CHAPTER 3 CHEMICAL COMPOUNDS PRACTICE EXAMPLES

1A (E) First we convert the number of chloride ions to the mass of MgCl_{2}.

$$
\text { mass }_{\mathrm{MgCl}_{2}}=5.0 \times 10^{23} \mathrm{Cl}^{-} \times \frac{1 \mathrm{MgCl}_{2}}{2 \mathrm{Cl}^{-}} \times \frac{1 \mathrm{~mol} \mathrm{MgCl}_{2}}{6.022 \times 10^{23} \mathrm{MgCl}_{2}} \times \frac{95.205 \mathrm{~g} \mathrm{MgCl}_{2}}{1 \mathrm{~mol} \mathrm{MgCl}_{2}}=4.0 \times 10^{1} \mathrm{~g} \mathrm{MgCl}_{2}
$$

1B (M) First we convert mass $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ to moles $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ and formula units $\mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}$ then finally to NO_{3}^{-}ions.

$$
\begin{aligned}
& 1.00 \mu \mathrm{~g} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \times \frac{1 \mathrm{~g} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}}{1,000,000 \mu \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}} \times \frac{1 \mathrm{~mol} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}}{148.313 \mathrm{~g} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}} \times \frac{6.022 \times 10^{22} \text { formula units } \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}}{1 \mathrm{~mol} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}} \\
& =4.06 \times 10^{15} \text { formula units } \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \times \frac{2 \mathrm{NO}_{3}^{-} \text {ions }}{1 \text { formula unit } \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}}=8.12 \times 10^{15} \mathrm{NO}_{3}^{-} \text {ions }
\end{aligned}
$$

Next, determine the number of oxygen atoms by multiplying by the appropriate ratio.

$$
\text { \# } \mathrm{O} \text { atoms }=4.06 \times 10^{15} \text { formula units } \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \times \frac{6 \text { atoms O}}{1 \text { formula unit } \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}}=2.44 \times 10^{16} \mathrm{O}
$$

2A (M) The volume of gold is converted to its mass and then to the amount in moles.

$$
\begin{aligned}
\text { \#Au atoms } & =(2.50 \mathrm{~cm})^{2} \times\left(0.100 \mathrm{~mm} \times \frac{1 \mathrm{~cm}}{10 \mathrm{~mm}}\right) \times \frac{19.32 \mathrm{~g}}{1 \mathrm{~cm}^{3}} \times \frac{1 \mathrm{~mol} \mathrm{Au}}{196.97 \mathrm{~g} \mathrm{Au}} \times \frac{6.022 \times 10^{23} \text { atoms }}{1 \mathrm{~mol} \mathrm{Au}} \\
& =3.69 \times 10^{21} \mathrm{Au} \text { atoms }
\end{aligned}
$$

2B (M) We need the molar mass of ethyl mercaptan for one conversion factor.

$$
M=(2 \times 12.011 \mathrm{~g} \mathrm{C})+(6 \times 1.008 \mathrm{~g} \mathrm{H})+(1 \times 32.06 \mathrm{~g} \mathrm{~S})=62.13 \mathrm{~g} / \mathrm{mol} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}
$$

Volume of room: $62 \mathrm{ft} \times 35 \mathrm{ft} \times 14 \mathrm{ft}=3.04 \times 10^{4} \mathrm{ft}^{3}$. We also need to convert ft^{3} to m^{3}.

$$
\begin{aligned}
& 3.04 \times 10^{4} \mathrm{ft}^{3} \times\left(\frac{12 \mathrm{in}}{1 \mathrm{ft}}\right)^{3} \times\left(\frac{2.54 \mathrm{~cm}}{1 \mathrm{in}}\right)^{3} \times\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)^{3}=8.6 \times 10^{2} \mathrm{~m}^{3} \\
& {\left[\begin{array}{rl}
{\left[\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}\right]} & =\frac{1.0 \mu \mathrm{~L} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}}{8.6 \times 10^{2} \mathrm{~m}^{3}} \times \frac{1 \mathrm{~L}}{1 \times 10^{6} \mu \mathrm{~L}} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}} \times \frac{0.84 \mathrm{~g}}{1 \mathrm{~mL}} \times \frac{1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}}{62.13 \mathrm{~g}} \times \frac{10^{6} \mu \mathrm{~mol}}{1 \mathrm{~mol}} \\
& =0.016 \mu \mathrm{~mol} / \mathrm{m}^{3}>9.0 \times 10^{-4} \mu \mathrm{~mol} / \mathrm{m}^{3}=\text { the detectable limit }
\end{array}\right.}
\end{aligned}
$$

Thus, the vapor will be detectable.

3A (M) The molar mass of halothane is given in Example 3-3 in the textbook as $197.4 \mathrm{~g} / \mathrm{mol}$. The rest of the solution uses conversion factors to change units.

$$
\text { mass } \begin{aligned}
\mathrm{Br}= & 25.0 \mathrm{~mL} \mathrm{C}_{2} \mathrm{HBrClF}_{3} \times \frac{1.871 \mathrm{~g} \mathrm{C}_{2} \mathrm{HBrClF}_{3}}{1 \mathrm{~mL} \mathrm{C}_{2} \mathrm{HBrClF}_{3}} \times \frac{1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{HBrClF}_{3}}{197.4 \mathrm{~g} \mathrm{C}_{2} \mathrm{HBrClF}_{3}} \times \frac{1 \mathrm{~mol} \mathrm{Br}_{1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{HBrClF}_{3}}}{} \\
& \times \frac{79.904 \mathrm{~g} \mathrm{Br}}{1 \mathrm{~mol} \mathrm{Br}}=18.9 \mathrm{~g} \mathrm{Br}
\end{aligned}
$$

3B (M) Again, the molar mass of halothane is given in Example 3-3 in the textbook as $197.4 \mathrm{~g} / \mathrm{mol}$.

$$
\begin{aligned}
V_{\text {halothane }} & =1.00 \times 10^{24} \mathrm{Br} \times \frac{1 \mathrm{~mol} \mathrm{Br}}{6.022 \times 10^{23} \mathrm{Br}} \times \frac{1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{HBrClF}_{3}}{1 \mathrm{~mol} \mathrm{Br}} \times \frac{197.4 \mathrm{~g} \mathrm{C}_{2} \mathrm{HBrClF}_{3}}{1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{HBrClF}_{3}} \times \frac{1 \mathrm{~mL}}{1.871 \mathrm{~g}} \\
& =175 \mathrm{~mL} \mathrm{C}_{2} \mathrm{HBrClF}_{3}
\end{aligned}
$$

4A (M) We use the same technique as before: determine the mass of each element in a mole of the compound. Their sum is the molar mass of the compound. The percent composition is determined by comparing the mass of each element with the molar mass of the compound.
$\begin{aligned} M & =(10 \times 12.011 \mathrm{~g} \mathrm{C})+(16 \times 1.008 \mathrm{~g} \mathrm{H})+(5 \times 14.01 \mathrm{~g} \mathrm{~N})+(3 \times 30.97 \mathrm{~g} \mathrm{P})+(13 \times 15.999 \mathrm{~g} \mathrm{O}) \\ & =120.11 \mathrm{~g} \mathrm{C}+16.13 \mathrm{~g} \mathrm{H}+70.05 \mathrm{~g} \mathrm{~N}+92.91 \mathrm{~g} \mathrm{P}+207.99 \mathrm{~g} \mathrm{O}=507.19 \mathrm{~g} \mathrm{ATP} / \mathrm{mol}\end{aligned}$
$=120.11 \mathrm{~g} \mathrm{C}+16.13 \mathrm{~g} \mathrm{H}+70.05 \mathrm{~g} \mathrm{~N}+92.91 \mathrm{~g} \mathrm{P}+207.99 \mathrm{~g} \mathrm{O}=507.19 \mathrm{~g} \mathrm{ATP} / \mathrm{mol}$
$\% \mathrm{C}=\frac{120.11 \mathrm{~g} \mathrm{C}}{507.19 \mathrm{~g} \mathrm{ATP}} \times 100 \%=23.681 \% \mathrm{C} \quad \% \mathrm{H}=\frac{16.13 \mathrm{~g} \mathrm{H}}{507.19 \mathrm{~g} \mathrm{ATP}} \times 100 \%=3.180 \% \mathrm{H}$
$\% \mathrm{~N}=\frac{70.05 \mathrm{~g} \mathrm{~N}}{507.19 \mathrm{~g} \mathrm{ATP}} \times 100 \%=13.81 \% \mathrm{~N} \quad \% \mathrm{P}=\frac{92.91 \mathrm{~g} \mathrm{P}}{507.19 \mathrm{~g} \mathrm{ATP}} \times 100 \%=18.32 \% \mathrm{P}$
$\% \mathrm{O}=\frac{207.99 \mathrm{~g} \mathrm{O}}{507.19 \mathrm{~g} \mathrm{ATP}} \times 100 \%=41.008 \% \mathrm{O}$ (NOTE: the mass percents sum to 99.999%)
4B (E) Both (b) and (e) have the same empirical formula, that is, $\mathrm{CH}_{2} \mathrm{O}$. These two molecules have the same percent oxygen by mass.

5A (M) Once again, we begin with a 100.00 g sample of the compound. In this way, each elemental mass in grams is numerically equal to its percent. We convert each mass to an amount in moles, and then determine the simplest integer set of molar amounts. This determination begins by dividing all three molar amounts by the smallest.

$$
\begin{gathered}
39.56 \mathrm{~g} \mathrm{C} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.011 \mathrm{~g} \mathrm{C}}=3.294 \mathrm{~mol} \mathrm{C} \div 3.294 \rightarrow 1.000 \mathrm{~mol} \mathrm{C} \times 3.000=3.000 \mathrm{~mol} \mathrm{C} \\
7.74 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g} \mathrm{H}}=7.68 \mathrm{~mol} \mathrm{H} \div 3.294 \rightarrow 2.33 \mathrm{~mol} \mathrm{H} \times 3.000=6.99 \mathrm{~mol} \mathrm{H} \\
52.70 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{15.999 \mathrm{~g} \mathrm{O}}=3.294 \mathrm{~mol} \mathrm{O} \div 3.294 \rightarrow 1.000 \mathrm{~mol} \mathrm{O} \times 3.000=3.000 \mathrm{~mol} \mathrm{O}
\end{gathered}
$$

Thus, the empirical formula of the compound is $\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{O}_{3}$. The empirical molar mass of this compound is:

$$
(3 \times 12.011 \mathrm{gC})+(7 \times 1.008 \mathrm{gH})+(3 \times 15.999 \mathrm{gO})=36.033 \mathrm{~g}+7.056 \mathrm{~g}+47.997 \mathrm{~g}=91.09 \mathrm{~g} / \mathrm{mol}
$$

The empirical mass is almost precisely one half the reported molar mass, leading to the conclusion that the molecular formula must be twice the empirical formula in order to double the molar mass. Thus, the molecular formula is $\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}_{6}$.

5B (M) To answer this question, we start with a 100.00 g sample of the compound. In this way, each elemental mass in grams is numerically equal to its percent. We convert each mass to an amount in moles, and then determine the simplest integer set of molar amounts. This determination begins by dividing all molar amounts by the smallest number of moles in the group of four, which is 1.1025 moles. Multiplication of the resulting quotients by eight produces the smallest possible set of whole numbers.

$$
\begin{aligned}
& 21.51 \mathrm{~g} \mathrm{C} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.011 \mathrm{~g} \mathrm{C}}=1.791 \mathrm{~mol} \mathrm{C} \div 1.102 \underline{5} \rightarrow 1.624 \mathrm{~mol} \mathrm{C} \times 8=12.99 \mathrm{~mol} \mathrm{C} \\
& 2.22 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g} \mathrm{H}}=2.20 \mathrm{~mol} \mathrm{H} \div 1.102 \underline{5} \rightarrow 2.00 \mathrm{~mol} \mathrm{H} \times 8=16.0 \mathrm{~mol} \mathrm{H} \\
& 17.64 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{15.999 \mathrm{~g} \mathrm{O}}=1.102 \underline{5} \mathrm{~mol} \mathrm{O} \div 1.102 \underline{5} \rightarrow 1.000 \mathrm{~mol} \mathrm{O} \times 8=8.000 \mathrm{~mol} \mathrm{O} \\
& 58.63 \mathrm{~g} \mathrm{Cl} \times \frac{1 \mathrm{~mol} \mathrm{Cl}}{35.45 \mathrm{~g} \mathrm{Cl}}=1.654 \mathrm{~mol} \mathrm{Cl} \div 1.102 \underline{5} \rightarrow 1.500 \mathrm{~mol} \mathrm{C} \times 8=12.00 \mathrm{~mol} \mathrm{Cl}
\end{aligned}
$$

Thus, the empirical formula of the compound is $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{8} \mathrm{Cl}_{12}$. The empirical molar mass of this compound is $725.7 \mathrm{~g} / \mathrm{mol}$.
The empirical mass is almost precisely the same as the reported molar mass, leading to the conclusion that the molecular formula must be the same as the empirical formula. Thus, the molecular formula is $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{O}_{8} \mathrm{Cl}_{12}$.

6A (M) We calculate the amount in moles of each element in the sample (determining the mass of oxygen by difference) and transform these molar amounts to the simplest integral amounts, by first dividing all three by the smallest.

$$
\begin{aligned}
& 2.726 \mathrm{~g} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.009 \mathrm{~g} \mathrm{CO}_{2}} \times \frac{1 \mathrm{molC}}{1 \mathrm{molCO}_{2}}=0.06194 \mathrm{molC} \times \frac{12.011 \mathrm{~g} \mathrm{C}}{1 \mathrm{molC}}=0.7440 \mathrm{~g} \mathrm{C} \\
& 1.116 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.015 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \times \frac{2 \mathrm{~mol} \mathrm{H}_{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=0.1239 \mathrm{~mol} \mathrm{H} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=0.1249 \mathrm{~g} \mathrm{H}}{\left(1.152 \mathrm{~g} \mathrm{cmpd}-0.7440 \mathrm{~g} \mathrm{C}^{-0.1249 \mathrm{~g} \mathrm{H})}=0.283 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{15.999 \mathrm{~g} \mathrm{O}}=0.0177 \mathrm{~mol} \mathrm{O}\right.}
\end{aligned}
$$

\(\left.\begin{array}{ll}0.06194 \mathrm{~mol} \mathrm{C} \div 0.0177 \& \rightarrow 3.50 \\
0.1239 \mathrm{~mol} \mathrm{H} \div 0.0177 \& \rightarrow 7.00 \\

0.0177 \mathrm{~mol} \mathrm{O} \div 0.0177 \& \rightarrow 1.00\end{array}\right\} \quad\)| All of these amounts in moles are multiplied by 2 |
| :--- |
| to make them integral. Thus, the empirical formula |
| of isobutyl propionate is $\mathrm{C}_{7} \mathrm{H}_{14} \mathrm{O}_{2}$. |

6B (M) Notice that we do not have to obtain the mass of any element in this compound by difference; there is no oxygen present in the compound. We calculate the amount in one mole of each element in the sample and transform these molar amounts to the simplest integral amounts, by first dividing all three by the smallest.

$$
\begin{aligned}
& 3.149 \mathrm{~g} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.009 \mathrm{~g} \mathrm{CO}_{2}} \times \frac{1 \mathrm{~mol} \mathrm{C}_{1}}{1 \mathrm{~mol} \mathrm{CO}_{2}}=0.07155 \mathrm{~mol} \mathrm{C} \div 0.01789=3.999 \mathrm{~mol} \mathrm{C} \\
& 0.645 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.015 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \times \frac{2 \mathrm{~mol} \mathrm{H}_{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}}{1}=0.0716 \mathrm{~mol} \mathrm{H} \div 0.01789=4.00 \mathrm{~mol} \mathrm{H} \\
& 1.146 \mathrm{~g} \mathrm{SO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{SO}_{2}}{64.058 \mathrm{~g} \mathrm{SO}_{2}} \times \frac{1 \mathrm{~mol} \mathrm{~S}_{1-2 l ~ S O}^{2}}{1 \mathrm{~mol} \mathrm{SO}_{2}}=0.01789 \mathrm{~mol} \mathrm{~S} \div 0.01789=1.000 \mathrm{~mol} \mathrm{~S}
\end{aligned}
$$

Thus, the empirical formula of thiophene is $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S}$.

7A (E)

$\underline{\mathrm{S}}_{8} \quad$ For an atom of a free element, the oxidation state is 0 (rule 1).
$\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$ The sum of all the oxidation numbers in the ion is -2 (rule 2). The O.S. of each oxygen is -2 (rule 6). Thus, the total for all seven oxygens is -14 . The total for both chromiums must be +12 . Thus, each Cr has an O.S. $=+6$.
$\mathrm{Cl}_{2} \mathrm{O}$ The sum of all oxidation numbers in the compound is 0 (rule 2). The O.S. of oxygen is -2 (rule 6). The total for the two chlorines must be +2 . Thus, each chlorine must have O.S. $=+1$.
$\mathrm{KO}_{2} \quad$ The sum for all the oxidation numbers in the compound is 0 (rule 2). The O.S. of potassium is +1 (rule 3). The sum of the oxidation numbers of the two oxygens must be -1 . Thus, each oxygen must have O.S. $=-1 / 2$.

7B (E)

$\underline{S}_{2} \mathrm{O}_{3}^{2-}$ The sum of all the oxidation numbers in the ion is -2 (rule 2). The O.S. of oxygen is -2 (rule 6). Thus, the total for three oxygens must be -6 . The total for both sulfurs must be +4 . Thus, each S has an O.S. $=+2$.
$\mathrm{Hg}_{2} \mathrm{Cl}_{2}$ The O.S. of each Cl is -1 (rule 7). The sum of all O.S. is 0 (rule 2). Thus, the total for two Hg is +2 and each Hg has O.S. $=+1$.
KMnO_{4} The O.S. of each O is -2 (rule 6). Thus, the total for 4 oxygens must be -8 . The K has O.S. $=+1$ (rule 3). The total of all O.S. is 0 (rule 2). Thus, the O.S. of Mn is +7 .
$\mathrm{H}_{2} \underline{\mathrm{CO}}$ The O.S. of each H is +1 (rule 5), producing a total for both hydrogens of +2 . The O.S. of O is -2 (rule 6). Thus, the O.S. of C is 0 , because the total of all O.S. values is 0 (rule 2).

8A (E) In each case, we determine the formula with its accompanying charge of each ion in the compound. We then produce a formula for the compound in which the total positive charge equals the total negative charge.
lithium oxide $\quad \mathrm{Li}^{+}$and $\mathrm{O}^{2-} \quad$ two Li^{+}and one $\mathrm{O}^{2-} \quad \mathrm{Li}_{2} \mathrm{O}$
$\operatorname{tin}\left(\right.$ II) fluoride $\quad \mathrm{Sn}^{2+}$ and $\mathrm{F}^{-} \quad$ one Sn^{2+} and two $\mathrm{F}^{-} \quad \mathrm{SnF}_{2}$
lithium nitride $\quad \mathrm{Li}^{+}$and $\mathrm{N}^{3-} \quad$ three Li^{+}and one $\mathrm{N}^{3-} \quad \mathrm{Li}_{3} \mathrm{~N}$

8B (E) Using a similar procedure as that provided in $\mathbf{8 A}$
aluminum sulfide $\quad \mathrm{Al}^{3+}$ and $\mathrm{S}^{2-} \quad$ two Al^{3+} and three $\mathrm{S}^{2-} \quad \mathrm{Al}_{2} \mathrm{~S}_{3}$ magnesium nitride Mg^{2+} and N^{3-} three Mg^{2+} and two $\mathrm{N}^{3-} \quad \mathrm{Mg}_{3} \mathrm{~N}_{2}$ vanadium(III) oxide V^{3+} and $\mathrm{O}^{2-} \quad$ two V^{3+} and three $\mathrm{O}^{2-} \quad \mathrm{V}_{2} \mathrm{O}_{3}$

9A (E) The name of each of these ionic compounds is the name of the cation followed by that of the anion. Each anion name is a modified (with the ending -ide) version of the name of the element. Each cation name is the name of the metal, with the oxidation state appended in Roman numerals in parentheses if there is more than one type of cation for that metal.
CsI cesium iodide
CaF_{2} calcium fluoride
FeO The O.S. of $\mathrm{O}=-2$ (rule 6). Thus, the $\mathrm{O} . \mathrm{S}$. of $\mathrm{Fe}=+2$ (rule 2).
The cation is iron(II). The name of the compound is iron(II) oxide.
CrCl_{3} The O.S. of $\mathrm{Cl}=-1$ (rule 7). Thus, the O.S. of $\mathrm{Cr}=+3$ (rule 2).
The cation is chromium(III). The compound is chromium(III) chloride.

9B (E) The name of each of these ionic compounds is the name of the cation followed by that of the anion. Each anion name is a modified (with the ending -ide) version of the name of the element. Each cation name is the name of the metal, with the oxidation state appended in Roman numerals in parentheses if there is more than one type of cation for that metal.

The oxidation state of Ca is +2 (rule 3). Hydrogen would therefore have an oxidation number of -1 (which is an exception to rule 5), based on rule 2.
$\mathrm{CaH}_{2} \quad$ calcium hydride
The oxidation number of sulfur is -2 (rule 7), and therefore silver would be +1 for each silver atom based on rule 2 .
$\mathrm{Ag}_{2} \mathrm{~S} \quad$ silver(I) sulfide
In the next two compounds, the oxidation state of chlorine is -1 (rule 7) and thus the oxidation state of the metal in each cation must be +1 (rule 2).
$\mathrm{CuCl} \quad$ copper(I) chloride $\quad \mathrm{Hg}_{2} \mathrm{Cl}_{2}$ mercury(I) chloride

10A (E)
$\mathrm{SF}_{6} \quad$ Both S and F are nonmetals. This is a binary molecular compound: sulfur hexafluoride.
$\mathrm{HNO}_{2} \quad$ The NO_{2}^{-}ion is the nitrite ion. Its acid is nitrous acid.
$\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2} \quad \mathrm{HCO}_{3}^{-}$is the bicarbonate ion or the hydrogen carbonate ion. This compound is calcium bicarbonate or calcium hydrogen carbonate.
$\mathrm{FeSO}_{4} \quad$ The $\mathrm{SO}_{4}^{2^{-}}$ion is the sulfate ion. The cation is Fe^{2+}, iron(II). This compound is iron(II) sulfate.

10B (E)

$\mathrm{NH}_{4} \mathrm{NO}_{3} \quad$ The cation is NH_{4}^{+}, ammonium ion. The anion is $\mathrm{NO}_{3}{ }^{-}$, nitrate ion. This compound is ammonium nitrate.
$\mathrm{PCl}_{3} \quad$ Both P and Cl are nonmetals. This is a binary molecular compound: phosphorus trichloride.
$\mathrm{HBrO} \quad \mathrm{BrO}^{-}$is hypobromite, this is hypobromous acid.
$\mathrm{AgClO}_{4} \quad$ The anion is perchlorate ion, ClO_{4}^{-}. The compound is silver(I) perchlorate.
$\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3} \quad$ The $\mathrm{SO}_{4}^{2^{-}}$ion is the sulfate ion. The cation is Fe^{3+}, iron(III). This compound is iron(III) sulfate.

11A (E)

boron trifluoride Both elements are nonmetals.
This is a binary molecular compound: BF_{3}.
potassium dichromate
Potassium ion is K^{+}, and dichromate ion is $\mathrm{Cr}_{2} \mathrm{O}_{7}^{2-}$.
This is $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$.
sulfuric acid

11B (E)

aluminum nitrate
tetraphosphorus decoxide
Aluminum is Al^{3+}; ; the nitrate ion is NO_{3}^{-}. This is $\mathrm{Al}\left(\mathrm{NO}_{3}\right)_{3}$.
Both elements are nonmetals.
This is a binary molecular compound, $\mathrm{P}_{4} \mathrm{O}_{10}$.
chromium(III) hydroxide Chromium(III) ion is Cr^{3+}; the hydroxide ion is OH^{-}. This is $\mathrm{Cr}(\mathrm{OH})_{3}$.
iodic acid
calcium chloride \quad The ions are Ca^{2+} and Cl^{-}. There must be one Ca^{2+} and two $\mathrm{Cl}^{-} \mathrm{s}: \mathrm{CaCl}_{2}$.
The anion is sulfate, $\mathrm{SO}_{4}^{2^{-}}$. There must be two H^{+}s. This is $\mathrm{H}_{2} \mathrm{SO}_{4}$.

12A (E)
(a) Not isomers: molecular formulas are different $\left(\mathrm{C}_{8} \mathrm{H}_{18}\right.$ vs $\left.\mathrm{C}_{9} \mathrm{H}_{20}\right)$.
(b) Molecules are isomers (same formula $\mathrm{C}_{7} \mathrm{H}_{16}$).

12B (E)
(a) Molecules are isomers (same formula $\mathrm{C}_{7} \mathrm{H}_{14}$).
(b) Not isomers: molecular formulas are different $\left(\mathrm{C}_{4} \mathrm{H}_{8}\right.$ vs $\left.\mathrm{C}_{5} \mathrm{H}_{10}\right)$.

13A (E)
(a) The carbon to carbon bonds are all single bonds in this hydrocarbon. This compound is an alkane.
(b) In this compound, there are only single bonds, and a Cl atom has replaced one H atom. This compound is a chloroalkane.
(c) The presence of the carboxyl group $\left(-\mathrm{CO}_{2} \mathrm{H}\right)$ in this molecule means that the compound is a carboxylic acid.
(d) There is a carbon to carbon double bond in this hydrocarbon. This is an alkene.

