MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Determine the intervals of the domain over which the function is continuous.

 $A)\left[\frac{13}{3},\infty\right]$

B) $\left[-\infty, \frac{13}{3}\right]$

C) [0, ∞)

D) (-∞, ∞)

2)

Answer: D

 $\begin{array}{c}
 & \downarrow \\
 & \downarrow \\$

Answer: B

B) $(-\infty, \infty)$

C) [0, ∞)

D) $(0, \infty)$

3)

-10 y 10 x 10 x

A) $(0, \infty)$ Answer: D B) $(-\infty, 0)$; $(0, \infty)$

C) $(-\infty, 0)$

D) (-∞, ∞)

A) (-∞, -4); (-4, ∞)

B) (-∞, ∞)

C) (-∞, -4]

D) (-4, ∞)

Answer: C

5)

A) (-∞, ∞) Answer: D

B) (-∞, -1); (-1, ∞) C) (0, ∞)

D) $(-\infty, 1)$; $(1, \infty)$

6)

A) $(-\infty, 2)$; $(2, \infty)$

B) $(-\infty, -1)$; $(-1, \infty)$ C) $(-\infty, 1)$; $(1, \infty)$ D) $(-\infty, \infty)$

Answer: C

A) $[0, \infty)$ Answer: A B) [0, 2)

C) [2, ∞)

D) [-2, ∞)

8)

Answer: D

B) (0, 5)

C) (5, ∞)

D) (-∞, ∞)

Determine the intervals on which the function is increasing, decreasing, and constant.

C) Increasing on $(-\infty, -1)$; Decreasing on $(-1, \infty)$

B) Increasing on $(1, \infty)$; Decreasing on $(-\infty, 1)$

D) Increasing on $(-\infty, 1)$; Decreasing on $(1, \infty)$

Answer: A

- A) Increasing on $(-\infty, 0)$; Decreasing on $(-\infty, 0)$
- C) Increasing on $(\infty, 0)$; Decreasing on $(0, -\infty)$

Answer: B

- B) Increasing on $(0, \infty)$; Decreasing on $(-\infty, 0)$
- D) Increasing on $(-\infty, 0)$; Decreasing on $(0, \infty)$

11)

- A) Increasing on $(-\infty, 0)$; Decreasing on $(0, \infty)$
- C) Increasing on $(0, \infty)$; Decreasing on $(-\infty, 0)$

Answer: A

- B) Increasing on $(\infty, 0)$; Decreasing on $(0, -\infty)$
- D) Increasing on $(-\infty, 0)$; Decreasing on $(-\infty, 0)$

12)

- A) Increasing on $(-\infty, 3)$; Decreasing on $(3, \infty)$
- C) Increasing on $(3, \infty)$; Decreasing on $(-\infty, 3)$

Answer: A

- B) Increasing on $(-\infty, 3)$; Decreasing on $(-\infty, 3)$
- D) Increasing on $(3, \infty)$; Decreasing on $(3, \infty)$

- A) Decreasing on $(-\infty, \infty)$
- C) Increasing on $(0, \infty)$; Decreasing on $(-\infty, 0)$
- B) Increasing on $(-\infty, 0)$; Decreasing on $(0, \infty)$
- D) Increasing on $(-\infty, \infty)$

Answer: D

- A) Increasing on $(-\infty, 4)$; Decreasing on $(-4, \infty)$; Constant on $(4, \infty)$
- B) Increasing on $(4, \infty)$; Decreasing on $(-4, \infty)$; Constant on (-4, 4)
- C) Increasing on $(-\infty, 4)$; Decreasing on $(-\infty, -4)$; Constant on $(4, \infty)$
- D) Increasing on $(4, \infty)$; Decreasing on $(-\infty, -4)$; Constant on (-4, 4)

Answer: D

- A) Increasing on (1, 3); Decreasing on (-2, 0) and (3, 5); Constant on (2, 5)
- B) Increasing on (-2, 0) and (3, 4); Decreasing on (-5, -2) and (1, 3)
- C) Increasing on (-1, 0) and (3, 5); Decreasing on (0, 3); Constant on (-5, -3)
- D) Increasing on (-2, 0) and (3, 5); Decreasing on (1, 3); Constant on (-5, -2)

Answer: D

16)

- A) Increasing on (-3, -1); Decreasing on (-5, -2) and (2, 4); Constant on (-1, 2)
- B) Increasing on (-5, -3) and (2, 5); Decreasing on (-3, 0); Constant on (0, 2)
- C) Increasing on (-3, 1); Decreasing on (-5, -3) and (0, 5); Constant on (1, 2)
- D) Increasing on (-3, 0); Decreasing on (-5, -3) and (2, 5); Constant on (0, 2)

Answer: D

Find the domain and the range for the function.

17)

Answer: D

D) D: $(-\infty, \infty)$, R: $(-\infty, \infty)$

18)

C) D: $(0, \infty)$, R: $(0, \infty)$

B) D:
$$(-\infty, \infty)$$
, R: $(-\infty, \infty)$

D) D:
$$(-\infty, 0]$$
, R: $(-\infty, 0]$

A) D: $(0, \infty)$, R: $(-\infty, 0)$

B) D: $(2, \infty)$, R: $[0, \infty)$ C) D: $[0, \infty)$, R: $(-\infty, 0]$ D) D: $[2, \infty)$, R: $[0, \infty)$

Answer: D

20)

A) D: $(-\infty, \infty)$, R: $[6, \infty)$

C) D: $(-\infty, \infty)$, R: $(-\infty, \infty)$ Answer: A

B) D: $(0, \infty)$, R: $(-\infty, 3]$

D) D: $(-\infty, 0)$, R: $(-\infty, 0)$

21)

A) D: $(-\infty, 10]$, R: $[10, \infty)$

C) D: $(-\infty, 10]$, R: $[0, \infty)$

Answer: C

B) D: $[0, \infty)$, R: $(-\infty, 10]$

D) D: $(-\infty, \infty)$, R: $[0, \infty)$

A) D:
$$(-\infty, -6) \cup (-6, \infty)$$
, R: $(-\infty, \infty)$

C) D: $(-\infty, 6) \cup (6, \infty)$, R: $(-\infty, 1) \cup (1, \infty)$

Answer: C

B) D:
$$(-\infty, \infty)$$
, R: $(-\infty, \infty)$

D) D: (0, ∞), R: (1, ∞)

23)

A) D: $(-\infty, \infty)$, R: $(-\infty, \infty)$

C) D: $(-\infty, 10) \cup (10, \infty)$, R: $(-\infty, 5) \cup (5, \infty)$

Answer: D

B) D:
$$(-\infty, -5) \cup (-5, \infty)$$
, R: $(-\infty, -10) \cup (-10, \infty)$

D) D: $(-\infty, 5) \cup (5, \infty)$, R: $(-\infty, 10) \cup (10, \infty)$

24)

A) D: $[0, \infty)$, R: $[0, \infty)$

C) D: $[-2, \infty)$, R: $(-\infty, 0]$

Answer: D

D) D: $[0, \infty)$, R: $[2, \infty)$

- A) D: (4, ∞), R: (-∞, 0]
- C) D: $(0, \infty)$, R: $[0, \infty)$

- B) D: $(-\infty, \infty)$, R: $(-\infty, \infty)$
- D) D: (4, ∞), R: [0, ∞)

Answer: B

Determine if the function is increasing or decreasing over the interval indicated.

26)
$$f(x) = 7x - 5$$
; $(-\infty, \infty)$

A) Increasing

B) Decreasing

Answer: A

27)
$$f(x) = \frac{1}{4}x^2 - \frac{1}{2}x$$
; $(1, \infty)$

A) Increasing

B) Decreasing

Answer: A

28)
$$f(x) = x^2 - 2x + 1$$
; $(1, \infty)$

A) Increasing

B) Decreasing

Answer: A

29)
$$f(x) = (x^2 - 9)^2$$
; (3, ∞)

A) Increasing

B) Decreasing

Answer: A

30)
$$f(x) = \frac{1}{x^2 + 1}$$
; $(-\infty, 0)$

A) Increasing

B) Decreasing

Answer: A

- 31) $f(x) = \sqrt{4 x}$; $(-\infty, 4)$
 - A) Increasing

B) Decreasing

Answer: B

- 32) f(x) = |x 8|; $(-\infty, 8)$
 - A) Increasing

B) Decreasing

33)
$$f(x) = \frac{1}{x^2} + 7$$
; $(0, \infty)$

A) Increasing

B) Decreasing

Answer: B

34) $f(x) = -\sqrt{x+3}$; (-3, ∞) A) Increasing

B) Decreasing

Answer: B

Determine if the graph is symmetric with respect to the x-axis, y-axis, or origin.

35)

- A) x-axis, origin
- B) Origin
- C) y-axis, origin
- D) y-axis

Answer: D

36)

A) y-axis

- B) x-axis, origin
- C) y-axis, origin
- D) x-axis

Answer: A

- A) x-axis, origin C) Origin

Answer: D

- B) x-axis
- D) x-axis, y-axis, origin

38)

A) y-axis

Answer: D

B) x-axis

C) x-axis, origin

D) Origin

39)

A) x-axis Answer: B

B) Origin

C) No symmetry

D) y-axis

Based on the ordered pairs seen in the pair of tables, make a conjecture as to whether the function defined in Y_1 is even, odd, or neither even nor odd.

40)

X	Y ₁	
0	0	
1	-3	
2	-3 -6 -9	
3		
4	-12	
5 6	-15	
6	-18	
X = 0		

X	Y ₁	
-6	18	
-5	15	
-4	12	
-3	9	
-6 -5 -4 -3 -2 -1	6	
-1	3	
0	0	
X = -6		

A) Odd

Answer: A

B) Neither even nor odd

C) Even

41)

Х	Y ₁	
0	0	
1	1	
2	16	
2 3	81	
4	256	
4 5 6	625	
6	1296	
X = 0		

X	Y ₁	
-6	1296	
-5	625	
-4	256	
-3	81	
-6 -5 -4 -3 -2 -1	16	
-1	1	
0	0	
X = -6		

A) Neither even nor odd

Answer: C

B) Odd

C) Even

42)

Х	Y ₁	
0	0	
1	-1	
2 3	12	
3	75	
4	248	
5 6	615	
6	1284	
X = 0		

X	Y ₁	
-6	1308	
-5	635	
-4	264	
-3	87	
-6 -5 -4 -3 -2 -1	20	
-1	3	
0	0	
X = -6		

A) Neither even nor odd

Answer: A

B) Odd

C) Even

X	Y ₁	
0	0	
1	1	
2	4	
3	9	
4	16	
5 6	16 25 36	
6	36	
X = 0		

X	Y ₁	
-6	36	
-5	25	
-4	16	
-3	9	
-6 -5 -4 -3 -2 -1	4	
-1	1	
0	0	
X = -6		

A) Neither even nor odd

Answer: C

B) Odd

C) Even

44)

X	Y ₁	
0	-3 -2	
1	-2	
2	1	
2 3	6	
4	13	
4 5 6	22 33	
6	33	
X = 0		

X	Y ₁	
-6	33	
-5	22	
-4	13	
-3	6	
-6 -5 -4 -3 -2 -1	1	
-1	-2 -3	
0	-3	
X = -6		

A) Even

Answer: A

B) Neither even nor odd

C) Odd

45)

X	Y ₁	
0	-4	
1	-4 -3	
2	4	
3	23	
4	60	
5 6	121	
6	212	
X = 0		

X	Y ₁	
-6	-220	
-5	-129	
-4	-68	
-6 -5 -4 -3 -2	-31	
	-12	
-1	-5 -4	
0	-4	
X = -6		

A) Odd

Answer: C

B) Even

C) Neither even nor odd

X	Y ₁	
0	2	
1	2	
2 3	4	
3	8	
4	14	
4 5 6	22 32	
6	32	
X = 0		

X	Y ₁	
-6	44	
-5	32	
-6 -5 -4 -3 -2 -1	22	
-3	14	
-2	8	
-1	4	
0	2	
X = -6	·	•

A) Even

Answer: C

44

C) Neither even nor odd

47)

Х	Y ₁	
0	0	
1	4	
2	8	
2 3	12	
4	16	
4 5 6	20 24	
6	24	
X = 0		

X	Y ₁	
-6	-24	
-5	-20	
-4	-16	
-3	-12	
-6 -5 -4 -3 -2 -1	-8 -4	
-1	-4	
0	0	
X = -6		

A) Neither even nor odd

Answer: C

B) Even

C) Odd

48)

Х	Y ₁	
0	0	
1	-2	
2	-8	
3	-2 -8 -18	
4	-32	
5 6	-32 -50 -72	
6	-72	
X = 0		

X	Y ₁	
-6	-72	
-5	-50	
-4	-32	
-3	-18	
-6 -5 -4 -3 -2 -1	-8	
-1	-8 -2	
0	0	
X = -6		

A) Neither even nor odd

Answer: C

B) Odd

C) Even

X	Y ₁	
0	0	
1	2	
2	6	
2 3	12	
4	20	
5 6	30	
6	40	
X = 0	-	•

X	Y ₁
-6	30
-5	20
-4	12
-3	6
-6 -5 -4 -3 -2 -1	2
-1	0
0	0
X = -6	

A) Odd

Answer: C

B) Even

C) Neither even nor odd

Determine whether the function is even, odd, or neither.

50) $f(x) = 4x^2 - 5$

A) Even

B) Odd

C) Neither

Answer: A

51) f(x) = (x + 9)(x + 8)

A) Even

B) Odd

C) Neither

Answer: C

52) $f(x) = -5x^3 + 7x$

A) Even

B) Odd

C) Neither

Answer: B

53) $f(x) = 4x^5 + 4x^3$

A) Even

B) Odd

C) Neither

Answer: B

54) $f(x) = -0.88x^2 + |x| - 9$

A) Even

B) Odd

C) Neither

Answer: A

55) $f(x) = -5x^4 + 8x + 6$

A) Even

B) Odd

C) Neither

Answer: C

56) $f(x) = |x^2 + x|$

A) Even

B) Odd

C) Neither

Answer: C

57) $f(x) = x^3 - \frac{1}{x}$

A) Even

B) Odd

C) Neither

Determine whether the graph of the given function is symmetric with respect to the y-axis, symmetric with respect to the origin, or neither.

58)
$$f(x) = -5x^2 - 3$$

B) Origin

C) Neither

Answer: A

59)
$$f(x) = |4x| + 5$$

B) Origin

C) Neither

Answer: A

60)
$$f(x) = -4x^3$$

B) Origin

C) Neither

Answer: B

61)
$$f(x) = 4x^2 + 5$$

B) Origin

C) Neither

Answer: A

62)
$$f(x) = -2x^3 + 2x$$

B) Origin

C) Neither

Answer: B

63)
$$f(x) = 7x^5 - 6x^3$$

B) Origin

C) Neither

Answer: B

64)
$$f(x) = 0.44x^2 + |x| - 7$$

B) Origin

C) Neither

Answer: A

65) $f(x) = -3x^4 + 4x + 8$

B) Origin

C) Neither

Answer: C

66)
$$f(x) = x + \frac{1}{x^6}$$

B) Origin

C) Neither

Answer: C

Provide an appropriate response.

67) True or False: The function $y = \frac{x^2 - 2^2}{x - 2}$ is continuous at x = 2.

