SOLUTION MANUAL
 ENGLISH UNIT PROBLEMS
 CHAPTER 2

CHAPTER 2

SUBSECTION

Concept-Study Guide Problems 87-91
Properties and Units
Force, Energy and Specific Volume
Pressure, Manometers and Barometers
Temperature

PROB NO.

92
93-96
97-103
104-105

Correspondence table

The correspondence between the problem set in this sixth edition versus the problem set in the 5 'th edition text. Problems that are new are marked new and the SI number refers to the corresponding $6^{\text {th }}$ edition SI unit problem.

New	$\mathbf{5}^{\text {th }} \mathbf{E d .}$	SI	$\mathbf{N e w}$	$\mathbf{5}^{\text {th }} \mathbf{E d .}$	SI
87	new	-	97	43 E	43
88	new	11	98	new	50
89	new	12	99	new	53
90	new	19	100	45 E	70
91	new	20	101	46 E	45
92	new	24	102	new	82
93	$39 E$	33	103	48 E	55
94	40 E	-	104	new	80
95	new	47	105	47 E	77
96	42 E	42			

Concept Problems

2.87E

A mass of 2 lbm has acceleration of $5 \mathrm{ft} / \mathrm{s}^{2}$, what is the needed force in lbf ?
Solution:

$$
\begin{aligned}
& \text { Newtons } 2^{\text {nd }} \text { law: } \quad \mathrm{F}=\mathrm{ma} \\
& \begin{aligned}
\mathrm{F} & =\mathrm{ma}=2 \mathrm{lbm} \times 5 \mathrm{ft} / \mathrm{s}^{2}=10 \mathrm{lbm} \mathrm{ft} / \mathrm{s}^{2} \\
& =\frac{10}{32.174} \mathrm{lbf}=\mathbf{0 . 3 1} \mathbf{~ l b f}
\end{aligned}
\end{aligned}
$$

2.88 E

How much mass is in 0.25 gallon of liquid mercury (Hg) ? Atmospheric air?
Solution:
A volume of 1 gal equals $231 \mathrm{in}^{3}$, see Table A.1. From Figure 2.7 the density is in the range of $10000 \mathrm{~kg} / \mathrm{m}^{3}=624.28 \mathrm{lbm} / \mathrm{ft}^{3}$, so we get

$$
\mathrm{m}=\rho \mathrm{V}=624.3 \mathrm{lbm} / \mathrm{ft}^{3} \times 0.25 \times\left(231 / 12^{3}\right) \mathrm{ft}^{3}=\mathbf{2 0 . 8 6} \mathbf{l b m}
$$

A more accurate value from Table F. 3 is $\rho=848 \mathrm{lbm} / \mathrm{ft}^{3}$.
For the air we see in Figure 2.7 that density is about $1 \mathrm{~kg} / \mathrm{m}^{3}=0.06243 \mathrm{lbm} / \mathrm{ft}^{3}$ so we get

$$
\mathrm{m}=\rho \mathrm{V}=0.06243 \mathrm{lbm} / \mathrm{ft}^{3} \times 0.25 \times\left(231 / 12^{3}\right) \mathrm{ft}^{3}=\mathbf{0 . 0 0 2 0 9} \mathbf{l b m}
$$

A more accurate value from Table F. 4 is $\rho=0.073 \mathrm{lbm} / \mathrm{ft}^{3}$ at $77 \mathrm{~F}, 1 \mathrm{~atm}$.
2.89ㅌ

Can you easily carry a one gallon bar of solid gold?
Solution:
The density of solid gold is about $1205 \mathrm{lbm} / \mathrm{ft}^{3}$ from Table F.2, we could also have read Figure 2.7 and converted the units.

$$
\mathrm{V}=1 \mathrm{gal}=231 \mathrm{in}^{3}=231 \times 12^{-3} \mathrm{ft}^{3}=0.13368 \mathrm{ft}^{3}
$$

Therefore the mass in one gallon is

$$
\begin{aligned}
\mathrm{m}=\rho \mathrm{V}= & 1205 \mathrm{lbm} / \mathrm{ft}^{3} \times 0.13368 \mathrm{ft}^{3} \\
& =161 \mathrm{lbm}
\end{aligned}
$$

and some people can just about carry that in the standard gravitational field.
2.90 E