13B (E)

(a) The presence of the hydroxyl group $(-\mathrm{OH})$ in this molecule means that this compound is an alcohol.
(b) The presence of the carboxyl group $\left(-\mathrm{CO}_{2} \mathrm{H}\right)$ in this molecule means that the compound is a carboxylic acid. This molecule also contains the hydroxyl group $(-\mathrm{OH})$.
(c) The presence of the carboxyl group $\left(-\mathrm{CO}_{2} \mathrm{H}\right)$ in this molecule means that the compound is a carboxylic acid. As well, a Cl atom has replaced one H atom. This compound is a chloroalkane. The compound is a chloro carboxylic acid.
(d) There is a carbon to carbon double bond in this compound; hence, it is an alkene. There is also one H atom that has been replaced by a Br atom. This compound is also a bromoalkene.

14A (E)
(a) The structure is that of an alcohol with the hydroxyl group on the second carbon atom of a three carbon chain. The compound is propan-2-ol (commonly isopropyl alcohol).
(b) The structure is that of an iodoalkane molecule with the I atom on the first carbon of a three-carbon chain. The compound is called 1 -iodopropane.
(c) The carbon chain in this structure is four carbon atoms long with the end C atom in a carboxyl group. There is also a methyl group on the third carbon in the chain. The compound is 3 -methylbutanoic acid.
(d) The structure is that of a three carbon chain that contains a carbon to carbon double bond. This compound is propene.

14B (E)
(a) 2-chloropropane
(b) 1,4-dichlorobutane
(c) 2-methylpropanoic acid

15A (E)
(a) pentane: $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$
(b) ethanoic acid: $\mathrm{CH}_{3} \mathrm{CO}_{2} \mathrm{H}$
(c) 1-iodooctane: $\mathrm{ICH}_{2}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3}$
(d) pentan-1-ol: $\mathrm{CH}_{2}(\mathrm{OH})\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CH}_{3}$

15B (E)

(a) propene

(b) heptan-1-ol

(c) chloroacetic acid

(d) hexanoic acid

INTEGRATIVE EXAMPLES

A. (M)

First, determine the mole ratios of the dehydrated compound:
$27.74 \mathrm{~g} \mathrm{Mg} \times(1 \mathrm{~mol} \mathrm{Mg} / 24.305 \mathrm{~g} \mathrm{Mg})=1.141 \mathrm{~mol} \mathrm{Mg}$
$23.57 \mathrm{~g} \mathrm{P} \times(1 \mathrm{~mol} P / 30.974 \mathrm{~g} P)=0.7610 \mathrm{~mol} P$
$48.69 \mathrm{~g} \mathrm{O} \times(1 \mathrm{~mol} \mathrm{O} / 15.999 \mathrm{~g} \mathrm{O})=3.043 \mathrm{~mol} \mathrm{O}$
Mole ratios are determined by dividing by the smallest number:
$1.141 \mathrm{~mol} \mathrm{Mg} / 0.7610 \mathrm{~mol} P \approx 1.5$
$0.7610 \mathrm{~mol} \mathrm{P} / 0.7610 \mathrm{~mol} P \approx 1.0$
$3.043 \mathrm{~mol} \mathrm{O} / 0.7610 \mathrm{~mol} \mathrm{P} \approx 4.0$
Multiplying by 2 to get whole numbers, the empirical formula becomes $\mathrm{Mg}_{3} \mathrm{P}_{2} \mathrm{O}_{8}$. The compound is magnesium phosphate, $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$.

To determine the number of waters of hydration, determine the mass of water driven off.
mass of $\mathrm{H}_{2} \mathrm{O}=2.4917 \mathrm{~g}-1.8558 \mathrm{~g}=0.6359 \mathrm{~g}$
$\mathrm{mol} \mathrm{H} \mathrm{H}_{2} \mathrm{O}=0.6359 \mathrm{~g} \times\left(1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} / 18.015 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}\right)=0.0353 \mathrm{~mol}$.
Then, calculate the number of moles of dehydrated $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ in the same manner above. The number of moles (using $262.86 \mathrm{~g} / \mathrm{mol}$ for molecular weight) is 0.00706 . Dividing the number of moles of $\mathrm{H}_{2} \mathrm{O}$ by $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ gives a ratio of 5 . Therefore, the compound is $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2} \cdot 5 \mathrm{H}_{2} \mathrm{O}$

B. (M)

First, determine the mole ratio of the elements in this compound:
$17.15 \mathrm{~g} \mathrm{Cu} \times(1 \mathrm{~mol} \mathrm{Cu} / 63.546 \mathrm{~g} \mathrm{Cu})=0.2699 \mathrm{~mol} \mathrm{Cu}$
$19.14 \mathrm{~g} \mathrm{Cl} \times(1 \mathrm{~mol} \mathrm{Cl} / 35.45 \mathrm{~g} \mathrm{Cl})=0.5399 \mathrm{~mol} \mathrm{Cl}$
$60.45 \mathrm{~g} \mathrm{O} \times(1 \mathrm{~mol} \mathrm{O} / 15.999 \mathrm{~g} \mathrm{O})=3.778 \mathrm{~mol} \mathrm{O}$
Mass of H: $100-(17.15+19.14+60.45)=3.26 \mathrm{~g} \mathrm{H}$
$3.26 \mathrm{~g} \mathrm{H} \times(1 \mathrm{~mol} \mathrm{H} / 1.008 \mathrm{~g} \mathrm{H})=3.23 \mathrm{~mol} \mathrm{H}$
Mole ratios are determined by dividing by the smallest number:
$0.2699 \mathrm{~mol} \mathrm{Cu} / 0.2699 \mathrm{~mol} \mathrm{Cu}=1.000$
$0.5399 \mathrm{~mol} \mathrm{Cl} / 0.2699 \mathrm{~mol} \mathrm{Cu}=2.000(\mathrm{~mol} \mathrm{Cl}$ per mol Cu$)$
$3.778 \mathrm{~mol} \mathrm{O} / 0.2699 \mathrm{~mol} \mathrm{Cu}=14.00(\mathrm{~mol} \mathrm{O}$ per mol Cu$)$
$3.23 \mathrm{~mol} \mathrm{H} / 0.2699 \mathrm{~mol} \mathrm{Cu}=12.0(\mathrm{~mol} \mathrm{H}$ per mol Cu$)$
Now we know that since all the hydrogen atoms are taken up as water, half as many moles of O are also taken up as water. Therefore, if there are 12 moles of $\mathrm{H}, 6$ moles of O are needed, 6 moles of $\mathrm{H}_{2} \mathrm{O}$ are generated, and 8 moles of O are left behind.

To determine the oxidation state of Cu and Cl , we note that there are 4 times as many moles of O as there is Cl . If the Cl and O are associated, we have the perchlorate ion $\left(\mathrm{ClO}_{4}^{-}\right)$and the formula of the compound is $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$. The oxidation state of Cu is +2 and Cl is +7 .

EXERCISES

Representing Molecules

1. (E)
(a) $\mathrm{H}_{2} \mathrm{O}_{2}$
(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$
(c) $\mathrm{P}_{4} \mathrm{O}_{10}$
(d) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$
(e) $\mathrm{HCO}_{2} \mathrm{H}$
2. (E)
(a) $\mathrm{N}_{2} \mathrm{H}_{4}$
(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$
(c) $\mathrm{P}_{4} \mathrm{O}_{6}$
(d) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CO}_{2} \mathrm{H}$
(e) $\mathrm{CH}_{2}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{Cl}$
3. (E)
(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{Cl}$
(d) $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3}$
(e) $\mathrm{HCO}_{2} \mathrm{H}$

4. (E)
(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}$

(d) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CO}_{2} \mathrm{H}$

(e) $\mathrm{CH}_{2}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{Cl}$

The Avogadro Constant and the Mole

5. (M)
(a) A trinitrotoluene molecule, $\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{2}\left(\mathrm{NO}_{2}\right)_{3}$, contains 7 C atoms, 5 H atoms, 3 N atoms, and $3 \times 2 \mathrm{O}$ atoms $=6 \mathrm{O}$ atoms, for a total of $7+5+3+6=21$ atoms.
(b) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{2} \mathrm{OH}$ contains 6 C atoms, 14 H atoms, and 1 O atom, for a total of 21 atoms.

Conversion pathway approach:
\# of atoms $=0.00102 \mathrm{~mol} \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{2} \mathrm{OH} \times \frac{6.022 \times 10^{23} \text { molecules } \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{2} \mathrm{OH}}{1 \mathrm{~mol} \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{2} \mathrm{OH}}$

$$
\times \frac{21 \text { atoms }}{1 \text { molecule } \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{2} \mathrm{OH}}=1.29 \times 10^{22} \text { atoms }
$$

Stepwise approach:
$0.00102 \mathrm{~mol} \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{2} \mathrm{OH} \times \frac{6.022 \times 10^{23} \text { molecules } \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{2} \mathrm{OH}}{1 \mathrm{~mol} \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{2} \mathrm{OH}}=6.14 \times 10^{20}$ molecules
6.14×10^{20} molecules $\times \frac{21 \text { atoms }}{1 \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{2} \mathrm{OH} \text { molecule }}=1.29 \times 10^{22}$ atoms
(c) Conversion pathway approach:

$$
\begin{gathered}
\text { \# of F atoms }=12.15 \mathrm{~mol} \mathrm{C}_{2} \mathrm{HBrClF}_{3} \times \frac{3 \mathrm{~mol} \mathrm{~F}}{1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{HBrClF}_{3}} \times \frac{6.022 \times 10^{23} \mathrm{~F} \text { atoms }}{1 \mathrm{~mol} \mathrm{~F} \text { atoms }} \\
=2.195 \times 10^{25} \mathrm{~F} \text { atoms }
\end{gathered}
$$

Stepwise approach:
$12.15 \mathrm{~mol} \mathrm{C}_{2} \mathrm{HBrClF}_{3} \times \frac{3 \mathrm{~mol} \mathrm{~F}}{1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{HBrClF}_{3}}=36.45 \mathrm{~mol} \mathrm{~F}$
$36.45 \mathrm{~mol} \mathrm{~F} \times \frac{6.022 \times 10^{23} \mathrm{~F} \text { atoms }}{1 \mathrm{~mol} \mathrm{~F} \text { atoms }}=2.195 \times 10^{25} \mathrm{~F}$ atoms

Chapter 3: Chemical Compounds

6. (E)
(a) To convert the amount in moles to mass, we need the molar mass of $\mathrm{NO}_{2}\left(46.005 \mathrm{~g} \mathrm{~mol}^{-1}\right)$.
mass $\mathrm{NO}_{2}=14.68 \mathrm{~mol} \mathrm{NO} 2 \times \frac{46.005 \mathrm{~g} \mathrm{NO}_{2}}{1 \mathrm{~mol} \mathrm{NO}_{2}}=675 \mathrm{~g} \mathrm{NO}_{2}$
(b) mass of $\mathrm{O}_{2}=4.220 \times 10^{25} \mathrm{O}_{2}$ molecules $\times \frac{1 \mathrm{~mol} \mathrm{O}_{2}}{6.022 \times 10^{23} \mathrm{molecules}_{2}} \times \frac{32.00 \mathrm{~g} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}}$

$$
=2242 \mathrm{~g} \mathrm{O}_{2}
$$

(c) mass of $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}=15.5 \mathrm{~mol} \times \frac{249.7 \mathrm{~g} \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}}=3.87 \times 10^{3} \mathrm{~g} \mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$
(d) mass of $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{OH})_{2}=2.25 \times 10^{24}$ molecules of $\mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{OH})_{2} \times \frac{1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{OH})_{2}}{6.022 \times 10^{23} \text { molecules of } \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{OH})_{2}}$

$$
\times \frac{62.07 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{OH})_{2}}{1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{OH})_{2}}=232 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{4}(\mathrm{OH})_{2}
$$

7. (M)
(a) molecular mass (mass of one molecule) of $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{~S}$ is:

$$
\begin{aligned}
& \left(5 \times 12.011 u_{\mathrm{C}}\right)+\left(11 \times 1.008 \mathrm{uH}_{\mathrm{H}}\right)+14.007 \mathrm{uN}+\left(2 \times 15.999 \mathrm{u} \mathrm{O}^{2}\right)+32.06 \mathrm{u} \mathrm{~S} \\
& =149.208 \mathrm{u}^{2} / \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{~S} \text { molecule }
\end{aligned}
$$

(b) Since there are 11 H atoms in each $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{~S}$ molecule, there are 11 moles of H atoms in each mole of $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{~S}$ molecules.
(c) mass $\mathrm{C}=1 \mathrm{~mol} \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{~S} \times \frac{5 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{~S}} \times \frac{12.011 \mathrm{~g} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}}=60.055 \mathrm{~g} \mathrm{C}$
(d) \# C atoms $=9.07 \mathrm{~mol} \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{~S} \times \frac{5 \mathrm{~mol} \mathrm{C}_{1}}{1 \mathrm{~mol} \mathrm{C}_{5} \mathrm{H}_{11} \mathrm{NO}_{2} \mathrm{~S}} \times \frac{6.022 \times 10^{23} \text { atoms C }}{1 \mathrm{~mol} \mathrm{C}}$

$$
=2.73 \times 10^{25} \mathrm{C} \text { atoms }
$$

8. (M)
(a) amount of $\mathrm{Br}_{2}=4.04 \times 10^{22} \mathrm{Br}_{2}$ molecules $\times \frac{1 \mathrm{~mole} \mathrm{Br}_{2}}{6.022 \times 10^{23} \mathrm{Br}_{2} \text { molecules }}$

$$
=0.0671 \mathrm{~mol} \mathrm{Br}_{2}
$$

(b) amount of $\mathrm{Br}_{2}=5.78 \times 10^{24} \mathrm{Br}$ atoms $\times \frac{1 \mathrm{Br}_{2} \text { molecule }}{2 \mathrm{Br} \text { atoms }} \times \frac{1 \mathrm{~mole}^{\mathrm{Br}}}{6.022 \times 10^{23} \mathrm{Br}_{2} \text { molecules }}$

$$
=4.80 \mathrm{~mol} \mathrm{Br}_{2}
$$

(c) amount of $\mathrm{Br}_{2}=7.82 \mathrm{~kg} \mathrm{Br} \times \frac{1000 \mathrm{~g}}{1 \mathrm{~kg}} \times \frac{1 \mathrm{~mol} \mathrm{Br}_{2}}{159.8 \mathrm{~g} \mathrm{Br}_{2}}=48.9 \mathrm{~mol} \mathrm{Br}_{2}$
(d) amount of $\mathrm{Br}_{2}=3.56 \mathrm{~L} \mathrm{Br}_{2} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}} \times \frac{3.10 \mathrm{~g} \mathrm{Br}_{2}}{1 \mathrm{~mL} \mathrm{Br}_{2}} \times \frac{1 \mathrm{~mol} \mathrm{Br}_{2}}{159.8 \mathrm{~g} \mathrm{Br}_{2}}=70.8 \mathrm{~mol} \mathrm{Br}_{2}$
9. (E) The greatest number of N atoms is found in the compound with the greatest number of moles of N .

The molar mass of $\mathrm{N}_{2} \mathrm{O}=(2 \mathrm{~mol} \mathrm{~N} \times 14.0 \mathrm{~g} \mathrm{~N})+(1 \mathrm{~mol} \mathrm{O} \times 16.0 \mathrm{~g} \mathrm{O})=44.0 \mathrm{~g} / \mathrm{mol}_{2} \mathrm{O}$. Thus, $50.0 \mathrm{~g} \mathrm{~N} \mathrm{~N}_{2} \mathrm{O}$ is slightly more than 1 mole of $\mathrm{N}_{2} \mathrm{O}$, and contains slightly more than 2 moles of N . Each mole of N_{2} contains 2 moles of N . The molar mass of NH_{3} is 17.0 g . Thus, there is 1 mole of NH_{3} present, which contains 1 mole of N .

The molar mass of pyridine is $(5 \mathrm{~mol} \mathrm{C} \times 12.0 \mathrm{~g} \mathrm{C})+(5 \mathrm{~mol} \mathrm{H} \times 1.01 \mathrm{~g} \mathrm{H})+14.0 \mathrm{~g} \mathrm{~N}=79.1 \mathrm{~g} / \mathrm{mol}$. Because each mole of pyridine contains 1 mole of N , we need slightly more than 2 moles of pyridine to have more N than is present in the $\mathrm{N}_{2} \mathrm{O}$. But that would be a mass of about 158 g pyridine, and 150 mL has a mass of less than 150 g . Thus, the greatest number of N atoms is present in $50.0 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}$.
10. (E) The greatest number of S atoms is contained in the compound with the greatest number of moles of S. The solid sulfur contains $8 \times 0.12 \mathrm{~mol}=0.96 \mathrm{~mol} \mathrm{~S}$ atoms. There are $0.50 \times 2 \mathrm{~mol}$ S atoms in $0.50 \mathrm{~mol} \mathrm{~S}_{2} \mathrm{O}$. There is slightly greater than 1 mole $(64.1 \mathrm{~g})$ of SO_{2} in 65 g , and thus a bit more than 1 mole of S atoms. The molar mass of thiophene is 84.1 g and thus contains less than 1 mole of S . This means that $65 \mathrm{~g} \mathrm{SO}_{2}$ has the greatest number of S atoms.
11. (M)
(a) moles $\mathrm{N}_{2} \mathrm{O}_{4}=115 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{4} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4}}{92.01 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}_{4}}=1.25 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}_{4}$
(b) moles $\mathrm{N}=43.5 \mathrm{~g} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2} \times \frac{1 \mathrm{~mol} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}}{148.31 \mathrm{~g}} \times \frac{2 \mathrm{~mol} \mathrm{~N}}{1 \mathrm{~mol} \mathrm{Mg}\left(\mathrm{NO}_{3}\right)_{2}}=0.587 \mathrm{~mol} \mathrm{~N}$ atoms
(c) moles $\mathrm{N}=12.4 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \times \frac{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}}{180.15 \mathrm{~g}} \times \frac{6 \mathrm{~mol} \mathrm{O}}{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}} \times \frac{1 \mathrm{~mol} \mathrm{C}_{7} \mathrm{H}_{5}\left(\mathrm{NO}_{2}\right)_{3}}{6 \mathrm{~mol} \mathrm{O}}$

$$
\times \frac{3 \mathrm{~mol} \mathrm{~N}}{1 \mathrm{~mol} \mathrm{C}_{7} \mathrm{H}_{5}\left(\mathrm{NO}_{2}\right)_{3}}=0.206 \mathrm{~mol} \mathrm{~N}
$$

12. (M)
(a) mass $=2.10 \times 10^{-2} \mathrm{~mol} \mathrm{~S}_{8} \times \frac{8 \mathrm{molS}}{1 \mathrm{~mol} \mathrm{~S}_{8}} \times \frac{32.06 \mathrm{~g} \mathrm{~S}}{1 \mathrm{~mol} \mathrm{~S}}=5.39 \mathrm{~g} \mathrm{~S}$
(b) mass $=5.02 \times 10^{22}$ molecules $\times \frac{1 \text { mole }}{6.022 \times 10^{23} \text { molecules }} \times \frac{256.43 \mathrm{~g} \mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{2}}{1 \text { mole C }_{16} \mathrm{H}_{32} \mathrm{O}_{2}}$ $=21.4 \mathrm{~g} \mathrm{C}_{16} \mathrm{H}_{32} \mathrm{O}_{2}$ (palmitic acid).
(c) mass $=2.95 \mathrm{~mol} \mathrm{~N} \times \frac{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}}{3 \mathrm{~mol} \mathrm{~N}} \times \frac{155.157 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}}=152.6 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{9} \mathrm{~N}_{3} \mathrm{O}_{2}$
13. (M) The number of Fe atoms in 6 L of blood can be found using the following conversion pathway.
$=6 \mathrm{~L}$ blood $\times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}} \times \frac{15.5 \mathrm{~g} \mathrm{Hb}}{100 \mathrm{~mL} \text { blood }} \times \frac{1 \mathrm{~mol} \mathrm{Hb}}{64,500 \mathrm{~g} \mathrm{Hb}} \times \frac{4 \mathrm{~mol} \mathrm{Fe}}{1 \mathrm{~mol} \mathrm{Hb}} \times \frac{6.022 \times 10^{23} \text { atoms Fe }}{1 \mathrm{~mol} \mathrm{Fe}}$ $=3 \times 10^{22} \mathrm{Fe}$ atoms
14. (M)
(a) volume $=\pi r^{2} \times h=3.1416 \times\left(\frac{1.22 \mathrm{~cm}}{2}\right)^{2} \times 6.50 \mathrm{~cm}=7.60 \mathrm{~cm}^{3}$
$\mathrm{mol} \mathrm{P}_{4}=7.60 \mathrm{~cm}^{3} \times \frac{1.823 \mathrm{~g} \mathrm{P}_{4}}{1 \mathrm{~cm}^{3}} \times \frac{1 \mathrm{~mol} \mathrm{P}_{4}}{123.896 \mathrm{~g} \mathrm{P}_{4}}=0.112 \mathrm{~mol} \mathrm{P}_{4}$

Chemical Formulas

15. (E) For glucose (blood sugar), $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$,
(a) FALSE The percentages by mass of C and O are different than in CO. For one thing, CO contains no hydrogen.
(b) TRUE In dihydroxyacetone, $\left(\mathrm{CH}_{2} \mathrm{OH}\right)_{2} \mathrm{CO}$ or $\mathrm{C}_{3} \mathrm{H}_{6} \mathrm{O}_{3}$, the ratio of C: $\mathrm{H}: \mathrm{O}=3: 6: 3$ or $1: 2: 1$. In glucose, this ratio is $\mathrm{C}: \mathrm{H}: \mathrm{O}=6: 12: 6=1: 2: 1$. Thus, the ratios are the same.
(c) FALSE The proportions, by number of atoms, of C and O are the same in glucose. Since, however, C and O have different molar masses, their proportions by mass must be different.
(d) FALSE Each mole of glucose contains $(12 \times 1.008=) 12.1 \mathrm{~g}$ H. But each mole also contains 72.1 g C and 96.0 g O . Thus, the highest percentage, by mass, is that of O . The highest percentage, by number of atoms, is that of H .
16. (E) For sorbic acid, $\mathrm{C}_{6} \mathrm{H}_{8} \mathrm{O}_{2}$,
(a) FALSE The $\mathrm{C}: \mathrm{H}: \mathrm{O}$ mole ratio is $3: 4: 1$, but the mass ratio differs because moles of different elements have different molar masses.
(b) TRUE Since the two compounds have the same empirical formula, they have the same mass percent composition.
(c) TRUE Aspidinol, $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{4}$, and sorbic acid have the same empirical formula, $\mathrm{C}_{3} \mathrm{H}_{4} \mathrm{O}$.
(d) TRUE The ratio of H atoms to O atoms is $8: 2=4: 1$. Thus, the mass ratio is

$$
(4 \mathrm{~mol} \mathrm{H} \times 1 \mathrm{~g} \mathrm{H}):(1 \mathrm{~mol} \mathrm{O} \times 16.0 \mathrm{~g} \mathrm{O})=4 \mathrm{~g} \mathrm{H}: 16 \mathrm{~g} \quad \mathrm{O}=1 \mathrm{~g} \mathrm{H}: 4 \mathrm{~g} \mathrm{O} .
$$

17. (M)
(a) $\mathrm{Cu}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ has $1 \mathrm{Cu}, 2 \mathrm{U}, 2 \mathrm{P}, 20 \mathrm{O}$, and 16 H , or a total of 41 atoms.
(b) By number, $\mathrm{Cu}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ has a H to O ratio of 16:20 or 4:5 or 0.800 H atoms $/ \mathrm{O}$ atom.
(c) By number, $\mathrm{Cu}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}$ has a Cu to P ratio of 1:2.

