2 2

2 0 2

(30 m/s)
2 90 m.

2( 5 m/s )
v v a x x      


 

 

106. The problem consists of two constant-acceleration parts: part 1 with v0 = 0, v = 

6.0 m/s, x = 1.8 m, and x0 = 0 (if we take its original position to be the coordinate 

origin); and, part 2 with v0 = 6.0 m/s, v = 0, and a2 = –2.5 m/s
2
 (negative because we 

are taking the positive direction to be the direction of motion). 

 

(a) We can use Eq. 2-17 to find the time for the first part 

 

x – x0 = 
1

2
(v0 + v) t1    1.8 m – 0 = 

1

2
(0 + 6.0 m/s) t1 

 

so that t1 = 0.6 s. And Eq. 2-11 is used to obtain the time for the second part 

 

0 2 2v v a t      0 = 6.0 m/s + (–2.5 m/s
2
)t2 

 

from which t2 = 2.4 s is computed. Thus, the total time is t1 + t2 = 3.0 s. 

 

(b) We already know the distance for part 1. We could find the distance for part 2 

from several of the equations, but the one that makes no use of our part (a) results is 

Eq. 2-16 
2 2

0 2 22v v a x        0 = (6.0 m/s)
2
 + 2(–2.5 m/s

2
)x2 

 

which leads to x2 = 7.2 m. Therefore, the total distance traveled by the shuffleboard 

disk is (1.8 + 7.2) m = 9.0 m. 

 

107. The time required is found from Eq. 2-11 (or, suitably interpreted, Eq. 2-7). First, 

we convert the velocity change to SI units: 

 

v 
F
HG

I
KJ ( .100

3600
27 8 km / h) 

1000 m / km

 s / h
 m / s .  

Thus, t = v/a = 27.8/50 = 0.556 s. 

 

108. From Table 2-1, v v a x2

0

2 2    is used to solve for a. Its minimum value is 

 

a
v v

x
min

max

(

( .



 2 0

2

2

360

2 180
36000



 km / h)

 km)
 km / h

2
2  

 

which converts to 2.78 m/s
2
. 
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109. (a) For the automobile v = 55 – 25 = 30 km/h, which we convert to SI units: 

 

a
v

t
  




(

( . min)(
. .

30

0 50 60
0 28

1000
3600 km / h)

s / min)
 m / s

  m/km
  s/h 2b g

 

 

(b) The change of velocity for the bicycle, for the same time, is identical to that of the 

car, so its acceleration is also 0.28 m/s
2
. 

 

110. Converting to SI units, we have v = 3400(1000/3600) = 944 m/s (presumed 

constant) and t = 0.10 s. Thus, x = vt = 94 m. 

 

111. This problem consists of two parts: part 1 with constant acceleration (so that the 

equations in Table 2-1 apply), v0 = 0, v = 11.0 m/s, x = 12.0 m, and x0 = 0 (adopting 

the starting line as the coordinate origin); and, part 2 with constant velocity (so that 

x – x0 = vt applies) with v = 11.0 m/s, x0 = 12.0, and x = 100.0 m. 

 

(a) We obtain the time for part 1 from Eq. 2-17 

 

x x v v t t      0 0 1 1

1

2
12 0 0

1

2
0 110b g b g. .  

 

so that t1 = 2.2 s, and we find the time for part 2 simply from 88.0 = (11.0)t2  t2 = 

8.0 s. Therefore, the total time is t1 + t2 = 10.2 s. 

 

(b) Here, the total time is required to be 10.0 s, and we are to locate the point xp where 

the runner switches from accelerating to proceeding at constant speed. The equations 

for parts 1 and 2, used above, therefore become 

 

 

  

1
12

1

0 0 11.0 m/s

100.0 m 11.0 m/s 10.0 s

p

p

x t

x t

  

  
 

 

where in the latter equation, we use the fact that t2 = 10.0 – t1. Solving the equations 

for the two unknowns, we find that t1 = 1.8 s and xp = 10.0 m. 

 

112. The bullet starts at rest (v0 = 0) and after traveling the length of the barrel 

( 1.2 mx  ) emerges with the given velocity (v = 640 m/s), where the direction of 

motion is the positive direction. Turning to the constant acceleration equations in 

Table 2-1, we use 1
02

( ) .x v v t   Thus, we find t = 0.00375 s (or 3.75 ms). 

 

113. There is no air resistance, which makes it quite accurate to set a = –g = –9.8 m/s
2
 

(where downward is the –y direction) for the duration of the fall. We are allowed to 

use Table 2-1 (with y replacing x) because this is constant acceleration motion; in 

fact, when the acceleration changes (during the process of catching the ball) we will 

again assume constant acceleration conditions; in this case, we have a2 = +25g = 245 

m/s
2
. 

 

(a) The time of fall is given by Eq. 2-15 with v0 = 0 and y = 0. Thus, 
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0

2

2 2(145 m)
5.44 s.