A) True

B) False

- 68) Sketch the graph of $f(x) = -x^2$. At which of these points is the function decreasing?
 - A) -2

B) -4

C) 2

D) 0

Answer: C

- 69) True or False: A continuous function cannot be drawn without lifting the pencil from the paper.
 - A) True

B) False

Answer: B

70) What symmetry does the graph of y = f(x) exhibit?

A) y-axis

B) Origin

- C) x-axis
- D) No symmetry

Answer: A

71) What symmetry does the graph of y = f(x) exhibit?

A) x-axis

B) Origin

C) y-axis

D) No symmetry

Answer: B

72) Complete the table if f is an even function.

- B) $\frac{x}{(x)^{2}} = \frac{-4 2 1}{x^{2}}$
- D)
 - x |-4 -2 -1 1 2 4 f(x) | 7 -4 3 -3 4 -7

SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

- 73) Complete the right half of the graph of y = f(x) for each of the following conditions:
 - (i) f is odd.

(ii) f is even.

Answer: (i) f is odd.

(ii) f is even.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

Write an equation that results in the indicated translation.

74) The squaring function, shifted 5 units upward

A)
$$y = \frac{x^2}{5}$$

$$B) y = 5x^2$$

C)
$$y = x^2 - 5$$

D)
$$y = x^2 + 5$$

Answer: D

75) The absolute value function, shifted 8 units to the left

A)
$$y = |x + 8|$$

B)
$$y = |x| - 8$$

C)
$$y = |x - 8|$$

D)
$$y = |x| + 8$$

Answer: A

76) The absolute value function, shifted 9 units upward

A)
$$y = |x + 9|$$

B)
$$y = |x - 9|$$

C)
$$y = |x| - 9$$

D)
$$y = |x| + 9$$

Answer: D

77) The square root function, shifted 8 units to the right

A)
$$y = \sqrt{x} + 8$$

B)
$$y = \sqrt{x+8}$$

C)
$$y = \sqrt{x} - 8$$

D)
$$y = \sqrt{x - 8}$$

Answer: D

78) The square root function, shifted 5 units to the left

A)
$$y = \sqrt{x} - 5$$

B)
$$y = \sqrt{x} + 5$$

C)
$$y = \sqrt{x - 5}$$

D)
$$y = \sqrt{x + 5}$$

Answer: D

Answer: C

79) The square root function, shifted 7 units upward

A)
$$y = \sqrt{x - 7}$$

B)
$$y = \sqrt{x} - 7$$

C)
$$y = \sqrt{x} + 7$$

D)
$$y = \sqrt{x + 7}$$

80) The square root function, shifted 5 units downward

A)
$$y = \sqrt{x - 5}$$

B)
$$y = \sqrt{x} + 5$$

C)
$$y = \sqrt{x} - 5$$

D)
$$y = \sqrt{x + 5}$$

Answer: C

Use translations of one of the basic functions to sketch a graph of y = f(x) by hand.

81)
$$y = x^2 - 4$$

Answer: D

Answer: C

83)
$$y = x^3 + 1$$

A)

C)

Answer: D

D)

Answer: B

B)

Answer: C

Answer: C

87)
$$y = (x - 2)^2 - 6$$

Answer: D

 $The \ function \ Y_2 \ is \ defined \ as \ Y_1 + k \ for \ some \ real \ number \ k. \ Based \ upon \ the \ given \ information \ about \ Y_1 \ and \ Y_2, \ find \ k.$

88)

Х	Y ₁	Y ₂
0	-1	3
1	0	4
2	3	7
2 3	8	12
4	15	19
5 6	24	28 39
6	35	39
X = 0		

A) 4

B) 1

C) 5

D) 2

Answer: A

89)

X	Y ₁	Y ₂
0	-3 -2	-8
1		-7
2	5	0
3	24	19
4	61	56
5	122	117
6	213	208
X = 0		

A) -4

Answer: B

B) -5

C) 4

D) 5

90)

X	Y ₁	Y ₂
0	-2	8
1	-1	9
2 3	6	16
3	25	35
4	62	72
4 5 6	123	133
6	214	224
X = 0		

A) 6

B) 10

C) -6

D) -10

Х	Y ₁	Y ₂
0	-3 -2	-5 -4
1	-2	-4
2	1	-1
3	6	4
4	13	11
5 6	22	20
6	33	31
X = 0		

A) 1

B) -1

C) 2

D) -2

Answer: D

92)

X	Y ₁	Y ₂
0	-3	-18
1	-2	-17
2	13	-2
3	78	63
4	253	238
5	622	607
6	1293	1278
X = 0		

A) 28

B) -25

C) 12

D) -15

Answer: D

93)

A) -2

B) -3

C) 5

D) 4

Answer: A

95)

A) 7

Answer: D

96)

A) -4

----- D

Answer: D

97)

A) -4

B) 4

B) -6

B) 3

C) 5

D) -5

D) 3

D) -8

D) -5

Determine the domain and range of the function from the graph.

98)

A)
$$(-\infty, \infty)$$
; $[-10, \infty)$

C)
$$(-\infty, 0) \cup (0, \infty)$$
; $(-\infty, 0) \cup (0, \infty)$

Answer: A

B)
$$(0, \infty)$$
; $[35, \infty)$

D)
$$(-\infty, 0)$$
; $(-\infty, 0)$

99)

A)
$$(-\infty, 2) \cup (2, \infty)$$
; $(-\infty, 0) \cup (0, \infty)$

C)
$$(\sqrt{2}, \infty)$$
; $(-\infty, 0]$

Answer: B

B)
$$(-\infty, 2]$$
; $[0, \infty)$

D)
$$(-\infty, \infty)$$
; $[0, \infty)$

100)

A) $[0, \infty)$; $[0, \infty)$

Answer: D

B) $[3, \infty)$; $[0, \infty)$ C) $[-3, \infty)$; $(-\infty, 0]$ D) $[0, \infty)$; $[3, \infty)$

Answer: C

- B) $[-3,\infty)$; $(-\infty,\infty)$ C) $(-\infty,\infty)$; $[-3,\infty)$ D) $(-\infty,\infty)$; $[0,\infty)$

102)

- A) $[2, \infty)$; $(-\infty, \infty)$
- B) $(-\infty, \infty)$; $(-\infty, \infty)$ C) $[0, \infty)$; $[0, \infty)$ D) $(-\infty, \infty)$; $[-5, \infty)$

Answer: B

Use translations of one of the basic functions defined by $y = x^2$, $y = x^3$, $y = \sqrt{x}$, or y = |x| to sketch a graph of y = f(x) by hand. Do not use a calculator.

103)
$$y = x^2 - 2$$

Answer: A

104) y = |x - 6|

B)

Answer: D

105) $y = (x+4)^3$

B)

Answer: D

106)
$$y = x^3 + 4$$

Answer: B

107)
$$y = \sqrt{x+3}$$

B)

Answer: A

108) y = -3 + |x|

B)

Answer: C

109) $y = (x - 6)^2 - 3$

B)

Answer: D

110) $y = (x + 4)^3 - 2$

B)

Answer: D

111) $y = (x - 2)^2 + 2$

B)

C)

Answer: A

112) y = |x + 6| + 5

B)

Answer: D

113) $y = \sqrt{x+5} - 5$

B)

B)

C)

D)

Answer: D

The graph is a translation of one of the basic functions defined by $y = x^2$, $y = x^3$, $y = \sqrt{x}$, or y = |x|. Find the equation that defines the function.

114)

A) $y = x^2 - 3$

Answer: A

115)

A)
$$y = (x + 4)^2$$

Answer: D

B)
$$y = x^2 - 4$$

C)
$$y = (x-4)^2 + 1$$
 D) $y = (x-4)^2$

D)
$$y = (x - 4)^2$$

116)

A)
$$y = |x - 3|$$

Answer: A

B)
$$y = |x + 3|$$

D)
$$y = |x| - 3$$

117)

A)
$$y = (x+2)^3 + 3$$

B)
$$y = (x + 2)$$

D)
$$y = x^3 + 2$$

Answer: B

118)

A) $y = \sqrt{x} + 4$

Answer: D

B) $y = \sqrt{x - 3}$

C) $y = \sqrt{x + 3}$

D) $y = \sqrt{x+3} + 4$

119)

A) $y = (x - 3)^2 - 5$

Answer: D

Find the linear equation that meets the stated criteria.

120) The linear equation y = 233x + 6320 provides an approximation of the annual cost (in dollars) to rent an apartment at the Leisure Village Retirement Community, where x = 1 represents 1986, x = 2 represents 1987, and so on. Write an equation that yields the same y-values when the exact year number is entered.

A) y = 233(x - 1985) + 6320C) y = 233(1986 - x) + 6320

B) y = 233(1985 - x) + 6320

D) y = 233(x - 1986) + 6320

Answer: A

121) The linear equation y = 479x + 3420 provides an approximation of the annual cost (in dollars) of health insurance for a family of three, where x = 1 represents 1993, x = 2 represents 1994, and so on. Write an equation that yields the same y-values when the exact year number is entered.

A) y = 479(x - 1993) + 3420

B) y = 479(1992 - x) + 3420

C) y = 479(1993 - x) + 3420

D) y = 479(x - 1992) + 3420

Answer: D

122) The linear equation y = 81.83x + 1169 provides an approximation of the value (in dollars) of an account opened on January 1, 1990, in the amount of \$1169 and earning 7% simple interest, where x = 0 represents January 1, 1990, x = 1 represents January 1, 1991, x = 2 represents January 1, 1992, and so on. Write an equation that yields the same y-values when the exact year number is entered.

A) y = 81.83(x - 1991) + 1169

B) y = 81.83(1991 - x) + 1169

C) y = 81.83(x - 1990) + 1169

D) y = 81.83(1990 - x) + 1169

Answer: C

123) The table shows the number of members in the Windy City Edsel Owners Club during the years 1980-1984.

Year	Number of Members
1980	64
1981	71
1982	75
1983	86
1984	99

Use a calculator to find the least squares regression line for this data, where x = 0 represents 1980, x = 1represents 1981, and so on.

A)
$$y = 8.3x + 61$$

B)
$$y = 8.5x + 62$$
 C) $y = 8.1x + 59$

C)
$$y = 8.1x + 59$$

D)
$$y = 7.9x + 63$$

Answer: B

124) The table shows the number of members in the Windy City Edsel Owners Club during the years 1986-1990.

Year	Number of Members
1986	111
1987	132
1988	167
1989	197
1990	219

Use a calculator to find the least squares regression line for this data, where x = 0 represents 1986, x = 1represents 1987, and so on.

A)
$$y = 28.3x + 106$$

B)
$$y = 28.4x + 105$$
 C) $y = 28.1x + 109$

C)
$$y = 28.1x + 109$$

D)
$$y = 27.6x + 111$$

Answer: C

Provide an appropriate response.

- 125) Explain how the graph of g(x) = f(x) 4 is obtained from the graph of y = f(x).
 - A) Shift the graph of f to the left 4 units.
- B) Shift the graph of f downward 4 units.
- C) Shift the graph of f to the right 4 units.
- D) Shift the graph of f upward 4 units.

Answer: B

- 126) Explain how the graph of g(x) = f(x 4) is obtained from the graph of y = f(x).
 - A) Shift the graph of f downward 4 units.
- B) Shift the graph of f upward 4 units.
- C) Shift the graph of f to the right 4 units.
- D) Shift the graph of f to the left 4 units.

Answer: C

127) Which function represents a vertical translation of the parabola $y = (x - 2)^2 + 1$?

A)
$$y = (x - 2)^2 + 3$$

B)
$$y = x^2 + 1$$

C)
$$y = (x+2)^2 + 1$$

D)
$$y = -(x-2)^2 + 1$$

Answer: A

128) The graph shown is a translation of the function y = |x|. The graph shown is of the form y = |x - h| + k. What are the values of h and k?

- A) h = -5 k = 5
- B) h = -5, k = -5
- C) h = 5, k = 5
- D) h = 5, k = -5

Answer: D

129) Sketch the graph of y = f(x - 3) for the given graph of y = f(x).

(-3, 0)

(-2, -5) (0, 3)

y (5, 8) (1, -8)

Answer: D

130) Sketch the graph of y = f(x + 5) for the given graph of y = f(x).

A)

D)

Answer: A

131) Use the graph of y = f(x) to find the x-intercepts of the graph of y = f(x + 2).

A) 0, 2, 6 Answer: D B) -2, 0, 4

C) -3, 0

D) -4, -2, 2

Write the equation that results in the desired transformation.

132) The square root function, reflected across the x-axis

A)
$$y = \sqrt{x} - 1$$

B)
$$y = \sqrt{x}$$

C)
$$y = -\sqrt{x}$$

D) $y = \sqrt{-x}$

Answer: C

133) The squaring function, vertically stretched by a factor of 2

A)
$$y = 2x^2$$

Answer: A

B)
$$y = 2(x - 2)x^2$$

C)
$$y = -2x^2$$

D)
$$y = (x - 2)^2$$

134) The cubing function, vertically shrunk by a factor of 0.4

A)
$$y = (x + 0.4)^3$$

B)
$$y = (x - 0.4)^3$$

C)
$$y = 0.4 \sqrt[3]{x}$$

D)
$$y = 0.4x^3$$

Answer: D

135) The squaring function, vertically stretched by a factor of 4 and reflected across the x-axis

A)
$$y = (x - 4)^2$$

B)
$$y = 4x^2$$

C)
$$y = 4(x - 4)x^2$$

D)
$$y = -4x^2$$

Answer: D

136) The absolute value function, vertically stretched by a factor of 8.2 and reflected across the x-axis

A)
$$y = 8.2 |x|$$

B)
$$y = 8.2 |-x|$$

C)
$$y = -8.2 |x|$$

D)
$$y = -|x + 8.2|$$

Answer: C

137) The absolute value function, vertically stretched by a factor of 7.6 and reflected across the y-axis

A)
$$y = |-x - 7.6|$$

B)
$$y = 7.6 |-x|$$

C)
$$y = |-x + 7.6|$$

D)
$$y = -7.6|x|$$

Answer: B

Use transformations of graphs to sketch the graphs of y₁ and y₂. Graph y₂ as a dashed curve.

138)
$$y_1 = x^2$$
; $y_2 = x^2 - 5$

A)

C)

Answer: D

139) $y_1 = |x|$; $y_2 = |x - 6|$

A)

C)

Answer: B

B)

C)

Answer: C

142)
$$y_1 = x^2$$
; $y_2 = (x - 6)^2 - 2$

C)

Answer: C

143)
$$y_1 = x^2$$
, $y_2 = -4(x+2)^2 + 4$

B)

C)

D)

Answer: D

144)
$$y_1 = \sqrt[3]{x}, y_2 = \sqrt[3]{x} + 2$$

C)

Answer: A

B)

145)
$$y_1 = |x|, y_2 = \frac{1}{2}|x+3| - 2$$

C)

Answer: A

B)

146) $y_1 = \sqrt[3]{x}, y_2 = \sqrt[3]{-x} + 5$

A)

B)

C)

D)

Answer: A

Fill in each blank with the appropriate response.