The mass ratio of $\mathrm{Cu}: \mathrm{P}$ is $\frac{1 \mathrm{~mol} \mathrm{Cu} \times \frac{63.546 \mathrm{~g} \mathrm{Cu}}{1 \mathrm{~mol} \mathrm{Cu}}}{2 \mathrm{~mol} \mathrm{P} \times \frac{30.974 \mathrm{~g} \mathrm{P}}{1 \mathrm{~mol} \mathrm{P}}}=1.026$.
(d) With a mass percent slightly greater than 50%, U has the largest mass percent, with oxygen coming in at $\sim 34 \%$.

$$
\begin{aligned}
\operatorname{mass} \% \mathrm{U} & =\frac{\text { mass } \mathrm{U} \text { in } \mathrm{Cu}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}}{\text { total mass of } \mathrm{Cu}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}} \times 100 \% \\
& =\frac{2 \times 238.03 \mathrm{~g} / \mathrm{mol}}{937.660 \mathrm{~g} / \mathrm{mol}} \times 100 \% \\
& =50.77 \% \\
\text { mass } \% \mathrm{O} & =\frac{\text { mass } \mathrm{O} \text { in } \mathrm{Cu}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}}{\text { total mass of } \mathrm{Cu}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}} \times 100 \% \\
& =\frac{20 \times 15.999 \mathrm{~g} / \mathrm{mol}}{937.660 \mathrm{~g} / \mathrm{mol}} \times 100 \% \\
& =34.13 \%
\end{aligned}
$$

(e) $1.00 \mathrm{~g} \mathrm{P} \times \frac{1 \mathrm{~mol} \mathrm{P}}{30.974 \mathrm{~g} \mathrm{P}} \times \frac{1 \mathrm{~mol} \mathrm{Cu}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}}{2 \mathrm{~mol} \mathrm{P}} \times$

$$
\begin{array}{r}
\frac{937.666 \mathrm{~g} \mathrm{Cu}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{Cu}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}} \\
=15.1 \mathrm{~g} \text { of } \mathrm{Cu}\left(\mathrm{UO}_{2}\right)_{2}\left(\mathrm{PO}_{4}\right)_{2} \cdot 8 \mathrm{H}_{2} \mathrm{O}
\end{array}
$$

18. (M)
(a) A formula unit of $\mathrm{Ge}\left[\mathrm{S}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}\right]_{4}$ contains:

1 Ge atom $\quad 4 \mathrm{~S}$ atoms $\quad 4(4+1)=20 \mathrm{C}$ atoms $\quad 4[4(2)+3]=44 \mathrm{H}$ atoms
For a total of $1+4+20+44=69$ atoms per formula unit
(b) $\frac{\# \text { of C atoms }}{\# \text { of } \mathrm{H} \text { atoms }}=\frac{20 \mathrm{C} \text { atoms }}{44 \mathrm{H} \text { atoms }}=\frac{5 \mathrm{C} \text { atoms }}{11 \mathrm{H} \text { atoms }}=0.455 \mathrm{C}$ atom $/ \mathrm{H}$ atom
(c) $\frac{\operatorname{mass~Ge}}{\operatorname{mass~} \mathrm{S}}=\frac{1 \mathrm{molGe} \times \frac{72.630 \mathrm{~g} \mathrm{Ge}}{1 \mathrm{molGe}}}{4 \mathrm{molS} \times \frac{32.06 \mathrm{gS}}{1 \mathrm{molS}}}=\frac{72.630 \mathrm{~g} \mathrm{Ge}}{128.24 \mathrm{gS}}=0.566 \mathrm{~g} \mathrm{Ge} / \mathrm{gS}$
(d) mass of $\mathrm{S}=1 \mathrm{~mol} \mathrm{Ge}\left[\mathrm{S}\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}\right]_{4} \times \frac{4 \mathrm{~mol} \mathrm{~S}}{1 \mathrm{~mol} \mathrm{Ge}\left[\mathrm{S}_{\left.\left(\mathrm{CH}_{2}\right)_{4} \mathrm{CH}_{3}\right]_{4}} \times \frac{32.06 \mathrm{~g} \mathrm{~S}}{1 \mathrm{~mol} \mathrm{~S}}=128.264 \mathrm{~g} \mathrm{~S}\right.}$
(e) \# of C atoms $=33.10 \mathrm{~g} \mathrm{cmpd} \times \frac{1 \mathrm{~mol} \mathrm{cmpd}}{485.44 \mathrm{~g} \mathrm{cmpd}} \times \frac{20 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{cmpd}} \times \frac{6.0221 \times 10^{23} \mathrm{C} \text { atoms }}{1 \mathrm{~mol} \mathrm{C}}$ $=8.212 \times 10^{23} \mathrm{C}$ atoms

Percent Composition of Compounds

19. (E) The information obtained in the course of calculating the molar mass is used to determine the mass percent of H in decane.
molar mass $\mathrm{C}_{10} \mathrm{H}_{22}=\left(\frac{10 \mathrm{~mol} \mathrm{C}_{1}}{1 \mathrm{~mol} \mathrm{C}_{10} \mathrm{H}_{22}} \times \frac{12.011 \mathrm{~g} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}}\right)+\left(\frac{22 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{C}_{10} \mathrm{H}_{22}} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}\right)$

$$
=\frac{120.11 \mathrm{~g} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}_{10} \mathrm{H}_{22}}+\frac{22.176 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{C}_{10} \mathrm{H}_{22}}=\frac{142.29 \mathrm{~g}}{1 \mathrm{~mol} \mathrm{C}_{10} \mathrm{H}_{22}}
$$

$\% \mathrm{H}=\frac{22.176 \mathrm{~g} \mathrm{H} / \mathrm{mol} \text { decane }}{142.29 \mathrm{~g} \mathrm{C}_{10} \mathrm{H}_{22} / \text { mol decane }} \times 100 \%=15.369 \% \mathrm{H}$
20. (E) Determine the mass of O in one mole of $\mathrm{Cu}_{2}(\mathrm{OH})_{2} \mathrm{CO}_{3}$ and the molar mass of $\mathrm{Cu}_{2}(\mathrm{OH})_{2} \mathrm{CO}_{3}$.

$$
\begin{aligned}
& \text { mass O/mol Cu}(\mathrm{OH})_{2} \mathrm{CO}_{3}=\frac{5 \mathrm{~mol} \mathrm{O}}{1 \mathrm{~mol} \mathrm{Cu}_{2}(\mathrm{OH})_{2} \mathrm{CO}_{3}} \times \frac{15.999 \mathrm{~g} \mathrm{O}}{1 \mathrm{~mol} \mathrm{O}}=80.00 \mathrm{~g} \mathrm{O} / \mathrm{mol} \mathrm{Cu}_{2}(\mathrm{OH})_{2} \mathrm{CO}_{3} \\
& \text { molar mass Cu} \\
& 2(\mathrm{OH})_{2} \mathrm{CO}_{3}
\end{aligned}=(2 \times 63.546 \mathrm{~g} \mathrm{Cu})^{(5 \times 15.999 \mathrm{~g} \mathrm{O})+(2 \times 1.008 \mathrm{~g} \mathrm{H})+12.011 \mathrm{~g} \mathrm{C}} \begin{aligned}
& =221.114 \mathrm{~g} / \mathrm{mol} \mathrm{Cu}_{2}(\mathrm{OH})_{2} \mathrm{CO}_{3} \\
\text { percent oxygen in sample } & =\frac{79.995 \mathrm{~g}}{221.114 \mathrm{~g}} \times 100 \%=36.18 \% \mathrm{O}
\end{aligned}
$$

21. (E) $\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$ has a molar mass of $114.231 \mathrm{~g} / \mathrm{mol}$ and one mole contains 18.143 g of H.
percent hydrogen in sample $=\frac{18.143 \mathrm{~g}}{114.231 \mathrm{~g}} \times 100 \%=15.88 \% \mathrm{H}$
22. (E) Determine the mass of a mole of $\mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}$, and then the mass of water in a mole.

$$
\begin{aligned}
& \text { molar mass } \mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}=51.996 \mathrm{~g} \mathrm{Cr}+(3 \times 14.007 \mathrm{~g} \mathrm{~N})+(18 \times 15.999 \mathrm{~g} \mathrm{O}) \\
& +(18 \times 1.008 \mathrm{~g} \mathrm{H})=400.148 \mathrm{~g} / \mathrm{mol} \mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}
\end{aligned} \quad \begin{aligned}
& 9 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \\
& \text { mass } \mathrm{H}_{2} \mathrm{O}=\frac{18.015 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}} \times 162.14 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} / \mathrm{molCr}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O} \\
& 1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}
\end{aligned} \quad \begin{aligned}
& \frac{162.14 \mathrm{~g} \mathrm{H} \mathrm{H}_{2} \mathrm{O} / \mathrm{molCr}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}}{400.148 \mathrm{~g} / \mathrm{mol} \mathrm{Cr}\left(\mathrm{NO}_{3}\right)_{3} \cdot 9 \mathrm{H}_{2} \mathrm{O}} \times 100 \%=40.5 \% \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

23. (E) molar mass $=(20 \mathrm{~mol} \mathrm{C} \times 12.011 \mathrm{~g} \mathrm{C})+(24 \mathrm{~mol} \mathrm{H} \times 1.008 \mathrm{~g} \mathrm{H})+(2 \mathrm{~mol} \mathrm{~N} \times 14.007 \mathrm{~g} \mathrm{~N})$

$$
\begin{gathered}
+(2 \mathrm{~mol} \mathrm{O} \times 15.999 \mathrm{~g} \mathrm{O})=324.42 \mathrm{~g} / \mathrm{mol} \\
\% \mathrm{C}=\frac{240.22}{324.42} \times 100 \%=74.046 \% \mathrm{C} \quad \% \mathrm{H}=\frac{24.192}{324.42} \times 100 \%=7.4570 \% \mathrm{H} \\
\% \mathrm{~N}=\frac{28.014}{324.42} \times 100 \%=8.6351 \% \mathrm{~N} \quad \% \mathrm{O}=\frac{31.998}{324.42} \times 100 \%=9.8631 \% \mathrm{O}
\end{gathered}
$$

24. (E) The molar mass of $\mathrm{Cu}\left(\mathrm{C}_{18} \mathrm{H}_{33} \mathrm{O}_{2}\right)_{2}$ is $626.466 \mathrm{~g} / \mathrm{mol}$. One mole contains $66 \mathrm{H}(66.528 \mathrm{~g}$ H), $36 \mathrm{C}(432.396 \mathrm{~g} \mathrm{C}), 4 \mathrm{O}(63.996 \mathrm{~g} \mathrm{O})$ and $1 \mathrm{Cu}(63.546 \mathrm{~g} \mathrm{Cu})$.

$$
\begin{array}{ll}
\% \mathrm{C}=\frac{432.396 \mathrm{~g}}{626.466 \mathrm{~g}} \times 100 \%=69.0215 \% \mathrm{C} & \% \mathrm{H}=\frac{66.528 \mathrm{~g}}{626.466 \mathrm{~g}} \times 100 \%=10.619 \% \mathrm{H} \\
\% \mathrm{Cu}=\frac{63.546 \mathrm{~g}}{626.466 \mathrm{~g}} \times 100 \%=10.144 \% \mathrm{Cu} & \% \mathrm{O}=\frac{63.996 \mathrm{~g}}{626.466 \mathrm{~g}} \times 100 \%=10.216 \% \mathrm{O}
\end{array}
$$

25. (E) In each case, we first determine the molar mass of the compound, and then the mass of the indicated element in one mole of the compound. Finally, we determine the percent by mass of the indicated element to four significant figures.
(a) molar mass $\mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}=207.2 \mathrm{~g} \mathrm{~Pb}+(8 \times 12.011 \mathrm{~g} \mathrm{C})+(20 \times 1.008 \mathrm{~g} \mathrm{H})$

$$
=323.448 \mathrm{~g} / \mathrm{mol} \mathrm{~Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}
$$

mass $\mathrm{Pb} / \mathrm{mol} \mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}=\frac{1 \mathrm{~mol} \mathrm{~Pb}}{1 \mathrm{~mol} \mathrm{~Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}} \times \frac{207.2 \mathrm{~g} \mathrm{~Pb}}{1 \mathrm{~mol} \mathrm{~Pb}}=207.2 \mathrm{~g} \mathrm{~Pb} / \mathrm{mol} \mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}$ $\% \mathrm{~Pb}=\frac{207.2 \mathrm{~g} \mathrm{~Pb}}{323.448 \mathrm{~g} \mathrm{~Pb}\left(\mathrm{C}_{2} \mathrm{H}_{5}\right)_{4}} \times 100 \%=64.06 \% \mathrm{~Pb}$
(b) molar mass $\mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}=(7 \times 55.845 \mathrm{~g} \mathrm{Fe})+(18 \times 12.011 \mathrm{~g} \mathrm{C})+(18 \times 14.007 \mathrm{~g} \mathrm{~N})$

$$
=859.253 \mathrm{~g} / \mathrm{mol} \mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}
$$

$$
\frac{\operatorname{mass~Fe}}{\mathrm{mol} \mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}}=\frac{7 \mathrm{~mol} \mathrm{Fe}}{1 \mathrm{~mol} \mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}} \times \frac{55.845 \mathrm{~g} \mathrm{Fe}}{1 \mathrm{~mol} \mathrm{Fe}}=390.915 \mathrm{~g} \mathrm{Fe} / \mathrm{mol} \mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}
$$

$$
\% \mathrm{Fe}=\frac{390.915 \mathrm{~g} \mathrm{Fe}}{859.253 \mathrm{~g} \mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}} \times 100 \%=45.495 \% \mathrm{Fe}
$$

(c) molar mass $\mathrm{C}_{55} \mathrm{H}_{72} \mathrm{MgN}_{4} \mathrm{O}_{5}$

$$
\begin{aligned}
& =(55 \times 12.011 \mathrm{~g} \mathrm{C})+(72 \times 1.008 \mathrm{~g} \mathrm{H})+(1 \times 24.305 \mathrm{~g} \mathrm{Mg})+(4 \times 14.007 \mathrm{~g} \mathrm{~N})+(5 \times 15.999 \mathrm{~g} \mathrm{O}) \\
& =893.509 \mathrm{~g} / \mathrm{mol} \mathrm{C}_{55} \mathrm{H}_{72} \mathrm{MgN}_{4} \mathrm{O}_{5} \\
& \frac{\mathrm{mass} \mathrm{Mg}_{\mathrm{mol} \mathrm{C}_{55} \mathrm{H}_{72} \mathrm{MgN}_{4} \mathrm{O}_{5}}=\frac{1 \mathrm{~mol} \mathrm{Mg}_{1 \mathrm{~mol} \mathrm{C}_{55} \mathrm{H}_{72} \mathrm{MgN}_{4} \mathrm{O}_{5}} \times \frac{24.305 \mathrm{~g} \mathrm{Mg}}{1 \mathrm{~mol} \mathrm{Mg}}=\frac{24.305 \mathrm{~g} \mathrm{Mg}}{\mathrm{~mol} \mathrm{C}_{55} \mathrm{H}_{72} \mathrm{MgN}_{4} \mathrm{O}_{5}}}{}}{\% \mathrm{Mg}=\frac{24.305 \mathrm{~g} \mathrm{Mg}_{893.509 \mathrm{~g} \mathrm{C}_{55} \mathrm{H}_{72} \mathrm{MgN}_{4} \mathrm{O}_{5}}^{80}}{} \times 100 \%=2.7202 \% \mathrm{Mg}}
\end{aligned}
$$

26. (E)
(a) $\% \mathrm{Zr}=\frac{1 \mathrm{~mol} \mathrm{Zr}^{1}}{1 \mathrm{~mol} \mathrm{ZrSiO}_{4}} \times \frac{1 \mathrm{~mol} \mathrm{ZrSiO}_{4}}{183.31 \mathrm{~g} \mathrm{ZrSiO}_{4}} \times \frac{91.224 \mathrm{~g} \mathrm{Zr}}{1 \mathrm{~mol} \mathrm{Zr}} \times 100 \%=49.765 \% \mathrm{Zr}$
(b) $\% \mathrm{Be}=\frac{3 \mathrm{molFe}}{1 \mathrm{~mol} \mathrm{Be}_{3} \mathrm{Al}_{2} \mathrm{Si}_{6} \mathrm{O}_{18}} \times \frac{1 \mathrm{~mol} \mathrm{Be}_{3} \mathrm{Al}_{2} \mathrm{Si}_{6} \mathrm{O}_{18}}{537.502 \mathrm{~g} \mathrm{Be}_{3} \mathrm{Al}_{2} \mathrm{Si}_{6} \mathrm{O}_{18}} \times \frac{9.01218 \mathrm{~g} \mathrm{Be}}{1 \mathrm{~mol} \mathrm{Be}} \times 100 \%$
$\% \mathrm{Be}=5.03004 \% \mathrm{Be}$
(c) $\% \mathrm{Fe}=\frac{3 \mathrm{molFe}}{1 \mathrm{molFe}_{3} \mathrm{Al}_{2} \mathrm{Si}_{3} \mathrm{O}_{12}} \times \frac{1 \mathrm{molFe}_{3} \mathrm{Al}_{2} \mathrm{Si}_{3} \mathrm{O}_{12}}{497.753 \mathrm{~g} \mathrm{Fe}_{3} \mathrm{Al}_{2} \mathrm{Si}_{3} \mathrm{O}_{12}} \times \frac{55.845 \mathrm{~g} \mathrm{Fe}}{1 \mathrm{molFe}} \times 100 \%$
$\% \mathrm{Fe}=33.658 \% \mathrm{Fe}$
(d) $\% \mathrm{~S}=\frac{1 \mathrm{molS}}{1 \mathrm{~mol} \mathrm{Na}_{4} \mathrm{SSi}_{3} \mathrm{Al}_{3} \mathrm{O}_{12}} \times \frac{1 \mathrm{~mol} \mathrm{Na}_{4} \mathrm{Si}_{3} \mathrm{Al}_{3} \mathrm{O}_{12}}{481.219 \mathrm{~g} \mathrm{Na}_{4} \mathrm{SSi}_{3} \mathrm{Al}_{3} \mathrm{O}_{12}} \times \frac{32.06 \mathrm{gS}}{1 \mathrm{molS}} \times 100 \%$
$\% \mathrm{~S}=6.6622 \% \mathrm{~S}$
27. (M) Oxide with the largest $\% \mathrm{Cr}$ will have the largest number of moles of Cr per mole of oxygen.
$\mathrm{CrO}: \frac{1 \mathrm{~mol} \mathrm{Cr}}{1 \mathrm{~mol} \mathrm{O}}=1 \mathrm{~mol} \mathrm{Cr} / \mathrm{mol} \mathrm{O} \quad \quad \mathrm{Cr}_{2} \mathrm{O}_{3}: \frac{2 \mathrm{~mol} \mathrm{Cr}}{3 \mathrm{~mol} \mathrm{O}}=0.667 \mathrm{~mol} \mathrm{Cr} / \mathrm{mol} \mathrm{O}$
$\mathrm{CrO}_{2}: \frac{1 \mathrm{~mol} \mathrm{Cr}}{2 \mathrm{~mol} \mathrm{O}}=0.500 \mathrm{~mol} \mathrm{Cr} / \mathrm{mol} \mathrm{O} \quad \mathrm{CrO}_{3}: \frac{1 \mathrm{~mol} \mathrm{Cr}}{3 \mathrm{~mol} \mathrm{O}}=0.333 \mathrm{~mol} \mathrm{Cr} / \mathrm{mol} \mathrm{O}$
Arranged in order of increasing $\% \mathrm{Cr}$: $\mathrm{CrO}_{3}<\mathrm{CrO}_{2}<\mathrm{Cr}_{2} \mathrm{O}_{3}<\mathrm{CrO}$
28. (M) For SO_{2} and $\mathrm{Na}_{2} \mathrm{~S}$, a mole of each contains a mole of S and two moles of another element; in the case of SO_{2}, the other element (oxygen) has a smaller atomic mass than the other element in $\mathrm{Na}_{2} \mathrm{~S}(\mathrm{Na})$, causing SO_{2} to have a higher mass percent sulfur. For $\mathrm{S}_{2} \mathrm{Cl}_{2}$ and $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, a mole of each contains two moles of S ; for $\mathrm{S}_{2} \mathrm{Cl}_{2}$, the rest of the mole has a mass of 71.0 g ; while for $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, it would be $(2 \times 23)+(3 \times 16)=94 \mathrm{~g}$. Sulfur makes up the greater proportion of the mass in $\mathrm{S}_{2} \mathrm{Cl}_{2}$, giving it the larger percent of S . Now we compare
SO_{2} and $\mathrm{S}_{2} \mathrm{Cl}_{2}$: SO_{2} contains one mole of $\mathrm{S}(32.1 \mathrm{~g})$ and $\mathrm{S}_{2} \mathrm{Cl}_{2}$ contains two moles of S (64.2 g). In $\mathrm{S}_{2} \mathrm{Cl}_{2}$ the remainder of a mole has a mass of 71.0 g , while in SO_{2} the remainder of a mole would be $2 \times 16.0=32.0 \mathrm{~g}$. Thus, SO_{2} has the highest percent of S so far. For $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{SH}$ compared to SO_{2}, we see that both compounds have one S atom, SO_{2} has two O atoms (each with a molar mass of $\sim 16 \mathrm{~g} \mathrm{~mol}^{-1}$), and $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{SH}$ effectively has two CH_{3} groups (each CH_{3} group with a mass of $\sim 15 \mathrm{~g} \mathrm{~mol}^{-1}$). Thus, $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{SH}$ has the highest percentage sulfur by mass of the compounds listed.

Chemical Formulas from Percent Composition

29. (M) $\mathrm{SO}_{3}(40.05 \% \mathrm{~S})$ and $\mathrm{S}_{2} \mathrm{O}(80.0 \% \mathrm{~S})(2 \mathrm{O}$ atoms $\approx 1 \mathrm{~S}$ atom in terms of atomic masses) Note the molar masses are quite close (within $0.05 \mathrm{~g} / \mathrm{mol}$).
30. (M) The element chromium has an atomic mass of 52.0 u . Thus, there can only be one chromium atom per formula unit of the compound. (Two atoms of chromium have a mass of 104 u , more than the formula mass of the compound.) Three of the four remaining atoms in the formula unit must be oxygen. Thus, the oxide is CrO_{3}, chromium(VI) oxide.
31. (M) Determine the \% oxygen by difference.
$\% \mathrm{O}=100.00 \%-45.27 \% \mathrm{C}-9.50 \% \mathrm{H}=45.23 \% \mathrm{O}$
The following calculations are based on a 100.00 g sample.

$$
\begin{aligned}
& \mathrm{mol} \mathrm{O}=45.23 \mathrm{~g} \times \frac{1 \mathrm{~mol} \mathrm{O}}{15.999 \mathrm{~g} \mathrm{O}}=2.827 \mathrm{~mol} \mathrm{O} \quad \div 2.827 \rightarrow 1.000 \mathrm{~mol} \mathrm{O} \\
& \mathrm{~mol} \mathrm{C}=45.27 \mathrm{~g} \mathrm{C} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.011 \mathrm{~g} \mathrm{C}}=3.769 \mathrm{~mol} \mathrm{C} \quad \div 2.827 \rightarrow 1.333 \mathrm{~mol} \mathrm{C} \\
& \mathrm{~mol} \mathrm{H}=9.50 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g} \mathrm{H}}=9.42 \mathrm{~mol} \mathrm{H} \quad \div 2.827 \rightarrow 3.33 \mathrm{~mol} \mathrm{H}
\end{aligned}
$$

Multiply all amounts by 3 to obtain integers. Empirical formula is $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}_{3}$.
32. (M) We base our calculation on 100.0 g of monosodium glutamate.

$$
\begin{array}{ll}
13.6 \mathrm{~g} \mathrm{Na} \times \frac{1 \mathrm{~mol} \mathrm{Na}}{22.99 \mathrm{~g} \mathrm{Na}}=0.592 \mathrm{~mol} \mathrm{Na} & \div 0.592 \rightarrow 1.00 \mathrm{~mol} \mathrm{Na} \\
35.5 \mathrm{~g} \mathrm{C} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.01 \mathrm{~g} \mathrm{C}}=2.96 \mathrm{~mol} \mathrm{C} & \div 0.592 \rightarrow 5.00 \mathrm{~mol} \mathrm{C} \\
4.8 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.01 \mathrm{~g} \mathrm{H}}=4.8 \mathrm{~mol} \mathrm{H} & \div 0.592 \rightarrow 8.1 \mathrm{~mol} \mathrm{H} \\
8.3 \mathrm{~g} \mathrm{~N} \times \frac{1 \mathrm{~mol} \mathrm{~N}}{14.0 \mathrm{~g} \mathrm{~N}}=0.59 \mathrm{~mol} \mathrm{~N} & \div 0.592 \rightarrow 1.0 \mathrm{~mol} \mathrm{~N} \\
37.8 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}=2.36 \mathrm{~mol} \mathrm{O} & \div 0.592 \rightarrow 3.99 \mathrm{~mol} \mathrm{O} \\
& \text { Empirical formula }: \mathrm{NaC}_{5} \mathrm{H}_{8} \mathrm{NO}_{4}
\end{array}
$$

Chapter 3: Chemical Compounds

33. (M)
(a) $74.01 \mathrm{~g} \mathrm{C} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.011 \mathrm{~g} \mathrm{C}}=6.162 \mathrm{~mol} \mathrm{C} \quad \div 1.298 \rightarrow 4.747 \mathrm{~mol} \mathrm{C}$
$5.23 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g} \mathrm{H}}=5.19 \mathrm{~mol} \mathrm{H} \quad \div 1.298 \rightarrow 4.00 \mathrm{~mol} \mathrm{H}$
$20.76 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{15.999 \mathrm{~g} \mathrm{O}}=1.298 \mathrm{~mol} \mathrm{O} \quad \div 1.298 \rightarrow 1.000 \mathrm{~mol} \mathrm{O}$
Multiply each of the mole numbers by 4 to obtain an empirical formula of $\mathrm{C}_{19} \mathrm{H}_{16} \mathrm{O}_{4}$.
(b) $\quad 39.98 \mathrm{~g} \mathrm{C} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.011 \mathrm{~g} \mathrm{C}}=3.328 \underline{6} \mathrm{~mol} \mathrm{C} \div 0.7399 \rightarrow 4.499 \mathrm{~mol} \mathrm{C}$
$3.73 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g} \mathrm{H}}=3.70 \mathrm{~mol} \mathrm{H} \quad \div 0.7399 \rightarrow 5.00 \mathrm{~mol} \mathrm{H}$
$20.73 \mathrm{~g} \mathrm{~N} \times \frac{1 \mathrm{~mol} \mathrm{~N}}{14.007 \mathrm{~g} \mathrm{~N}}=1.480 \mathrm{~mol} \mathrm{~N} \div 0.7399 \rightarrow 2.000 \mathrm{~mol} \mathrm{~N}$
$11.84 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{15.999 \mathrm{~g} \mathrm{O}}=0.7400 \mathrm{~mol} \mathrm{O} \div 0.7399 \rightarrow 1.000 \mathrm{~mol} \mathrm{O}$
$23.72 \mathrm{~g} \mathrm{~S} \times \frac{1 \mathrm{~mol} \mathrm{~S}}{32.06 \mathrm{~g} \mathrm{~S}}=0.7399 \mathrm{~mol} \mathrm{~S} \quad \div 0.7399 \rightarrow 1.000 \mathrm{~mol} \mathrm{~S}$
Multiply by 2 to obtain the empirical formula
$\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2} \mathrm{~S}_{2}$
34. (M)
(a) $95.21 \mathrm{~g} \mathrm{C} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.011 \mathrm{~g} \mathrm{C}}=7.927 \mathrm{~mol} \mathrm{C} \div 4.74 \rightarrow 1.67 \mathrm{~mol} \mathrm{C}$
$4.79 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g} \mathrm{H}}=4.75 \mathrm{~mol} \mathrm{H} \quad \div 4.75 \rightarrow 1.00 \mathrm{~mol} \mathrm{H}$
Multiply each of the mole numbers by 3 to obtain an empirical formula of $\mathrm{C}_{5} \mathrm{H}_{3}$.
(b) Each percent is numerically equal to the mass of that element present in 100.00 g of the compound. These masses then are converted to amounts of the elements, in moles. amount $\mathrm{C}=38.37 \mathrm{~g} \mathrm{C} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.011 \mathrm{~g} \mathrm{C}}=3.195 \mathrm{~mol} \mathrm{C} \quad \div 0.491 \rightarrow 6.51 \mathrm{~mol} \mathrm{C}$ amount $\mathrm{H}=1.49 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g} \mathrm{H}}=1.48 \mathrm{~mol} \mathrm{H} \quad \div 0.491 \rightarrow 3.01 \mathrm{~mol} \mathrm{H}$ amount $\mathrm{Cl}=52.28 \mathrm{~g} \mathrm{Cl} \times \frac{1 \mathrm{~mol} \mathrm{Cl}}{35.45 \mathrm{~g} \mathrm{Cl}}=1.475 \mathrm{~mol} \mathrm{Cl} \div 0.491 \rightarrow 3.004 \mathrm{~mol} \mathrm{Cl}$ amount $\mathrm{O}=7.86 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}=0.491 \mathrm{~mol} \mathrm{O} \quad \div 0.491 \rightarrow 1.00 \mathrm{~mol} \mathrm{O}$
Multiply each number of moles by 2 to obtain the empirical formula: $\mathrm{C}_{13} \mathrm{H}_{6} \mathrm{Cl}_{6} \mathrm{O}_{2}$.
35. Convert each percentage into the mass in 100.00 g , and then to the moles of that element.
$94.34 \mathrm{~g} \mathrm{C} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.011 \mathrm{~g} \mathrm{C}}=7.854 \mathrm{~mol} \mathrm{C} \quad \div 5.62=1.40 \mathrm{~mol} \mathrm{C} \times 5=7.00$
$5.66 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g} \mathrm{H}}=5.62 \mathrm{~mol} \mathrm{H} \quad \div 5.62=1.00 \mathrm{~mol} \mathrm{H} \times 5=5.00$
Multiply by 5 to achieve whole number ratios. The empirical formula is $\mathrm{C}_{5} \mathrm{H}_{7}$, and the formula mass $[(7 \times 12.011 \mathrm{~g} \mathrm{C})+(5 \times 1.008 \mathrm{~g} \mathrm{H})]=89.117 \mathrm{u}$. Since this empirical molar mass is one-half of the 178 u , the correct molecular mass, the molecular formula must be twice the empirical formula. Molecular formula: $\mathrm{C}_{14} \mathrm{H}_{10}$
36. (M) The percent of selenium in each oxide is found by difference.

