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Introduction 

 

2-1C  The term steady implies no change with time at any point within the medium while transient implies variation with 

time or time dependence. Therefore, the temperature or heat flux remains unchanged with time during steady heat transfer 

through a medium at any location although both quantities may vary from one location to another.   During transient heat 

transfer, the temperature and heat flux may vary with time as well as location. Heat transfer is one-dimensional if it occurs 

primarily in one direction. It is two-dimensional if heat tranfer in the third dimension is negligible. 

 

 

2-2C  Heat transfer is a vector quantity since it has direction as well as magnitude. Therefore, we must specify both direction 

and magnitude in order to describe heat transfer completely at a point. Temperature, on the other hand, is a scalar quantity. 

 

 

2-3C Yes, the heat flux vector at a point P on an isothermal surface of a medium has to be perpendicular to the surface at that 

point. 

 

 

2-4C Isotropic materials have the same properties in all directions, and we do not need to be concerned about the variation of 

properties with direction for such materials. The properties of anisotropic materials such as the fibrous or composite 

materials, however, may change with direction. 

 

 

2-5C In heat conduction analysis, the conversion of electrical, chemical, or nuclear energy into heat (or thermal) energy in 

solids is called heat generation. 

 

 

2-6C The phrase “thermal energy generation” is equivalent to “heat generation,” and they are used interchangeably. They 

imply the conversion of some other form of energy into thermal energy. The phrase “energy generation,” however, is vague 

since the form of energy generated is not clear. 

 

 

2-7C The heat transfer process from the kitchen air to the refrigerated space is 

transient in nature since the thermal conditions in the kitchen and the refrigerator, 

in general, change with time. However, we would analyze this problem as a 

steady heat transfer problem under the worst anticipated conditions such as the 

lowest thermostat setting for the refrigerated space, and the anticipated highest 

temperature in the kitchen (the so-called design conditions). If the compressor is 

large enough to keep the refrigerated space at the desired temperature setting 

under the presumed worst conditions, then it is large enough to do so under all 

conditions by cycling on and off. Heat transfer into the refrigerated space is 

three-dimensional in nature since heat will be entering through all six sides of the 

refrigerator. However, heat transfer through any wall or floor takes place in the 

direction normal to the surface, and thus it can be analyzed as being one-

dimensional. Therefore, this problem can be simplified greatly by considering the 

heat transfer to be onedimensional at each of the four sides as well as the top and 

bottom sections, and then by adding the calculated values of heat transfer at each 

surface. 
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2-8C Heat transfer through the walls, door, and the top and bottom sections of an oven is transient in nature since the thermal 

conditions in the kitchen and the oven, in general, change with time. However, we would analyze this problem as a steady 

heat transfer problem under the worst anticipated conditions such as the highest temperature setting for the oven, and the 

anticipated lowest temperature in the kitchen (the so called “design” conditions). If the heating element of the oven is large 

enough to keep the oven at the desired temperature setting under the presumed worst conditions, then it is large enough to do 

so under all conditions by cycling on and off.  

 Heat transfer from the oven is three-dimensional in nature since heat will be entering through all six sides of the 

oven. However, heat transfer through any wall or floor takes place in the direction normal to the surface, and thus it can be 

analyzed as being one-dimensional. Therefore, this problem can be simplified greatly by considering the heat transfer as being 

one- dimensional at each of the four sides as well as the top and bottom sections, and then by adding the calculated values of 

heat transfers at each surface. 

 

 

2-9C Heat transfer to a potato in an oven can be modeled as one-dimensional since temperature differences (and thus heat 

transfer) will exist in the radial direction only because of symmetry about the center point. This would be a transient heat 

transfer process since the temperature at any point within the potato will change with time during cooking. Also, we would 

use the spherical coordinate system to solve this problem since the entire outer surface of a spherical body can be described 

by a constant value of the radius in spherical coordinates. We would place the origin at the center of the potato. 

 

 

2-10C Assuming the egg to be round, heat transfer to an egg in boiling water can be modeled as one-dimensional since 

temperature differences (and thus heat transfer) will primarily exist in the radial direction only because of symmetry about the 

center point.  This would be a transient heat transfer process since the temperature at any point within the egg will change 

with time during cooking. Also, we would use the spherical coordinate system to solve this problem since the entire outer 

surface of a spherical body can be described by a constant value of the radius in spherical coordinates. We would place the 

origin at the center of the egg. 

 

 

2-11C Heat transfer to a hot dog can be modeled as two-dimensional since temperature differences (and thus heat transfer) 

will exist in the radial and axial directions (but there will be symmetry about the center line and no heat transfer in the 

azimuthal direction. This would be a transient heat transfer process since the temperature at any point within the hot dog will 

change with time during cooking. Also, we would use the cylindrical coordinate system to solve this problem since a cylinder 

is best described in cylindrical coordinates. Also, we would place the origin somewhere on the center line, possibly at the 

center of the hot dog. Heat transfer in a very long hot dog could be considered to be one-dimensional in preliminary 

calculations. 

 

 

2-12C Heat transfer to a roast beef in an oven would be transient since the temperature at any point within the roast will 

change with time during cooking. Also, by approximating the roast as a spherical object, this heat transfer process can be 

modeled as one-dimensional since temperature differences (and thus heat transfer) will primarily exist in the radial direction 

because of symmetry about the center point. 