9.8 m/s

y
t

g
    

 

(b) The final velocity for its free-fall (which becomes the initial velocity during the 

catching process) is found from Eq. 2-16 (other equations can be used but they would 

use the result from part (a)) 

 

v v g y y gy       0

2

0 02 2 533( ) .  m / s  

 

where the negative root is chosen since this is a downward velocity. Thus, the speed is 

| | 53.3 m/s.v   

 

(c) For the catching process, the answer to part (b) plays the role of an initial velocity 

(v0 = –53.3 m/s) and the final velocity must become zero. Using Eq. 2-16, we find 

 
2 2 2

0
2 2

2

( 53.3 m/s)
5.80 m

2 2(245 m/s )

v v
y

a

  
     , 

 

or 2| | 5.80 m.y   The negative value of y2 signifies that the distance traveled 

while arresting its motion is downward. 

 

114. During Tr the velocity v0 is constant (in the direction we choose as +x) and obeys 

v0 = Dr/Tr where we note that in SI units the velocity is v0 = 200(1000/3600) = 55.6 

m/s. During Tb the acceleration is opposite to the direction of v0 (hence, for us, a < 0) 

until the car is stopped (v = 0). 

 

(a) Using Eq. 2-16 (with xb = 170 m) we find 

v v a x a
v

x
b

b

2

0

2 0

2

2
2

    


 

which yields |a| = 9.08 m/s
2
. 

 

(b) We express this as a multiple of g by setting up a ratio: 

 
2

2

9.08 m/s
0.926 .

9.8 m/s
a g g

 
  
 

 

 

(c) We use Eq. 2-17 to obtain the braking time: 

 
 

0

2 170 m1
6.12 s .

2 55.6 m/s
b b bx v v T T       

 

(d) We express our result for Tb as a multiple of the reaction time Tr by setting up a 

ratio: 

3

6.12 s
15.3 .

400 10 s
b r rT T T



 
  

 
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(e) Since Tb > Tr, most of the full time required to stop is spent in braking. 

 

(f) We are only asked what the increase in distance D is, due to Tr = 0.100 s, so we 

simply have 

  0 55.6 m/s 0.100 s 5.56 m .rD v T      

 

115. The total time elapsed is 2 h 41 min 161 mint   and the center point is 

displaced by 3.70 m 370 cm.x    Thus, the average velocity of the center point is 

 

avg

370 cm
2.30 cm/min.

161 min

x
v

t


  


 

 

116. Using Eq. 2-11, 0 ,v v at  we find the initial speed to be 

 2 3

0 0 ( 3400)(9.8 m/s )(6.5 10 s) 216.6 m/sv v at         

117. The total number of days walked is (including the first and the last day, and leap 

year) 

340 365 365 366 365 365 261 2427N          

 

Thus, the average speed of the walk is 
7

avg

3.06 10  m
0.146 m/s.

(2427 days)(86400 s/day)

d
s

t


  


 

 

118. (a) Let d be the distance traveled. The average speed with and without wings set 

as sails are /s sv d t  and /ns nsv d t , respectively. Thus, the ratio of the two speeds 

is 

/ 25.0 s
3.52

/ 7.1s

s s ns

ns ns s

v d t t

v d t t
     

 

(b) The difference in time expressed in terms of sv is 

 

(2.0 m) 5.04 m
2.52 2.52

( / 3.52)
ns s

ns s s s s s s

d d d d d
t t t

v v v v v v v
           

 

119. (a) Differentiating ( ) (2.0 cm)sin( / 4)y t t  with respect to t, we obtain 

 

( )  cm/s cos( / 4)
2

y

dy
v t t

dt




 
   

 
 

 

The average velocity between t = 0 and t = 2.0 s is 
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 

2 2

avg
0 0

/ 2

0

1 1
 cm/s cos

(2.0 s) (2.0 s) 2 4

1
2 cm cos 1.0 cm/s

(2.0 s)

y

t
v v dt dt

x dx


    
     

   

 

 


 

 

(b) The instantaneous velocities of the particle at t = 0, 1.0 s, and 2.0 s are, 

respectively, 

(0)  cm/s cos(0)  cm/s
2 2

2
(1.0 s)  cm/s cos( / 4)  cm/s

2 4

(2.0 s)  cm/s cos( / 2) 0
2

y

y

y

v

v

v

 

 





 
  
 

 
  
 

 
  
 

 

 

(c) Differentiating ( )yv t  with respect to t, we obtain the following expression for 

acceleration: 
2

2( )  cm/s sin( / 4)
8

y

y

dv
a t t

dt




 
   

 
 

 

The average acceleration between t = 0 and t = 2.0 s is 

 
2

2 2
2

avg
0 0

/ 2
2

0

1 1
 cm/s sin

(2.0 s) (2.0 s) 8 4

1 1
 cm/s sin  cm/s cm/s

(2.0 s) 2 (2.0 s) 2 4

y

t
a a dt dt

x dx


 

  

   
     

  

   
        

   

 



 

 

(d) The instantaneous accelerations of the particle at t = 0, 1.0 s, and 2.0 s are, 

respectively, 
2

2

2 2
2 2

2 2
2 2

(0)  cm/s sin(0) 0
8

2
(1.0 s)  cm/s sin( / 4)  cm/s

8 16

(2.0 s)  cm/s sin( / 2)  cm/s
8 8

y

y

y

a

a

a



 


 


 
   
 

 
    
 

 
    
 
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