First oxide: $\quad \% \mathrm{Se}=100.0 \%-28.8 \% \quad \mathrm{O}=71.2 \% \mathrm{Se}$
A 100.0 gram sample would contain 28.8 g O and 71.2 g Se
$28.8 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}=1.80 \mathrm{~mol} \mathrm{O} \quad \div 0.902 \quad \rightarrow 2.00 \mathrm{~mol} \mathrm{O}$
$71.2 \mathrm{~g} \mathrm{Se} \times \frac{1 \mathrm{~mol} \mathrm{Se}}{78.96 \mathrm{~g} \mathrm{Se}}=0.902 \mathrm{~mol} \mathrm{Se} \quad \div 0.902 \rightarrow 1.00 \mathrm{~mol} \mathrm{Se}$
The empirical formula is SeO_{2}. An appropriate name is selenium dioxide.
Second oxide: $\quad \% \mathrm{Se}=100.0 \%-37.8 \% \mathrm{O}=62.2 \% \mathrm{Se}$
A 100.0 gram sample would contain 37.8 g O and 62.2 g Se
$37.8 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}=2.36 \mathrm{~mol} \mathrm{O} \quad \div 0.788 \rightarrow 2.99 \mathrm{~mol} \mathrm{O}$
$62.2 \mathrm{~g} \mathrm{Se} \times \frac{1 \mathrm{~mol} \mathrm{Se}}{78.96 \mathrm{~g} \mathrm{Se}}=0.788 \mathrm{~mol} \mathrm{Se} \quad \div 0.788 \rightarrow 1.00 \mathrm{molSe}$
The empirical formula is SeO_{3}. An appropriate name is selenium trioxide.
37. (M) Determine the mass of oxygen by difference. Then convert all masses to amounts in moles. oxygen mass $=100.00 \mathrm{~g}-73.27 \mathrm{~g} \mathrm{C}-3.84 \mathrm{~g} \mathrm{H}-10.68 \mathrm{~g} \mathrm{~N}=12.21 \mathrm{~g} \mathrm{O}$

$$
\begin{array}{lll}
\text { amount } \mathrm{C}=73.27 \mathrm{~g} \mathrm{C} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.011 \mathrm{~g} \mathrm{C}}=6.100 \mathrm{~mol} \mathrm{C} & \div 0.7625 & \rightarrow 8.000 \mathrm{~mol} \mathrm{C} \\
\text { amount } \mathrm{H}=3.84 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g} \mathrm{H}}=3.81 \mathrm{~mol} \mathrm{H} & \div 0.7625 & \rightarrow 5.00 \mathrm{~mol} \mathrm{H} \\
\text { amount } \mathrm{N}=10.68 \mathrm{~g} \mathrm{~N} \times \frac{1 \mathrm{~mol} \mathrm{~N}}{14.007 \mathrm{~g} \mathrm{~N}}=0.7625 \mathrm{~mol} \mathrm{~N} & \div 0.7625 & \rightarrow 1.000 \mathrm{~mol} \mathrm{~N} \\
\text { amount } \mathrm{O}=12.21 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{15.999 \mathrm{~g} \mathrm{O}}=0.7632 \mathrm{~mol} \mathrm{O} & \div 0.7625 & \rightarrow 1.001 \mathrm{~mol} \mathrm{O}
\end{array}
$$

The empirical formula is $\mathrm{C}_{8} \mathrm{H}_{5} \mathrm{NO}$, which has an empirical mass of 131 u . This is almost exactly half the molecular mass of 262.3 u . Thus, the molecular formula is twice the empirical formula and is $\mathrm{C}_{16} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{O}_{2}$.
38. (M) Convert each percentage into the mass in 100.00 g , and then to the moles of that element.
amount $\mathrm{C}=44.45 \mathrm{~g} \mathrm{C} \times \frac{1 \mathrm{~mol} \mathrm{C}}{12.011 \mathrm{~g} \mathrm{C}}=3.701 \mathrm{~mol} \mathrm{C} \div 3.70 \rightarrow 1.00 \mathrm{~mol} \mathrm{C}$
amount $\mathrm{H}=3.73 \mathrm{~g} \mathrm{H} \times \frac{1 \mathrm{~mol} \mathrm{H}}{1.008 \mathrm{~g} \mathrm{H}}=3.70 \mathrm{~mol} \mathrm{H} \quad \div 3.70 \rightarrow 1.00 \mathrm{~mol} \mathrm{H}$
amount $\mathrm{N}=51.82 \mathrm{~g} \mathrm{~N} \times \frac{1 \mathrm{~mol} \mathrm{~N}}{14.007 \mathrm{~g} \mathrm{~N}}=3.700 \mathrm{~mol} \mathrm{~N} \quad \div 3.70 \rightarrow 1.00 \mathrm{~mol} \mathrm{~N}$
The empirical formula is CHN, which has an empirical mass of 27.026 u . This is one fifth the molecular mass of 135.14 u . Thus, the molecular formula is five times greater than the empirical formula and is $\mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N}_{5}$.
39. (M) The molar mass of element X has the units of grams per mole. We can determine the amount, in moles of Cl , and convert that to the amount of X , equivalent to 25.0 g of X . molar mass $=\frac{25.0 \mathrm{~g} \mathrm{X}}{75.0 \mathrm{~g} \mathrm{Cl}} \times \frac{35.45 \mathrm{~g} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{Cl}} \times \frac{4 \mathrm{~mol} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{X}}=\frac{47.3 \mathrm{~g} \mathrm{X}}{1 \mathrm{~mol} \mathrm{X}}$
The atomic mass is 47.3 u . This atomic mass is close to that of the element titanium, which therefore is identified as element X .
40. (M) The molar mass of element X has the units of grams per mole. We can determine the amount, relative to the mass percent Cl . Assume 1 mole of compound. This contains 15.9994 g O and 70.905 g Cl . The following relation must hold true.
mass percent $\mathrm{Cl}=59.6 \%=0.596=\frac{\text { mass } \mathrm{Cl} \text { in one mole }}{\text { mass of one mole of } \mathrm{XOCl}_{2}}=\frac{70.90 \mathrm{~g}}{(\mathrm{X}+15.999+70.90) \mathrm{g}}$
$0.596=\frac{70.90}{(\mathrm{X}+86.89)}$ or $0.596 \mathrm{X}+51.79=70.90 \quad 0.596 \mathrm{X}=19.11$
Hence, $X=\frac{19.11}{0.596}=32.0 \underline{6} \quad$ The atomic mass of $X=32.1 \mathrm{~g} \mathrm{~mol}^{-1} \quad X$ is the element sulfur
41. (M) Consider 100 g of chlorophyll, which contains 2.72 g of Mg . To answer this problem, we must take note of the fact that 1 mole of chlorophyll contains 1 mole of Mg .

$$
\frac{100 \mathrm{~g} \text { chlorophyll }}{2.72 \mathrm{~g} \mathrm{Mg}} \times \frac{24.305 \mathrm{~g} \mathrm{Mg}}{1 \mathrm{~mol} \mathrm{Mg}} \times \frac{1 \mathrm{~mol} \mathrm{Mg}}{1 \text { mol chlorophyll }}=894 \mathrm{~g} \mathrm{~mol}^{-1}
$$

Therefore, the molecular mass of chlorophyll is 894 u .
42. (D) Compound I has a molecular mass of 137 u . We are told that chlorine constitutes 77.5% of the mass, so the mass of chlorine in each molecule is $137 \mathrm{u} \times \frac{77.5}{100}=106 \mathrm{u}$.
This corresponds to three chlorine atoms ($106 \mathrm{u} \div 35.45 \mathrm{u} / \mathrm{Cl}$ atom $=2.99$ or 3 Cl atoms). The remaining $31 \mathrm{u},(137 \mathrm{u}-106 \mathrm{u})$, is the mass for element X in one molecule of Compound I. Compound II has 85.1% chlorine by mass, so the mass of chlorine in each molecule of Compound II is $208 \mathrm{u} \times \frac{85.1}{100}=177 \mathrm{u}$.

This corresponds to five Cl atoms ($177 \mathrm{u} \div 35.45 \mathrm{u} / \mathrm{Cl}$ atom $=4.99 \sim 5$ chlorine atoms). The remaining mass is $31 u(208 u-177 u)$, which is very close to the mass of X found in each molecule of Compound I. Thus, we have two compounds: $\mathrm{X}_{n} \mathrm{Cl}_{3}$, which has a molecular mass of 137 u , and $\mathrm{X}_{n} \mathrm{Cl}_{5}$, which has a molecular mass of 208 u .
(We also know that the mass of X in both molecular species is $\sim 31 \mathrm{u}$). If we assume that $n=1$ in the formulas above, then element X must be phosphorus (30.974 u) and the formulas for the compounds are $\mathrm{PCl}_{3}\left(\right.$ Compound I) and PCl_{5} (Compound II).

Combustion Analysis

43. (M)
(a) First we determine the mass of carbon and of hydrogen present in the sample. Remember that a hydrocarbon contains only hydrogen and carbon.
$0.6260 \mathrm{~g} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.009 \mathrm{~g} \mathrm{CO}_{2}} \times \frac{1 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{CO}_{2}}=0.01422 \mathrm{~mol} \mathrm{C} \times \frac{12.011 \mathrm{~g} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}}=0.1708 \mathrm{~g} \mathrm{C}$
$0.1602 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.015 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \times \frac{2 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=0.01779 \mathrm{~mol} \mathrm{H} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=0.01793 \mathrm{~g} \mathrm{H}$
Then the $\% \mathrm{C}$ and $\% \mathrm{H}$ are found.
$\% \mathrm{C}=\frac{0.1708}{0.1888 \mathrm{~g} \mathrm{cmpd}} \times 100 \%=90.47 \% \mathrm{C} \quad \% \mathrm{H}=\frac{0.01793 \mathrm{~g} \mathrm{H}}{0.1888 \mathrm{~g} \mathrm{cmpd}} \times 100 \%=9.497 \% \mathrm{H}$
(b) Use the moles of C and H from part (a), and divide both by the smallest value, namely
0.01422 mol . Thus $0.01422 \mathrm{~mol} \mathrm{C} \div 0.01422 \mathrm{~mol}=1.000 \mathrm{~mol} \mathrm{H}$;

$$
0.01779 \mathrm{~mol} \mathrm{H} \div 0.01422 \mathrm{~mol}=1.250 \mathrm{~mol} \mathrm{H} .
$$

The empirical formula is obtained by multiplying these mole numbers by 4 . It is $\mathrm{C}_{4} \mathrm{H}_{5}$.
(c) The molar mass of the empirical formula $\mathrm{C}_{4} \mathrm{H}_{5}$ is $[4 \times 12.011+5 \times 1.008]$ $=53.084 \mathrm{~g} / \mathrm{mol}$. This value is $1 / 2$ of the actual molar mass. The molecular formula is twice the empirical formula. \therefore Molecular formula: $\mathrm{C}_{8} \mathrm{H}_{10}$.
44. (M) Determine the mass of carbon and of hydrogen present in the sample.

$$
\begin{aligned}
& 1.1518 \mathrm{~g} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.090 \mathrm{~g} \mathrm{CO}_{2}} \times \frac{1 \mathrm{~mol} \mathrm{C}_{1}}{1 \mathrm{~mol} \mathrm{CO}_{2}}=0.026172 \mathrm{~mol} \mathrm{C} \times \frac{12.011 \mathrm{~g} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}}=0.3144 \mathrm{~g} \mathrm{C} \\
& 0.2694 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.015 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \times \frac{2 \mathrm{~mol} \mathrm{H}_{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}}{1.029908 \mathrm{~mol} \mathrm{H} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=0.03015 \mathrm{~g} \mathrm{H}}
\end{aligned}
$$

(a) The percent composition can be determined using the masses of C and H .
$\% \mathrm{C}=\frac{0.3144 \mathrm{gC}}{0.4039 \mathrm{~g} \mathrm{cmpd}} \times 100 \%=77.83 \% \mathrm{C} \quad \% \mathrm{H}=\frac{0.030148 \mathrm{~g} \mathrm{H}}{0.4039 \mathrm{~g} \mathrm{cmpd}} \times 100 \%=7.4641 \% \mathrm{H}$
$\% \mathrm{O}=100 \%-77.84 \%-7.4641 \%=14.71 \%$
These percents can be used in determining the empirical formula if one wishes.
(b) To find the empirical formula, determine the mass of oxygen by difference, and its amount in moles. Mass $\mathrm{O}=0.04039 \mathrm{~g}-0.3144 \mathrm{~g}-0.0302 \mathrm{~g}=0.0593 \mathrm{~g}$

$$
\left.\begin{array}{rl}
0.0593 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}= & 0.00371 \mathrm{~mol} \mathrm{O} \div 0.00371 \rightarrow 1.00 \mathrm{~mol} \mathrm{O} \\
& 0.026172 \mathrm{~mol} \mathrm{C} \div 0.00371 \rightarrow 7.05 \mathrm{~mol} \mathrm{C} \\
& 0.029908 \mathrm{~mol} \mathrm{H} \div 0.00371 \rightarrow 8.06 \mathrm{~mol} \mathrm{H}
\end{array}\right\} \quad \begin{aligned}
& \text { Empirical formula } \\
& \text { is } \mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O} .
\end{aligned}
$$

(c) The molecular formula is found by realizing that a mole of empirical units has a mass of $(7 \times 12.0 \mathrm{~g} \mathrm{C}+8 \times 1.0 \mathrm{~g} \mathrm{H}+16.0 \mathrm{~g} \mathrm{O})=108.0 \mathrm{~g}$. Since this agrees with the molecular mass, the molecular formula is the same as the empirical formula: $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{O}$.
45. (M) First, determine the mass of carbon and hydrogen present in the sample.

$$
\begin{aligned}
& 0.458 \mathrm{~g} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.01 \mathrm{~g} \mathrm{CO}_{2}} \times \frac{1 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{CO}_{2}}=0.0104 \mathrm{~mol} \mathrm{C} \times \frac{12.011 \mathrm{~g} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}}=0.125 \mathrm{~g} \mathrm{C} \\
& 0.374 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.015 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \times \frac{2 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=0.0415 \mathrm{~mol} \mathrm{H} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=0.0418 \mathrm{~g} \mathrm{H}
\end{aligned}
$$

Then, the mass of N that this sample would have produced is determined.
(Note that this is also the mass of N_{2} produced in the reaction.)

$$
0.226 \mathrm{~g} \mathrm{~N}_{2} \times \frac{0.312 \mathrm{~g} 1 \mathrm{st} \text { sample }}{0.486 \mathrm{~g} \mathrm{2nd} \mathrm{sample}}=0.145 \mathrm{~g} \mathrm{~N}_{2}
$$

From which we can calculate the mass of N in the sample.

$$
0.145 \mathrm{~g} \mathrm{~N}_{2} \times \frac{1 \mathrm{~mol} \mathrm{~N}_{2}}{28.014 \mathrm{~g} \mathrm{~N}_{2}} \times \frac{2 \mathrm{molN}}{1 \mathrm{~mol} \mathrm{~N}_{2}} \times \frac{14.007 \mathrm{~g} \mathrm{~N}}{1 \mathrm{molN}}=0.145 \mathrm{~g} \mathrm{~N}
$$

We may alternatively determine the mass of N by difference:

$$
0.312 \mathrm{~g}-0.125 \mathrm{~g} \mathrm{C}-0.0418 \mathrm{~g} \mathrm{H}=0.145 \mathrm{~g} \mathrm{~N}
$$

Then, we can calculate the relative number of moles of each element.

$$
\left.\begin{array}{rl}
0.145 \mathrm{~g} \mathrm{~N} \times \frac{1 \mathrm{~mol} \mathrm{~N}}{14.007 \mathrm{~g} \mathrm{~N}}= & 0.0104 \mathrm{~mol} \mathrm{~N} \div 0.0104 \rightarrow 1.00 \mathrm{~mol} \mathrm{~N} \\
& 0.0104 \mathrm{~mol} \mathrm{C} \div 0.0104 \rightarrow 1.00 \mathrm{~mol} \mathrm{C} \\
& 0.0415 \mathrm{~mol} \mathrm{H} \div 0.0104 \rightarrow 4.01 \mathrm{~mol} \mathrm{H}
\end{array}\right\} \quad \begin{aligned}
& \\
& \text { Thus, the empirical } \\
& \text { formula is } \mathrm{CH}_{4} \mathrm{~N}
\end{aligned}
$$

46. (M) Thiophene contains only carbon, hydrogen, and sulfur, so there is no need to determine the mass of oxygen by difference. We simply determine the amount of each element from the mass of its combustion product.
$2.7224 \mathrm{~g} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.009 \mathrm{~g} \mathrm{CO}_{2}} \times \frac{1 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{CO}_{2}}=0.061859 \mathrm{~mol} \mathrm{C} \div 0.01548 \rightarrow 3.996 \mathrm{~mol} \mathrm{C}$
$0.5575 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.015 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \times \frac{2 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=0.06189 \mathrm{~mol} \mathrm{H} \div 0.01548 \rightarrow 3.999 \mathrm{~mol} \mathrm{H}$
$0.9915 \mathrm{~g} \mathrm{SO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{SO}_{2}}{64.058 \mathrm{~g} \mathrm{SO}_{2}} \times \frac{1 \mathrm{~mol} \mathrm{~S}}{1 \mathrm{~mol} \mathrm{SO}_{2}}=0.01548 \mathrm{~mol} \mathrm{~S} \div 0.01548 \rightarrow 1.00 \mathrm{~mol} \mathrm{~S}$
The empirical formula of thiophene is $\mathrm{C}_{4} \mathrm{H}_{4} \mathrm{~S}$.
47. (M) Each mole of CO_{2} is produced from a mole of C . Therefore, the compound with the largest number of moles of C per mole of the compound will produce the largest amount of CO_{2} and, thus, also the largest mass of CO_{2}. Of the compounds listed, namely $\mathrm{CH}_{4}, \mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}, \mathrm{C}_{10} \mathrm{H}_{8}$, and $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}, \mathrm{C}_{10} \mathrm{H}_{8}$ has the largest number of moles of C per mole of the compound and will produce the greatest mass of CO_{2} per mole on complete combustion.
48. (M) The compound that produces the largest mass of water per gram of the compound will have the largest amount of hydrogen per gram of the compound. Thus, we need to compare the ratios of amount of hydrogen per mole to the molar mass for each compound. Note that $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ has as much H per mole as does $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$, but $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$ has a higher molar mass. Thus, $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ produces more $\mathrm{H}_{2} \mathrm{O}$ per gram than does $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{OH}$. Notice also that CH_{4} has 4 H's per C, while $\mathrm{C}_{10} \mathrm{H}_{8}$ has 8 H's per 10 C 's or 0.8 H per C. Thus CH_{4} will produce more $\mathrm{H}_{2} \mathrm{O}$ than will $\mathrm{C}_{10} \mathrm{H}_{8}$. Thus, we are left with comparing CH_{4} to $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$. The O in the second compound has about the same mass $(16 \mathrm{u})$ as does $\mathrm{C}(12 \mathrm{u})$. Thus, in CH_{4} there are 4 H 's per C , while in $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$ there are about 2 H 's per C . Thus CH_{4} will produce the most water per gram on combustion, of all four compounds.
49. (M) The molecular formula for $\mathrm{CH}_{3} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{3}$ is $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$. Here we will use the fact that $\mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}$ has a molar mass of $74.123 \mathrm{~g} / \mathrm{mol}$ to calculate the masses of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$:

Mass of CO_{2} :
Conversion pathway approach:

Stepwise approach:

$$
\begin{aligned}
& 1.562 \mathrm{~g} \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}}{74.123 \mathrm{~g} \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}}=0.02107 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O} \times \frac{4 \mathrm{~mol} \mathrm{C}_{1 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}}=0.08429 \mathrm{~mol} \mathrm{C}}{0.08429 \mathrm{~mol} \mathrm{C} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{C}^{2}}=0.08429 \mathrm{~mol} \mathrm{CO}_{2} \times \frac{44.009 \mathrm{~g} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{CO}_{2}}=3.710 \mathrm{~g} \mathrm{CO}_{2}}
\end{aligned}
$$

Mass of $\mathrm{H}_{2} \mathrm{O}$:
Conversion pathway approach:
$1.562 \mathrm{~g} \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}}{74.123 \mathrm{~g} \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}} \times \frac{10 \mathrm{~mol} \mathrm{H}^{1 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{2 \mathrm{~mol} \mathrm{H}} \times \frac{18.015 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=1.898 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} .{ }^{2} .}{}$
Stepwise approach:

$$
\begin{aligned}
& 1.562 \mathrm{~g} \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}}{74.123 \mathrm{~g} \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}}=0.02107 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O} \\
& 0.02107 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O} \times \frac{10 \mathrm{~mol} \mathrm{H}_{1 \mathrm{~mol} \mathrm{C}_{4} \mathrm{H}_{10} \mathrm{O}}^{102}}{10.2107 \mathrm{~mol} \mathrm{H}} \\
& 0.2107 \mathrm{~mol} \mathrm{H} \times \frac{1 \mathrm{~mol} \mathrm{H} \mathrm{O}}{2 \mathrm{~mol} \mathrm{H}}=0.1054 \mathrm{~mol} \mathrm{H}
\end{aligned} \mathrm{H}_{2} \times \frac{18.015 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=1.898 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} .
$$

50. (D) moles of $\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}=3.15 \mathrm{~mL} \times \frac{0.84 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}}{1 \mathrm{~mL} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}} \times \frac{1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}}{62.13 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}}=0.0426 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}$

Thus, the mass of CO_{2} expected is
$=0.042 \underline{6} \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S} \times \frac{2 \mathrm{~mol} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}} \times \frac{44.009 \mathrm{~g} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{CO}_{2}}=3.7 \underline{5} \mathrm{~g}$ of CO $2(\mathrm{~g})$
The mass of $\mathrm{SO}_{2}(\mathrm{~g})$ expected from the complete combustion is
$=0.042 \underline{6} \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S} \times \frac{1 \mathrm{~mol} \mathrm{SO}_{2}}{1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}} \times \frac{64.058 \mathrm{~g} \mathrm{SO}_{2}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=2.7 \underline{3} \mathrm{~g}$ of SO$_{2}(\mathrm{~g})$
The mass of $\mathrm{H}_{2} \mathrm{O}(1)$ expected from the complete combustion is
$=0.042 \underline{6} \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S} \times \frac{6 \mathrm{~mol} \mathrm{H}_{1}}{1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{2 \mathrm{~mol} \mathrm{H}} \times \frac{18.015 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=2.3 \mathrm{~g}$ of $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

Oxidation States

51. (E) The oxidation state (O.S.) is given first, followed by the explanation for its assignment.
(a) $\mathrm{C}=-4$ in CH_{4}
(b) $\mathrm{S}=+4$ in SF_{4}
(c) $\mathrm{O}=-1$ in $\mathrm{Na}_{2} \mathrm{O}_{2}$
(d) $\mathrm{C}=0$ in $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}^{-}$
(e) $\mathrm{Fe}=+6$ in FeO_{4}^{2-}

H has an oxidation state of +1 in its nonmetal compounds. (Remember that the sum of the oxidation states in a neutral compound equals 0 .)
F has O.S. $=-1$ in its compounds.
Na has O.S. $=+1$ in its compounds.
H has O.S. $=+1$ in its nonmetal compounds; that of $\mathrm{O}=-2$ (usually). (Remember that the sum of the oxidation states in a polyatomic ion equals the charge on that ion.)
O has O.S. $=-2$ in most of its compounds (especially metal containing compounds).
52. (E) The oxidation state of sulfur in each species is determined below. Remember that the oxidation state of O is -2 in its compounds. And the sum of the oxidation states in an ion equals the charge on that ion.
(a) $\mathrm{S}=+4$ in SO_{3}^{2-}
(b) $\mathrm{S}=+2$ in $\mathrm{S}_{2} \mathrm{O}_{3}^{2-}$
(c) $\mathrm{S}=+7$ in $\mathrm{S}_{2} \mathrm{O}_{8}^{2-}$
(d) $\mathrm{S}=+6$ in HSO_{4}^{-}
(e) $\mathrm{S}=-2.5$ in $\mathrm{S}_{4} \mathrm{O}_{6}^{2-}$
53. (E) Remember that the oxidation state of oxygen is usually -2 in its compounds. Cr^{3+} and O^{2-} form $\mathrm{Cr}_{2} \mathrm{O}_{3}$, chromium(III) oxide. Cr^{4+} and O^{2-} form CrO_{2}, chromium(IV) oxide.
Cr^{6+} and O^{2-} form CrO_{3}, chromium(VI) oxide.
54. (E) Remember that oxygen usually has an oxidation state of -2 in its compounds.
$\mathrm{N}=+1$ in $\mathrm{N}_{2} \mathrm{O}$, dinitrogen monoxide
$\mathrm{N}=+3$ in $\mathrm{N}_{2} \mathrm{O}_{3}$, dinitrogen trioxide
$\mathrm{N}=+5$ in $\mathrm{N}_{2} \mathrm{O}_{5}$, dinitrogen pentoxide
$\mathrm{N}=+2$ in NO, nitric oxide or nitrogen monoxide

$$
\mathrm{N}=+4 \text { in } \mathrm{NO}_{2} \text {, nitrogen dioxide }
$$

55. (E)
(a) $\mathrm{O}=+2$ in $\mathrm{OF}_{2} \quad \mathrm{~F}$ has an oxidation state of -1 in its compounds.
(b) $\mathrm{O}=+1$ in $\mathrm{O}_{2} \mathrm{~F}_{2} \quad \mathrm{~F}$ has $\mathrm{O} . \mathrm{S} .=-1$ in its compounds.
(c) $\mathrm{O}=\frac{-1}{2}$ in $\mathrm{CsO}_{2} \quad \mathrm{Cs}$ has O.S. $=+1$ in its compounds.
(d) $\mathrm{O}=-1$ in $\mathrm{BaO}_{2} \quad \mathrm{Ba}$ has O.S. $=+2$ in its compounds.