What is the temperature of -5 F in degrees Rankine?
Solution:
The offset from Fahrenheit to Rankine is
459.67 R, so we get

$$
\begin{aligned}
\mathrm{T}_{\mathrm{R}} & =\mathrm{T}_{\mathrm{F}}+459.67=-5+459.67 \\
& =\mathbf{4 5 4 . 7} \mathbf{~ R}
\end{aligned}
$$

2.91 E

What is the smallest temperature in degrees Fahrenheit you can have? Rankine?
Solution:
The lowest temperature is absolute zero which is at zero degrees Rankine at which point the temperature in Fahrenheit is negative

$$
\mathrm{T}_{\mathrm{R}}=0 \mathrm{R}=-459.67 \mathrm{~F}
$$

Properties and Units

2.92 E

An apple weighs 0.2 lbm and has a volume of $6 \mathrm{in}^{3}$ in a refrigerator at 38 F . What is the apple density? List three intensive and two extensive properties for the apple.

Solution:

$$
\rho=\frac{\mathrm{m}}{\mathrm{~V}}=\frac{0.2}{6} \frac{\mathrm{lbm}}{\mathrm{in}^{3}}=0.0333 \frac{\mathrm{lbm}}{\mathrm{in}^{3}}=57.6 \frac{\mathrm{lbm}}{\mathrm{ft}^{3}}
$$

Intensive

$$
\begin{array}{ll}
\rho=57.6 \frac{\mathrm{lbm}}{\mathrm{ft}^{3}} ; & \mathrm{v}=\frac{1}{\rho}=0.0174 \frac{\mathrm{ft}^{3}}{\mathrm{lbm}} \\
\mathrm{~T}=38 \mathrm{~F} ; & \mathrm{P}=14.696 \mathrm{lbf} / \mathrm{in}^{2}
\end{array}
$$

Extensive

$$
\mathrm{m}=0.2 \mathrm{lbm}
$$

$$
\mathrm{V}=6 \mathrm{in}^{3}=0.026 \mathrm{gal}=0.00347 \mathrm{ft}^{3}
$$

Force, Energy, Density

2.93 E

A $2500-\mathrm{lbm}$ car moving at $15 \mathrm{mi} / \mathrm{h}$ is accelerated at a constant rate of $15 \mathrm{ft} / \mathrm{s}^{2}$ up to a speed of $50 \mathrm{mi} / \mathrm{h}$. What are the force and total time required?

Solution:

$$
\begin{aligned}
& \mathrm{a}=\frac{\mathrm{d} \mathbf{V}}{\mathrm{dt}}=\frac{\Delta \mathbf{V}}{\Delta \mathrm{t}} \Rightarrow \quad \Delta \mathrm{t}=\frac{\Delta \mathbf{V}}{\mathrm{a}} \\
& \Delta \mathrm{t}=\frac{(50-15) \mathrm{mi} / \mathrm{h} \times 1609.34 \mathrm{~m} / \mathrm{mi} \times 3.28084 \mathrm{ft} / \mathrm{m}}{3600 \mathrm{~s} / \mathrm{h} \times 15 \mathrm{ft} / \mathrm{s}^{2}}=\mathbf{3 . 4 2} \mathbf{~ s e c} \\
& \mathrm{F}=\mathrm{ma}=(2500 \times 15 / 32.174) \mathrm{lbf}=\mathbf{1 1 6 5} \mathbf{~ l b f}
\end{aligned}
$$

2.94 E

Two pound moles of diatomic oxygen gas are enclosed in a $20-\mathrm{lbm}$ steel container. A force of 2000 lbf now accelerates this system. What is the acceleration?

Solution:
The molecular weight for oxygen is $\mathrm{M}=31.999$ from Table F.1. The force must accelerate both the container and the oxygen mass.

$$
\begin{aligned}
& \mathrm{m}_{\mathrm{O}_{2}}=\mathrm{n}_{\mathrm{O}_{2}} \mathrm{M}_{\mathrm{O}_{2}}=2 \times 31.999=64 \mathrm{lbm} \\
& \mathrm{~m}_{\text {tot }}=\mathrm{m}_{\mathrm{O}_{2}}+\mathrm{m}_{\text {steel }}=64+20=84 \mathrm{lbm} \\
& \mathrm{a}=\frac{\mathrm{F}}{\mathrm{~m}_{\mathrm{tot}}}=\frac{2000 \mathrm{lbf}}{84 \mathrm{lbm}} \times 32.174 \frac{\mathrm{lbm} \mathrm{ft} \mathrm{~s}-2}{\mathrm{lbf}}=\mathbf{7 6 6 ~ f t} / \mathbf{s}^{\mathbf{2}}
\end{aligned}
$$

2.95E

A valve in a cylinder has a cross sectional area of $2 \mathrm{in}^{2}$ with a pressure of 100 psia inside the cylinder and 14.7 psia outside. How large a force is needed to open the valve?