- 147) The graph of y = -6|x| can be obtained from the graph of y = |x| by vertically stretching by a factor of ___ and reflecting across the __-axis.
 - A) 6; y

B) -6; x

C) 6; x

D) -6; y

Answer: C

- 148) The graph of $y = -2x^2$ can be obtained from the graph of $y = x^2$ by vertically stretching by a factor of ___ and reflecting across the __-axis.
 - A) -2; y

B) 2; y

C) 2; x

D) -2; x

Answer: C

- 149) The graph of $y = -5(x 4)^2 + 8$ can be obtained from the graph of $y = x^2$ by shifting horizontally ____ units to the ____, vertically stretching by a factor of ____, reflecting across the __-axis, and shifting vertically ___ units in the _____ direction.
 - A) 4; right; 8; y; 5; downward

B) 4; right; 5; x; 8; upward

C) 4; right; 8; x; 5; upward

D) 4; left; 5; x; 8; upward

Answer: B

- 150) The graph of $y = -6(x + 3)^2 8$ can be obtained from the graph of $y = x^2$ by shifting horizontally ___ units to the _____, vertically stretching by a factor of ____, reflecting across the __-axis, and shifting vertically ___ units in the _____ direction.
 - A) 3; right; 6; x; 8; upward

B) 3; left; 8; x; 6; downward

C) 3; right; 6; x; 8; downward

D) 3; left; 6; x; 8; downward

Answer: D

- 151) The graph of $y = -\frac{1}{5}(x+2)^2 8$ can be obtained from the graph of $y = x^2$ by shifting horizontally ___ units to the _____, vertically shrinking by a factor of ___, reflecting across the __-axis, and shifting vertically ___ units
 - A) 2; left; 8; x; $\frac{1}{5}$; downward

B) 2; right; $\frac{1}{5}$; x; 8; downward

C) 2; right; $\frac{1}{5}$; x; 8; upward

D) 2; left; $\frac{1}{5}$; x; 8; downward

Answer: D

- 152) The graph of $y = -\frac{1}{3}|-x| + 2$ can be obtained from the graph of y = |x| by reflecting across the __-axis, vertically shrinking by a factor of ____, reflecting across the __-axis, and shifting vertically ___ units in the _____ direction.
 - A) y; $\frac{1}{3}$; x; 2; downward

B) x; $\frac{1}{3}$; x; 2; upward

C) x; 2; y; $\frac{1}{3}$; upward

D) y; $\frac{1}{3}$; x; 2; upward

Answer: D

Give the equation of the function whose graph is described.

- 153) The graph of y = |x| is vertically stretched by a factor of 6, and the resulting graph is reflected across the x-axis.
 - A) y = -6|x|
- B) y = -|x + 6|
- C) y = -6 | -x |
- D) y = 6 x

Answer: A

- 154) The graph of $y = x^2$ is shifted 4 units to the right. This graph is then vertically stretched by a factor of 6 and reflected across the x-axis. Finally, the graph is shifted 8 units upward.
 - A) $y = -6(x-4)^2 8$
- B) $y = -6(x+8)^2 + 4$
- C) $y = -6(x-4)^2 + 8$ D) $y = -6(x+4)^2 + 8$

Answer: C

- 155) The graph of $y = x^2$ is shifted 4 units to the left. This graph is then vertically stretched by a factor of 6 and reflected across the x-axis. Finally, the graph is shifted 8 units downward.
 - A) $y = -6(x+8)^2 4$
- B) $y = -6(x-4)^2 8$
- C) $y = -6(x-4)^2 + 8$ D) $y = -6(x+4)^2 8$

Answer: D

156) The graph of $y = x^2$ is shifted 3 units to the left. This graph is then vertically shrunk by a factor of $\frac{1}{5}$ and reflected across the x-axis. Finally, the graph is shifted 7 units downward.

A)
$$y = -\frac{1}{5}(x+3)^2 - 7$$

B)
$$y = \frac{1}{5}(x-3)^2 - 7$$

C)
$$y = -\frac{1}{5}(x-3)^2 - 7$$

A)
$$y = -\frac{1}{5}(x+3)^2 - 7$$
 B) $y = \frac{1}{5}(x-3)^2 - 7$ C) $y = -\frac{1}{5}(x-3)^2 - 7$ D) $y = -\frac{1}{5}(x-3)^2 + 7$

Answer: A

157) The graph of y = |x| is reflected across the y-axis and vertically shrunk by a factor of $\frac{2}{3}$. This graph is then reflected across the x-axis. Finally, the graph is shifted 2 units upward.

A)
$$y = -\frac{2}{3}|-x| + 2$$

A)
$$y = -\frac{2}{3}|-x| + 2$$
 B) $y = -\left|-x - \frac{2}{3}\right| + 2$ C) $y = \frac{2}{3}|x| + 2$

C)
$$y = \frac{2}{3}|x+2|$$

D)
$$y = \frac{2}{3}|x| + 2$$

Answer: A

158) The graph of $y = x^3$ is shifted 2.4 units to the right and then vertically shrunk by a factor of 0.5.

A)
$$y = 0.5(x + 2.4)^3$$

B)
$$y = 0.5(x - 2.4)^3$$

C)
$$y = 0.5x^3 + 2.4$$

D)
$$y = 2.4(x - 0.5)^3$$

Answer: B

159) The graph of y = |x| is vertically stretched by a factor of 3.9. This graph is then reflected across the x-axis. Finally, the graph is shifted 0.79 units downward.

A)
$$y = 3.9 |x - 0.79|$$

B)
$$y = 3.9 |x| - 0.79$$

C)
$$y = -3.9|x| - 0.79$$

D)
$$y = 3.9 |-x| - 0.79$$

Answer: C

160) The graph of y = |x| is reflected across the y-axis. This graph is then vertically stretched by a factor of 4.7. Finally, the graph is shifted 9 units downward.

A)
$$y = -4.7|x| - 9$$

B)
$$y = 4.7 |-x| - 9$$

C)
$$y = 4.7 |-x| + 9$$

C)
$$y = 4.7|-x|+9$$
 D) $y = 9|-x|-4.7$

Answer: B

161) The graph of $y = \sqrt[3]{x}$ is shifted 8.9 units to the left. This graph is then vertically stretched by a factor of 6.1. Finally, the graph is reflected across the x-axis.

A)
$$y = -8.9 \sqrt[3]{x + 6.1}$$
 B) $y = -6.1 \sqrt[3]{x - 8.9}$ C) $y = -6.1 \sqrt[3]{x + 8.9}$ D) $y = 6.1 \sqrt[3]{x + 8.9}$

B)
$$y = -6.1\sqrt[3]{x - 8.9}$$

C)
$$y = -6.1\sqrt[3]{x + 8.9}$$

D)
$$v = 6.1 \sqrt[3]{x + 8.9}$$

Answer: C

The graph of the given function is drawn with a solid line. The graph of a function, g(x), transformed from this one is drawn with a dashed line. Find a formula for g(x).

162)
$$f(x) = |x|$$

A)
$$g(x) = -2|x|$$

B)
$$g(x) = |x| - 2$$

D)
$$g(x) = |x - 2|$$

163)
$$f(x) = x^2$$

Answer: A

A)
$$g(x) = 4(x+2)^2$$

Answer: C

B)
$$g(x) = -4(x-2)^2$$

B)
$$g(x) = -4(x-2)^2$$
 C) $g(x) = (x-2)^2 - 2$ D) $g(x) = (x-4)^2 - 2$

D)
$$g(x) = (x - 4)^2 - 2$$

164)
$$f(x) = x^2$$

A)
$$g(x) = (x+5)^2 + 4$$

C)
$$g(x) = -\frac{1}{2}(x+5)^2 + 4$$

Answer: C

165)
$$f(x) = |x|$$

A) g(x) = 0.33 |x - 2| + 6C) g(x) = 6 |x + 2| - 0.33

Answer: D

B) $g(x) = \frac{1}{2}(x-5)^2 - 4$

D) $g(x) = -\frac{1}{2}(x+5)^2$

B)
$$g(x) = 6 |x - 2| + 0.33$$

D) $g(x) = 0.33 |x + 2| - 6$

Use transformations to graph the function.

166)
$$f(x) = -4|x|$$

Answer: C

167) $f(x) = 2x^2 - 6$

B)

Answer: D

168) f(x) = |-6 - x|

B)

Answer: D

169) f(x) = 6|x| - 8

B)

Answer: C

170) f(x) = |x - 5| - 2

B)

Answer: C

171) f(x) = 2|x - 6| - 4

B)

Answer: D

172)
$$f(x) = -\sqrt{x+2} + 1$$

B)

A)

C)

D)

Answer: B

173)
$$f(x) = (x - 3)^2 - 6$$

Answer: D

174)
$$f(x) = -3(x+3)^2 + 5$$

B)

B)

C)

D)

Answer: A

Use the accompanying graph of y = f(x) to sketch the graph of the indicated function.

$$175) y = -f(x)$$

Answer: C

177)
$$y = f(-x)$$

Answer: A

B)

C)

D)

Answer: D

179)
$$y = 2f(x)$$

B)

D)

180)
$$y = -\frac{1}{2}f(x)$$

D)

Answer: C

182) y = f(x - 3)

(1, -8)

Answer: A

183)
$$y = -2f(x+2) + 5$$

A)

B)

C)

D)

Answer: B

Let f be a function with the given domain and range. Find the domain and range of the indicated function.

184) Domain of f(x): [4, 9]; Range of f(x): [0, 5]

-f(x)

Answer: B

185) Domain of f(x): [1, 6]; Range of f(x): [0, 5]

f(-x)

Answer: B

186) Domain of f(x): [3, 4]; Range of f(x): [0, 4]

f(x-1)

Answer: A

187) Domain of f(x): [-6, 7]; Range of f(x): [0, 3]

f(x + 2) + 3

188) Domain of f(x): [-1, 2]; Range of f(x): [0, 4]

6f(x+2)

A) D: [-3, 0]; R: [0, 24]

B) D: [1, 4]; R: [0, 24]

C) D: [-3, 0]; R: [6, 10]

D) D: [1, 4]; R: [6, 10]

Answer: A

189) Domain of f(x): [-7, 0]; Range of f(x): [0, 1] f(-2x)

A) D: [-7, 0]; R: [-2, 0]

B) D: [0, 14]; R: [0, 1]

C) D: $\left[0, \frac{7}{2}\right]$; R: [0, 1]

D) D: [-7, 0]; R: $\left[-\frac{1}{2}, 0\right]$

Answer: C

190) Domain of f(x): [-1, 0]; Range of f(x): [0, 3]

$$2t\left(\frac{1}{5}x\right)$$
A) D: $\left[-\frac{1}{5}, 0\right]$; R: $\left[0, \frac{3}{2}\right]$

B) D:
$$\left[-\frac{1}{5}, 0\right]$$
; R: $[0, 6]$

C) D: [-2, 0]; R: [0, 15]

D) D: [-5, 0]; R: [0, 6]

Answer: D

Determine the intervals on which the function is increasing, decreasing, and constant.

191)

- A) Increasing on $(-\infty, -1)$; Decreasing on $(-1, \infty)$
- C) Increasing on $(-1, \infty)$; Decreasing on $(-\infty, -1)$
- B) Increasing on $(1, \infty)$; Decreasing on $(-\infty, 1)$
- D) Increasing on $(-\infty, 1)$; Decreasing on $(1, \infty)$

- A) Increasing on $(\infty, 0)$; Decreasing on $(0, -\infty)$
- C) Increasing on $(0, \infty)$; Decreasing on $(-\infty, 0)$

Answer: C

- B) Increasing on (– ∞ , 0); Decreasing on (0, ∞)
- D) Increasing on $(-\infty, 0)$; Decreasing on $(-\infty, 0)$

193)

- A) Increasing on $(-\infty, 0)$; Decreasing on $(-\infty, 0)$
- C) Increasing on $(-\infty, 0)$; Decreasing on $(0, \infty)$

Answer: C

- B) Increasing on $(0, \infty)$; Decreasing on $(-\infty, 0)$
- D) Increasing on $(\infty, 0)$; Decreasing on $(0, -\infty)$

194)

- A) Increasing on $(-\infty, -4)$; Decreasing on $(-\infty, -4)$
- C) Increasing on $(-\infty, -4)$; Decreasing on $(-4, \infty)$

- B) Increasing on $(-4, \infty)$; Decreasing on $(-\infty, -4)$
- D) Increasing on (-4, ∞); Decreasing on (-4, ∞)

- A) Decreasing on $(-\infty, \infty)$
- C) Increasing on $(-\infty, 0)$; Decreasing on $(0, \infty)$
- B) Increasing on $(-\infty, \infty)$
- D) Increasing on $(0, \infty)$; Decreasing on $(-\infty, 0)$

Answer: B

196)

- A) Increasing on $(-\infty, 4)$; Decreasing on $(-4, \infty)$; Constant on $(4, \infty)$
- B) Increasing on $(-\infty, 4)$; Decreasing on $(-\infty, -4)$; Constant on $(4, \infty)$
- C) Increasing on $(4, \infty)$; Decreasing on $(-4, \infty)$; Constant on (-4, 4)
- D) Increasing on $(4, \infty)$; Decreasing on $(-\infty, -4)$; Constant on (-4, 4)

Answer: D

- A) Increasing on (-2, 0) and (3, 4); Decreasing on (-5, -2) and (1, 3)
- B) Increasing on (-2, 0) and (3, 5); Decreasing on (1, 3); Constant on (-5, -2)
- C) Increasing on (-1, 0) and (3, 5); Decreasing on (0, 3); Constant on (-5, -3)
- D) Increasing on (1, 3); Decreasing on (-2, 0) and (3, 5); Constant on (2, 5)

Answer: B

198)

- A) Increasing on (-3, 0); Decreasing on (-5, -3) and (2, 5); Constant on (0, 2)
- B) Increasing on (-3, 1); Decreasing on (-5, -3) and (0, 5); Constant on (1, 2)
- C) Increasing on (-3, -1); Decreasing on (-5, -2) and (2, 4); Constant on (-1, 2)
- D) Increasing on (-5, -3) and (2, 5); Decreasing on (-3, 0); Constant on (0, 2)

Answer: A

Shown here are graphs of y_1 and y_2 . The point whose coordinates are given at the bottom of the screen lies on the graph of y_1 . Use this graph, and not your own calculator, to find the value of y_2 for the same value of x shown.

199)

C) -32

D) -8

Answer: D

200)

A) 27

B) -2.3333333

C) 21

D) 2.3333333

Answer: C

201)

A) 7.3986363

Answer: A

B) 0.8220707

C) -7.3986363

D) 14.797273

202)

D) -6

Answer: D

Answer: A

204)

Answer: D

The figure shows a transformation of the graph of $y = x^2$. Write the equation for the graph.

A) $g(x) = (x+3)^2$

Answer: B

D) -6

A)
$$g(x) = -x^2 + 5$$

Answer: D

B)
$$g(x) = -x^2 - 5$$

C)
$$g(x) = (x - 5)^2$$

C)
$$g(x) = (x - 5)^2$$
 D) $g(x) = -(x + 5)^2$

207)

A)
$$g(x) = -x^2 + 3$$

Answer: C

B)
$$g(x) = (-x - 3)^2$$
 C) $g(x) = (-x + 3)^2$

C)
$$g(x) = (-x + 3)^2$$

D)
$$g(x) = -x^2 - 3$$

208)

A)
$$g(x) = \frac{1}{3}(x + 5)^2$$

B)
$$g(x) = \frac{1}{3}x^2 - 5$$

C)
$$g(x) = (x - 5)^2$$

Answer: A

A)
$$g(x) = \frac{1}{3}(x-3)^2$$

B)
$$g(x) = \frac{1}{3}(x^2 + 3)$$

C)
$$g(x) = -x^2 - 3$$

B)
$$g(x) = \frac{1}{3}(x^2 + 3)$$
 C) $g(x) = -x^2 - 3$ D) $g(x) = \frac{1}{3}(x + 3)^2$

Answer: B

210)

A) $g(x) = -x^2$

B) $g(x) = -(x+5)^2$ C) $g(x) = -x^2 + 5$ D) $g(x) = -x^2 - 5$

Answer: B

Provide an appropriate response.