Chapter 3: Chemical Compounds

56. (E)
(a) MgH_{2}
$\mathrm{Mg}=+2$
$\mathrm{H}=-1$
(b) CsO_{3}
$\mathrm{Cs}=+1$
$\mathrm{O}=-1 / 3$
(c) $\mathrm{HOF} \quad \mathrm{H}=+1$
$\mathrm{F}=-1$
$\mathrm{O}=0$
(d) NaAlH_{4}
$\mathrm{Na}=+1$
$\mathrm{H}=-1^{*}$
$\mathrm{Al}=+3$
*Note: in metal hydrides, H has an oxidation number of -1 .
Nomenclature
57. (E)
(a) SrO
(c) $\mathrm{K}_{2} \mathrm{CrO}_{4}$
(e) $\mathrm{Cr}_{2} \mathrm{O}_{3}$
(g) $\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}$
magnesium hydrogen carbonate or magnesium bicarbonate
(i) $\mathrm{Ca}\left(\mathrm{HSO}_{3}\right)_{2}$
(k) HNO_{3}
(m) HBrO_{3}
58. (E)
(a) $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$
barium nitrate
(c) CrO_{2}
(e) LiCN
chromium(IV) oxide
lithium cyanide
iron(II) hydroxide
(g) $\mathrm{Fe}(\mathrm{OH})_{2}$
(i) $\mathrm{H}_{3} \mathrm{PO}_{4} \quad$ phosphoric acid
sodium dichromate
(k) $\mathrm{Na}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
(m) $\quad \mathrm{MgC}_{2} \mathrm{O}_{4}$
magnesium oxalate
(b) ZnS
(d) $\mathrm{Cs}_{2} \mathrm{SO}_{4}$
(f) $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(h) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$
(j) $\mathrm{Cu}(\mathrm{OH})_{2}$
(I) $\quad \mathrm{KClO}_{4}$
(n) $\mathrm{H}_{3} \mathrm{PO}_{3}$
zinc sulfide
cesium sulfate
iron(III) sulfate
ammonium hydrogen phosphate
copper(II) hydroxide
potassium perchlorate
phosphorous acid
nitrous acid
potassium iodate potassium hypoiodite
calcium dihydrogen phosphate sodium hydrogen sulfate
ammonium acetate
sodium oxalate
59. (E)
(a) CS_{2}
carbon disulfide
(b) SiF_{4}
silicon tetrafluoride
(c) ClF_{5}
chlorine pentafluoride
(d) $\mathrm{N}_{2} \mathrm{O}_{5}$
(e) SF_{6}
sulfur hexafluoride
(f) $\mathrm{I}_{2} \mathrm{Cl}_{6}$ dinitrogen pentoxide diiodine hexachloride
60. (E)
(a) ICl
(c) SiF_{4}
silicon tetrafluoride
(b) ClF_{3}
(e) NO_{2}
nitrogen dioxide
(d) PF_{5}
chlorine trifluoride
phosphorus pentafluoride tetrasulfur tetranitride
61. (E)
(a) $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
aluminum sulfate
(b) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
ammonium dichromate
(c) SiF_{4}
silicon tetrafluoride
(d) $\mathrm{Fe}_{2} \mathrm{O}_{3}$
iron(III) oxide
(e) $\mathrm{C}_{3} \mathrm{~S}_{2}$
tricarbon disulfide
(f) $\mathrm{Co}\left(\mathrm{NO}_{3}\right)_{2}$
(g) $\mathrm{Sr}\left(\mathrm{NO}_{2}\right)_{2}$
strontium nitrite
(h) $\mathrm{HBr}(\mathrm{aq})$
(i) HIO_{3}
iodic acid
(j) $\quad \mathrm{PCl}_{2} \mathrm{~F}_{3}$ cobalt(II) nitrate hydrobromic acid phosphorus dichloride trifluoride
62. (E)
(a) $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$
magnesium perchlorate
(b) $\mathrm{Pb}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}\right)_{2}$
lead(II) acetate
(c) SnO_{2}
tin(IV) oxide
(d) $\mathrm{HI}(\mathrm{aq})$
(e) HClO_{2}
chlorous acid
(f) NaHSO_{3}
(h) $\quad \mathrm{AlPO}_{4}$
hydroiodic acid
(g) $\mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}$
calcium dihydrogen phosphate
(i) $\mathrm{N}_{2} \mathrm{O}_{4}$
dinitrogen tetroxide
(j) $\mathrm{S}_{2} \mathrm{Cl}_{2}$
disulfur dichloride
63. (E)
(a) Ti^{4+} and Cl^{-}produce TiCl_{4}
(c) Cl^{7+} and O^{2-} produce $\mathrm{Cl}_{2} \mathrm{O}_{7}$
(b) Fe^{3+} and SO_{4}^{2-} produce $\mathrm{Fe}_{2}\left(\mathrm{SO}_{4}\right)_{3}$
(d) S^{7+} and O^{2-} produce $\mathrm{S}_{2} \mathrm{O}_{8}^{2-}$
64. (E)
(a) N^{5+} and O^{2-} produce $\mathrm{N}_{2} \mathrm{O}_{5}$
(b) $\mathrm{N}^{3+}, \mathrm{O}^{2-}$ and H^{+}produce HNO_{2}
(c) $\mathrm{C}^{+4 / 3}$ and O^{2-} produce $\mathrm{C}_{3} \mathrm{O}_{2}$
(d) $\mathrm{S}^{+2.5}$ and O^{2-} produce $\mathrm{S}_{4} \mathrm{O}_{6}^{2-}$
65. (E)
(a) HClO_{2}
chlorous acid
(b) $\mathrm{H}_{2} \mathrm{SO}_{3}$
sulfurous acid
(c) $\mathrm{H}_{2} \mathrm{Se}$
hydroselenic acid
(d) HNO_{2}
nitrous acid
66. (E)
(a) $\mathrm{HF}(\mathrm{aq})$
hydrofluoric acid
(b) HNO_{3}
nitric acid
(c) $\mathrm{H}_{3} \mathrm{PO}_{3}$
phosphorous acid
(d) $\mathrm{H}_{2} \mathrm{SO}_{4}$ sulfuric acid
67. (E)
(a) OF_{2}
oxygen difluoride
(b) XeF_{2}
(c) CuSO_{3}
copper(II) sulfite
(d) $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$
xenon difluoride
ammonium hydrogen phosphate

Both (c) and (d) are ionic compounds.
68. (E)
(a) KNO_{2}
potassium nitrite
(b) BrF_{3}
bromine trifluoride
(c) $\mathrm{S}_{2} \mathrm{Cl}_{2}$
disulfur dichloride
(d) $\mathrm{Mg}(\mathrm{ClO})_{2}$ magnesium hypochlorite
(e) $\mathrm{Cl}_{2} \mathrm{O}$ dichlorine monoxide

Both (a) and (d) are ionic compounds.

Hydrates

69. (E) The hydrate with the greatest mass percent $\mathrm{H}_{2} \mathrm{O}$ is the one that gives the largest result for the number of moles of water in the hydrate's empirical formula, divided by the mass of one mole of the anhydrous salt for the hydrate.

$$
\begin{array}{ll}
\frac{5 \mathrm{H}_{2} \mathrm{O}}{\mathrm{CuSO}_{4}}=\frac{5 \mathrm{~mol} \mathrm{H} \mathrm{O}}{159.6 \mathrm{~g}}=0.03133 & \frac{6 \mathrm{H}_{2} \mathrm{O}}{\mathrm{MgCl}_{2}}=\frac{6 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{95.2 \mathrm{~g}}=0.0630 \\
\frac{18 \mathrm{H}_{2} \mathrm{O}}{\mathrm{Cr}_{2}\left(\mathrm{SO}_{4}\right)_{3}}=\frac{18 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{392.3 \mathrm{~g}}=0.04588 & \frac{2 \mathrm{H}_{2} \mathrm{O}}{\mathrm{LiC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}}=\frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{66.0 \mathrm{~g}}=0.0303
\end{array}
$$

The hydrate with the greatest $\% \mathrm{H}_{2} \mathrm{O}$ therefore is $\mathrm{MgCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$
70. (E) A mole of this hydrate will contain about the same mass of $\mathrm{H}_{2} \mathrm{O}$ and of $\mathrm{Na}_{2} \mathrm{SO}_{3}$. molar mass $\mathrm{Na}_{2} \mathrm{SO}_{3}=(2 \times 23.0 \mathrm{~g} \mathrm{Na})+32.1 \mathrm{~g} \mathrm{~S}+(3 \times 16.0 \mathrm{~g} \mathrm{O})=126.1 \mathrm{~g} / \mathrm{mol}$ number of $\mathrm{mol} \mathrm{H}_{2} \mathrm{O}=126.1 \mathrm{~g} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.0 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}=7.01 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
Thus, the formula of the hydrate is $\mathrm{Na}_{2} \mathrm{SO}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$.
71. (M)
molar mass $\mathrm{CuSO}_{4}=63.546 \mathrm{~g} \mathrm{Cu}+32.066 \mathrm{~g} \mathrm{~S}+(4 \times 15.9994 \mathrm{~g} \mathrm{O})=159.61 \mathrm{~g} \mathrm{CuSO}_{4} / \mathrm{mol}$.
Note that each CuSO_{4} will pick up 5 equivalents of $\mathrm{H}_{2} \mathrm{O}$ to give $\mathrm{CuSO}_{4}{ }^{-} 5 \mathrm{H}_{2} \mathrm{O}$.
Conversion pathway approach:
mass of required $\mathrm{CuSO}_{4}=12.6 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.015 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \times \frac{1 \mathrm{~mol} \mathrm{CuSO}_{4}}{5 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}} \times \frac{159.61 \mathrm{~g} \mathrm{CuSO}_{4}}{1 \mathrm{~mol} \mathrm{CuSO}_{4}}$ $=22.3 \mathrm{~g} \mathrm{CuSO}_{4}$ is the minimum amount required to remove all the water

Stepwise approach:

$$
\begin{aligned}
12.6 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.0153 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} & =0.699 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{CuSO}_{4}}{5 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=0.140 \mathrm{~mol} \mathrm{CuSO}_{4} \\
0.140 \mathrm{~mol} \mathrm{CuSO}_{4} \times \frac{159.60 \mathrm{~g} \mathrm{CuSO}_{4}}{1 \mathrm{~mol} \mathrm{CuSO}_{4}} & =22.3 \mathrm{~g} \mathrm{CuSO}_{4} \\
& =\text { is the minimum amount required to remove all the water }
\end{aligned}
$$

72. (M) The increase in mass of the solid is the result of each mole of the solid absorbing 10 moles of water.
increase in mass $=36.15 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4} \times \frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}}{142.036 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}} \times \frac{10 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \text { added }}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4}} \times \frac{18.0153 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}$

$$
=45.85 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \text { added }
$$

73. (M) We start by converting to molar amounts for each element based on 100.0 g :
$20.3 \mathrm{~g} \mathrm{Cu} \times \frac{1 \mathrm{~mol} \mathrm{Cu}}{63.546 \mathrm{~g} \mathrm{Cu}}=0.319 \mathrm{~mol} \mathrm{Cu} \div 0.319 \rightarrow 1.00 \mathrm{~mol} \mathrm{Cu}$
$8.95 \mathrm{~g} \mathrm{Si} \times \frac{1 \mathrm{~mol} \mathrm{Si}}{28.085 \mathrm{~g} \mathrm{Si}}=0.319 \mathrm{~mol} \mathrm{Si} \quad \div 0.319 \rightarrow 1.00 \mathrm{~mol} \mathrm{Si}$
$36.3 \mathrm{~g} \mathrm{~F} \times \frac{1 \mathrm{~mol} \mathrm{~F}}{18.998 \mathrm{~g} \mathrm{~F}}=1.91 \mathrm{~mol} \mathrm{~F} \quad \div 0.319 \rightarrow 5.99 \mathrm{~mol} \mathrm{~F}$
$34.5 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.015 \mathrm{~g}}=1.915 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \div 0.319 \rightarrow 6.00 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
Thus the empirical formula for the hydrate is $\mathrm{CuSiF}_{6} \cdot 6 \mathrm{H}_{2} \mathrm{O}$.
74. (M) Let's start by looking at the data provided.
mass of anhydrous compound $=3.967 \mathrm{~g}$
mass of water $=8.129 \mathrm{~g}-3.967 \mathrm{~g}=4.162 \mathrm{~g}$
moles of anhydrous compound $=3.967 \mathrm{~g} \mathrm{MgSO}_{4} \times \frac{1 \mathrm{~mol} \mathrm{MgSO}_{4}}{120.37 \mathrm{~g}}=0.03296 \mathrm{~mol}$
moles of $\mathrm{H}_{2} \mathrm{O}=4.162 \mathrm{~g} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.015 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}=0.2310 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
setting up proportions $\frac{0.2310 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{0.03296 \mathrm{~mol} \text { anhydrous compound }}=\frac{x \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1.00 \mathrm{~mol} \text { anhydrous compound }}$ $x=7.009$ Thus, the formula of the hydrate is $\mathrm{MgSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$.

Organic Compounds and Organic Nomenclature

75. (E) Answer is (b), butan-2-ol is the most appropriate name for this molecule. It has a four carbon atom chain with a hydroxyl group on the carbon second from the end.
76. (E) Answer (c), butanoic acid is the most appropriate name for this molecule. It has a four carbon atom chain with an acid group on the first carbon (terminal carbon atom)
77. (E) Molecules (a), (b), (c), and (d) are structural isomers. They share a common formula, namely $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}$, but have different molecular structures. Molecule (e) has a different chemical formula $\left(\mathrm{C}_{6} \mathrm{H}_{14} \mathrm{O}\right)$ and hence cannot be classified as an isomer. It should be pointed out that molecules (a) and (c) are identical as well as being isomers of (b).
78. (E) Molecules (a), (b), and (c) are structural isomers. They share a common formula, namely $\mathrm{C}_{5} \mathrm{H}_{11} \mathrm{Cl}$, but have different molecular structures. Molecule (d) has a different chemical formula $\left(\mathrm{C}_{6} \mathrm{H}_{13} \mathrm{Cl}\right)$ and hence cannot be classified as an isomer.
79. (E)
(a) $\quad \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CH}_{3}$
(b) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$
(c) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OH}$
(d) $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{~F}$
80. (E)
(a) $\quad \mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{6} \mathrm{CH}_{3}$
(b) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{5} \mathrm{CO}_{2} \mathrm{H}$
(c) $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{2} \mathrm{CH}_{3}$
(d) $\mathrm{CH}_{3} \mathrm{CHClCH}_{2} \mathrm{CH}_{3}$
81. (M)
(a) methanol; $\mathrm{CH}_{3} \mathrm{OH} \quad$ Molecular mass $=32.04 \mathrm{u}$
(b) 2-chlorohexane; $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CHClCH}_{3}$

Molecular mass $=120.6 \mathrm{u}$
(c) pentanoic acid; $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{CO}_{2} \mathrm{H} \quad$ Molecular mass $=102.1 \mathrm{u}$
(d) 2-methylprooan-1-ol $\mathrm{CH}_{3} \mathrm{CH}\left(\mathrm{CH}_{3}\right) \mathrm{CH}_{2} \mathrm{OH} \quad$ Molecular mass $=74.12 \mathrm{u}$
82. (M)
(a) pentan-2-ol; $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{CH}(\mathrm{OH}) \mathrm{CH}_{3} \quad$ Molecular mass $=88.15 \mathrm{u}$
(b) propanoic acid; $\mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{CO}_{2} \mathrm{H}$

Molecular mass $=74.08 \mathrm{u}$
(c) 1-bromobutane; $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{2} \mathrm{CH}_{2} \mathrm{Br} \quad$ Molecular mass $=137.0 \mathrm{u}$
(d) 3-chlorobutanoic acid; $\mathrm{CH}_{3} \mathrm{CHClCH}_{2} \mathrm{CO}_{2} \mathrm{H} \quad$ Molecular mass $=122.6 \mathrm{u}$

INTEGRATIVE AND ADVANCED EXERCISES

83. (M)
molar mass $=(1 \times 6.94 \mathrm{~g} \mathrm{Li})+(1 \times 26.982 \mathrm{~g} \mathrm{Al})+(2 \times 28.05 \mathrm{~g} \mathrm{Si})+(6 \times 15.999 \mathrm{~g} \mathrm{O})=186.02 \mathrm{~g} / \mathrm{mol}$
Conversion pathway approch:
number of $\mathrm{Li}-6$ atoms $=518 \mathrm{~g}$ spodumene $\times \frac{1 \mathrm{~mol} \text { spodumene }}{186.02 \mathrm{~g} \text { spodumene }} \times \frac{1 \mathrm{~mol} \mathrm{Li}}{1 \mathrm{~mol} \text { spodumene }} \times \frac{7.40 \mathrm{~mol} \mathrm{Li}-6}{100.00 \mathrm{~mol} \mathrm{total} \mathrm{Li}}$

$$
\times \frac{6.022 \times 10^{23} \mathrm{Li}-6 \text { atoms }}{1 \mathrm{~mol} \mathrm{Li}-6}=1.24 \times 10^{23} \mathrm{Li}-6 \text { atoms }
$$

Stepwise approch:
518 g spodumene $\times \frac{1 \mathrm{~mol} \text { spodumene }}{186.02 \mathrm{~g} \text { spodumene }}=2.78 \mathrm{~mol}$ spodumene
2.78 mol spodumene $\times \frac{1 \mathrm{~mol} \mathrm{Li}}{1 \mathrm{~mol} \text { spodumene }}=2.78 \mathrm{~mol} \mathrm{Li}$
$2.78 \mathrm{~mol} \mathrm{Li} \times \frac{7.40 \mathrm{~mol} \mathrm{Li}-6}{100.00 \mathrm{~mol} \mathrm{total} \mathrm{Li}}=0.206 \mathrm{~mol} \mathrm{Li}-6$
$0.206 \mathrm{~mol} \mathrm{Li}-6 \times \frac{6.022 \times 10^{23} \mathrm{Li}-6 \text { atoms }}{1 \mathrm{~mol} \mathrm{Li}-6}=1.24 \times 10^{23} \mathrm{Li}-6$ atoms
84. (M) Determine the mass of each element in the sample.
mass $\mathrm{Sn}=0.245 \mathrm{~g} \mathrm{SnO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{SnO}_{2}}{150.71 \mathrm{~g} \mathrm{SnO}_{2}} \times \frac{1 \mathrm{~mol} \mathrm{Sn}}{1 \mathrm{~mol} \mathrm{SnO}_{2}} \times \frac{118.71 \mathrm{~g} \mathrm{Sn}}{1 \mathrm{~mol} \mathrm{Sn}}=0.193 \mathrm{~g} \mathrm{Sn}$

$\operatorname{mass} \mathrm{Zn}=0.246 \mathrm{~g} \mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7} \times \frac{1 \mathrm{~mol} \mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}}{304.72 \mathrm{~g} \mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}} \times \frac{2 \mathrm{~mol} \mathrm{Zn}}{1 \mathrm{~mol} \mathrm{Zn}_{2} \mathrm{P}_{2} \mathrm{O}_{7}} \times \frac{65.38 \mathrm{~g} \mathrm{Zn}}{1 \mathrm{~mol} \mathrm{Zn}}=0.106 \mathrm{~g} \mathrm{Zn}$
Then determine the $\%$ of each element in the sample.
$\% \mathrm{Sn}=\frac{0.193 \mathrm{~g} \mathrm{Sn}}{1.1713 \mathrm{~g} \text { brass }} \times 100 \%=16.5 \% \mathrm{Sn} \quad \% \mathrm{~Pb}=\frac{0.0786 \mathrm{~g} \mathrm{~Pb}}{1.1713 \mathrm{~g} \mathrm{brass}} \times 100 \%=6.71 \% \mathrm{~Pb}$
$\% \mathrm{Zn}=\frac{0.106 \mathrm{~g} \mathrm{Zn}}{1.1713 \mathrm{~g} \text { brass }} \times 100 \%=9.05 \% \mathrm{Zn}$
The $\% \mathrm{Cu}$ is found by difference.

$$
\% \mathrm{Cu}=100 \%-16.5 \% \mathrm{Sn}-6.71 \% \mathrm{~Pb}-9.05 \% \mathrm{Zn}=67.7 \% \mathrm{Cu}
$$

Chapter 3: Chemical Compounds

85. (M) $1 \mathrm{lb}=16 \mathrm{oz}=453.59237 \mathrm{~g}$ or $1 \mathrm{oz}=28.35 \mathrm{~g}$

$$
\begin{aligned}
& 3.50 \text { oz meat } \times \frac{28.35 \mathrm{~g} \mathrm{meat}}{1 \text { oz meat }} \times \frac{0.12 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}}{100 \mathrm{~g} \mathrm{meat}} \times \frac{22.990 \mathrm{~g} \mathrm{Na}}{144.105 \mathrm{~g} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COONa}} \times \frac{1000 \mathrm{mg} \mathrm{Na}}{1 \mathrm{~g} \mathrm{Na}} \\
& \quad=19.0 \mathrm{mg} \mathrm{Na}
\end{aligned}
$$

86. (M) First, we determine the amount of each mineral necessary to obtain 1 kg or 1000 g of boron.

$$
\begin{aligned}
1000 \mathrm{~g} \mathrm{~B} & \times \frac{1 \mathrm{~mol} \mathrm{~B}}{10.81 \mathrm{~g} \mathrm{~B}} \times \frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 4 \mathrm{H}_{2} \mathrm{O}}{4 \mathrm{~mol} \mathrm{~B}} \times \frac{273.28 \mathrm{~g} \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 4 \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 4 \mathrm{H}_{2} \mathrm{O}} \\
& =6,319.5 \mathrm{~g} \mathrm{Na} 2_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 4 \mathrm{H}_{2} \mathrm{O} \\
1000 \mathrm{~g} \mathrm{~B} & \times \frac{1 \mathrm{~mol} \mathrm{~B}}{10.81 \mathrm{~g} \mathrm{~B}} \times \frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 4 \mathrm{H}_{2} \mathrm{O}}{4 \mathrm{~mol} \mathrm{~B}} \times \frac{381.372 \mathrm{~g} \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 4 \mathrm{H}_{2} \mathrm{O}} \\
& =8,819.1 \mathrm{~g} \mathrm{Na}_{2} \mathrm{~B}_{4} \mathrm{O}_{7} \cdot 10 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

The difference between these two masses is the required additional mass. Hence, $8819.1 \mathrm{~g}-6319.5 \mathrm{~g}=2499 . \underline{6} \mathrm{~g}$. Thus, an additional 2.500 kg mass is required.
87. (M) $N_{\mathrm{A}}=\frac{9.64853415 \times 10^{4} \mathrm{C}}{1 \mathrm{~mol} \mathrm{Ag}} \times \frac{1 \mathrm{~mol} \mathrm{Ag}}{1 \mathrm{~mole}^{-}} \times \frac{1 \mathrm{e}^{-}}{1.602176462 \times 10^{-19} \mathrm{C}}=\frac{6.0221422 \times 10^{23} \mathrm{e}^{-}}{\mathrm{mole}^{-}}$
88. (M) First, determine the formula of the compound. The compound is $26.58 \% \mathrm{~K}, 35.45 \% \mathrm{Cr}$ and $37.97 \% \mathrm{O}$. Assuming 100 g of compound, 26.58 g are potassium, 35.45 g are chromium, and 37.97 g are oxygen.

$$
\begin{aligned}
& 26.58 \mathrm{~g} \mathrm{~K} \times \frac{1 \mathrm{~mol} \mathrm{~K}}{39.10 \mathrm{~g} \mathrm{~K}}=0.6798 \mathrm{~mol} \mathrm{~K} \quad \div 0.6798 \mathrm{~mol} \rightarrow 1.000 \mathrm{~mol} \mathrm{~K} \\
& 35.45 \mathrm{~g} \mathrm{Cr} \times \frac{1 \mathrm{~mol} \mathrm{Cr}}{52.00 \mathrm{~g} \mathrm{Cr}}=0.6818 \mathrm{~mol} \mathrm{Cr} \div 0.6798 \mathrm{~mol} \rightarrow 1.000 \mathrm{~mol} \mathrm{Cr} \\
& 37.97 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}=2.373 \mathrm{~mol} \mathrm{O} \quad \div 0.6798 \mathrm{~mol} \rightarrow 3.491 \mathrm{~mol} \mathrm{O}
\end{aligned}
$$

$2 \times \mathrm{KCrO}_{3.5}=\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ which is the formula of the compound
The oxidation state of Cr is +6 and the compound $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ is named potassium dichromate.
89. (M) It is not possible to have less than 1 molecule of S_{8}. In order to determine whether it is possible to have $1.00 \times 10^{-23} \mathrm{~g}$ of S_{8}, determine how many molecules that number is equivalent to.
$1.00 \times 10^{-23} \mathrm{~g} \mathrm{~S}_{8} \times \frac{1 \mathrm{~mol} \mathrm{~S}_{8}}{256.48 \mathrm{~g} \mathrm{~S}_{8}} \times \frac{6.022 \times 10^{23} \text { molecules } \mathrm{S}_{8}}{1 \mathrm{~mol} \mathrm{~S}_{8}}=1.0235$ molecules S_{8}
Therefore it is not possible to have $1.00 \times 10^{-23} \mathrm{~g}$ of S_{8}.