Solution:

$$
\begin{aligned}
\mathrm{F}_{\text {net }} & =\mathrm{P}_{\text {in }} \mathrm{A}-\mathrm{P}_{\text {out }} \mathrm{A} \\
& =(100-14.7) \mathrm{psia} \times 2 \mathrm{in}^{2} \\
& =170.6\left(\mathrm{lbf} / \mathrm{in}^{2}\right) \times \mathrm{in}^{2} \\
& =\mathbf{1 7 0 . 6} \mathbf{l b f}
\end{aligned}
$$

2.96E

One pound-mass of diatomic oxygen $\left(\mathrm{O}_{2}\right.$ molecular weight 32$)$ is contained in a 100 -gal tank. Find the specific volume on both a mass and mole basis (v and \bar{v}).

Solution:

$$
\mathrm{V}=231 \mathrm{in}^{3}=\left(231 / 12^{3}\right) \mathrm{ft}^{3}=0.1337 \mathrm{ft}^{3} \quad \text { conversion seen in Table A. } 1
$$

This is based on the definition of the specific volume

$$
\begin{aligned}
& \mathrm{v}=\mathrm{V} / \mathrm{m}=0.1337 \mathrm{ft}^{3} / 1 \mathrm{lbm}=\mathbf{0 . 1 3 3 7} \mathbf{f t}^{\mathbf{3}} / \mathbf{l b m} \\
& \overline{\mathrm{v}}=\mathrm{V} / \mathrm{n}=\frac{\mathrm{V}}{\mathrm{~m} / \mathrm{M}}=\mathrm{Mv}=32 \times 0.1337=\mathbf{4 . 2 7 8} \mathbf{~ f t}^{\mathbf{3}} / \mathbf{l \mathbf { b m o l }}
\end{aligned}
$$

Pressure

2.97E

A 30-lbm steel gas tank holds $10 \mathrm{ft}^{3}$ of liquid gasoline, having a density of 50 $\mathrm{lbm} / \mathrm{ft}^{3}$. What force is needed to accelerate this combined system at a rate of 15 $\mathrm{ft} / \mathrm{s}^{2}$?

Solution:

$$
\begin{aligned}
\mathrm{m} & =\mathrm{m}_{\text {tank }}+\mathrm{m}_{\text {gasoline }} \\
& =30 \mathrm{lbm}+10 \mathrm{ft}^{3} \times 50 \mathrm{lbm} / \mathrm{ft}^{3} \\
& =530 \mathrm{lbm}
\end{aligned}
$$

$$
\mathrm{F}=\mathrm{ma}=\left(530 \mathrm{lbm} \times 15 \mathrm{ft} / \mathrm{s}^{2}\right) /\left(32.174 \mathrm{lbm} \mathrm{ft} / \mathrm{s}^{2} \mathrm{lbf}\right)=\mathbf{2 4 7 . 1} \mathbf{~ l b f}
$$

2.98 E

A laboratory room keeps a vacuum of 4 in . of water due to the exhaust fan. What is the net force on a door of size 6 ft by 3 ft ?

Solution:
The net force on the door is the difference between the forces on the two sides as the pressure times the area

$$
\begin{aligned}
\mathrm{F} & =\mathrm{P}_{\text {outside }} \mathrm{A}-\mathrm{P}_{\text {inside }} \mathrm{A}=\Delta \mathrm{P} \times \mathrm{A} \\
& =4 \text { in } \mathrm{H}_{2} \mathrm{O} \times 6 \mathrm{ft} \times 3 \mathrm{ft} \\
& =4 \times 0.036126 \mathrm{lbf} / \mathrm{in}^{2} \times 18 \mathrm{ft}^{2} \times 144 \mathrm{in}^{2} / \mathrm{ft}^{2} \\
& =\mathbf{3 7 4 . 6} \mathbf{~ l b f}
\end{aligned}
$$

Table A.1: 1 in $\mathrm{H}_{2} \mathrm{O}$ is $0.036126 \mathrm{lbf} / \mathrm{in}^{2}$, unit also often listed as psi.
2.99E

A 7 ft m tall steel cylinder has a cross sectional area of $15 \mathrm{ft}^{2}$. At the bottom with a height of 2 ft m is liquid water on top of which is a 4 ft high layer of gasoline. The gasoline surface is exposed to atmospheric air at 14.7 psia . What is the highest pressure in the water?