211) True or false? If r is an x-intercept of the graph of y = f(x), then y = -f(x) has an x-intercept at x = -r.

A) True

B) False

Answer: B

212) True or false? If b is a y-intercept of the graph of y = f(x), then y = -f(x) has a y-intercept at x = -b.

A) False

B) True

Answer: B

213) True or false? If the function y = f(x) decreases on the interval (a, b) of its domain, then y = f(-x) increases on the interval (a, b).

A) False

B) True

Answer: B

214) If b is a y-intercept of the graph of y = f(x), then y = 4f(x) has a y-intercept of which of these points?

A) -4b

B) -b

C) 4b

D) b

- 215) True or false? If the function y = f(x) decreases on the interval (a, b) of its domain, and we are given that c < 0, then the graph of y = cf(x) decreases on the interval (a, b).
 - A) True

B) False

Answer: B

- 216) True or False. If the graph of y = f(x) is symmetric with respect to the y-axis, then the graph of y = f(-x) is not symmetric with respect to the y-axis.
 - A) False

B) True

Answer: A

- 217) True or False. If the graph of y = f(x) is symmetric with respect to the origin, then the graph of y = -f(x) is symmetric with respect to the origin.
 - A) True

B) False

Answer: A

The graph of the function y = f(x) is given below. Sketch the graph of y = |f(x)|.

218)

A)

B)

Answer: D

219)

A)

B)

220)

221)

A)

B)

222)

223)

Answer: C

225)

226)

B)

Answer: A

227)

D)

Answer: D

Provide an appropriate response.

228) If the range of y = f(x) is $(-\infty, \infty)$, what is the range of y = |f(x)|?

B)
$$(0, \infty)$$

D)
$$(-\infty, 0]$$

Answer: C

229) If the range of y = f(x) is $(-\infty, 0]$, what is the range of y = |f(x)|?

D)
$$(-\infty, 0]$$

Answer: A

230) If the range of y = f(x) is [8.9, ∞), what is the range of y = |f(x)|?

A)
$$[0, \infty)$$

C)
$$(-\infty, 8.9]$$

Answer: B

231) If the range of y = f(x) is $[-17.4, \infty)$, what is the range of y = |f(x)|?

A)
$$[0, \infty)$$

C)
$$(-\infty, 0]$$

D)
$$(-\infty, -17.4]$$

Answer: A

232) If the range of y = f(x) is $(-\infty, 11.8)$, what is the range of y = |f(x)|?

B)
$$[0, \infty)$$

Answer: B

233) If the range of y = f(x) is $(-\infty, -4.2]$, what is the range of y = |f(x)|?

A)
$$[0, \infty)$$

B)
$$(-\infty, 4.2]$$

Use the graph, along with the indicated points, to give the solution set of the equation or inequality.

234) $y_1 = y_2$

A) (0, 4)

B) [0, 4]

C) {2}

D) {0, 4}

Answer: D

235) $y_1 > y_2$

A) [1, 5] Answer: C B) $(-\infty, 1) \cup (5, \infty)$

C)(1,5)

D) $(-\infty, 1] \cup [5, \infty)$

236) y₁ = y₂

A) $(-\infty, -5]$ Answer: D B) (-5, 3)

C) {3}

D) {-5}

237) y₁ ≤ y₂

A) (-∞, 2) Answer: C B) (-∞, 2]

C) (-∞, ∞)

D) {2}

238) y1 ≥ y2

Answer: C

C) $(-\infty, \infty)$

D) (-2, ∞)

239) y1 ≥ y2

A) (-1, 5) Answer: B B) $(-\infty, -1] \cup [5, \infty)$

C) [-1, 5]

D) $(-\infty, 1) \cup (5, \infty)$

Solve the equation.

240)
$$|x - 5| = 0$$

A) $(-5, \infty)$

B) {5}

D) $(-\infty, 5)$

Answer: B

241)
$$|8x + 2| = 7$$

A) $\left\{ -\frac{9}{8}, -\frac{5}{8} \right\}$

B) $\left\{ \frac{5}{8}, -\frac{9}{8} \right\}$

$$C)\left\{\frac{9}{8}, -\frac{5}{8}\right\}$$

D) $\left\{\frac{5}{8}\right\}$

Answer: B

242)
$$\left| -4x - 5 \right| = 20$$

A) $\left\{ -\frac{25}{4}, \frac{15}{4} \right\}$

B) $\left\{-\frac{25}{4}\right\}$

C)
$$\left\{ \frac{25}{4}, -\frac{25}{4} \right\}$$

D) $\left\{-\frac{15}{4}, \frac{25}{4}\right\}$

Answer: A

243)
$$|x + 8.7| = 2$$

A) $\{-6.7, 10.7\}$

B) {-6.7, -10.7}

D) Ø

Answer: B

244)
$$|x-1| + 2 = 5$$

A) $\{4, -2\}$

B) {4}

D) Ø

245)
$$|2x + 5| + 3 = 11$$

A) $\left\{ -\frac{3}{2}, \frac{13}{2} \right\}$

B) $\left\{ \frac{3}{2}, -\frac{13}{2} \right\}$

C)
$$\left\{ \frac{3}{5}, -\frac{13}{5} \right\}$$

D) Ø

Answer: B

246)
$$|2x - 3| - 4 = 5$$

A) $\{-4, 2\}$

Answer: B

C) $\{-6, 3\}$

D) Ø

247)
$$|6x + 8| - 1 = -6$$

A) $\left\{ -\frac{1}{2}, \frac{13}{6} \right\}$

Answer: D

B)
$$\left\{ -\frac{13}{6} \right\}$$

 $C)\left\{\frac{1}{2}, -\frac{13}{6}\right\}$

D) Ø

248)
$$2|x + 4| - 10 = 2$$

A) $\{2, -10\}$

Answer: A

C) $\{2\}$

D) $\{2, 8\}$

249)
$$|2(x-1)+3|+5=10$$

A) $\left\{-\frac{7}{2}, \frac{3}{2}\right\}$

A) $\left\{-\frac{1}{2}, \frac{1}{2}\right\}$ Answer: C B) $\left\{-\frac{7}{2}\right\}$

C) {- 3, 2}

D) Ø

Solve the inequality.

250)
$$|x-4| > 2$$

A) (2, 6)

Answer: B

B)
$$(-\infty, 2) \cup (6, \infty)$$

251)
$$|9+8x| > 2$$

A) $\left[-\infty, -\frac{11}{8}\right] \cup \left[-\frac{7}{8}, \infty\right]$ B) $\left[-\frac{7}{8}, \frac{11}{8}\right]$

$$B)\left(-\frac{7}{8},\frac{11}{8}\right)$$

$$C$$
) $\left[-\infty, \frac{9}{8}\right] \cup \left[\frac{13}{8}, \infty\right]$

$$D$$
 $\left(-\frac{11}{8}, -\frac{7}{8}\right)$

Answer: A

252)
$$|5 - 5x| > 6$$

A) $\left(-\infty, -\frac{1}{5}\right) \cup \left(-\frac{13}{5}, \infty\right)$ B) $\left(\frac{1}{5}, -\frac{11}{5}\right)$

B)
$$\left(\frac{1}{5}, -\frac{11}{5}\right)$$

$$C)\left[-\frac{11}{5},-\frac{1}{5}\right]$$

$$D)\left(-\infty, -\frac{1}{5}\right) \cup \left(\frac{11}{5}, \infty\right)$$

Answer: D

253)
$$|2 - 3x| \le 11$$

A) $\left[-\frac{13}{3}, 3 \right]$

B)
$$(-\infty, -3] \cup \left[\frac{13}{3}, \infty\right]$$
 C) $\left[-3, \frac{13}{3}\right]$

C)
$$\left[-3, \frac{13}{3} \right]$$

D)
$$(-\infty, 3] \cup \left[\frac{13}{3}, \infty\right]$$

Answer: C

254)
$$|5 - x| \le 9$$

A) $[-4, 14]$

B) [-4, ∞)

D)
$$(-\infty, -4] \cup [14, \infty)$$

Answer: A

$$255) |4x - 4| - 8 < -2$$

$$A) \left[-\infty, -\frac{1}{2} \right]$$

$$B)\left(-\frac{1}{2},\frac{5}{2}\right)$$

$$C)\left(-\infty, -\frac{1}{2}\right) \cup \left(\frac{5}{2}, \infty\right)$$

Answer: B

256)
$$|x+9| + 2 > 18$$

A) (-25, 7)

B) $(-\infty, -11) \cup (25, \infty)$ Answer: C

257) |-9x - 2| > -9

B) $\left[-\frac{11}{9}, \frac{7}{9}\right]$

C) (-∞, ∞)

Answer: C

258)
$$|x+2| \le 0$$

A) $(-\infty, -2)$

B) {2}

C) $\{-2\}$

Answer: C

Answer: D

259) |x-1| < 0A) $(-\infty, 1)$

B) {1}

C) $\{-1\}$

103

D) Ø

Solve the equation.

260)
$$|5x + 6| = |6x + 7|$$

A) $\left\{-1, -\frac{13}{11}\right\}$

B) {13, 1}

C) {- 13, 1}

D) $\left\{ \frac{1}{11}, 13 \right\}$

Answer: A

261)
$$|5x - 8| = |4x - 7|$$

A) $\{-15, 1\}$

B) $\left\{ \frac{1}{9}, 15 \right\}$

C) $\left\{1, \frac{5}{3}\right\}$

D) {15, 1}

Answer: C

262)
$$|7x + 8| = |7 - 6x|$$

A) $\left\{ -1, -\frac{15}{13} \right\}$

Answer: D

B) $\left\{-\frac{15}{13}, 1\right\}$

C) $\left\{ \frac{15}{13}, 1 \right\}$

D) $\left\{-\frac{1}{13}, -15\right\}$

263)
$$\left| -10 + 9x \right| = \left| 1 - 4x \right|$$

A) $\left\{ \frac{11}{5}, \frac{9}{13} \right\}$

B) $\left\{-\frac{9}{13}, 1\right\}$

C) $\left\{ \frac{11}{13}, \frac{9}{5} \right\}$

 $D)\left\{\frac{9}{13},1\right\}$

Answer: C

264)
$$|4x - 8| = |x - 3|$$

A) $\frac{5}{3}$

B) $\left\{ -\frac{5}{3}, -\frac{11}{5} \right\}$

 $C)\left\{\frac{5}{3}, \frac{11}{5}\right\}$

D) Ø

Answer: C

265)
$$|2x + 2| = |x - 8|$$

A) $\{10, -2\}$

Answer: C

B) {- 10}

C) {- 10, 2}

D) Ø

266)
$$|2x - 9| = |x - 8|$$

A) $\{1, -10\}$

B) {- 1, - 17}

C) $\left\{1, \frac{17}{3}\right\}$

D) Ø

Answer: C

267)
$$\left| \frac{1}{2} x + 2 \right| = \left| \frac{3}{4} x - 2 \right|$$

A) {16, 12}

B) {10, 10}

C) {16, 0}

D) Ø

268)
$$|2x + 5| = |2x - 6|$$

Answer: B

Answer: C

A) $\left\{0, -\frac{11}{4}\right\}$ B)

 $\left\{\frac{1}{4}\right\}$

C) $\left\{0, \frac{1}{4}\right\}$

104

D) Ø

Solve the inequality graphically.

269)
$$|3x + 9| > |x - 1|$$

A) (2, 5)

Answer: B

270)
$$|3x + 9| < |x - 1|$$

A) $(-\infty, -5) \cup (-2, \infty)$

Answer: B

$$271) \left| \frac{1}{2} x + 2 \right| > \left| \frac{3}{4} x - 2 \right|$$

$$A) (-\infty, 16)$$

D)
$$(-\infty, 0) \cup (16, \infty)$$

Answer: B

$$272) \left| \frac{1}{2} x + 2 \right| < \left| \frac{3}{4} x - 2 \right|$$

$$A) \left(-\infty, 16 \right)$$

C)
$$(-\infty, 0) \cup (16, \infty)$$

Answer: C

Solve the equation or inequality graphically. Express solutions or endpoints of intervals rounded to the nearest hundredth, if necessary.

273)
$$|7x - 11| = \sqrt{x + 6}$$

A) $\{-1.97, -1.19\}$

Answer: D

274)
$$|3x - 5| = 6x - 2$$

Answer: D

$$|7x - 9| \ge -x - 7$$

C)
$$(-\infty, 0.25] \cup [2.67, \infty)$$

D)
$$(-\infty, -2.67] \cup [-0.25, \infty)$$

Answer: A

276)
$$|x+3| > .4x - 5$$

B)
$$(-\infty, \infty)$$

D)
$$(-\infty, -3] \cup [1.25, \infty)$$

Answer: B

277)
$$|3x + 7| < - |3x - 4|$$

A)
$$(-\infty, \infty)$$

D)
$$(-\infty, 2.33] \cup [0.57, \infty)$$

278) $|x + \sqrt{7}| + \sqrt{5} \le -x - \sqrt{11}$

(Provide exact answer.)
A)
$$(-\infty, -\sqrt{11}] \cup [\sqrt{11}, \infty)$$

B)
$$(-\infty, -\sqrt{5}] \cup [\sqrt{5}, \infty)$$

D)
$$(-\infty, \infty)$$

279) |x| + |x - 10| = 20

A) {5, 15}

B) {-5}

C) {-5, 15}

D) Ø

Answer: C

280) |x+4| + |x-8| = 16

A) {10}

B) {-10, 6}

C) {10, -6}

D) Ø

Answer: C

Solve the problem.

281) The formula to find Fahrenheit temperature, F, given Celsius temperature, C, is $F = \frac{9}{5}C + 32$. Find the range, in

Fahrenheit, when the temperature in Celsius is between 2°C and 8°C, inclusive. Round to the nearest tenth.

A) $19.6^{\circ}F \leq Temperature \leq 30.4^{\circ}F$

B) 33.1°F ≤ Temperature ≤ 46.4°F

C) 35.6°F ≤ Temperature ≤ 46.4°F

D) 3.6°F ≤ Temperature ≤ 14.4°F

Answer: C

282) The formula to find Celsius temperature, C, given Fahrenheit temperature, F, is $C = \frac{5}{9}(F - 32)$. If the processing

temperature of a chemical ranges from 302°F to 347°F, inclusive, then what is the range of its temperature in degrees Celsius?

A) 100°C \leq Temperature \leq 175°C

B) 150°C ≤ Temperature ≤ 175°C

C) 32°C ≤ Temperature ≤ 45°C

D) 270°C ≤ Temperature ≤ 315°C

Answer: B

283) The temperature on the surface of the planet Krypton in degrees Celsius satisfies the inequality $|C + 55| \le 17$. What range of temperatures corresponds to this inequality? (Use interval notation.)

A) [-38, 72]

B) [-72, -38]

C) [38, 72]

D) [-72, 38]

Answer: B

284) Dr. Hughes found that the weight, w, of 99% of his students at Cantanople University satisfied the inequality |w-152| < 59. What range of weights corresponds to this inequality? (Use interval notation.)