$4.26 \times 10^{-22} \mathrm{~g} \mathrm{~S} \times \frac{1 \mathrm{yg} \mathrm{S}}{10^{-24} \mathrm{~g} \mathrm{~S}}=426$ yoctograms S
90. (E) A hydrocarbon with a double bond has the molecular formula $\mathrm{C}_{n} \mathrm{H}_{2 n}$.

While the moles of $\mathrm{H}_{2} \mathrm{O}$ will be greater than the moles of CO_{2} as with any other hydrocarbon, the mass of $\mathrm{H}_{2} \mathrm{O}$ will never exceed that of CO_{2}. To prove this, we consider the fact that a hydrocarbon with the greatest ratio of the amount of hydrogen to the amount of carbon will produce the greatest mass of $\mathrm{H}_{2} \mathrm{O}$ per gram of CO_{2}. This hydrocarbon is CH_{4}, and it produces $2 \mathrm{~mol} \mathrm{H} \mathrm{H}_{2} \mathrm{O}$ for every mole of CO_{2}. From this information, we can determine the maximum ratio of mass $\mathrm{H}_{2} \mathrm{O} /$ mass CO_{2}.
$\frac{\text { mass } \mathrm{H}_{2} \mathrm{O}}{\text { mass } \mathrm{CO}_{2}}=\frac{2 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{CO}_{2}} \times \frac{18.02 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.01 \mathrm{~g} \mathrm{CO}_{2}}=0.8189 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} / \mathrm{g} \mathrm{CO}_{2}$
Thus no hydrocarbon exists that yields a greater mass of $\mathrm{H}_{2} \mathrm{O}$ than of CO_{2}.
91. (M) We determine the masses of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ produced by burning the $\mathrm{C}_{3} \mathrm{H}_{8}$.

$$
\begin{aligned}
\operatorname{mass}_{\mathrm{CO}_{2}} & =6.00 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8} \times \frac{1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}}{44.097 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8}} \times \frac{3 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{C}} \times \frac{44.01 \mathrm{~g} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{CO}_{2}} \\
& =17.9 \underline{6} \mathrm{~g} \mathrm{CO}_{2} \\
\operatorname{mass}_{\mathrm{H}_{2} \mathrm{O}} & =6.00 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8} \times \frac{1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}}{44.097 \mathrm{~g} \mathrm{C}_{3} \mathrm{H}_{8}} \times \frac{8 \mathrm{~mol} \mathrm{H}_{1 \mathrm{~mol} \mathrm{C}_{3} \mathrm{H}_{8}}}{} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{2 \mathrm{~mol} \mathrm{H}} \times \frac{18.015 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}} \\
& =9.805 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Then, from the masses of CO_{2} and $\mathrm{H}_{2} \mathrm{O}$ in the unknown compound, we determine the amounts of C and H in that compound and finally its empirical formula.

$$
\begin{aligned}
& \text { amount } \mathrm{C}=(29.0-17.9 \underline{6}) \mathrm{g} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.01 \mathrm{~g} \mathrm{CO}_{2}} \times \frac{1 \mathrm{~mol} \mathrm{C}_{1}}{1 \mathrm{~mol} \mathrm{CO}_{2}}=0.251 \mathrm{~mol} \mathrm{C} \\
& \text { amount } \mathrm{H}=(18.8-9.80 \underline{5}) \mathrm{g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.015 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \times \frac{2 \mathrm{~mol} \mathrm{H}_{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}}{18}=0.998 \underline{6} \mathrm{~mol} \mathrm{H}
\end{aligned}
$$

The empirical formula of the unknown compound is CH_{4}. The $\mathrm{C}: \mathrm{H}$ ratio is $0.9986 / 0.251=3.98$. The molecular formula can be calculated by knowing that we have 0.251 moles, which accounts for the 4.00 g of hydrocarbon $(40 \%$ of 10.0 g$)$. This gives a molar mass of $4.00 \div 0.251=15.9 \mathrm{~g} / \mathrm{mol}$. This is nearly the same as the molar mass of the empirical formula $\mathrm{CH}_{4}(16.04 \mathrm{~g} / \mathrm{mol})$.
92. (M)
(a) We determine the mass of CO_{2} produced from the mixture, with x representing the mass of CH_{4}, and then solve for x.

$$
\begin{aligned}
& n_{\text {carton }}=x \mathrm{~g} \mathrm{CH}_{4} \times \frac{1 \mathrm{~mol} \mathrm{CH}_{4}}{16.043 \mathrm{~g} \mathrm{CH}_{4}} \times \frac{1 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{CH}_{4}}+(0.732-x) \mathrm{g} \mathrm{C}_{2} \mathrm{H}_{6} \times \frac{1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6}}{30.070 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{6}} \times \frac{2 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6}} \\
& 2.064 \mathrm{CO}_{2}=\left(\frac{x}{16.043}+\frac{2(0.732-x)}{30.070}\right) \mathrm{mol} \mathrm{C} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{C}} \times \frac{44.009 \mathrm{~g} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{CO}_{2}} \\
& 2.064 \mathrm{CO}_{2}=2.7433 x+2.142-2.9272 x=-0.1839 x+2.142 \\
& x=\frac{2.142-2.064}{0.1839}=0.4 \underline{2} \mathrm{~g} \mathrm{CH}_{4} \\
& \quad \% \mathrm{CH}_{4}=\frac{0.4 \underline{2} \mathrm{~g} \mathrm{CH}_{4}}{0.732 \mathrm{~g} \mathrm{mixture}} \times 100 \%=57 \% \mathrm{CH}_{4} \approx 60 \% \mathrm{CH}_{4} \text { and } 4 \underline{3} \%_{2} \mathrm{C}_{2} \mathrm{H}_{6} \sim 40 \% \mathrm{C}_{2} \mathrm{H}_{6}
\end{aligned}
$$

(b) In 100 g of mixture there are the following amounts.
amount $\mathrm{CH}_{4}=5 \underline{\underline{\mathrm{~g} \mathrm{CH}}} 4 \times \frac{1 \mathrm{~mol} \mathrm{CH}_{4}}{16.043 \mathrm{~g} \mathrm{CH}_{4}}=3.6 \mathrm{~mol} \mathrm{CH}_{4}$
amount $\mathrm{C}_{2} \mathrm{H}_{6}=4 \underline{3} \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{6} \times \frac{1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6}}{30.070 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{6}}=1.4 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6}$
$\mathrm{mol} \% \mathrm{CH}_{4}=\frac{3 \underline{6} \mathrm{~mol} \mathrm{CH}_{4}}{5 \underline{0} \mathrm{~mol} \mathrm{total}} \times 100 \%=7 \underline{2} \mathrm{~mol} \% \mathrm{CH}_{4}$ and $2 \underline{8} \mathrm{~mol} \%_{2} \mathrm{C}_{2} \mathrm{H}_{6}$
93. (M) Since the compound is composed of $\mathrm{H}_{2} \mathrm{SO}_{4}$ and $\mathrm{H}_{2} \mathrm{O}$, we will need to determine the percent composition of both $\mathrm{H}_{2} \mathrm{SO}_{4}$ and water.

$$
\% \mathrm{H}_{2} \mathrm{SO}_{4}=\frac{\# \text { grams } \mathrm{H}_{2} \mathrm{SO}_{4}}{\text { total mass in grams }} \times 100 \%
$$

$$
\# \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}=65.2 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4} \times \frac{1 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}}{132.15 \mathrm{~g}_{\left(\mathrm{NH}_{4}\right)_{2} \mathrm{SO}_{4}}} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}{\left.1 \mathrm{~mol} \mathrm{(NH}_{4}\right)_{2} \mathrm{SO}_{4}} \times \frac{98.08 \mathrm{~g} \mathrm{H}_{2} \mathrm{SO}_{4}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{SO}_{4}}=48.4 \mathrm{~g}
$$

total mass $=32.0 \mathrm{~mL}$ mixture $\times \frac{1.78 \mathrm{~g} \text { mixture }}{1 \mathrm{~mL} \text { mixture }}=57.0 \mathrm{~g}$ mixture
$\% \mathrm{H}_{2} \mathrm{SO}_{4}=\frac{48.4 \mathrm{~g}}{57.0 \mathrm{~g}} \times 100 \%=85.0 \%$
$\% \mathrm{H}_{2} \mathrm{O}=100.0-85.0=15.0 \%$
94. (E) $\% \mathrm{Ag}=\frac{\text { mass } \mathrm{Ag}}{\text { mass sample }} \times 100 \%$

Using $35.446 \mathrm{~g} / \mathrm{mol}$ as the molar mass of Cl and $107.87 \mathrm{~g} / \mathrm{mol}$ as the molar mass of Ag , we find that the molar mass of AgCl is $(107.87+35.446) \mathrm{g} / \mathrm{mol}=143.316 \mathrm{~g} / \mathrm{mol}=143.32 \mathrm{~g} / \mathrm{mol}$. (The number of decimal places in this result is determined by the number of decimal places in the molar mass of Ag .) Using $143.32 \mathrm{~g} / \mathrm{mol}$ for the molar mass of AgCl , we have

$$
31.56 \mathrm{~g} \mathrm{AgCl} \times \frac{1 \mathrm{~mol} \mathrm{AgCl}}{143.32 \mathrm{~g} \mathrm{AgCl}} \times \frac{1 \mathrm{~mol} \mathrm{Ag}}{1 \mathrm{~mol} \mathrm{AgCl}} \times \frac{107.87 \mathrm{~g} \mathrm{Ag}}{1 \mathrm{~mol} \mathrm{Ag}}=23.75 \mathrm{~g} \mathrm{Ag}
$$

$\% \mathrm{Ag}=\frac{23.75 \mathrm{~g}}{26.39 \mathrm{~g}} \times 100 \%=90.00 \%$
Now, using $35.457 \mathrm{~g} / \mathrm{mol}$ as the molar mass of Cl , we find that the molar mass of AgCl is $(107.87+35.457) \mathrm{g} / \mathrm{mol}=143.327 \mathrm{~g} / \mathrm{mol}=143.33 \mathrm{~g} / \mathrm{mol}$ and

$$
31.56 \mathrm{~g} \mathrm{AgCl} \times \frac{1 \mathrm{~mol} \mathrm{AgCl}}{143.33 \mathrm{~g} \mathrm{AgCl}} \times \frac{1 \mathrm{~mol} \mathrm{Ag}}{1 \mathrm{~mol} \mathrm{AgCl}} \times \frac{107.87 \mathrm{~g} \mathrm{Ag}}{1 \mathrm{~mol} \mathrm{Ag}}=23.75 \mathrm{~g} \mathrm{Ag}
$$

We see from this calculation that the mass of Ag obtained is the same (to four significant figures). Therefore, the corresponding value for the $\% \mathrm{Ag}$ will also be 90.00%.
In this case, the fact that the atomic mass of Cl is given as an interval has little effect on the calculated final result.
95. (D)

$$
\begin{aligned}
& 9.0 \times 10^{-4} \frac{\mu \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}}{\mathrm{~m}^{3} \text { air }} \times \frac{1 \times 10^{-6} \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}}{1 \mu \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}} \times \frac{62.13 \mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}}{1 \mathrm{~mol} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}} \times \frac{1 \mathrm{~m}^{3}}{(100)^{3} \mathrm{~cm}^{3}} \times \\
& \frac{1 \mathrm{~cm}^{3}}{1 \mathrm{~mL}} \times \frac{1000 \mathrm{~mL}}{1 \mathrm{~L}} \times \frac{1 \mathrm{~L} \text { air }}{1.2 \mathrm{~g} \mathrm{air}}=4.7 \times 10^{-11} \frac{\mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}}{\mathrm{~g} \text { air }} \\
& 4.7 \times 10^{-11} \frac{\mathrm{~g} \mathrm{C}_{2} \mathrm{H}_{6} \mathrm{~S}}{\mathrm{~g} \text { air }} \times \frac{1 \times 10^{9} \mathrm{~g}}{1 \text { billion grams }}=0.0466 \mathrm{ppb}=0.05 \mathrm{ppb}
\end{aligned}
$$

96. (D)
(a) If we have one mole of entities, then we must have $0.7808 \mathrm{~mol} \mathrm{~N}_{2}, 0.2095 \mathrm{~mol}$ $\mathrm{O}_{2}, 0.0093 \mathrm{~mol} \mathrm{Ar}$, and $0.0004 \mathrm{~mol} \mathrm{CO}_{2}$.
$0.7808 \mathrm{~mol} \mathrm{~N}_{2} \times \frac{28.02 \mathrm{~g} \mathrm{~N}_{2}}{1 \mathrm{~mol} \mathrm{~N}_{2}}=21.88 \mathrm{~g} \mathrm{~N}_{2}$
$0.2095 \mathrm{~mol} \mathrm{O}_{2} \times \frac{32.00 \mathrm{~g} \mathrm{O}_{2}}{1 \mathrm{~mol} \mathrm{O}_{2}}=6.704 \mathrm{~g} \mathrm{O}_{2}$
$0.0004 \mathrm{~mol} \mathrm{CO}_{2} \times \frac{44.01 \mathrm{~g} \mathrm{CO}_{2}}{1 \mathrm{~mol} \mathrm{CO}_{2}}=0.0176 \mathrm{~g} \mathrm{CO}_{2}$
$0.0093 \mathrm{~mol} \mathrm{Ar} \times \frac{39.948 \mathrm{~g} \mathrm{Ar}}{1 \mathrm{~mol} \mathrm{Ar}}=0.3715 \mathrm{~g} \mathrm{Ar}$
mass of air sample $=21.88 \mathrm{~g} \mathrm{~N}_{2}+6.704 \mathrm{~g} \mathrm{O}_{2}+0.0176 \mathrm{~g} \mathrm{CO}_{2}+0.3715 \mathrm{~g} \mathrm{Ar}=28.97 \mathrm{~g}$
(b) $1 \mathrm{~m}^{3} \times \frac{(100)^{3} \mathrm{~cm}^{3}}{1 \mathrm{~m}^{3}} \times \frac{1 \mathrm{~mL}}{1 \mathrm{~cm}^{3}} \times \frac{1 \mathrm{~L}}{1000 \mathrm{~mL}} \times \frac{1.2 \mathrm{~g}}{1 \mathrm{~L}}=1200 \mathrm{~g}$ dry air
$1200 \mathrm{~g} \times \frac{1 \mathrm{~mol} \mathrm{entities}}{28.97 \mathrm{~g}} \times \frac{1.14 \times 10^{-4}}{100}=4.72 \times 10^{-5} \mathrm{~mol} \mathrm{Kr}$
$4.72 \times 10^{-5} \mathrm{~mol} \mathrm{Kr} \times \frac{83.80 \mathrm{~g}}{1 \mathrm{~mol}}=3.96 \times 10^{-3} \mathrm{~g} \mathrm{Kr}=4.0 \mathrm{mg} \mathrm{Kr}$
97. (M)
(a) Make the assumption that $1 \mathrm{~mL} \mathrm{H}_{2} \mathrm{O}=1 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$.
$350 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{0.8 \mathrm{~g} \mathrm{CHCl}_{3}}{1,000,000,000 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \times \frac{1 \mathrm{~mol} \mathrm{CHCl}_{3}}{119.377 \mathrm{~g} \mathrm{CHCl}_{3}} \times \frac{6.022 \times 10^{23} \mathrm{CHCl}_{3}}{1 \mathrm{~mol} \mathrm{CHCl}_{3}}=1.41 \times 10^{15} \mathrm{CHCl}_{3}$
(b) $1.14 \times 10^{15} \mathrm{CHCl}_{3} \times \frac{1 \mathrm{~mol} \mathrm{CHCl}_{3}}{6.022 \times 10^{23} \mathrm{CHCl}_{3}} \times \frac{119.377 \mathrm{~g} \mathrm{CHCl}_{3}}{1 \mathrm{~mol} \mathrm{CHCl}_{3}}=2.25 \times 10^{-7} \mathrm{~g} \mathrm{CHCl}_{3}$

Alternatively, $350 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~g} \mathrm{CHCl}_{3}}{1,000,000,000 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}=3.50 \times 10^{-7} \mathrm{~g} \mathrm{CHCl}_{3}$
This amount would not be detected with an ordinary analytical balance. You would require something that was at least 300 times more sensitive.
98. (M).We can determine both the number of moles of M and the mass of M in $0.1131 \mathrm{~g} \mathrm{MSO}_{4}$. Their quotient is the atomic mass of M .
$\mathrm{mol} \mathrm{M}^{2+}=0.2193 \mathrm{~g} \mathrm{BaSO}_{4} \times \frac{1 \mathrm{~mol} \mathrm{BaSO}_{4}}{233.39 \mathrm{~g} \mathrm{BaSO}_{4}} \times \frac{1 \mathrm{~mol} \mathrm{SO}_{4}{ }^{2-}}{1 \mathrm{~mol} \mathrm{BaSO}_{4}} \times \frac{1 \mathrm{~mol} \mathrm{M}^{2^{+}}}{1 \mathrm{~mol} \mathrm{SO}_{4}{ }^{2-}}=0.0009396 \mathrm{~mol} \mathrm{M}^{2^{+}}$ $\operatorname{mass} \mathrm{SO}_{4}{ }^{2-}=0.0009396 \mathrm{~mol} \mathrm{M}{ }^{2^{+}} \times \frac{1 \mathrm{~mol} \mathrm{SO}_{4}{ }^{2-}}{1 \mathrm{~mol} \mathrm{M}^{2+}} \times \frac{96.064 \mathrm{~g} \mathrm{SO}_{4}{ }^{2-}}{1 \mathrm{~mol} \mathrm{SO}_{4}{ }^{2-}}=0.09026 \mathrm{~g} \mathrm{SO}_{4}{ }^{2-}$
mass $\mathrm{M}=$ mass $\mathrm{MSO}_{4}-$ mass $\mathrm{SO}_{4}{ }^{2-}=0.1131 \mathrm{~g} \mathrm{MSO}_{4}-0.09026 \mathrm{~g} \mathrm{SO}_{4}{ }^{2-}=0.0228 \mathrm{~g} \mathrm{M}$
atomic mass $\mathrm{M}=\frac{\text { mass } \mathrm{M}}{\text { moles } \mathrm{M}}=\frac{0.0228 \mathrm{~g} \mathrm{M}}{0.0009396 \mathrm{~mol} \mathrm{M}}=24.3 \mathrm{~g} \mathrm{M} / \mathrm{mol}$
M is the element magnesium.
99. (M) mass SO $_{4}{ }^{2-}=1.511 \mathrm{~g} \mathrm{BaSO}_{4} \times \frac{1 \mathrm{~mol} \mathrm{BaSO}_{4}}{233.39 \mathrm{~g} \mathrm{BaSO}_{4}} \times \frac{1 \mathrm{~mol} \mathrm{SO}_{4}{ }^{2-}}{1 \mathrm{~mol} \mathrm{BaSO}_{4}}=0.006474 \mathrm{~mol} \mathrm{SO}_{4}{ }^{2-}$ $0.006474 \mathrm{~mol} \mathrm{SO}_{4}{ }^{2-} \times \frac{96.064 \mathrm{~g} \mathrm{SO}_{4}{ }^{2-}}{1 \mathrm{~mol} \mathrm{SO}_{4}{ }^{2-}}=0.6219 \mathrm{~g} \mathrm{SO}_{4}{ }^{2-}$ amount $\mathrm{M}=0.006474 \mathrm{~mol} \mathrm{SO}_{4}{ }^{2-} \times \frac{2 \mathrm{~mol} \mathrm{M}^{3+}}{3 \mathrm{~mol} \mathrm{SO}_{4}{ }^{2-}}=0.004316 \mathrm{~mol} \mathrm{M}^{3+}$ mass $\mathrm{M}=0.738 \mathrm{~g} \mathrm{M}_{2}\left(\mathrm{SO}_{4}\right)_{2}-0.6219 \mathrm{~g} \mathrm{SO}_{4}{ }^{2-}=0.116 \mathrm{~g} \mathrm{M}$ atomic mass of $\mathrm{M}=\frac{0.116 \mathrm{~g} \mathrm{M}}{0.004316 \mathrm{~mol} \mathrm{M}}=26.9 \mathrm{~g} \mathrm{M} / \mathrm{mol} \quad \mathrm{M}$ is the element aluminum.
100. (D) Set up an equation in the usual conversion-factor format, to determine what mass of MS can be obtained from the given mass of $\mathrm{M}_{2} \mathrm{O}_{3}$. Of course, the mass of MS is not unknown; it is 0.685 g . What is unknown is the atomic mass of the element M ; let's call this x and solve for x.
$0.685 \mathrm{~g} \mathrm{MS}=0.622 \mathrm{~g} \mathrm{M}_{2} \mathrm{O}_{3} \times \frac{1 \mathrm{~mol} \mathrm{M}_{2} \mathrm{O}_{3}}{[2 x+(3 \times 16.0)] \mathrm{g} \mathrm{M}_{2} \mathrm{O}_{3}} \times \frac{2 \mathrm{~mol} \mathrm{M}_{1}}{1 \mathrm{~mol} \mathrm{M}_{2} \mathrm{O}_{3}} \times \frac{1 \mathrm{~mol} \mathrm{MS}}{1 \mathrm{~mol} \mathrm{M}} \times \frac{(x+32.1) \mathrm{g} \mathrm{MS}}{1 \mathrm{~mol} \mathrm{MS}}$
$0.685 \mathrm{~g} \mathrm{MS}=\frac{0.622 \times 2 \times(x+32.1)}{2 x+48.0} \quad 1.24 \underline{4} x+39.9=1.37 x+32.9 \quad 0.126 x=7.0$
$x=56$ is the atomic mass of M
M is element 56 , iron (Fe)
101. (D) Let $x=\operatorname{mol~} \mathrm{MgCl}_{2}$ in the sample, and $y=\mathrm{mol} \mathrm{NaCl}$. Set up two equations.

$$
0.6110=\frac{2 x \times 35.45 \mathrm{~g} \mathrm{Cl}+35.45 y \mathrm{~g} \mathrm{Cl}}{0.5200 \mathrm{~g} \text { sample }} \quad 0.5200 \mathrm{~g}=95.205 x \mathrm{~g} \mathrm{MgCl}_{2}+58.44 y \mathrm{~g} \mathrm{NaCl}
$$

We then solve these two equations for x.

