Investigation 2

II. INDEPENDENT EVENTS OCCURRING SIMULTANEOUSLY

1. Both heads: $1 / 2 \times 1 / 2=1 / 4$; one head, one tail: $1 / 2 \times 1 / 2=1 / 4$; head on one coin and tail on the other: $1 / 4+1 / 4=1 / 2$; both coins tails: $1 / 2 \times$ $1 / 2=1 / 4$. Two coins fall heads, heads about $1 / 4$ of the time; heads, tails (and vice versa) about $1 / 2$ of the time; and tails, tails, about $1 / 4$ of the time. Stated as a ratio instead of a fraction, the expected result is 1:2:1.

Table 2.3

Classes	Combinations	Class 0 Occurring	Observed	Expected	(0-E)
3 heads	HHH	$1 / 2 \times 1 / 2 \times 1 / 2=1 / 8$	7		
2 heads,	HHT, HTH,	$3(1 / 2 \times 1 / 2 \times 1 / 2)=3 / 8$	21		
1 Tail	THH				
1 head,	HTT, THT,	$3(1 / 2 \times 1 / 2 \times 1 / 2)=3 / 8$	21		
2 Tails	TTH	$1 / 2 \times 1 / 2 \times 1 / 2=1 / 8$		7	
3 tails	TTT	$8 / 8=1$	56	56	
Total	8 possible				

4. Table 2.4

Classes	Combinations	Probability of Each Class Occurring
4 heads	HHHH	$1 / 2 \times 1 / 2 \times 1 / 2 \times 1 / 2=1 / 16$
3 heads : 1 tail	HHHT, HHTH, HTHH, THHH	$4(1 / 2 \times 1 / 2 \times 1 / 2 \times 1 / 2)=4 / 16$
2 heads : 2 tails	HHTT, HTTH, THHT, TTHH, HTHT, THTH	$6(1 / 2 \times 1 / 2 \times 1 / 2 \times 1 / 2)=6 / 16$
3 tails : 1 head	HTTT, THTT TTHT, TTTH	$4(1 / 2 \times 1 / 2 \times 1 / 2 \times 1 / 2)=4 / 16$
4 tails	TTTT	$1 / 2 \times 1 / 2 \times 1 / 2 \times 1 / 2=1 / 16$

5. a. $(1 / 2)^{4}=1 / 16$
b. $4(1 / 2)^{3}(1 / 2)=4 / 16=1 / 4$
c. $6(1 / 2)^{2}(1 / 2)^{2}=6 / 16=3 / 8$
d. Two boys and two girls. There are more ways (6) in which a family can consist of 2 boys and 2 girls.
e. A boy $1 / 2$, a girl $1 / 2$.

Copyright © 2015 Pearson Education, Inc.
III. BINOMIAL EXPANSION

1. a. $(1 / 2)^{5}=1 / 32=a^{5}$ d. $10(1 / 2)^{2}(1 / 2)^{3}=10 / 32=5 / 16=10 a^{2} b^{3}$
b. $\quad 5(1 / 2)^{4}(1 / 2)=5 / 32=5 a^{4} b$
c. $10(1 / 2)^{3}(1 / 2)^{2}=10 / 32=5 / 16=10 a^{3} b^{2}$
e. $5(1 / 2)(1 / 2)^{4}=5 / 32=5 a b^{4}$
f. $(1 / 2)^{5}=1 / 32=b^{5}$
2. a. 1 boy and 5 girls: $6!/ 5!1!(1 / 2)(1 / 2)^{5}=6 / 64=3 / 32$
b. 3 boys and 3 girls: $6!/ 3!3!(1 / 2)^{3}(1 / 2)^{3}=20 / 64=5 / 16$
c. All 6 girls: $6!/ 0!6!(1 / 2)^{0}(1 / 2)^{6}=(1 / 2)^{6}=1 / 64$
3. A normal child: 3/4; an albino: $1 / 4$.
a. All 4 normal: $(3 / 4)^{4}=81 / 256$
b. 3 normal and 1 albino: $4(3 / 4)^{3}(1 / 4)=108 / 256=27 / 64$
c. 2 normal and 2 albino: $6(3 / 4)^{2}(1 / 4)^{2}=54 / 256$
d. 1 normal and 3 albinos: $4(3 / 4)(1 / 4)^{3}=12 / 256$
e. All 4 albinos: $(1 / 4)^{4}=1 / 256$
IV. EITHER-OR SITUATIONS (MUTUALLY EXCLUSIVE EVENTS)
4. Either C or c gametes; $1 / 2+1 / 2=1$ or 100%
5. Either the genotype $A A$ or the genotype Aa: $1 / 4+2 / 4=3 / 4$
a. Either $a a B$ - or $a a b b: 3 / 16+1 / 16=4 / 16=1 / 4$
b. Either $a a b b$ or $A a B b: 1 / 16+4 / 16=5 / 16$
c. Either $A-b b$ or $A A b b: 3 / 16+1 / 16=5 / 16$
d. Either $A-B$ - or $a a b b: 9 / 16+1 / 16=10 / 16=5 / 8$
V. PROBABILITY AND GENETIC COUNSELING

$$
\begin{array}{ll}
\text { a. } & 4 \times 7: 1(a a) \times 1(A a) \times 1 / 2=1 / 2 \\
\text { b. } & 5 \times 1: 1(A a) \times 2 / 3(A a) \times 1 / 4=2 / 12=1 / 6 \\
\text { c. } & 6 \times 13: \\
\text { d. } & 10 \times 14: \\
\text { d } & 2 / 3(A a) \times 1 / 2(A a) \times 1 / 4=1 / 8 \\
\text { e. } & 3 \times 17: \\
2 / 3(A a) \times 1 / 3(A a) \times 1 / 4=2 / 36=1 / 18
\end{array}
$$

Note: \#17 has a $1 / 3$ probability because his overall is his mother's probability of being heterozygous (2/3) times his probability (1/2) if his mother was heterozygous.
f. $\quad 3 \times 15: \quad 2 / 3(A a) \times 1 / 2(A a) \times 1 / 4=2 / 24=1 / 12$
g. $16 \times 17: 1 / 2(A a) \times(2 / 3 \times 1 / 2)(A a) \times 1 / 4=2 / 48=1 / 24$