A) $(-\infty, 93] \cup [211, \infty)$

B) [93, 211]

C) $(-\infty, 93) \cup (211, \infty)$

D) (93, 211)

Answer: D

285) The Fahrenheit temperature, F, in Siber City in October ranges from 62°F to 38°F. Write an absolute value inequality whose solution is this range.

A) |F| < 62

B) |F - 12| < 50

C) |F - 50| < 12

D) |F| > 38

Answer: C

286) In a milling operation, the thickness of the formica sheets that can be produced satisfies the inequality $|x - 1.85| \le 1.26$. What range of thicknesses corresponds to this inequality?

A) [0.59, 6.22]

B) [0.3, 3.11]

C) [1.26, 1.85]

D) [0.59, 3.11]

Answer: D

287) The average annual growth rate of a coral reef in inches satisfies the inequality $|x - 3.46| \le 2.29$. What range of growth corresponds to this inequality?

A) [0.59, 5.75]

B) [1.17, 5.75]

C) [2.29, 3.46]

D) [1.17, 11.5]

Answer: B

288) The number of non-text books read by college students ranges from 10 to 56. Using B as the variable, write an absolute value inequality that corresponds to this range.

A)
$$|B - 10| \le 46$$

B)
$$|B - 33| \le 23$$

C)
$$|B - 46| \le 10$$

D)
$$|B - 23| \le 33$$

Answer: B

289) A real estate development consists of home sites that range in width from 51 to 111 feet and in depth from 140 to 180 feet. Using x as the variable in both cases, write absolute value inequalities that correspond to these ranges.

A)
$$|x - 30| \le 81$$
, $|x - 20| \le 160$

B)
$$|x - 60| \le 51$$
, $|x - 40| \le 140$

C)
$$|x - 51| \le 60$$
, $|x - 140| \le 40$

D)
$$|x - 81| \le 30$$
, $|x - 160| \le 20$

Answer: D

- 290) The inequality |T 51| ≤ 17 describes the range of monthly average temperatures T in degrees Fahrenheit at a City X. (i) Solve the inequality. (ii) If the high and low monthly average temperatures satisfy equality, interpret the inequality.
 - A) T \leq 68; The monthly averages are always less than or equal to 68°F.
 - B) $34 \le T \le 68$; The monthly averages are always within 17° of 51° F.
 - C) $29 \le T \le 73$; The monthly averages are always within 22° of 51° F.
 - D) 29 ≤ T; The monthly averages are always greater than or equal to 29°F.

Answer: B

Provide an appropriate response.

291) True or false? The graph of y = |f(x)| is the same as that of y = f(x) for values of f(x) that are negative; and for values of f(x) that are nonnegative, the graph is reflected across the x-axis.

A) True

B) False

Answer: B

292) One of the graphs below is that of y = f(x), and the other is that of y = |f(x)|. State which is the graph of y = |f(x)|.

2π -2π

B) ii

A) i

Answer: A

293) One of the graphs below is that of y = f(x) and the other is that of y = f(x). State which is the graph of y = f(x).

Answer: A

294) Given a = 7, b = -20, which of the following statements is false?

A)
$$|a| + |b| \ge -(a+b)$$

B)
$$|a/b| = a/b$$

C)
$$|ab| = -ab$$

Answer: B

295) Given a = -6, b = -11, which of the following statements is false?

A)
$$|a| + |b| = -(a+b)$$

B)
$$|ab| = -ab$$

C)
$$|a/b| = a/b$$

Answer: B

296) The graph shown is a translation of the function y = |x| of the form y = |x - h| + k. What are the values of h and k?

A) h = 2, k = -3

B)
$$h = -2$$
, $k = -3$

C) h = -2, k = 3

D)
$$h = 2, k = 3$$

Answer: C

297) Use graphing to determine the domain and range of y = |f(x)| for $f(x) = -(x - 8)^2 - 7$.

A) D:
$$(-\infty, \infty)$$
; R: $[7, \infty)$

B) D:
$$[0, \infty)$$
; R: $(-\infty, 7]$

C) D:
$$(-\infty, \infty)$$
; R: $[-7, \infty)$

D) D:
$$[0, \infty)$$
; R: $(-\infty, -7]$

Answer: A

298) Use graphing to determine the domain and range of y = |f(x)| for f(x) = |x - 4| - 9.

A) D:
$$(-\infty, \infty)$$
; R: $[0, \infty)$

C) D:
$$(-\infty, \infty)$$
; R: $[9, \infty)$

D) D:
$$[0, \infty)$$
; R: $(-\infty, \infty)$

Answer: A

Find the requested value.

299)

f(-8) for f(x) =
$$\begin{cases} 6x & \text{if } x \le -1 \\ x - 8 & \text{if } x > -1 \end{cases}$$
A) -16 B) 48

C) -48 D) 0

Answer: C

300)

f(0) for f(x) =
$$\begin{cases} x - 7 & \text{if } x < 3 \\ 5 - x & \text{if } x \ge 3 \end{cases}$$
A) -7 B) -4

C) 5

D) 2

Answer: A

301)

f(6) for f(x) =
$$\begin{cases} 2x + 7 & \text{if } x \le 0 \\ 5 - 5x & \text{if } 0 < x < 5 \\ x & \text{if } x \ge 5 \end{cases}$$
A) 19
B) 5

C) -25

D) 6

Answer: D

302)

f(3) for f(x) =
$$\begin{cases} 9x + 1 & \text{if } x < 3 \\ 3x & \text{if } 3 \le x \le 8 \\ 3 - 5x & \text{if } x > 8 \end{cases}$$
A) 10
B) 9

C) 41

D) -12

Answer: B

Answer: A

303)

$$f(-2) \text{ for } f(x) = \begin{cases} 6x + 1 & \text{if } x < 2\\ 2x & \text{if } 2 \le x \le 7\\ 2 - 9x & \text{if } x > 7 \end{cases}$$
A) -11
B) 20

C) 13

D) -4

Graph the function.

304)

$$f(x) = \begin{cases} 4 & \text{if } x \ge 1 \\ -2 - x & \text{if } x < 1 \end{cases}$$

A)

C)

Answer: D

$$f(x) = \begin{cases} x+5 & \text{if } x > 0 \\ -1 & \text{if } x \le 0 \end{cases}$$

C)

Answer: C

306)

$$f(x) = \begin{cases} 2x + 3 & \text{if } x < 0 \\ 4x^2 - 5 & \text{if } x \ge 0 \end{cases}$$

B)

C)

Answer: A

307)

$$f(x) = \begin{cases} x^2 - 9 & \text{if } x < -1\\ 0 & \text{if } -1 \le x \le 1\\ x^2 + 9 & \text{if } 1 < x \end{cases}$$

B)

Answer: D

$$f(x) = \begin{cases} |x| + 2 & \text{if } x < 0 \\ 2 & \text{if } x \ge 0 \end{cases}$$

B)

A)

C)

Answer: D

$$f(x) = \begin{cases} 5x + 2 & \text{if } x < -2 \\ x & \text{if } -2 \le x \le 3 \\ 4x - 1 & \text{if } x > 3 \end{cases}$$

Use a graphing calculator to graph the piecewise-defined function, using the window indicated.

310)
$$f(x) = \begin{cases} x+2 & \text{if } x \le 3 \\ 5 & \text{if } x > 3 \end{cases}$$
; window [-4, 6] by [-2, 8]

A)

B)

C)

D)

Answer: B

311) $f(x) = \begin{cases} 4-x & \text{if } x \le 3 \\ 2x-5 & \text{if } x > 3 \end{cases}$; window [-2, 5] by [-1, 6]

A)

C)

Answer: C

B)

312)
$$f(x) = \begin{cases} 2 - x & \text{if } x < -2 \\ 2x - 1 & \text{if } x \ge -2 \end{cases}$$
; window [-10, 6] by [-6, 10]

C)

Answer: A

B)

313)
$$f(x) = \begin{cases} 3x + 1 & \text{if } x < 0 \\ 2x - 1 & \text{if } x \ge 0 \end{cases}$$
; window [-4, 4] by [-4, 4]

C)

Answer: C

B)

314)
$$f(x) = \begin{cases} x-1 & \text{if } x < -2 \\ x+1 & \text{if } -2 \le x < 3 \text{ ; window [-6, 12] by [-12, 6]} \\ -2x & \text{if } x \ge 3 \end{cases}$$

C)

Answer: B

-12

315)
$$f(x) = \begin{cases} x - 1 & \text{if } x < -2 \\ -0.6x - 4.2 & \text{if } -2 \le x < 3 \text{ ; window [-6, 6] by [-12, 6]} \\ -2x & \text{if } x \ge 3 \end{cases}$$

Answer: A

316)
$$f(x) = \begin{cases} x+3 & \text{if } x < -2 \\ x^2 - 3 & \text{if } x \ge -2 \end{cases}$$
; window [-10, 5] by [-10, 10]

C)

Answer: B

D)

-10

317)
$$f(x) = \begin{cases} x^3 & \text{if } x < 0 \\ -x^2 - 3 & \text{if } x \ge 0 \end{cases}$$
; window [-5, 5] by [-10, 2]

Answer: B

318)
$$f(x) = \begin{cases} x^3 - 1 & \text{if } x < 2 \\ -x^2 + 1 & \text{if } x \ge 2 \end{cases}$$
; window [-5, 5] by [-10, 10]

C)

Answer: B

D)

-10

319)
$$f(x) =\begin{cases} 3\sqrt{x} & \text{if } x < 0; \text{ window } [-6, 5] \text{ by } [-10, 6] \\ -x^2 + 5 & \text{if } x \ge 0 \end{cases}$$

C)

Answer: D

Give a formula for a piecewise-defined function f for the graph shown.

320)

Answer: C

321)

Answer: B

B) C) D) $f(x) = \begin{cases} 2 & \text{if } x < 0 \\ -x & \text{if } x \ge 0 \end{cases}$ $f(x) = \begin{cases} 2 & \text{if } x \le 0 \\ -x & \text{if } x > 0 \end{cases}$ $f(x) = \begin{cases} 2 & \text{if } x \le 0 \\ x & \text{if } x > 0 \end{cases}$

A) $f(x) = \begin{cases} -5 & \text{if } x \le 0 \\ x^2 - 1 & \text{if } x > 0 \end{cases}$ C) $f(x) = \begin{cases} -5 & \text{if } x < 0 \\ x^2 & \text{if } x \ge 0 \end{cases}$

Answer: D

 $f(x) = \begin{cases} -5 & \text{if } x < 0 \\ |x| - 1 & \text{if } x \ge 0 \end{cases}$ D) $f(x) = \begin{cases} 5 & \text{if } x < 0 \\ x^2 - 1 & \text{if } x \ge 0 \end{cases}$

323)

C) $f(x) = \begin{cases} x^2 & \text{if } x \le 0 \\ -|x-2| & \text{if } x > 0 \end{cases}$

Answer: C

$$f(x) = \begin{cases} x^2 & \text{if } x \le 0 \\ -|x+2| & \text{if } x > 0 \end{cases}$$

B)
$$f(x) = \begin{cases} x^2 & \text{if } x \le 0 \\ -|x+2| & \text{if } x > 0 \end{cases}$$
 D)
$$f(x) = \begin{cases} -x^2 & \text{if } x \le 0 \\ |x-2| & \text{if } x > 0 \end{cases}$$

$$f(x) = \begin{cases} x+3 & \text{if } x \le 0 \\ -\sqrt{x} & \text{if } x > 0 \end{cases}$$

$$f(x) = \begin{cases} -x + 3 & \text{if } x \le 0 \\ -\sqrt{x} & \text{if } x > 0 \end{cases}$$

Answer: A

f(x) =
$$\begin{cases} x - 3 & \text{if } x \le 0 \\ -x^2 & \text{if } x > 0 \end{cases}$$
D)
$$f(x) = \begin{cases} x + 3 & \text{if } x \le 0 \\ \sqrt{x} & \text{if } x > 0 \end{cases}$$

$$(x) = \begin{cases} x+3 & \text{if } x \le 0\\ \sqrt{x} & \text{if } x > 0 \end{cases}$$

325)

$$f(x) = \begin{cases} -4 & \text{if } x < -1 \\ x^2 - 1 & \text{if } x \ge -1 \end{cases}$$

C)
$$f(x) = \begin{cases} 4 & \text{if } x < -1 \\ x^2 & \text{if } x \ge -1 \end{cases}$$

Answer: B

$$f(x) = \begin{cases} 4 & \text{if } x < -1\\ x^3 & \text{if } x \ge -1 \end{cases}$$

f(x) =
$$\begin{cases} 4 & \text{if } x < -1 \\ x^3 & \text{if } x \ge -1 \end{cases}$$
D)
$$f(x) = \begin{cases} 4 & \text{if } x < -1 \\ x^3 - 1 & \text{if } x \ge -1 \end{cases}$$

A)
$$f(x) = \begin{cases} 2x - 3 & \text{if } x \neq 3 \\ -2 & \text{if } x = 3 \end{cases}$$
C)

C)
$$f(x) = \begin{cases} 2x - 3 & \text{if } x \neq 2 \\ -3 & \text{if } x = 2 \end{cases}$$

Answer: A

B)

$$f(x) = \begin{cases} 2x - 3 & \text{if } x < 3 \\ 2x + 3 & \text{if } x > 3 \end{cases}$$
D)

$$f(x) = \begin{cases} x - 3 & \text{if } x \neq 3 \\ -2 & \text{if } x = 3 \end{cases}$$

327)

A)
$$f(x) = \begin{cases} -3 & \text{if } x \le -4 \\ -2|x+2|+4 & \text{if } x > -4 \end{cases}$$
C)
$$f(x) = \begin{cases} -3 & \text{if } x < -4 \\ -2|x+2|+4 & \text{if } x \ge -4 \end{cases}$$

C)
$$f(x) = \begin{cases} -3 & \text{if } x < -4 \\ -2|x+2|+4 & \text{if } x \ge -4 \end{cases}$$

Answer: C

B)
$$f(x) = \begin{cases} -3x & \text{if } x < -4 \\ -2|x+2|+4 & \text{if } x \ge -4 \end{cases}$$

f(x) =
$$\begin{cases} -3x & \text{if } x < -4 \\ -2|x+2|+4 & \text{if } x \ge -4 \end{cases}$$
D)
$$f(x) = \begin{cases} -3x & \text{if } x < -4 \\ -2|x-2|+4 & \text{if } x \ge -4 \end{cases}$$

A)

$$f(x) = \begin{cases} (x-3)^2 - 5 & \text{if } x \neq 3\\ 2 & \text{if } x = 3 \end{cases}$$
C)
$$f(x) = (x-3)^2 - 5$$

Answer: A

329)

$$f(x) = \begin{cases} -2x & \text{if } x \le 1 \\ x+1 & \text{if } x > 1 \end{cases}$$

$$C)$$

$$f(x) = \begin{cases} 2x & \text{if } x \le 1 \\ x+1 & \text{if } x > 1 \end{cases}$$

Answer: A

B)

$$f(x) = \begin{cases} (x+3)^2 - 5 & \text{if } x \neq 3\\ 2 & \text{if } x = 3 \end{cases}$$

b)
$$f(x) = \begin{cases} (x+3)^2 - 5 & \text{if } x \neq 3\\ 2 & \text{if } x = 3 \end{cases}$$
D)
$$f(x) = \begin{cases} |x-3| - 5 & \text{if } x \neq 3\\ 2 & \text{if } x = 3 \end{cases}$$

B)
$$f(x) = \begin{cases} -x & \text{if } x \le 1 \\ 2x + 1 & \text{if } x > 1 \end{cases}$$

D)
$$f(x) = \begin{cases} -2x & \text{if } x \le 1 \\ x+2 & \text{if } x \ge 3 \end{cases}$$

330)
$$y = [x] + 1$$

C)

Answer: D

B)

C)

Answer: D

B)

C)

Answer: A

B)

Answer: D

B)

334) y = 2[x]

A)

B)

C)

D)

Answer: B

Solve the problem.