$$
\begin{aligned}
& 0.6110 \times 0.5200=0.3177=70.9 x+35.45 y \quad \frac{0.3177}{35.45}=0.008962=2 x+y \\
& \begin{aligned}
& y=0.008962-2 x \\
& 0.5200=95.205 x+58.44(0.008962-2 x) \\
&=95.205 x+0.5237-116.88 x \\
& 0.5200-0.5237=-0.0037=(95.205-116.88) x=-21.675 x \\
&-0.0037=-21.675 x \\
& x=\frac{0.0037}{21.675} \\
& x=1.7 \times 10^{-4} \mathrm{~mol} \mathrm{MgCl}_{2}
\end{aligned}
\end{aligned}
$$

Then determine the value of y.

$$
y=0.008962-2 x=0.008962-2 \times 0.00017=0.00862 \mathrm{~mol} \mathrm{NaCl}
$$

$$
\operatorname{mass} \mathrm{MgCl}_{2}=1.7 \times 10^{-4} \mathrm{~mol} \mathrm{MgCl} 2 \times \frac{95.21 \mathrm{~g} \mathrm{MgCl}_{2}}{1 \mathrm{~mol} \mathrm{MgCl}_{2}}=0.016 \mathrm{~g} \mathrm{MgCl}_{2}
$$

$$
\text { mass } \mathrm{NaCl}=0.00862 \mathrm{~mol} \mathrm{NaCl} \times \frac{58.44 \mathrm{~g} \mathrm{NaCl}}{1 \mathrm{~mol} \mathrm{NaCl}}=0.504 \mathrm{~g} \mathrm{NaCl}
$$

$$
\% \mathrm{MgCl}_{2}=\frac{0.016 \mathrm{~g} \mathrm{MgCl}_{2}}{0.5200 \mathrm{~g} \mathrm{sample}} \times 100 \%=3.1 \% \mathrm{MgCl}_{2} \quad \% \mathrm{NaCl}=\frac{0.504 \mathrm{~g} \mathrm{NaCl}}{0.5200 \mathrm{~g} \text { sample }} \times 100 \%=96.9 \% \mathrm{NaCl}
$$

The precision of the calculation is poor because there is only a small $\% \mathrm{MgCl}_{2}$ in the mixture. When calculating the number of moles of $\mathrm{MgCl}_{2}, 0.5237$ is subtracted from 0.5200 as shown above. The number of significant figures is reduced by this subtraction, which has the effect of reducing the precision in subsequent calculations.
102. (M) First, we determine the mass of Pb in $2.750 \mathrm{~g} \mathrm{~Pb}_{3} \mathrm{O}_{4}$.

$$
\text { mass } \begin{aligned}
\mathrm{Pb} & =2.750 \mathrm{~g} \mathrm{~Pb}_{3} \mathrm{O}_{4} \times \frac{1 \mathrm{~mol} \mathrm{~Pb}_{3} \mathrm{O}_{4}}{685.596 \mathrm{~g} \mathrm{~Pb}_{3} \mathrm{O}_{4}} \times \frac{3 \mathrm{~mol} \mathrm{~Pb}}{1 \mathrm{~mol} \mathrm{~Pb}_{3} \mathrm{O}_{4}} \times \frac{207.2 \mathrm{~g} \mathrm{~Pb}}{1 \mathrm{~mol} \mathrm{~Pb}} \\
& =2.493 \mathrm{~g} \mathrm{~Pb}
\end{aligned}
$$

Then, we determine the amounts of O and Pb in the second oxide. From these, we determine the empirical formula of the second oxide.

$$
\begin{aligned}
& \text { amount } \mathrm{O}=(2.686 \mathrm{~g}-2.493 \mathrm{~g}) \mathrm{O} \times \frac{1 \mathrm{molO}}{16.00 \mathrm{~g} \mathrm{O}}=0.0121 \mathrm{~mol} \mathrm{O} \\
& \text { amount } \mathrm{Pb}=2.493 \mathrm{~g} \mathrm{~Pb} \times \frac{1 \mathrm{~mol} \mathrm{~Pb}}{207.2 \mathrm{~g} \mathrm{~Pb}}=0.0120 \mathrm{~mol} \mathrm{~Pb}
\end{aligned}
$$

Thus, the empirical formula of the second oxide is PbO .
103. (M) If we determine the mass of anhydrous ZnSO_{4} in the hydrate, we then can determine the mass of water, and the formula of the hydrate.

$$
\begin{aligned}
& \text { mass } \mathrm{ZnSO}_{4}=0.8223 \mathrm{~g} \mathrm{BaSO}_{4} \times \frac{1 \mathrm{~mol} \mathrm{BaSO}_{4}}{233.386 \mathrm{~g}} \times \frac{1 \mathrm{~mol} \mathrm{ZnSO}_{4}}{1 \mathrm{~mol} \mathrm{BaSO}_{4}} \times \frac{161.454 \mathrm{~g} \mathrm{ZnSO}_{4}}{1 \mathrm{~mol} \mathrm{ZnSO}_{4}} \\
& \quad=0.5688 \mathrm{~g} \mathrm{ZnSO}_{4}
\end{aligned}
$$

The water present in the hydrate is obtained by difference.

$$
\text { mass } \mathrm{H}_{2} \mathrm{O}=1.013 \mathrm{~g} \text { hydrate }-0.5688 \mathrm{~g} \mathrm{ZnSO}_{4}=0.444 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}
$$

The hydrate's formula is determined by a method similar to that for obtaining an empirical formula.
amt. $\mathrm{ZnSO}_{4}=0.5688 \mathrm{~g} \times \frac{1 \mathrm{~mol} \mathrm{ZnSO}_{4}}{161.436 \mathrm{~mol} \mathrm{ZnSO}_{4}}=0.003523 \mathrm{~mol} \mathrm{ZnSO}_{4} \div 0.003523 \longrightarrow 1.00 \mathrm{~mol} \mathrm{ZnSO}$
amt. $\mathrm{H}_{2} \mathrm{O}=0.444 \mathrm{~g} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.015 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}=0.0246 \underline{5} \mathrm{~mol} \mathrm{H}_{2} \mathrm{O} \div 0.003523 \longrightarrow 7.00 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$
Thus, the formula of the hydrate is $\mathrm{ZnSO}_{4} \cdot 7 \mathrm{H}_{2} \mathrm{O}$.
104. (M) $\frac{1.552 \mathrm{~g} \mathrm{MI}}{1.186 \mathrm{~g} \mathrm{I}} \times \frac{126.904 \mathrm{~g} \mathrm{I}}{1 \mathrm{~mol} \mathrm{I}} \times \frac{1 \mathrm{~mol} \mathrm{I}}{1 \mathrm{~mol} \mathrm{MI}}=\frac{166.1 \mathrm{~g} \mathrm{MI}}{1 \mathrm{~mol} \mathrm{MI}}$ (This is the molar mass of MI.)

Subtract the mass of 1 mol of I to obtain the molar mass of M.
molar mass $\mathrm{M}=(166.1-126.904) \mathrm{g} \mathrm{mol}^{-1}=39.2 \mathrm{~g} \mathrm{~mol}^{-1}$
The cation is probably $\mathrm{K}\left(39.098 \mathrm{~g} \mathrm{~mol}^{-1}\right)$.
Alternatively, find mass of M in sample: $1.552 \mathrm{~g} \mathrm{MI}-1.186 \mathrm{~g} \mathrm{I}=0.366 \mathrm{~g} \mathrm{M}$

$$
\frac{0.366 \mathrm{~g} \mathrm{M}}{1.186 \mathrm{~g} \mathrm{I}} \times \frac{126.90 \mathrm{~g} \mathrm{I}}{1 \mathrm{molI}} \times \frac{1 \mathrm{molI}}{1 \mathrm{molM}}=39.2 \mathrm{~g} \mathrm{~mol}^{-1}
$$

105. (M)

13 atoms $\times \frac{15.38 \text { atoms } \mathrm{E}}{100 \text { atoms in formula unit }}=\frac{1.999 \text { atoms } \mathrm{E}}{\text { formula unit }} \quad \therefore \mathrm{H}_{x} \mathrm{E}_{2} \mathrm{O}_{z}($ Note: $x+z=11)$
$34.80 \% \mathrm{E}$ by mass, hence, $65.20 \% \mathrm{H}$ and O by mass
$178 \mathrm{u} \times 0.3480 \mathrm{E}=61.944 \mathrm{u}$ for 2 atoms of $\mathrm{E}, \therefore \mathrm{E}=30.972 \mathrm{u}$ Probably $\mathrm{P}(30.974 \mathrm{u})$
H and O in formula unit $=178 \mathrm{u}-30.972 \mathrm{u}=116 \mathrm{u}$
$x+z=11$ or $x=11-z$ and $x(1.008 \mathrm{u})+z(15.999 \mathrm{u})=116 \mathrm{u}$
Substitute and solve for $z:(11-z)(1.008 u)+z(15.999 u)=116 u$
$11.08734 u-1.008 u(z)+15.999 u(z)=116 u \quad$ Divide through by u and collect terms
$105=14.9915(z)$ or $z=7$ and $x=11-z=11-7=4$.
Therefore, the formula is $\mathrm{H}_{4} \mathrm{P}_{2} \mathrm{O}_{7}$ (as a check, 13 atoms and $177.975 \mathrm{u} \sim 178 \mathrm{u}$).
106. (M) First find the mass of carbon, hydrogen, chlorine, and oxygen. From the molar ratios, we determine the molecular formula.
$2.094 \mathrm{~g} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.009 \mathrm{~g} \mathrm{CO}_{2}} \times \frac{1 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{CO}_{2}}=0.04759 \mathrm{~mol} \mathrm{C} \times \frac{12.011 \mathrm{~g} \mathrm{C}}{1 \mathrm{~mol} \mathrm{C}}=0.5716 \mathrm{~g} \mathrm{C}$
$0.286 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.015 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \times \frac{2 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=0.0317 \underline{5} \mathrm{~mol} \mathrm{H} \times \frac{1.008 \mathrm{~g} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}}=0.0320 \mathrm{~g} \mathrm{H}$
moles of chlorine $=\frac{\mathrm{mol} \mathrm{C}}{2}=\frac{0.04759}{2}=0.02380 \mathrm{~mol} \mathrm{Cl}$
mass of $\mathrm{Cl}=0.02380 \mathrm{~mol} \mathrm{Cl} \times \frac{35.45 \mathrm{~g} \mathrm{Cl}}{1 \mathrm{~mol} \mathrm{Cl}}=0.8436 \mathrm{~g} \mathrm{Cl}$
mass of oxygen obtained by difference: $1.510 \mathrm{~g}-0.8436 \mathrm{~g}-0.5716 \mathrm{~g}-0.0320 \mathrm{~g}=0.063 \mathrm{~g} \mathrm{O}$ moles of oxygen $=0.063 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{15.999 \mathrm{~g} \mathrm{O}}=0.00394 \mathrm{~mol} \mathrm{O}$

Divide the number of moles of each element by $0.0039 \underline{4}$ to give an empirical formula of $\mathrm{C}_{12.1} \mathrm{H}_{8.06} \mathrm{Cl}_{6.04} \mathrm{O}_{1.00}$ owing to the fact that the oxygen mass is obtained by difference, and it has only two significant digits and thus a higher degree of uncertainty.

The empirical formula is $\mathrm{C}_{12} \mathrm{H}_{8} \mathrm{Cl}_{6} \mathrm{O}$, which with a molecular mass of 381 u has the same molecular mass as the molecular formula. Hence, this empirical formula is also the molecular formula.
107.(M) $1.271 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4}$ absorbs $0.387 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
$\operatorname{mass}_{\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}}=0.387 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.015 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \times \frac{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}}{10 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}} \times \frac{322.186 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}}{1 \mathrm{~mol} \mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}}$

$$
=0.692 \mathrm{~g} \mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}
$$

mass percent $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}=\frac{0.692 \mathrm{~g}}{(1.271 \mathrm{~g}+0.387 \mathrm{~g})} \times 100 \%=41.7 \%$
108. (D) Let $\mathrm{X}=$ molar mass of Bi and $\mathrm{Y}=$ moles of $\mathrm{Bi}_{2} \mathrm{O}_{3}$
molar mass of $\mathrm{Bi}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}=\mathrm{X}+\left(18 \times 12.011 \mathrm{~g} \mathrm{~mol}^{-1}+15 \times 1.008 \mathrm{~g} \mathrm{~mol}^{-1}\right)$

$$
=\mathrm{X}+231.318 \mathrm{~g} \mathrm{~mol}^{-1}
$$

molar mass of $\mathrm{Bi}_{2} \mathrm{O}_{3}=2 \mathrm{X}+\left(3 \times 15.999 \mathrm{~g} \mathrm{~mol}^{-1}=2 \mathrm{X}+47.997 \mathrm{~g} \mathrm{~mol}^{-1}\right.$
Consider the reaction: $2 \mathrm{Bi}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3} \rightarrow \mathrm{Bi}_{2} \mathrm{O}_{3}$
If $\mathrm{Y}=$ moles of $\mathrm{Bi}_{2} \mathrm{O}_{3}$, then $2 \mathrm{Y}=$ moles of $\mathrm{Bi}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}$.
For both the reactant and the product, mass $=\mathrm{MM} \times$ moles. Therefore,
$5.610 \mathrm{~g}=2 \mathrm{Y}\left(\mathrm{X}+231.318 \mathrm{~g} \mathrm{~mol}^{-1}\right)=2 \mathrm{XY}+(2 \mathrm{Y}) 231.318 \mathrm{~g} \mathrm{~mol}^{-1}$, and
$2.969 \mathrm{~g}=\mathrm{Y}\left(2 \mathrm{X}+47.997 \mathrm{~g} \mathrm{~mol}^{-1}\right)=2 \mathrm{XY}+(\mathrm{Y}) 47.997 \mathrm{~g} \mathrm{~mol}^{-1}$
Rearrange $5.610 \mathrm{~g}=2 \mathrm{XY}+(\mathrm{Y}) 231.318 \mathrm{~g} \mathrm{~mol}^{-1}$ to 2 XY
$=5.610 \mathrm{~g}-(2 \mathrm{Y}) 231.318 \mathrm{~g} \mathrm{~mol}^{-1}$
Substitute for 2 XY in $2.969=2 \mathrm{XY}+(\mathrm{Y}) 47.997 \mathrm{~g} \mathrm{~mol}^{-1}$
$2.969 \mathrm{~g}=5.610 \mathrm{~g}-(2 \mathrm{Y}) 231.318 \mathrm{~g} \mathrm{~mol}^{-1}+(\mathrm{Y}) 47.997 \mathrm{~g} \mathrm{~mol}^{-1}$

$$
=5.610 \mathrm{~g}-(\mathrm{Y}) 414.639 \mathrm{~g} \mathrm{~mol}^{-1}
$$

Collect terms and solve for Y .
$5.610 \mathrm{~g}-2.969 \mathrm{~g}=(\mathrm{Y}) 414.639 \mathrm{~g} \mathrm{~mol}^{-1}=2.641 \mathrm{~g}$
$\mathrm{Y}=2.641 \mathrm{~g} \div 414.639 \mathrm{~g} \mathrm{~mol}^{-1}=0.0063694 \mathrm{~mol}$
Substitute Y in $2.969 \mathrm{~g}=2 \mathrm{XY}+(\mathrm{Y}) 47.997 \mathrm{~g} \mathrm{~mol}^{-1}$ and solve for X , the molar mass of Bi $2.969 \mathrm{~g}=2 \mathrm{X}(0.0063694 \mathrm{~mol})+(0.0063694 \mathrm{~mol}) 47.997 \mathrm{~g} \mathrm{~mol}^{-1}$
$\mathrm{X}=\frac{2.969 \mathrm{~g}-(0.0063694 \mathrm{~mol}) 47.997 \mathrm{~g} \mathrm{~mol}^{-1}}{(2) 0.0063694 \mathrm{~mol}}=209.1 \mathrm{~g} \mathrm{~mol}^{-1}\left(\right.$ Actually it is $\left.208.98 \mathrm{~g} \mathrm{~mol}^{-1}\right)$
109.(D)
volume of $\mathrm{Au}=0.25 \mathrm{~mm} \times 15 \mathrm{~mm} \times 15 \mathrm{~mm}=56.25 \mathrm{~mm}^{3}$
$56.25 \mathrm{~mm}^{3} \times \frac{1 \mathrm{~cm}^{3}}{(10)^{3} \mathrm{~mm}^{3}} \times \frac{19.3 \mathrm{~g} \mathrm{Au}}{\mathrm{cm}^{3}}=1.086 \mathrm{~g} \mathrm{Au}$
$1.086 \mathrm{~g} \mathrm{Au} \times \frac{1 \mathrm{~mol} \mathrm{Au}}{196.97 \mathrm{~g} \mathrm{Au}}=5.51 \times 10^{-3} \mathrm{~mol} \mathrm{Au}$
$1.400 \mathrm{~g}-1.086 \mathrm{~g}=0.314 \mathrm{~g} \mathrm{~F} \times \frac{1 \mathrm{~mol} \mathrm{~F}}{18.998 \mathrm{~g} \mathrm{~F}}=0.0165 \mathrm{~mol} \mathrm{~F}$
$\frac{5.51 \times 10^{-3}}{5.51 \times 10^{-3}}=1 \mathrm{~mol} \mathrm{Au}$
$\frac{0.0165}{5.51 \times 10^{-3}}=3 \mathrm{~mol} \mathrm{~F}$
The formula is therefore AuF_{3}, which is gold(III) fluoride.
此

110.(M)

Calculate the mass of chlorine: $0.244 \mathrm{~L} \times 2.898 \mathrm{~g} / \mathrm{L}=0.707 \mathrm{~g}$ chlorine
Calculate the mass of iodine: $1.553 \mathrm{~g}-0.707 \mathrm{~g}=0.846 \mathrm{~g}$ iodine
Calculate the moles of chlorine: $0.707 \mathrm{~g} / 35.45 \mathrm{~g} / \mathrm{mol}=0.0199 \mathrm{~mol}$ chlorine
Calculate the moles of iodine: $0.846 \mathrm{~g} / 126.90 \mathrm{~g} / \mathrm{mol}=0.00667 \mathrm{~mol}$ iodine
Calculate the mole ratio: $0.0199: 0.00667=1: 2.98 \approx 1: 3$
Calculate the empirical molar mass: $(126.90+3 \times 35.45) \mathrm{g} / \mathrm{mol}=233.25 \mathrm{~g} / \mathrm{mol}$
Because 467/233.25 ≈ 2, the molecular formula is $\mathrm{I}_{2} \mathrm{Cl}_{6}$.

111.(M)

The coating is a compound of copper and iodine. The mass of iodine reacting with the copper strip is $0.733 \mathrm{~g}-0.725 \mathrm{~g}=0.008 \mathrm{~g}$.
The mass of the copper reacted is $0.725 \mathrm{~g}-0.721 \mathrm{~g}=0.004 \mathrm{~g}$.
The masses of copper and iodine that reacted are known with very low precision (only one significant figure). Therefore, in the following calculations, we are justified in rounding the molar masses of I and Cu (126.90 and $63.546 \mathrm{~g} / \mathrm{mol}$, respectively) to two significant figures and the final result to one significant figure.
The amount of iodine is $0.008 \mathrm{~g} \times \frac{1}{130 \mathrm{~g} \mathrm{~mol}^{-1}}=6 \times 10^{-5} \mathrm{~mol}$
The amount of copper is $0.004 \mathrm{~g} \times \frac{1}{64 \mathrm{~g} \mathrm{~mol}^{-1}}=6 \times 10^{-5} \mathrm{~mol}$
The compound contains equal amounts (moles) of Cu and I . Therefore, the empirical formula is CuI.

FEATURE PROBLEMS

112. (D)
(a) " $5-10-5 "$ fertilizer contains 5.00 g N (that is, $5.00 \% \mathrm{~N}$), $10.00 \mathrm{~g} \mathrm{P}_{2} \mathrm{O}_{5}$, and 5.00 g $\mathrm{K}_{2} \mathrm{O}$ in 100.00 g fertilizer. We convert the last two numbers into masses of the two elements.
(1) $\% \mathrm{P}=10.00 \% \mathrm{P}_{2} \mathrm{O}_{5} \times \frac{1 \mathrm{~mol} \mathrm{P}_{2} \mathrm{O}_{5}}{141.9 \mathrm{~g} \mathrm{P}_{2} \mathrm{O}_{5}} \times \frac{2 \mathrm{~mol} \mathrm{P}}{1 \mathrm{~mol} \mathrm{P}_{2} \mathrm{O}_{5}} \times \frac{30.97 \mathrm{~g} \mathrm{P}}{1 \mathrm{~mol} \mathrm{P}}=4.37 \% \mathrm{P}$
(2) $\% \mathrm{~K}=5.00 \% \mathrm{~K}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{~K}_{2} \mathrm{O}}{94.20 \mathrm{~g} \mathrm{~K}_{2} \mathrm{O}} \times \frac{2 \mathrm{~mol} \mathrm{~K}}{1 \mathrm{~mol} \mathrm{~K}_{2} \mathrm{O}} \times \frac{39.10 \mathrm{~g} \mathrm{~K}}{1 \mathrm{~mol} \mathrm{~K}}=4.15 \% \mathrm{~K}$
(b) First, we determine $\% \mathrm{P}$ and then convert it to $\% \mathrm{P}_{2} \mathrm{O}_{5}$, given that $10.0 \% \mathrm{P}_{2} \mathrm{O}_{5}$ is equivalent to $4.37 \% \mathrm{P}$.

$$
\begin{align*}
\% \mathrm{P}_{2} \mathrm{O}_{5}= & \frac{2 \mathrm{~mol} \mathrm{P}}{1 \mathrm{~mol} \mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}} \times \frac{30.97 \mathrm{~g} \mathrm{P}}{1 \mathrm{~mol} \mathrm{P}} \times \frac{1 \mathrm{~mol} \mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}}{234.05 \mathrm{~g} \mathrm{Ca}\left(\mathrm{H}_{2} \mathrm{PO}_{4}\right)_{2}} \times 100 \% \tag{1}\\
& \times \frac{10.0 \% \mathrm{P}_{2} \mathrm{O}_{5}}{4.37 \% \mathrm{P}}=60.6 \% \mathrm{P}_{2} \mathrm{O}_{5} \\
\% \mathrm{P}_{2} \mathrm{O}_{5}= & \frac{1 \mathrm{~mol} \mathrm{P}_{1 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}}^{1.0} \times \frac{30.97 \mathrm{~g} \mathrm{P}}{1 \mathrm{~mol} \mathrm{P}} \times \frac{1 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}}{132.06 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}} \times 100 \%}{} \tag{2}\\
& \times \frac{10.0 \% \mathrm{P}_{2} \mathrm{O}_{5}}{4.37 \% \mathrm{P}}=53.7 \% \mathrm{P}_{2} \mathrm{O}_{5}
\end{align*}
$$

(c) If the mass ratio of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ to KCl is set at $5.00: 1.00$, then for every 5.00 g of $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ in the mixture there must be 1.00 g of KCl . Let's start by finding the $\% \mathrm{~N}, \% \mathrm{P}$, and $\% \mathrm{~K}$ for the fertilizer mixture.

$$
\begin{aligned}
& \% \mathrm{~N} \text { (bymass) }=\frac{2 \mathrm{molN}}{1 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}} \times \frac{1 \mathrm{~mol}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}}{132.06 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{PO}_{4}} \times \frac{14.007 \mathrm{gN}}{1 \mathrm{molN}} \times \frac{5.00 \mathrm{~g}_{\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}}^{6.00 \mathrm{~g} \text { mixture }}}{100 \%} \\
& =17.7 \% \mathrm{~N} \\
& \% \mathrm{P} \text { (by mass) }=\frac{1 \mathrm{~mol} \mathrm{P}^{1}}{1 \mathrm{~mol}_{\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}}} \times \frac{1 \mathrm{~mol}_{\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}}^{132.06 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}} \times \frac{30.9738 \mathrm{~g} \mathrm{P}}{1 \mathrm{~mol} \mathrm{P}} \times \frac{\left.5.00 \mathrm{~g}_{\mathrm{gH}}^{)_{2}}\right)_{2} \mathrm{HPO}_{4}}{6.00 \mathrm{~g} \text { of mixture }} \times 100 \%}{0} \\
& =19.5 \% \mathrm{P} \\
& \% \text { K (by mass) }=\frac{1 \mathrm{~mol} \mathrm{~K}}{1 \mathrm{~mol} \mathrm{KCl}} \times \frac{1 \mathrm{~mol} \mathrm{KCl}}{74.55 \mathrm{~g} \mathrm{KCl}} \times \frac{39.0983 \mathrm{~g} \mathrm{~K}}{1 \mathrm{~mol} \mathrm{~K}} \times \frac{1.00 \mathrm{~g} \mathrm{KCl}}{6.00 \mathrm{~g} \mathrm{mixture}} \times 100 \% \\
& =8.74 \% \mathrm{~K}
\end{aligned}
$$