Solution:
The pressure in the fluid goes up with the depth as

$$
\mathrm{P}=\mathrm{P}_{\text {top }}+\Delta \mathrm{P}=\mathrm{P}_{\text {top }}+\rho \mathrm{gh}
$$

and since we have two fluid layers we get

$$
\mathrm{P}=\mathrm{P}_{\text {top }}+\left[(\rho h)_{\text {gasoline }}+(\rho h)_{\text {water }}\right] \mathrm{g}
$$

The densities from Table F. 4 are:

$$
\begin{aligned}
& \rho_{\text {gasoline }}=46.8 \mathrm{lbm} / \mathrm{ft}^{3} ; \quad \rho_{\text {water }}=62.2 \mathrm{lbm} / \mathrm{ft}^{3} \\
& \mathrm{P}=14.7+[46.8 \times 4+62.2 \times 2] \frac{32.174}{144 \times 32.174}=\mathbf{1 6 . 8 6} \mathbf{~ l b f} / \mathbf{i n}^{2}
\end{aligned}
$$

2.100 E

A U-tube manometer filled with water, density $62.3 \mathrm{lbm} / \mathrm{ft}^{3}$, shows a height difference of 10 in . What is the gauge pressure? If the right branch is tilted to make an angle of 30° with the horizontal, as shown in Fig. P2.72, what should the length of the column in the tilted tube be relative to the U-tube?

Solution:

$$
\begin{aligned}
& \Delta \mathrm{P}=\mathrm{F} / \mathrm{A}=\mathrm{mg} / \mathrm{A}=\mathrm{h} \rho \mathrm{~g} \\
&=\frac{(10 / 12) \times 62.3 \times 32.174}{32.174 \times 144} \\
&=\mathrm{P}_{\text {gauge }}=\mathbf{0 . 3 6} \mathbf{~ l b f} / \mathbf{i n}^{2} \\
& \mathrm{~h}=\mathrm{H} \times \sin 30^{\circ} \\
& \Rightarrow \mathrm{H}=\mathrm{h} / \sin 30^{\circ}=2 \mathrm{~h}=20 \mathrm{in}=\mathbf{0 . 8 3 3} \mathbf{~ f t}
\end{aligned}
$$

2.101E

A piston/cylinder with cross-sectional area of $0.1 \mathrm{ft}^{2}$ has a piston mass of 200 lbm resting on the stops, as shown in Fig. P2.45. With an outside atmospheric pressure of 1 atm , what should the water pressure be to lift the piston?

Solution:
The force acting down on the piston comes from gravitation and the outside atmospheric pressure acting over the top surface.

$$
\text { Force balance: } \quad \mathrm{F} \uparrow=\mathrm{F} \downarrow=\mathrm{PA}=\mathrm{m}_{\mathrm{p}} \mathrm{~g}+\mathrm{P}_{0} \mathrm{~A}
$$

Now solve for P (multiply by 144 to convert from ft^{2} to in ${ }^{2}$)

$$
\begin{aligned}
\mathrm{P} & =\mathrm{P}_{0}+\frac{\mathrm{m}_{\mathrm{p}} \mathrm{~g}}{\mathrm{~A}}=14.696+\frac{200 \times 32.174}{0.1 \times 144 \times 32.174} \\
& =14.696 \mathrm{psia}+13.88 \mathrm{psia}=\mathbf{2 8 . 5 8} \mathbf{~ l b f} / \mathbf{i n}^{2}
\end{aligned}
$$

2.102 E

The main waterline into a tall building has a pressure of 90 psia at 16 ft elevation below ground level. How much extra pressure does a pump need to add to ensure a waterline pressure of 30 psia at the top floor 450 ft above ground?