335) A video rental company charges \$4 per day for renting a video tape, and then \$3 per day after the first. Use the greatest integer function and write an expression for renting a video tape for x days.

A)
$$y = 3[x - 1] + 4$$

B)
$$y + 4 = 3[x]$$

C)
$$y = 3x + 4$$

D)
$$y = [3x + 4]$$

Answer: A

- 336) Suppose a car rental company charges \$80 for the first day and \$30 for each additional or partial day. Let S(x) represent the cost of renting a car for x days. Find the value of S(3.5).
 - A) \$185

B) \$105

C) \$170

D) \$155

Answer: C

337) Suppose a life insurance policy costs \$12 for the first unit of coverage and then \$3 for each additional unit of coverage. Let C(x) be the cost for insurance of x units of coverage. What will 10 units of coverage cost?

A) \$39

B) \$18

C) \$42

D) \$30

A) \$39 Answer: A

338) A salesperson gets a commission of \$400 for the first \$10,000 of sales, and then \$200 for each additional \$10,000 or partial of sales. Let S(x) represent the commission on x dollars of sales. Find the value of S(45,000).

A) \$1100

B) \$900

C) \$1200

D) \$1300

Answer: C

339) Assume it costs 25 cents to mail a letter weighing one ounce or less, and then 20 cents for each additional ounce or fraction of an ounce. Let L(x) be the cost of mailing a letter weighing x ounces. Graph y = L(x).

A)

B)

C)

D)

Answer: B

340) Sketch a graph that depicts the amount of water in a 50-gallon tank during the course of the described pumping operations. The tank is initially full, and then a pump is used to take water out of the tank at a rate of 5 gallons per minute. The pump is turned off after 5 minutes. At that point, the pump is changed to one that will pump water into the tank. The change takes 2 minutes and the water level is unchanged during the switch. Then, water is pumped into the tank at a rate of 4 gallons per minute for 3 minutes.

C) Water (gallons) 50 (10, 37)

Answer: A

341) The charges for renting a moving van are \$55 for the first 50 miles and \$8 for each additional mile. Assume that a fraction of a mile is rounded up. (i) Determine the cost of driving the van 77 miles. (ii) Find a symbolic representation for a function f that computes the cost of driving the van x miles, where $0 < x \le 100$. (Hint: express f as a piecewise-constant function.)

10 11 12 X

A) \$271;

f(x) =
$$\begin{cases} 55 \\ 55 + 8(x - 50) \end{cases}$$
C) \$1071;
$$f(x) = \begin{cases} 55 \\ 55 + 8(x + 50) \end{cases}$$

2 3

if
$$0 < x \le 50$$

if $50 < x \le 100$

Time (minutes)

$$f(x) = \begin{cases} 55 \\ 55 + 8(x - 50) \end{cases}$$
D) \$271;
$$f(x) = \begin{cases} 55 \\ 55 + 8(x + 50) \end{cases}$$

if
$$0 < x \le 50$$

if $50 < x \le 100$

$$f(x) = \begin{cases} 55\\ 55 + 8(x + 50) \end{cases}$$

if
$$0 < x \le 50$$

if $50 < x \le 100$

$$f(x) = \begin{cases} 55 \\ 55 \\ 55 \end{cases}$$

B) \$4451;

if
$$0 < x \le 50$$

if $50 < x \le 100$

Answer: A

342) Sketch a graph showing the mileage that a person is from home after x hours if that individual drives at 27.5 mph to a lake 55 miles away, stays at the lake 1.5 hours, and then returns home at a speed of 55 mph.

Answer: B

343) In Country X, the average hourly wage in dollars from 1945 to 1995 can be modeled by

$$f(x) = \begin{cases} 0.073(x - 1945) + 0.37 \text{ if } 1945 \le x < 1970 \\ 0.183(x - 1970) + 3.09 \text{ if } 1970 \le x \le 1995 \end{cases}$$

Use f to estimate the average hourly wages in 1950, 1970, and 1990.

- A) \$3.46, \$6.75, \$2.20
- B) \$0.74, \$3.09, \$6.75
- C) \$3.46, \$0.37, \$6.75
- D) \$0.74, \$2.20, \$6.75

Answer: B

Provide an appropriate response.

344) Which of the following is a vertical translation of the function y = [[x]]?

- A) y = [[x 2]]
- B) y = -[[x]]
- C) y = 2[[x]]
- D) y = [[x]] 2

Answer: D

345) Which of the following is a horizontal translation of the function y = [[x]]?

- A) y = [[x]] 5
- B) y = -[[x]]
- C) y = 5[[x]]
- D) y = [[x 5]]

Answer: D

346) Which of the following is a reflection of the function y = [[x]] about the y-axis? Use your graphics calculator to verify your result.

- A) y = [[-x + 1]]
- B) y = -[[x]]
- C) y = [[-x]]
- D) y = -[[x + 1]]

Answer: C

Find the requested composition or operation.

347) f(x) = 2 - 2x, g(x) = -5x + 2

Find (f + g)(x).

- A) -7x + 4
- B) -3x

C) 3x + 4

D) -5x + 2

Answer: A

348) f(x) = 9x - 3, g(x) = 5x - 2

Find (f - g)(x).

- A) 14x 5
- B) 4x 5

C) 4x - 1

D) -4x + 1

Answer: C

349) $f(x) = \sqrt{4x+3}$, $g(x) = \sqrt{16x-4}$

Find (fg)(x).

- A) $(4x 2)(\sqrt{4x + 3})$
- C) (4x + 3)(16x 4)

- B) (4x + 3)(4x 2)
- D) $(\sqrt{4x+3})(\sqrt{16x-4})$

Answer: D

350) f(x) = 4x - 6, g(x) = 7x - 9

Find (fg)(x).

- A) $11x^2 78x 15$ B) $28x^2 51x + 54$
- C) $28x^2 78x + 54$ D) $28x^2 + 54$

Answer: C

351)
$$f(x) = 7x^2 - 8x$$
, $g(x) = x^2 - 3x - 40$
Find $\left(\frac{f}{g}\right)(x)$.

A)
$$\frac{7 - x}{40}$$

B)
$$\frac{7x^2 - 8x}{x^2 - 3x - 40}$$

C)
$$\frac{7x}{x+1}$$

D)
$$\frac{7x - 8}{-3}$$

Answer: B

352)
$$f(x) = 8x + 6$$
, $g(x) = 2x - 1$
Find $(f \circ g)(x)$.

B)
$$16x + 5$$

C)
$$16x + 14$$

D)
$$16x + 11$$

Answer: A

353)
$$f(x) = \sqrt{x+2}$$
, $g(x) = 8x - 6$
Find $(f \circ g)(x)$.

A)
$$8\sqrt{x+2} - 6$$

B)
$$8\sqrt{x-4}$$

C)
$$2\sqrt{2x+1}$$

D)
$$2\sqrt{2x-1}$$

Answer: D

354)
$$f(x) = 4x^2 + 4x + 5$$
, $g(x) = 4x - 4$

Find
$$(g \circ f)(x)$$
.

A)
$$4x^2 + 4x + 1$$

B)
$$16x^2 + 16x + 24$$

C)
$$16x^2 + 16x + 16$$

D)
$$4x^2 + 16x + 16$$

Answer: C

355)
$$f(x) = \frac{8}{x-6}$$
, $g(x) = \frac{3}{7x}$

Find $(f \circ g)(x)$.

A)
$$\frac{3x - 18}{56x}$$

B)
$$\frac{56x}{3+42x}$$

C)
$$\frac{8x}{3-42x}$$

D)
$$\frac{56x}{3-42x}$$

Answer: D

356)
$$f(x) = \frac{x-3}{5}$$
, $g(x) = 5x + 3$

Find $(g \cdot f)(x)$.

B)
$$x - \frac{3}{5}$$

C)
$$x + 6$$

D)
$$5x + 12$$

Answer: A

Perform the requested composition or operation.

357) Find
$$(f + g)(3)$$
 when $f(x) = x - 5$ and $g(x) = x + 2$.

Answer: B

358) Find
$$(f - g)(5)$$
 when $f(x) = 3x^2 + 5$ and $g(x) = x + 6$.

Answer: D

359) Find (fg)(-2) when
$$f(x) = x + 5$$
 and $g(x) = 4x^2 + 12x + 2$.
A) -18 B) -54 C) 42 D) -126

Answer: A

360) Find
$$\left(\frac{f}{g}\right)$$
 (-5) when $f(x) = 3x - 6$ and $g(x) = 2x^2 + 14x + 4$.
A) $\frac{2}{9}$ B) 0 C) $-\frac{1}{8}$ D) $\frac{21}{16}$

Answer: D

361) Find
$$(f \cdot g)(-9)$$
 when $f(x) = 6x - 4$ and $g(x) = 8x^2 - 4x + 4$.
A) -196 B) -228 C) 4124 D) 27,148

Answer: C

362) Find
$$(g \circ f)(7)$$
 when $f(x) = -8x + 6$ and $g(x) = -4x^2 + 2x + 5$.
A) -10,095 B) 1422 C) 78 D) 105
Answer: A

Find the specified domain.

363) For
$$f(x) = 2x - 5$$
 and $g(x) = \sqrt{x + 4}$, what is the domain of $(f + g)$?

A) $[-4, \infty)$ B) $(-4, 4)$ C) $[0, \infty)$ D) $[4, \infty)$ Answer: A

364) For
$$f(x) = 2x - 5$$
 and $g(x) = \sqrt{x + 4}$, what is the domain of $\left(\frac{f}{g}\right)$?

A) $[4, \infty)$
B) $[0, \infty)$
C) $(-4, 4)$
D) $(-4, \infty)$
Answer: D

365) For
$$f(x) = 2x - 5$$
 and $g(x) = \sqrt{x + 6}$, what is the domain of $(f \circ g)$?

A) $[6, \infty)$
B) $[0, \infty)$
C) $(-6, 6)$
D) $[-6, \infty)$

366) For
$$f(x) = 2x - 5$$
 and $g(x) = \sqrt{x + 7}$, what is the domain of $(g \circ f)$?

A) $[\infty, -1)$
B) $[-1, \infty)$
C) $(-7, 7)$
D) $[7, \infty)$

367) For
$$f(x) = x^2 - 1$$
 and $g(x) = 2x + 3$, what is the domain of $(f - g)$?

A) $(-\infty, \infty)$
B) $(-1, 1)$
C) $[1, \infty)$
Answer: A

368) For
$$f(x) = x^2 - 9$$
 and $g(x) = 2x + 3$, what is the domain of $\left(\frac{f}{g}\right)$?

A) $\left[-\frac{3}{2}, \infty\right]$

B) $\left(-\infty, -\frac{3}{2}\right) \cup \left(-\frac{3}{2}, \infty\right)$

C) $(-3, 3)$

D) $(-\infty, \infty)$

Answer: B

369) For $f(x) = x^2 - 25$ and g(x) = 2x + 3, what is the domain of $\left[\frac{g}{f}\right]$?

A) $\left[-\infty, \frac{3}{2}\right] \cup \left[-\frac{3}{2}, \infty\right]$ B) $\left(-\infty, \infty\right)$ C) $\left(-\infty, -5\right) \cup \left(-5, 5\right) \cup \left(5, \infty\right)$

Answer: C

370) For $f(x) = x^2 - 25$ and g(x) = 2x + 3, what is the domain of $(f \circ g)$?

A) $[5, \infty)$ B) $[0, \infty)$ C) (-5, 5)D) $(-\infty, \infty)$

Answer: D

371) For $f(x) = \sqrt{x-2}$ and $g(x) = \frac{1}{x-9}$, what is the domain of $(f \cdot g)$?

A) $[0,9) \cup (9,\infty)$ B) $[2,9) \cup (9,\infty)$ C) $[2,\infty)$ D) $(2,9) \cup (9,\infty)$

Answer: B

372) For $g(x) = \sqrt{x+6}$ and $h(x) = \frac{1}{x-8}$, what is the domain of $(h \circ g)$?

A) $[-6, 58) \cup (58, \infty)$ B) $[0, 8) \cup (8, \infty)$ C) $[-6, 8) \cup (8, \infty)$ D) $[0, 58) \cup (58, \infty)$

Answer: A

Use the graphs to evaluate the expression.

373) f(1) + g(-4)

Answer: A

374) f(0) - g(-4)

B) 5

y = g(x)5

4

3

2

1

-5

-4

-3

-4

C) 8

D) 4

D) 4

A) 2 Answer: B

375) f(3) - g(4)

Answer: A

376) f(4) * g(4)

y = g(x)

C) -2

D) 6

D) -3.5

Answer: A

377) (g · f)(-2)

B) -2

C) -1

A) -5 Answer: B 378) (f · g)(-4)

y = g(x)5

4

3

2

1

-5

-4

-3

-4

-5

C) -3

D) -4

Answer: D

379) (f · g)(-1)

Answer: D

380) (g · f)(0)

y = g(x)5

4

(2, 4)

3

2

(1, 2)

1

(-1, -2)

-3

(-2, -4)

C) -4

D) -6

D) 5

Answer: C

381) (f + g)(3)

Answer: D

382) g(f(3))

y = f(x)

y = g(x)

A) 5

Answer: D

B) -3

C) 4

D) 3

Use the tables to evaluate the expression if possible.

383) Find (f + g)(-8).

A) 4

B) -9

C) 10

D) 1

Answer: D

384) Find (fg)(-6).

A) 48

B) 36

C) -48

D) 49

Answer: D

385) Find $(g \cdot f)(13)$.

A) 110

B) 73

C) 136

D) 158

Answer: D

386) Find $(f \circ g)(7)$.

A) 13

B) 26

C) 30

D) 7

Answer: B

387) Find $(g \cdot f)(5)$.

A) 9

B) 5

C) 11

D) 25

Answer: C

388) Find $(f \cdot f)(3)$.

A) 7

B) 3

C) 13

D) 11

Answer: C

389) Find $(g \cdot g)(9)$.

A) 49

B) 19

C) 17

D) 51

Answer: C

Determine whether $(f \cdot g)(x) = x$ and whether $(g \cdot f)(x) = x$.

390)
$$f(x) = \sqrt[5]{x - 14}$$
, $g(x) = x^5 + 14$

- A) Yes, no
- B) Yes, yes
- C) No, yes
- D) No, no

Answer: B

391)
$$f(x) = x^2 + 5$$
, $g(x) = \sqrt{x} - 5$

A) No, no

- B) Yes, yes
- C) No, yes
- D) Yes, no

Answer: A

392)
$$f(x) = \frac{1}{x}, g(x) = x$$

- A) Yes, no
- B) No, yes
- C) Yes, yes
- D) No, no

Answer: D

393)
$$f(x) = \sqrt{x+1}$$
, $g(x) = x^2$

- A) No, yes
- B) No, no

- C) Yes, yes
- D) Yes, no

Answer: B

394)
$$f(x) = x^3 + 1$$
, $g(x) = \sqrt[3]{x - 1}$
A) Yes, yes

- B) Yes, no
- C) No, no

D) No, yes

Answer: A

Determine the difference quotient $\frac{f(x+h)-f(x)}{h}$ (h \neq 0) for the function f. Simplify completely.