Next, we convert $\% \mathrm{P}$ to $\% \mathrm{P}_{2} \mathrm{O}_{5}$ and $\% \mathrm{~K}$ to $\% \mathrm{~K}_{2} \mathrm{O}$.
$\% \mathrm{P}_{2} \mathrm{O}_{5}=19.5 \% \mathrm{P} \times \frac{10.0 \% \mathrm{P}_{2} \mathrm{O}_{5}}{4.37 \% \mathrm{P}}=44.6 \% \mathrm{P}_{2} \mathrm{O}_{5}$
$\% \mathrm{~K}_{2} \mathrm{O}=8 . \underline{74} \% \mathrm{~K} \times \frac{5.00 \% \mathrm{~K}_{2} \mathrm{O}}{4.15 \% \mathrm{~K}}=1 \underline{0.5} \% \mathrm{~K}_{2} \mathrm{O}$
Thus, the combination of $5.00 \mathrm{~g}\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ with 1.00 g KCl affords a "17.7-44.6-10.5" fertilizer, that is, $17.7 \% \mathrm{~N}$, a percentage of phosphorus expressed as $44.6 \% \mathrm{P}_{2} \mathrm{O}_{5}$, and a percentage of potassium expressed as $10.5 \% \mathrm{~K}_{2} \mathrm{O}$.
(d) A "5-10-5" fertilizer must possess the mass ratio $5.00 \mathrm{~g} \mathrm{~N}: 4.37 \mathrm{~g} \mathrm{P}: 4.15 \mathrm{~g} \mathrm{~K}$ per 100 g of fertilizer. Thus a " $5-10-5$ " fertilizer requires an $\mathrm{N}: \mathrm{P}$ relative mass ratio of $5.00 \mathrm{~g} \mathrm{~N}: 4.37 \mathrm{~g} \mathrm{P}=1.00 \mathrm{~g} \mathrm{~N}: 0.874 \mathrm{~g}$ P. Note specifically that the fertilizer has a somewhat greater mass of N than of P .
If all of the N and P in the fertilizer comes solely from $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$, then the atom ratio of N relative to P will remain fixed at $2 \mathrm{~N}: 1 \mathrm{P}$. Whether or not an inert nonfertilizing filler is present in the mix is immaterial. The relative $\mathrm{N}: \mathrm{P}$ mass ratio is $(2 \times 14.01) \mathrm{g} \mathrm{N}: 30.97 \mathrm{~g} P$, that is, $0.905 \mathrm{~g} \mathrm{~N}: 1.00 \mathrm{~g}$ P. Note specifically that $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ has a somewhat lesser mass of N than of P . Clearly, it is impossible to make a "5-10-5" fertilizer if the only fertilizing components are $\left(\mathrm{NH}_{4}\right)_{2} \mathrm{HPO}_{4}$ and KCl .
113. (D)
(a) First, calculate the mass of water that was present in the hydrate prior to heating. mass of $\mathrm{H}_{2} \mathrm{O}=2.574 \mathrm{~g} \mathrm{CuSO}_{4} \cdot x \mathrm{H}_{2} \mathrm{O}-1.647 \mathrm{~g} \mathrm{CuSO}_{4}=0.927 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$ Next, we need to find the number of moles of anhydrous copper(II) sulfate and water that were initially present together in the original hydrate sample.
moles of $\mathrm{CuSO}_{4}=1.647 \mathrm{~g} \mathrm{CuSO}_{4} \times \frac{1 \mathrm{~mol} \mathrm{CuSO}_{4}}{159.6 \mathrm{~g} \mathrm{CuSO}_{4}}=0.01032$ moles CuSO_{4}
moles of $\mathrm{H}_{2} \mathrm{O}=0.927 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.015 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}=0.0514 \underline{6}$ moles of water
The empirical formula is obtained by dividing the number of moles of water by the number of moles of CuSO_{4} ($x=$ ratio of moles of water to moles of CuSO_{4})
$x=\frac{0.05146 \text { moles } \mathrm{H}_{2} \mathrm{O}}{0.01032 \text { moles } \mathrm{CuSO}_{4}}=4.99 \sim 5$ The empirical formula is $\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$.
(b) mass of water present in hydrate $=2.574 \mathrm{~g}-1.833 \mathrm{~g}=0.741 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}$
moles of water $=0.741 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.015 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}}=0.0411$ moles of water
mass of CuSO_{4} present in hydrate $=1.833 \mathrm{~g} \mathrm{CuSO}_{4}$
moles of $\mathrm{CuSO}_{4}=1.833 \mathrm{~g} \mathrm{CuSO}_{4} \times \frac{1 \mathrm{~mol} \mathrm{CuSO}_{4}}{159.602 \mathrm{~g} \mathrm{CuSO}_{4}}=0.0115 \mathrm{~mol} \mathrm{CuSO}_{4}$
The empirical formula is obtained by dividing the number of moles of water by the number of moles of CuSO_{4} ($x=$ ratio of moles of water to moles of CuSO_{4}).
$x=\frac{0.0411 \text { moles } \mathrm{H}_{2} \mathrm{O}}{0.0115 \text { moles } \mathrm{CuSO}_{4}}=3.58 \sim 4$.

Since the hydrate has not been completely dehydrated, there is no problem with obtaining non-integer "garbage" values.

So, the empirical formula is $\mathrm{CuSO}_{4} \cdot 4 \mathrm{H}_{2} \mathrm{O}$.
(c) When copper(II) sulfate is strongly heated, it decomposes to give $\mathrm{SO}_{3}(\mathrm{~g})$ and CuO (s). The black residue formed at $1000^{\circ} \mathrm{C}$ in this experiment is probably CuO . The empirical formula for copper(II) oxide is CuO . Let's calculate the percentages of Cu and O by mass for CuO : mass percent copper $=\frac{63.546 \mathrm{~g} \mathrm{Cu}}{79.545 \mathrm{~g} \mathrm{CuO}} \times 100 \%=79.89 \%$ by mass Cu mass percent oxygen $=\frac{15.999 \mathrm{~g} \mathrm{O}}{79.545 \mathrm{~g} \mathrm{CuO}} \times 100 \%=20.11 \%$ by mass O

The number of moles of CuO formed (by reheating to $1000^{\circ} \mathrm{C}$)
$=0.812 \mathrm{~g} \mathrm{CuO} \times \frac{1 \mathrm{~mol} \mathrm{CuO}}{79.545 \mathrm{~g} \mathrm{CuO}}=0.0102$ moles of CuO
This is very close to the number of moles of anhydrous CuSO_{4} formed at $400 .{ }^{\circ} \mathrm{C}$. Thus, it would appear that upon heating to $1000{ }^{\circ} \mathrm{C}$, the sample of CuSO_{4} was essentially completely converted to CuO .
114. (D)
(a) The formula for stearic acid, obtained from the molecular model, is $\mathrm{CH}_{3}\left(\mathrm{CH}_{2}\right)_{16} \mathrm{CO}_{2} \mathrm{H}$. The number of moles of stearic acid in 10.0 grams is $=10.0 \mathrm{~g}$ stearic acid $\times \frac{1 \mathrm{~mol} \text { stearic acid }}{284.48 \mathrm{~g} \text { stearic acid }}=3.51 \underline{5} \times 10^{-2} \mathrm{~mol}$ of stearic acid.
The layer of stearic acid is one molecule thick. According to the figure provided with the question, each stearic acid molecule has a cross-sectional area of $\sim 0.22 \mathrm{~nm}^{2}$. In order to find the stearic acid coverage in square meters, we must multiply the total number of stearic acid molecules by the cross-sectional area for an individual stearic acid molecule. The number of stearic acid molecules is:
$=3.51 \underline{5} \times 10^{-2} \mathrm{~mol}$ of stearic acid $\times \frac{6.022 \times 10^{23} \text { molecules }}{1 \text { mol of stearic acid }}=2.11 \underline{\underline{\eta}} \times 10^{22}$ molecules
area in $\mathrm{m}^{2}=2.11 \underline{\underline{7}} \times 10^{22}$ molecules of stearic acid $\times \frac{0.22 \mathrm{~nm}^{2}}{\text { molecule }} \times \frac{(1 \mathrm{~m})^{2}}{\left(1 \times 10^{9} \mathrm{~nm}\right)^{2}}$
The area in $\mathrm{m}^{2}=4657 \mathrm{~m}^{2}$ or $4.7 \times 10^{3} \mathrm{~m}^{2}$ (with correct number of sig. fig.)
(b) The density for stearic acid is $0.85 \mathrm{~g} \mathrm{~cm}^{-3}$. Thus, 0.85 grams of stearic acid occupies $1 \mathrm{~cm}^{3}$. Find the number of moles of stearic acid in 0.85 g of stearic acid $=0.85$ grams of stearic acid $\times \frac{1 \mathrm{~mol} \text { stearic acid }}{284.48 \mathrm{~g} \text { stearic acid }}=3.0 \times 10^{-3} \mathrm{~mol}$ of stearic acid. This number of moles of acid occupies $1 \mathrm{~cm}^{3}$ of space. So, the number of stearic acid molecules in $1 \mathrm{~cm}^{3}$
$=3.0 \times 10^{-3} \mathrm{~mol}$ of stearic acid $\times \frac{6.022 \times 10^{23} \text { molecules }}{1 \mathrm{~mol} \text { of stearic acid }}$
$=1.8 \times 10^{21}$ stearic acid molecules .
Thus, the volume for a single stearic acid molecule in nm^{3}
$=1 \mathrm{~cm}^{3} \times \frac{1}{1.8 \times 10^{21} \text { molecules stearic acid }} \times \frac{\left(1.0 \times 10^{7} \mathrm{~nm}\right)^{3}}{(1 \mathrm{~cm})^{3}}=0.55 \underline{6} \mathrm{~nm}^{3}$
The volume of a rectangular column is simply the area of its base multiplied by its height (i.e., $V=$ area of base (in nm^{2}) \times height (in nm).
So, the average height of a stearic acid molecule $=\frac{0.556 \mathrm{~nm}^{3}}{0.22 \mathrm{~nm}^{2}}=2.5 \mathrm{~nm}$
(c) The density for oleic acid $=0.895 \mathrm{~g} \mathrm{~mL}^{-1}$. So, the concentration for oleic acid is
$=\frac{0.895 \mathrm{~g} \mathrm{acid}}{10.00 \mathrm{~mL}}=0.0895 \mathrm{~g} \mathrm{~mL}^{-1}($ solution 1$)$
This solution is then divided by 10 , three more times, to give a final concentration of $8.9 \underline{5} \times 10^{-5} \mathrm{~g} \mathrm{~mL}^{-1}$. A 0.10 mL sample of this solution contains:
$=\frac{8.95 \times 10^{-5} \mathrm{~g} \mathrm{acid}}{1.00 \mathrm{~mL}} \times 0.10 \mathrm{~mL}=8.9 \underline{5} \times 10^{-6} \mathrm{~g}$ of acid.
The number of acid molecules $=85 \mathrm{~cm}^{2} \times \frac{1}{4.6 \times 10^{-15} \mathrm{~cm}^{2} \text { per molecule }}$

$$
=1.8 \underline{5} \times 10^{16} \text { oleic acid molecules. }
$$

So, $8.95 \times 10^{-6} \mathrm{~g}$ of oleic acid corresponds to 1.85×10^{16} oleic acid molecules.
The molar mass for oleic acid, $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{O}_{2}$, is $282.47 \mathrm{~g} \mathrm{~mol}^{-1}$.
The number of moles of oleic acid is
$=8.9 \underline{5} \times 10^{-6} \mathrm{~g} \times \frac{1 \mathrm{~mol} \text { oleic acid }}{282.47 \mathrm{~g}}=3.1 \underline{7} \times 10^{-8} \mathrm{~mol}$
So, Avogadro's number here would be equal to:
$=\frac{1.8 \underline{5} \times 10^{16} \text { oleic acid molecules }}{3.1 \underline{1} \times 10^{-8} \text { oleic acid moles }}=5.8 \times 10^{23}$ molecules per mole of oleic acid.

SELF-ASSESSMENT EXERCISES

115. (E)
(a) Formula unit: The smallest reducible ratio of atoms in a molecule or ionic compound
(b) P_{4} : An allotrope of the element phosphorus
(c) Molecular compound: A compound where bonds are formed by sharing of electrons between atoms
(d) Binary compound: A compound formed between two elements
(e) Hydrate: A molecular or ionic compound that is accompanied with a fixed number of water molecules as an adduct.
116. (E)
(a) Mole of compound: An amount of compound that contains 6.02×10^{23} molecules of that compound (or, a mass of compound equal to its molecular weight).
(b) Structural formula: The formula that shows in what order the various atoms in the molecule are connected to each other and what is the mode of their bonding
(c) Oxidation state: The apparent number of electrons from a particular atom which are involved in bonding with other atoms (either being lost, gained, or shared)
(d) $\mathrm{C}-\mathrm{H}-\mathrm{O}$ determination: A process by which C and H and O weight $\%$ in a compound are determined by careful combustion and measuring the amounts of the evolved products specific to combustion of C, H, and O .
117. (E)
(a) Molecular mass is the mass of one molecule of a compound, while molar mass is the mass of one mole of that compound (or the molecular mass multiplied by 6.02×10^{23}).
(b) Empirical formula is the simplest formula for the compound, and shows the types of atoms and their ratios, whereas a molecular formula lists the types and actual number of atoms in the formula (a molecular formula is the empirical formula times an integer).
(c) Systematic name is the name of a compound that follows established guidelines where the number and possibly oxidation state of each element is provided in the name, whereas a trivial name is a common name given to a compound that usually tells us nothing about its composition (like water or ammonia or red rust).
(d) Hydroxyl functional group is -OH , where the covalent bond to the rest of the molecule is made through the oxygen. Carboxyl functional group is $-\mathrm{C}(=\mathrm{O}) \mathrm{O}$, where the covalent bond to the rest of the molecule is made through the carbon, and a proton can attach to one of the oxygens.
118. (E)
(a) Mass of one atom of nitrogen (in amu).
(b) Mass of one molecule of dinitrogen gas, N_{2} (in amu)
(c) Mass of one mole of dinitrogen $\mathrm{N}_{2}($ in $\mathrm{g} / \mathrm{mol})$.
119. (E) The answer is (c), because 12.01 g of $\mathrm{H}_{2} \mathrm{O}=0.667 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$, which equates to $0.667 \times 3=2.00$ moles of atoms. One mole of Br_{2} also has 2.00 moles of atoms.
120. (E) The answer is (b). $\mathrm{N}_{2} \mathrm{H}_{4}$ can be reduced further to an empirical formula of NH_{2}.
121. (E) The answer is (d), because total atomic mass is 14 for N and 7 for H .
122. (E) Answer is (a).
(a) $50.0 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O} \times\left(1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O} / 44.0 \mathrm{~g} \mathrm{~N}_{2} \mathrm{O}\right) \times\left(2 \mathrm{~mol} \mathrm{~N} / 1 \mathrm{~mol} \mathrm{~N}_{2} \mathrm{O}\right)=2.27 \mathrm{~mol}$
(b) $17.0 \mathrm{~g} \mathrm{NH}_{3} \times\left(1 \mathrm{~mol} \mathrm{NH}_{3} / 17.0 \mathrm{~g} \mathrm{NH}_{3}\right) \times\left(1 \mathrm{~mol} \mathrm{~N} / 1 \mathrm{~mol} \mathrm{NH}_{3}\right)=1.00 \mathrm{~mol}$
(c) $150 \mathrm{~mL} \mathrm{C}_{5} \mathrm{H}_{5} \mathrm{~N} \times(0.983 \mathrm{~g} / 1 \mathrm{~mL}) \times(1 \mathrm{~mol} \mathrm{Pyr} / 79.0 \mathrm{~g} \mathrm{Pyr}) \times(1 \mathrm{~mol} \mathrm{~N} / 1 \mathrm{~mol} \mathrm{Pyr})=$ 1.87 mol
(d) $1 \mathrm{~mol} \mathrm{~N} 2 \times(2 \mathrm{~mol} \mathrm{~N} / 1 \mathrm{~mol} \mathrm{~N} 2)=2.0$
123. (M)
$\frac{2.9 \mathrm{~g} \mathrm{Fe}}{\text { total blood }} \times \frac{\text { total blood }}{2.6 \times 10^{13} \text { red blood cells }} \times \frac{1 \mathrm{~mol} \mathrm{Fe}}{55.8 \mathrm{~g} \mathrm{Fe}} \times \frac{6.02 \times 10^{23} \mathrm{Fe} \text { atoms }}{\mathrm{mol} \mathrm{Fe}}$

$$
=1.2 \times 10^{9} \frac{\mathrm{Fe} \text { atoms }}{\text { red blood cell }}
$$

124. (E) Answer is (c).

Mass \% of $F=(19 \times 3) /(X+19 \times 3)=0.65$
Solving for X , we get $\mathrm{X}=30.7$ or 31 u
125. (E) Answer is (c). Total formal charge on $\mathrm{H}:+4$. Total charge on $\mathrm{O}:-12$, and the ion has a negative charge. Therefore, oxidation state of $\mathrm{I}=-12+4+1=7$.
126. (E) The correct answer is +6 (choice c). Magnesium has a +2 oxidation state, and oxygen is -2 . Manganese would need to be +6 for the charge on the molecule to sum to zero.
127. (M) Choice (a) is hydrogen periodate and is therefore the correct answer. $\mathrm{Na}_{2} \mathrm{SO}_{3}$ is sodium sulfite, KClO_{2} is potassium chlorite, HFO is hydrogen hypofluorite, and NO_{2} is nitrogen dioxide.
128. (E) $\mathrm{Sr}\left(\mathrm{HCO}_{3}\right)_{2}$ is strontium bicarbonate (choice d).
129. (E) The answer is (b). Ca is a +2 ion and ClO_{2}^{-}is -1 anion.
130. (E) $\mathrm{Li}_{3} \mathrm{P}$ has a molar mass of $51.79 \mathrm{~g} \mathrm{~mol}^{-1}$ (choice d).
131. (E) The answer is (d). Multiplying O atomic mass by $4(64 u)$ is nearly the same as the atomic mass of Cu (63.55).
132. (E) The answer is (d). Answer (a) isn't correct. While having the correct number of atoms, it is not an isomer because it is only a molecular formula and gives no information on atom bonding. Answer (b) isn't correct, because it's the exact same molecule as stated in the question. Answer (c) isn't correct because it doesn't have enough atoms. Therefore, the answer is (d), because it has the correct number of atoms in a different configuration.
133. (M) First, find out the mass of $\mathrm{Na}_{2} \mathrm{SO}_{3}$, which is $126.0 \mathrm{~g} / \mathrm{mol}$. Then:

Mass $\mathrm{H}_{2} \mathrm{O}(x)=0.5\left(x+\right.$ Mass $\left.\mathrm{Na}_{2} \mathrm{SO}_{3}\right)$.
$x=0.5 x+63$.
Solving for x, we obtain $x=126 \mathrm{~g}$ (mass of $\mathrm{H}_{2} \mathrm{O}$)
Since we have 126 g of water, the number of moles of $\mathrm{H}_{2} \mathrm{O}$ is $126 \mathrm{~g} / 18.0 \mathrm{~g} \mathrm{~mol}^{-1}=7$
Therefore, the formula is $\mathrm{Na}_{2} \mathrm{SO}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}$.
134. (M)
(a) Based on this composition, molar mass of malachite is calculated to be $221.18 \mathrm{~g} / \mathrm{mol}$. Since there are two moles of Cu per mole of malachite, the $\%$ mass of Cu is:
1000 g malachite $\times \frac{1 \mathrm{~mol} \mathrm{mal} .}{221.18 \mathrm{~g} \mathrm{mal} .} \times \frac{2 \mathrm{~mol} \mathrm{Cu}}{1 \mathrm{~mol} \mathrm{mal} .} \times \frac{63.546 \mathrm{~g} \mathrm{Cu}}{1 \mathrm{~mol} \mathrm{Cu}}=574.61 \mathrm{~g} \mathrm{Cu}$
$\% \mathrm{Cu}=\frac{574.61 \mathrm{~g}}{1000 \mathrm{~g}} \times 100=57.46 \%$
(b) The formula for copper(II) oxide is CuO . Therefore, for one mole of malachite, there are two moles of CuO . Therefore,
1000 g malachite $\times \frac{1 \mathrm{~mol} \mathrm{mal} .}{221.18 \mathrm{~g} \mathrm{mal} .} \times \frac{2 \mathrm{~mol} \mathrm{CuO}}{1 \mathrm{~mol} \mathrm{mal} .} \times \frac{79.545 \mathrm{~g} \mathrm{CuO}}{1 \mathrm{~mol} \mathrm{CuO}}$
mass $\mathrm{CuO}=719.5 \mathrm{~g}$
135. (D) Molar mass of acetaminophen is 151.2 u , or $151.2 \mathrm{~g} / \mathrm{mol}$. To determine the molecular formula, calculate the moles of various constituting elements, as shown below:
$\mathrm{mol} \mathrm{C}=63.56 \mathrm{~g} \mathrm{C} \times(1 \mathrm{~mol} \mathrm{C} / 12.011 \mathrm{~g} \mathrm{C})=5.292 \mathrm{~mol} \mathrm{C}$
$\mathrm{mol} \mathrm{H}=6.00 \mathrm{~g} \mathrm{H} \times(1 \mathrm{~mol} \mathrm{H} / 1.008 \mathrm{~g} \mathrm{H})=5.95 \mathrm{~mol} \mathrm{H}$
$\mathrm{mol} \mathrm{N}=9.27 \mathrm{~g} \mathrm{~N} \times(1 \mathrm{~mol} \mathrm{~N} / 14.01 \mathrm{~g} \mathrm{~N})=0.662 \mathrm{~mol} \mathrm{~N}$
$\mathrm{mol} \mathrm{O}=21.17 \mathrm{~g} \mathrm{O} \times(1 \mathrm{~mol} \mathrm{O} / 15.999 \mathrm{~g} \mathrm{O})=1.323 \mathrm{~mol} \mathrm{O}$
Then, divide all values by the smallest to determine mole ratios:
$5.92 \mathrm{~mol} \mathrm{C} / 0.662 \mathrm{~mol} \mathrm{~N} \rightarrow 7.99 \mathrm{~mol} \mathrm{C}$
$5.95 \mathrm{~mol} \mathrm{H} / 0.662 \mathrm{~mol} \mathrm{~N} \rightarrow 8.99 \mathrm{~mol} \mathrm{H}$
$0.662 \mathrm{~mol} \mathrm{~N} / 0.662 \mathrm{~mol} \mathrm{~N} \rightarrow 1.00 \mathrm{~mol} \mathrm{~N}$
$1.323 \mathrm{~mol} \mathrm{O} / 0.662 \mathrm{~mol} \mathrm{~N} \rightarrow 2.00 \mathrm{~mol} \mathrm{C}$
The $\mathrm{C}: \mathrm{H}: \mathrm{N}: \mathrm{O}$ ratio is $8: 9: 1: 2$. The empirical formula is therefore $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}$. The molar mass of this formula unit is 151.1 , which is the same as the molar mass of acetaminophen. Therefore, the empirical formula obtained is also the same as the molecular formula.
136. (D) The first step is to determine the mass of C, H, and O . $\mathrm{mol} \mathrm{C}=6.029 \mathrm{~g} \mathrm{CO}_{2} \times \frac{1 \mathrm{~mol} \mathrm{CO}_{2}}{44.009 \mathrm{~g} \mathrm{CO}_{2}} \times \frac{1 \mathrm{~mol} \mathrm{C}}{1 \mathrm{~mol} \mathrm{CO}_{2}}=0.1370 \mathrm{~mol}$ mass of $\mathrm{C}=0.1370 \mathrm{~mol} \mathrm{C} \times(12.011 \mathrm{~g} \mathrm{C} / 1 \mathrm{~mol} \mathrm{C})=1.646 \mathrm{~g} \mathrm{C}$
$\mathrm{mol} \mathrm{H}=1.709 \mathrm{~g} \mathrm{H}_{2} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}{18.015 \mathrm{~g} \mathrm{H}_{2} \mathrm{O}} \times \frac{2 \mathrm{~mol} \mathrm{H}}{1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}}=0.1897 \mathrm{~mol}$
mass of $\mathrm{H}=0.1897 \mathrm{~mol} \mathrm{H} \times(1.008 \mathrm{~g} \mathrm{H} / 1 \mathrm{~mol} \mathrm{H})=0.1912 \mathrm{~g} \mathrm{H}$
Mass of oxygen is obtained by difference: mass of $\mathrm{O}=2.174 \mathrm{~g}-(1.646+0.1912)=0.337 \mathrm{~g}$ $\mathrm{mol} \mathrm{O}=0.337 \mathrm{~g} \mathrm{O} \times \frac{1 \mathrm{~mol} \mathrm{O}}{16.00 \mathrm{~g} \mathrm{O}}=0.0211 \mathrm{~mol}$
(a) $\%$ Composition:
$1.646 \mathrm{~g} \mathrm{C} / 2.174 \mathrm{~g} \mathrm{Ibo}=75.71 \% \mathrm{C}$
$0.191 \mathrm{~g} \mathrm{H} / 2.174 \mathrm{~g}$ Ibo $=8.79 \% \mathrm{H}$
$0.337 \mathrm{~g} \mathrm{O} / 2.174 \mathrm{~g}$ Ibo $=15.5 \% \mathrm{O}$
(b) To determine the empirical formula, divide all mole values by the lowest one:
$0.1370 \mathrm{~mol} \mathrm{C} / 0.0211 \mathrm{~mol} \mathrm{O} \rightarrow 6.49 \mathrm{~mol} \mathrm{C}$
$0.1897 \mathrm{~mol} \mathrm{H} / 0.0211 \mathrm{~mol} \mathrm{O} \rightarrow 8.99 \mathrm{~mol} \mathrm{H}$
$0.0211 \mathrm{~mol} \mathrm{O} / 0.0211 \mathrm{~mol} \mathrm{O} \rightarrow 1.00 \mathrm{~mol} \mathrm{O}$
The empirical formula is obtained by multiplying the above ratios by 2 . The formula is $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{2}$.
137. (M) To construct a concept map, one must first start with the most general concepts. These concepts contain or are defined by more specific terms and concepts discussed in those sections. In this chapter, the main themes are types of chemical compounds (3-1), the mole concept (3-2), the composition of chemical compounds (3-3), oxidation state (3-4), and naming compounds (3-5). Naming of inorganic compounds (3-6) and organic compounds (3-7) are sub-topics of section 3-6. Take a look at the subsection headings and problems for more refining of the general and specific concepts.