Solution:

The pump exit pressure must balance the top pressure plus the column $\Delta \mathrm{P}$. The pump inlet pressure provides part of the absolute pressure.
$P_{\text {after pump }}=P_{\text {top }}+\Delta P$
$\Delta \mathrm{P}=\rho \mathrm{gh}=62.2 \mathrm{lbm} / \mathrm{ft}^{3} \times 32.174 \mathrm{ft} / \mathrm{s}^{2} \times(450+16) \mathrm{ft} \times \frac{1 \mathrm{lbf} \mathrm{s}}{}{ }^{2}{ }_{32.174 \mathrm{lbm} \mathrm{ft}}$

$$
=28985 \mathrm{lbf} / \mathrm{ft}^{2}=201.3 \mathrm{lbf} / \mathrm{in}^{2}
$$

$\mathrm{P}_{\text {after pump }}=30+201.3=231.3 \mathrm{psia}$
$\Delta \mathrm{P}_{\text {pump }}=231.3-90=\mathbf{1 4 1 . 3} \mathbf{~ p s i}$
2.103 E

A piston, $m_{\mathrm{p}}=10 \mathrm{lbm}$, is fitted in a cylinder, $A=2.5 \mathrm{in} .^{2}$, that contains a gas. The setup is in a centrifuge that creates an acceleration of $75 \mathrm{ft} / \mathrm{s}^{2}$. Assuming standard atmospheric pressure outside the cylinder, find the gas pressure.

Solution:

$$
\begin{aligned}
& \text { Force balance: } \quad \mathrm{F} \uparrow=\mathrm{F} \downarrow=\mathrm{P}_{0} \mathrm{~A}+\mathrm{m}_{\mathrm{p}} \mathrm{~g}=\mathrm{PA} \\
& \begin{aligned}
\mathrm{P} & =\mathrm{P}_{0}+\frac{\mathrm{m}_{\mathrm{p}} \mathrm{~g}}{\mathrm{~A}} \\
& =14.696+\frac{10 \times 75}{2.5 \times 32.174} \frac{\mathrm{lbm} \mathrm{ft} / \mathrm{s}^{2}}{\mathrm{in}^{2}} \frac{\mathrm{lbf}-\mathrm{s}^{2}}{\mathrm{lbm}-\mathrm{ft}} \\
& =14.696+9.324=\mathbf{2 4 . 0 2} \mathbf{~ \mathbf { l b f } / \mathbf { i n } ^ { 2 }}
\end{aligned}
\end{aligned}
$$

Temperature

2.104 E

The atmosphere becomes colder at higher elevation. As an average the standard atmospheric absolute temperature can be expressed as $\mathrm{T}_{\mathrm{atm}}=518-3.84 \times 10^{-3} \mathrm{z}$, where z is the elevation in feet. How cold is it outside an airplane cruising at 32 000 ft expressed in Rankine and in Fahrenheit?

Solution:

For an elevation of $\mathrm{z}=32000 \mathrm{ft}$ we get

$$
\mathrm{T}_{\mathrm{atm}}=518-3.84 \times 10^{-3} z=\mathbf{3 9 5 . 1} \mathbf{R}
$$

To express that in degrees Fahrenheit we get

$$
\mathrm{T}_{\mathrm{F}}=\mathrm{T}-459.67=-\mathbf{6 4 . 5 5} \mathrm{F}
$$

2.105 E

The density of mercury changes approximately linearly with temperature as

$$
\rho_{\mathrm{Hg}}=851.5-0.086 T \mathrm{lbm} / \mathrm{ft}^{3} \quad T \text { in degrees Fahrenheit }
$$ so the same pressure difference will result in a manometer reading that is influenced by temperature. If a pressure difference of $14.7 \mathrm{lbf} / \mathrm{in} .^{2}$ is measured in the summer at 95 F and in the winter at 5 F , what is the difference in column height between the two measurements?

Solution:

$$
\begin{aligned}
& \Delta \mathrm{P}=\rho \mathrm{gh} \Rightarrow \mathrm{~h}=\Delta \mathrm{P} / \rho \mathrm{g} \\
& \rho_{\mathrm{su}}=843.33 \mathrm{lbm} / \mathrm{ft}^{3} ; \quad \rho_{\mathrm{W}}=851.07 \mathrm{lbm} / \mathrm{ft}^{3} \\
& \mathrm{~h}_{\mathrm{su}}=\frac{14.7 \times 144 \times 32.174}{843.33 \times 32.174}=2.51 \mathrm{ft}=30.12 \mathrm{in} \\
& \mathrm{~h}_{\mathrm{w}}=\frac{14.7 \times 144 \times 32.174}{851.07 \times 32.174}=2.487 \mathrm{ft}=29.84 \mathrm{in} \\
& \Delta \mathrm{~h}=\mathrm{h}_{\mathrm{su}}-\mathrm{h}_{\mathrm{w}}=0.023 \mathrm{ft}=\mathbf{0 . 2 8} \mathbf{~ i n}
\end{aligned}
$$