395)
$$f(x) = 6x - 7$$

D)
$$\frac{7}{6}$$

Answer: C

396)
$$f(x) = 1x^2 + 11x - 4$$

A)
$$2xh + 11h + 11h^2$$

B)
$$1x + 6 + 2h$$

C)
$$2x + 11$$

D)
$$2x + 11 + 1h$$

Answer: D

397)
$$f(x) = 2 - 5x^3$$

A)
$$-5(3x^2 + 3xh + h^2)$$

B)
$$-6x^2$$

C)
$$-5(3x^2 - 3x - h)$$

C)
$$-5(3x^2 - 3x - h)$$
 D) $-5(x^2 - xh - h^2)$

Consider the function h as defined. Find functions f and g such that $(f \cdot g)(x) = h(x)$.

398)
$$h(x) = \frac{1}{x^2 - 8}$$

A)
$$f(x) = \frac{1}{x^2}$$
, $g(x) = -\frac{1}{8}$

B)
$$f(x) = \frac{1}{x}$$
, $g(x) = x^2 - 8$

C)
$$f(x) = \frac{1}{x^2}$$
, $g(x) = x - 8$

D)
$$f(x) = \frac{1}{8}$$
, $g(x) = x^2 - 8$

Answer: B

399)
$$h(x) = |9x + 6|$$

A)
$$f(x) = |x|, g(x) = 9x + 6$$

C)
$$f(x) = |-x|, g(x) = 9x - 6$$

B)
$$f(x) = x$$
, $g(x) = 9x + 6$
D) $f(x) = -|x|$, $g(x) = 9x + 6$

Answer: A

400)
$$h(x) = \frac{1}{x^2} + 10$$

A)
$$f(x) = x + 10$$
, $g(x) = \frac{1}{x^2}$

C)
$$f(x) = \frac{1}{x}$$
, $g(x) = \frac{1}{x} + 10$

B)
$$f(x) = x$$
, $g(x) = \frac{1}{x} + 10$

D)
$$f(x) = \frac{1}{x^2}$$
, $g(x) = 10$

Answer: A

401)
$$h(x) = \frac{4}{\sqrt{4x+9}}$$

A)
$$f(x) = \frac{4}{x}$$
, $g(x) = 4x + 9$

C)
$$f(x) = \sqrt{4x+9}$$
, $g(x) = 4$

B)
$$f(x) = \frac{4}{\sqrt{x}}$$
, $g(x) = 4x + 9$

D)
$$f(x) = 4$$
, $g(x) = \sqrt{4+9}$

Answer: B

402)
$$h(x) = (5x + 3)^7$$

A)
$$f(x) = 5x + 3$$
, $g(x) = x^7$

C)
$$f(x) = x^7$$
, $g(x) = 5x + 3$

B)
$$f(x) = (5x)^7$$
, $g(x) = 3$

D)
$$f(x) = 5x^7$$
, $g(x) = x + 3$

Answer: C

403)
$$h(x) = \sqrt{43x^2 + 36}$$

A)
$$f(x) = 43x^2 + 36$$
, $g(x) = \sqrt{x}$

C)
$$f(x) = \sqrt{43x^2}$$
, $g(x) = \sqrt{36}$

B)
$$f(x) = \sqrt{43x + 36}$$
, $g(x) = x^2$
D) $f(x) = \sqrt{x}$, $g(x) = 43x^2 + 36$

Answer: D

Solve the problem.

- 404) Regrind, Inc. regrinds used typewriter platens. The cost to buy back each used platen is \$1.50. The fixed cost to run the grinding machine is \$376 per day. If the company sells the reground platens for \$5.50, how many must be reground daily to break even?
 - A) 94 platens
- B) 62 platens
- C) 53 platens
- D) 250 platens

Answer: A

- 405) Northwest Molded molds plastic handles which cost \$0.50 per handle to mold. The fixed cost to run the molding machine is \$6408 per week. If the company sells the handles for \$3.50 each, how many handles must be molded weekly to break even?
 - A) 12,816 handles
- B) 1602 handles
- C) 2136 handles
- D) 1424 handles

Answer: C

- 406) Midtown Delivery Service delivers packages which cost \$1.70 per package to deliver. The fixed cost to run the delivery truck is \$90 per day. If the company charges \$7.70 per package, how many packages must be delivered daily to break even?
 - A) 10 packages
- B) 52 packages
- C) 9 packages
- D) 15 packages

Answer: D

- 407) A lumber yard has fixed costs of \$2248.00 a day and marginal costs of \$0.36 per board-foot produced. The company gets \$1.36 per board-foot sold. How many board-feet must be produced daily to break even?
 - A) 6244 board-feet
- B) 1306 board-feet
- C) 1498 board-feet
- D) 2248 board-feet

Answer: D

- 408) Midtown Delivery Service delivers packages which cost \$2.40 per package to deliver. The fixed cost to run the delivery truck is \$205 per day. If the company charges \$7.40 per package, how many packages must be delivered daily to make a profit of \$80?
 - A) 41 packages
- B) 20 packages
- C) 57 packages
- D) 85 packages

Answer: C

409) The cost of manufacturing clocks is given by $C(x) = 55 + 36x - x^2$. Also, it is known that in t hours the number of clocks that can be produced is given by x = 11t, where $1 \le t \le 12$. Express C as a function of t.

A)
$$C(t) = 55 + 396t - 121t^2$$

B)
$$C(t) = 55 + 36t + t^2$$

C)
$$C(t) = 55 + 396t - 121t$$

D)
$$C(t) = 55 + 36t - 11$$

Answer: A

410) At Allied Electronics, production has begun on the X–15 Computer Chip. The total revenue function is given by $R(x) = 46x - 0.3x^2$ and the total cost function is given by C(x) = 7x + 12, where x represents the number of boxes of computer chips produced. The total profit function, P(x), is such that P(x) = R(x) - C(x). Find P(x).

A)
$$P(x) = -0.3x^2 + 32x + 12$$

B)
$$P(x) = 0.3x^2 + 32x - 36$$

C)
$$P(x) = 0.3x^2 + 39x - 24$$

D)
$$P(x) = -0.3x^2 + 39x - 12$$

Answer: D

411) At Allied Electronics, production has begun on the X-15 Computer Chip. The total revenue function is given by $R(x) = 56x - 0.3x^2$ and the total profit function is given by $P(x) = -0.3x^2 + 48x - 14$, where x represents the number of boxes of computer chips produced. The total cost function, C(x), is such that C(x) = R(x) - P(x). Find C(x).

A)
$$C(x) = 10x + 10$$

B)
$$C(x) = 9x + 19$$

C)
$$C(x) = -0.3x^2 + 16x + 14$$

D)
$$C(x) = 8x + 14$$

Answer: D

412) At Allied Electronics, production has begun on the X–15 Computer Chip. The total cost function is given by C(x) = 3x + 11 and the total profit function is given by $P(x) = -0.3x^2 + 37x - 11$, where x represents the number of boxes of computer chips produced. The total revenue function, R(x), is such that R(x) = C(x) + P(x). Find R(x).

A)
$$R(x) = 42x - 0.3x^2$$

B)
$$R(x) = 39x - 0.6x^2$$

C)
$$R(x) = 40x + 0.3x^2$$

D)
$$R(x) = 40x - 0.3x^2$$

Answer: D

413) The radius r of a circle of known area A is given by $r = \sqrt{A/\pi}$, where $\pi \approx 3.1416$. Find the radius and circumference of a circle with an area of 6.32 sq ft. (Round results to two decimal places.)

A)
$$r = 1.42$$
 ft, $C = 8.92$ ft

B)
$$r = 1.42$$
 ft, $C = 8.92$ sq ft

C)
$$r = 1.42$$
 ft, $C = 8.86$ ft

D)
$$r = 2.02$$
 ft, $C = 12.69$ ft

Answer: A

414) The volume of water added to a circular drum of radius r is given by $V_W = 35t$, where V_W is volume in cu ft and t is time in sec. Find the depth of water in a drum of radius 6 ft after adding water for 9 sec. (Round result to one decimal place.)

Answer: D

415) A retail store buys 240 VCRs from a distributor at a cost of \$190 each plus an overhead charge of \$35 per order. The retail markup is 35% on the total price paid. Find the profit on the sale of one VCR.

Answer: B

416) A balloon (in the shape of a sphere) is being inflated. The radius is increasing at a rate of 11 cm per second. Find a function, r(t), for the radius in terms of t. Find a function, V(r), for the volume of the balloon in terms of r. Find $(V \circ r)(t)$.

A)
$$(V \circ r)(t) = \frac{5324\pi t^3}{3}$$

B)
$$(V \circ r)(t) = \frac{847\pi t^3}{3}$$

C)
$$(V \circ r)(t) = \frac{6655\pi t^2}{3}$$

D)
$$(V \circ r)(t) = \frac{58564\pi\sqrt{t}}{3}$$

Answer: A

417) A stone is thrown into a pond. A circular ripple is spreading over the pond in such a way that the radius is increasing at the rate of 2.4 feet per second. Find a function, r(t), for the radius in terms of t. Find a function, A(r), for the area of the ripple in terms of r. Find $(A \circ r)(t)$.

A)
$$(A \circ r)(t) = 5.76\pi t^2$$

B)
$$(A \cdot r)(t) = 4.8\pi t^2$$

C)
$$(A \circ r)(t) = 2.4\pi t^2$$

D)
$$(A \cdot r)(t) = 5.76\pi^2 t$$

Answer: A

418) Ken is 6 feet tall and is walking away from a streetlight. The streetlight has its light bulb 14 feet above the ground, and Ken is walking at the rate of 4.6 feet per second. Find a function, d(t), which gives the distance Ken is from the streetlight in terms of time. Find a function, S(d), which gives the length of Ken's shadow in terms of d. Then find (S · d)(t).

A)
$$(S \cdot d)(t) = 3.45t$$

B)
$$(S \cdot d)(t) = 7.77t$$

C)
$$(S \cdot d)(t) = 4.37t$$

D)
$$(S \cdot d)(t) = 2.53t$$

Answer: A

- 419) Ken is 6 feet tall and is walking away from a streetlight. The streetlight has its light bulb 14 feet above the ground, and Ken is walking at the rate of 3 feet per second. Find a function, d(t), which gives the distance Ken is from the streetlight in terms of time. Find a function, S(d), which gives the length of Ken's shadow in terms of d. Then find S(d). What is the meaning of S(d)?
 - A) $(S \cdot d)(t)$ gives the distance Ken is from the streetlight in terms of time.
 - B) $(S \cdot d)(t)$ gives the length of Ken's shadow in terms of his distance from the streetlight.
 - C) $(S \cdot d)(t)$ gives the length of Ken's shadow in terms of time.
 - D) $(S \cdot d)(t)$ gives the time in terms of Ken's distance from the streetlight.

Answer: C

Date:

Chapter 2 Test Form A

1. Match the set described in Column I with the correct interval notation from Column II. Choices in Column II may be used once, more than once, or not at all.

Column II

A. $[3, \infty)$

B. $[0, \infty)$

C. $(3, \infty)$

D. $(-\infty, 0]$

E. $[-3, \infty)$

F. $(-\infty, 3]$

G. $(-\infty, \infty)$

H. $(-\infty, 0)$

Column I

(a) domain of
$$f(x) = (x - 3)^2$$

(b) range of
$$f(x) = (x - 3)^2$$

(c) domain of
$$x = y^2 + 3$$

(d) range of
$$x = y^2 + 3$$

(e) domain of
$$f(x) = 3 - \sqrt{x}$$

(f) range of
$$f(x) = \sqrt{3-x}$$

(g) domain of
$$f(x) = \sqrt[3]{x+3}$$

(h) range of
$$f(x) = \sqrt[3]{x} - 3$$

(i) domain of
$$f(x) = |x - 3|$$

(j) range of
$$f(x) = |x| + 3$$

2. The graph of y = f(x) is shown here.

Sketch the graph of each of the following. Use ordered pairs to indicate 3 points on the graph.

$$(a) y = f(x+3)$$

(b)
$$y = f(x) + 3$$
 (c) $y = f(-x)$
(e) $y = 3f(x)$ (f) $y = |f(x)|$

(c)
$$y = f(-x)$$

(d)
$$y = -f(x)$$

(e)
$$y = 3f(x)$$

(f)
$$y = |f(x)|$$

3. If the point (2, 7) lies on the graph of y = f(x), determine a point on the graph of each equation.

(a)
$$y = f\left(\frac{1}{2}x\right)$$

(b)
$$y = f(4x)$$

4. Graph y = f(x) by hand.

(a)
$$f(x) = (x-1)^3 + 2$$
 (b) $f(x) = 2\sqrt{x-3}$

(b)
$$f(x) = 2\sqrt{x - 3}$$

5. Observe the coordinates displayed at the bottom of the given screen showing a portion of the graph y = f(x). Answer each of the following based on your observation.

Test Form 2-A (continued)

Name:

- (a) If the graph is symmetric with respect to the y-axis, what are the coordinates of another point on the graph?
- (b) If the graph is symmetric with respect to the origin, what are the coordinates of another point on the graph?
- (c) Suppose the graph is symmetric with respect to the y-axis. Sketch a typical viewing window with dimensions [-5, 5] by [0, 10]. Then draw the graph you would expect to see in this window.
- (a) Write a description that explains how the graph of $y = 2\sqrt{x-1} + 3$ can be obtained by translating the graph of $y = \sqrt{x}$.
 - (b) Sketch by hand the graph of y = -2|x + 2| 3. State the domain and the range.
- Consider the graph of the function shown here.

State the interval(s) over which the function is:

- (a) increasing
- (b) decreasing
- (c) constant
- (d) continuous

- (e) What is the domain of the function?
- (f) What is the range of this function?
- Solve each of the following analytically, showing all steps. Next graph $y_1 = |4x + 2|$ and $y_2 = 2$ in the standard viewing window of a graphing calculator. Then state how the graphs support your solution in each case.

(a)
$$|4x + 2| = 2$$

(b)
$$|4x + 2| < 2$$
 (c) $|4x + 2| > 2$

(c)
$$|4x + 2| > 2$$

9. Given $f(x) = 3x^2 - 2x - 6$ and g(x) = 3x + 5, find each of the following. Simplify the expression when possible.

(a)
$$(f - g)(x)$$

(b)
$$\frac{f}{g}(x)$$

(c) the domain of
$$\frac{f}{\sigma}$$

(d)
$$(f \circ g)(x)$$

(a)
$$(f-g)(x)$$
 (b) $\frac{f}{g}(x)$ (c) the domain of $\frac{f}{g}$ (d) $(f\circ g)(x)$ (e) $\frac{f(x+h)-f(x)}{h}$ $(h\neq 0)$

- 10. Consider the piecewise-defined function defined by $f(x) = \begin{cases} x^2 6 & \text{if } x \le 1 \\ \sqrt{x} & \text{if } x > 1 \end{cases}$.
 - (a) Graph f by hand.
 - (b) Use a graphing calculator to obtain an accurate graph in the window [-5, 10] by [-10, 10].
- 11. In Fairfield you can go to a coffee shop and pay to use their Internet service. If x represents the number of minutes you are online, where x > 0, then the function defined by f(x) = .50[x] + 1.50 gives the total cost in dollars.
 - (a) Using dot mode and the window [0, 15] by [0, 10], graph this function on a graphing calculator.
 - (b) Use the graph to find the cost of being online for 6.5 minutes.

Name:	
Dotos	

Test Form 2-A (continued)

- 12. Craig Mallery's band wants to record a CD. The cost to record a CD is \$750 for studio fees plus \$4.50 for each CD produced.
 - (a) Write a cost function C, where x represents the number of CDs produced.
 - (b) Find the revenue function R, if each CD in part (a) sells for \$12.00.
 - (c) Give the profit function P.
 - (d) How many CDs must be produced and sold before the band earns a profit?
 - (e) Support the results of part (d) graphically.

Chapter 2 Test Form B

1. Match the set described in Column I with the correct interval notation from Column II. Choices in Column II may be used once, more than once, or not at all.

Column I

- (a) domain of $f(x) = x^2 5$
- (b) range of $f(x) = x^2 5$
- (c) domain of $f(x) = \sqrt{x} + 5$
- (d) range of $f(x) = \sqrt{x-5}$
- (e) domain of f(x) = |x| 5
- (f) range of f(x) = |x + 5|
- (g) domain of $f(x) = \sqrt[3]{x-5}$
- (h) range of $f(x) = \sqrt[3]{x} + 5$
- (i) domain of $x = y^2 5$
- (j) range of $x = y^2 5$

- Column II
- A. $(-\infty, \infty)$
- B. $[0, \infty)$
- C. $(-\infty, 0]$
- D. $[-5, \infty)$
- E. $(5, \infty)$
- F. $(-5, \infty)$
- G. $(-\infty, 5]$
- H. $[5, \infty)$

The graph of y = f(x) is shown here.

Sketch the graph of each of the following. Use ordered pairs to indicate 3 points on the graph.

- (a) y = f(x) 3 (b) y = f(x 3) (c) y = -f(x) (d) y = f(-x) (e) y = 3f(x) (f) y = |f(x)|

- 3. If the point (4,2) lies on the graph of y=f(x), determine a point on the graph of each equation.

 - (a) y = f(x 3) (b) y = f(x) 3
- 4. Graph y = f(x) by hand.
 - (a) f(x) = |x + 2| 1 (b) $f(x) = \sqrt[3]{-x}$
- 5. Observe the coordinates displayed at the bottom of the given screen showing a portion of the graph y = f(x). Answer each of the following based on your observation.

(a) If the graph is symmetric with respect to the y-axis, what are the coordinates of another point on the graph?

Test Form 2-B (continued)

Date:

- (b) If the graph is symmetric with respect to the origin, what are the coordinates of another point on the graph?
- (c) Suppose the graph is symmetric with respect to the y-axis. Sketch a typical viewing window with dimensions [-8, 8] by [0, 10]. Then draw the graph you would expect to see in this window.
- 6. (a) Write a description that explains how the graph of $y = \sqrt[3]{x+5}$ can be obtained by translating the graph of $y = \sqrt[3]{x}$.
 - (b) Sketch by hand the graph of y = -|x 2| + 3. State the domain and the range.
- 7. Consider the graph of the function shown here.

State the interval(s) over which the function is:

- (a) increasing
- (b) decreasing
- (c) constant
- (d) continuous

- (e) What is the domain of the function?
- (f) What is the range of this function?
- Solve each of the following analytically, showing all steps. Next graph $y_1 = |2x 1|$ and $y_2 = 5$ in the standard viewing window of a graphing calculator. Then state how the graphs support your solution in each case.
 - (a) |2x 1| = 5
- (b) |2x-1| < 5 (c) |2x-1| > 5
- 9. Given $f(x) = 2x^2 + 5x 3$ and g(x) = 2x + 1, find each of the following. Simplify the expression when possible.

- (a) (f-g)(x) (b) $\frac{f}{g}(x)$ (c) the domain of $\frac{f}{g}$ (d) $(f\circ g)(x)$ (e) $\frac{f(x+h)-f(x)}{h}$ $(h\neq 0)$
- 10. Consider the piecewise-defined function defined by $f(x) = \begin{cases} x^2 7 & \text{if } x \le 1 \\ -\sqrt{x} + 5 & \text{if } x > 1 \end{cases}$.
 - (a) Graph f by hand.
 - (b) Use a graphing calculator to obtain an accurate graph in the window [-5, 10] by [-10, 10].
- 11. Royal Tree Service has been hired to clear an area of trees. If x represents the number of hours they will work, where x > 0, then the function defined by f(x) = 125[x] + 250 gives the total cost in dollars.
 - (a) Using dot mode and the window [0, 10] by [0, 1500], graph this function on a graphing calculator.
 - (b) Use the graph to find the cost of a 7.5 hour workday.

Test Form 2-B (continued)

- 12. Martin Boggs opens a new fruit juice shop that specializes in frozen blended juice drinks called "smoothies." His initial cost is \$5075. Each smoothie costs \$2.00 to make.
 - (a) Write a cost function C, where x represents the number of smoothies made.
 - (b) Find the revenue function R, if each smoothie in part (a) sells for \$3.75.
 - (c) Give the profit function P.
 - (d) How many smoothies must be made and sold before Martin earns a profit?
 - (e) Support the results of part (d) graphically.

Date:

Chapter 2 Test Form C

1. Match the set described in Column I with the correct interval notation from Column II. Choices in Column II may be used once, more than once, or not at all.

Column II

A. $(-\infty, 0)$

B. $(-\infty, \infty)$

C. $(-\infty, 2]$

D. $[-2, \infty)$

E. $(-\infty, 0]$

F. $(2, \infty)$

G. $[0, \infty)$

H. $[2, \infty)$

Column I

(a) domain of
$$f(x) = \sqrt{x} - 2$$

(b) range of
$$f(x) = \sqrt{x+2}$$

(c) domain of
$$f(x) = |x - 2|$$

(d) range of
$$f(x) = |x| + 2$$

(e) domain of
$$f(x) = x^2 + 2$$

(f) range of
$$f(x) = x^2 + 2$$

(1) Talige of
$$f(x) = x + 2$$

(g) domain of
$$f(x) = \sqrt[3]{x+2}$$

(h) range of
$$f(x) = \sqrt[3]{x} - 2$$

(i) domain of
$$x = v^2 + 2$$

(j) range of
$$x = y^2 + 2$$

2. The graph of y = f(x) is shown here.

Sketch the graph of each of the following. Use ordered pairs to indicate 3 points on the graph.

(a)
$$y = f(x + 2)$$
 (b) $y = f(x) + 2$ (c) $y = f(-x)$

(b)
$$y = f(x) + 2$$

(c)
$$y = f(-x)$$

(d)
$$v = -f(x)$$

(e)
$$y = 2f(x)$$

(d)
$$y = -f(x)$$
 (e) $y = 2f(x)$ (f) $y = |f(x)|$

3. If the point (-1, -2) lies on the graph of y = f(x), determine a point on the graph of each equation.

(a)
$$y = -f(x)$$

$$(b) y = f(-x)$$

4. Graph y = f(x) by hand.

(a)
$$f(x) = -(x+1)^2 + 2$$

(b)
$$f(x) = (x-3)^2 - 3$$

5. Observe the coordinates displayed at the bottom of the given screen showing a portion of the graph y = f(x). Answer each of the following based on your observation.

(a) If the graph is symmetric with respect to the y-axis, what are the coordinates of another point on the graph?

Test Form 2-C (continued)

Date:

- (b) If the graph is symmetric with respect to the origin, what are the coordinates of another point on the graph?
- (c) Suppose the graph is symmetric with respect to the y-axis. Sketch a typical viewing window with dimensions [-6, 6] by [0, 10]. Then draw the graph you would expect to see in this window.
- (a) Write a description that explains how the graph of $f(x) = \frac{1}{2}\sqrt[3]{x+3}$ can be obtained by translating the graph of $y = \sqrt[3]{x}$.
 - (b) Sketch by hand the graph of y = -3|x 6| + 4. State the domain and the range.
- 7. Consider the graph of the function shown here.

State the interval(s) over which the function is:

- (a) increasing
- (b) decreasing
- (c) constant
- (d) continuous

- (e) What is the domain of the function?
- (f) What is the range of this function?
- Solve each of the following analytically, showing all steps. Next graph $y_1 = |3x 6|$ and $y_2 = 3$ in the standard viewing window of a graphing calculator. Then state how the graphs support your solution in each case.

(a)
$$|3x - 6| = 3$$

(a)
$$|3x - 6| = 3$$
 (b) $|3x - 6| < 3$ (c) $|3x - 6| > 3$

(c)
$$|3x - 6| > 3$$

9. Given $f(x) = 4x^2 - 3x + 2$ and g(x) = 3x + 2, find each of the following. Simplify the expression when possible.

(a)
$$(f-g)(x)$$

(b)
$$\frac{f}{g}(x)$$

(a)
$$(f-g)(x)$$
 (b) $\frac{f}{g}(x)$ (c) the domain of $\frac{f}{g}$

(d)
$$(f \circ g)(x)$$

(d)
$$(f \circ g)(x)$$
 (e) $\frac{f(x+h) - f(x)}{h}(h \neq 0)$

- 10. Consider the piecewise-defined function defined by $f(x) = \begin{cases} 4\sqrt{-x} + 2 & \text{if } x < -4 \\ .5x^2 6 & \text{if } x \ge -4 \end{cases}$.
 - (a) Graph f by hand.
 - (b) Use a graphing calculator to obtain an accurate graph in the window [-15, 10] by [-10, 20].
- 11. Rent and Go car rental serves the greater Sacramento area. If x represents the number of days you rent a car, where x > 0, then the function defined by f(x) = 30 ||x|| + 10 gives the total cost of a car rental in dollars.
 - (a) Using dot mode and the window [0, 6] by [0, 200], graph this function on a graphing calculator.
 - (b) Use the graph to find the cost of renting a car for 5 days.

Name:	 	
Date:		

Test Form 2-C (continued)

- 12. The Class of 2010 wants to raise money for a class trip by selling hot pretzels in school. The initial cost is \$160 to rent the oven. Each pretzel costs \$.75 to make.
 - (a) Write a cost function C, where x represents the number of pretzels made.
 - (b) Find the revenue function R, if each pretzel in part (a) sells for \$2.00.
 - (c) Give the profit function P.
 - (d) How many pretzels must be made and sold before the class earns a profit?
 - (e) Support the results of part (d) graphically.

Chapter 2 Test Form D

1. Match the set described in Column I with the correct interval notation from Column II. Choices in Column II may be used once, more than once, or not at all.

Column II

A. $[0, \infty)$

B. $[9, \infty)$

C. $(-\infty, 9]$

D. $(-9, \infty)$

E. $(-\infty, \infty)$

F. $(9, \infty)$

G. $(-\infty, 0]$

H. $[-9, \infty)$

Column I

- (a) domain of $f(x) = x^2 + 9$
- (b) range of $f(x) = x^2 + 9$
- (c) domain of $f(x) = \sqrt{x} 9$
- (d) range of $f(x) = \sqrt{x+9}$
- (e) domain of f(x) = |x 9|
- (f) range of f(x) = |x| + 9
- (g) domain of $f(x) = \sqrt[3]{x+9}$
- (h) range of $f(x) = \sqrt[3]{x} 9$
- (i) domain of $x = y^2 + 9$
- (i) range of $x = v^2 + 9$
- The graph of y = f(x) is shown here.

Sketch the graph of each of the following. Use ordered pairs to indicate 3 points on the graph.

(a)
$$y = f(x - 2)$$
 (b) $y = f(x) - 2$ (c) $y = -f(x)$ (d) $y = f(-x)$ (e) $y = 2f(x)$ (f) $y = |f(x)|$

(b)
$$y = f(x) - 2$$

(c)
$$y = -f(x)$$

(d)
$$v = f(-x)$$

(e)
$$y = 2f(x)$$

(f)
$$v = |f(x)|$$

3. If the point (4, 3) lies on the graph of y = f(x), determine a point on the graph of each equation.

(a)
$$y = 2f(x)$$

(b)
$$y = f(2x) - 1$$

4. Graph y = f(x) by hand.

(a)
$$f(x) = \sqrt[3]{x} + 1$$
 (b) $f(x) = |-2x|$

(b)
$$f(x) = |-2x|$$

5. Observe the coordinates displayed at the bottom of the given screen showing a portion of the graph y = f(x). Answer each of the following based on your observation.

(a) If the graph is symmetric with respect to the y-axis, what are the coordinates of another point on the graph?

Test Form 2-D (continued)

Date:

- (b) If the graph is symmetric with respect to the origin, what are the coordinates of another point on the graph?
- (c) Suppose the graph is symmetric with respect to the y-axis. Sketch a typical viewing window with dimensions [-5, 5] by [0, 10]. Then draw the graph you would expect to see in this window.
- 6. (a) Write a description that explains how the graph of $y = \sqrt[3]{x-4} + 5$ can be obtained by translating the graph of
 - (b) Sketch by hand the graph of $y = \frac{1}{2}|x-4| + 3$. State the domain and the range.
- 7. Consider the graph of the function shown here.

State the interval(s) over which the function is:

- (a) increasing
- (c) constant
- (d) continuous

- (e) What is the domain of the function?
- (f) What is the range of this function?
- 8. Solve each of the following analytically, showing all steps. Next graph $y_1 = |2x + 3|$ and $y_2 = 3$ in the standard viewing window of a graphing calculator. Then state how the graphs support your solution in each case.

(a)
$$|2x + 3| = 3$$

(b)
$$|2x + 3| < 3$$

(c)
$$|2x + 3| > 3$$

9. Given $f(x) = -2x^2 + 2x - 1$ and g(x) = 2x - 3, find each of the following. Simplify the expression when

(a)
$$(f - g)(x)$$

(b)
$$\frac{f}{g}(x)$$

(c) the domain of
$$\frac{f}{g}$$

(d)
$$(f \circ g)(x)$$

possible.

(a)
$$(f - g)(x)$$

(b) $\frac{f}{g}(x)$

(c) the domain of $\frac{f}{g}(x)$

(d) $(f \circ g)(x)$

(e) $\frac{f(x+h) - f(x)}{h}(h \neq 0)$

- 10. Consider the piecewise-defined function defined by $f(x) = \begin{cases} x^2 8 & \text{if } x < 4 \\ -2 & x 4 & \text{if } x \ge 4 \end{cases}$.
 - (a) Graph *f* by hand.
 - (b) Use a graphing calculator to obtain an accurate graph in the window [-5, 15] by [-10, 5].
- 11. Specialty Printing produces engraved wedding invitations. If x represents the number of invitations, where x > 0, then the function defined by $f(x) = 75 \left[\frac{x}{25} \right] + 100$ gives the total cost in dollars.
 - (a) Using dot mode and the window [0, 250] by [0, 900], graph this function on a graphing calculator.
 - (b) Use the graph to find the cost of hiring Specialty Printing to print 120 invitations.

Test	Form	2-D	(continued)

Name:		

- 12. Tiny Toys is going to produce a toy race car version of the new Volkswagen Bug. The overhead for the project is \$378. Each toy Bug costs \$1.25 to make.
 - (a) Write a cost function C, where x represents the number of toy Bugs manufactured.
 - (b) Find the revenue function R, if each toy Bug in part (a) sells for \$3.00.
 - (c) Give the profit function P.
 - (d) How many toy Bugs must be produced and sold before Tiny Toys earns a profit?
 - (e) Support the results of part (d) graphically.