 

 

2-13C Heat loss from a hot water tank in a house to the surrounding medium can be considered to be a steady heat transfer 

problem. Also, it can be considered to be two-dimensional since temperature differences (and thus heat transfer) will exist in 

the radial and axial directions (but there will be symmetry about the center line and no heat transfer in the azimuthal 

direction.) 



 

PROPRIETARY MATERIAL. © 2015 The McGraw-Hill Companies, Inc.  Limited distribution permitted only to teachers and educators for course 

preparation.  If you are a student using this Manual, you are using it without permission. 

2-4 

 

2-14C Heat transfer to a canned drink can be modeled as two-dimensional since temperature differences (and thus heat 

transfer) will exist in the radial and axial directions (but there will be symmetry about the center line and no heat transfer in 

the azimuthal direction. This would be a transient heat transfer process since the temperature at any point within the drink will 

change with time during heating. Also, we would use the cylindrical coordinate system to solve this problem since a cylinder 

is best described in cylindrical coordinates. Also, we would place the origin somewhere on the center line, possibly at the 

center of the bottom surface. 

 

 

 

 

2-15 A certain thermopile used for heat flux meters is considered. The minimum heat flux this meter can detect is to be 

determined.  

Assumptions 1 Steady operating conditions exist.  

Properties The thermal conductivity of kapton is given to be 0.345 W/mK.  

Analysis The minimum heat flux can be determined from 

2 W/m17.3






m 002.0

C1.0
)C W/m345.0(

L

t
kq  

 

 

 

 

2-16 The rate of heat generation per unit volume in a stainless steel plate is given. The heat flux on the surface of the plate is 

to be determined. 

Assumptions  Heat is generated uniformly in steel plate. 

Analysis We consider a unit surface area of 1 m
2
. The total rate of heat 

generation in this section of the plate is 

 W101.5m) )(0.03m 1)( W/m105()( 5236
genplategengen  LAeeE  V  

Noting that this heat will be dissipated from both sides of the plate, the heat flux on 

either surface of the plate becomes 

2
kW/m 75




 2

2

5

plate

gen
 W/m000,75

m 12

 W105.1

A

E
q


  

 

 

 

 

 e 

 

 L 



 

PROPRIETARY MATERIAL. © 2015 The McGraw-Hill Companies, Inc.  Limited distribution permitted only to teachers and educators for course 

preparation.  If you are a student using this Manual, you are using it without permission. 

2-5 

 

2-17 The rate of heat generation per unit volume in the uranium rods is given. The total rate of heat generation in each rod is 

to be determined. 

Assumptions  Heat is generated uniformly in the uranium rods. 

Analysis The total rate of heat generation in the rod is determined 

by multiplying the rate of heat generation per unit volume by the 

volume of the rod 

   kW 393= W10.933m) 1](4/m) 05.0([) W/m102()4/( 52382
genrodgengen   LDeeE  V  

 

 

 

 

2-18 The variation of the absorption of solar energy in a solar pond with depth is given. A relation for the total rate of heat 

generation in a water layer at the top of the pond is to be determined. 

Assumptions  Absorption of solar radiation by water is modeled as heat generation. 

Analysis The total rate of heat generation in a water layer of surface area A and thickness L at the top of the pond  is 

determined by integration to be 

 
b

)e(1eA
bL

0




 



 




L
bxL

x

bx

b

e
eAAdxeedeE

0

0
0

0gengen )(
V

V  

 

 

 

 

2-19E The power consumed by the resistance wire of an iron is given. The heat generation and the heat flux are to be 

determined. 

Assumptions  Heat is generated uniformly in the resistance wire. 

Analysis   An 800 W iron will convert electrical energy into 

heat in the wire at a rate of 800 W. Therefore, the rate of heat 

generation in a resistance wire is simply equal to the power 

rating of a resistance heater. Then the rate of heat generation in 

the wire per unit volume is determined by dividing the total rate 

of heat generation by the volume of the wire to be 

37
ftBtu/h 106.256 










 W1

Btu/h 412.3

ft) 12/15](4/ft) 12/08.0([

 W800

)4/( 22

gen

wire

gen

gen
 LD

EE
e




V
 

Similarly, heat flux on the outer surface of the wire as a result of this heat generation is determined by dividing the total rate 

of heat generation by the surface area of the wire to be 

 
25

ftBtu/h 101.043 









 W1

Btu/h 412.3

ft) 12/15(ft) 12/08.0(

 W800gen

wire

gen

DL

E

A

E
q


  

Discussion Note that heat generation is expressed per unit volume in Btu/hft
3
 whereas heat flux is expressed per unit surface 

area in Btu/hft
2
. 

g = 210
8
 W/m

3
 

L = 1 m 

D = 5 cm 

q = 800 W 

L = 15 in 

D = 0.08 in 



 

PROPRIETARY MATERIAL. © 2015 The McGraw-Hill Companies, Inc.  Limited distribution permitted only to teachers and educators for course 

preparation.  If you are a student using this Manual, you are using it without permission. 

2-6 

 

Heat Conduction Equation 

 

2-20C The one-dimensional transient heat conduction equation for a plane wall with constant thermal conductivity and heat 

generation is 
t

T

αk

e

x

T








 1gen

2

2 
. Here T is the temperature, x is the space variable, gene is the heat generation per unit 

volume, k is the thermal conductivity,  is the thermal diffusivity, and t is the time. 

 

 

2-21C The one-dimensional transient heat conduction equation for a long cylinder with constant thermal conductivity and 

heat generation is 
t

T

k

e

r

T
r

rr 




















 11 gen


. Here T is the temperature, r is the space variable, g is the heat generation per 

unit volume, k is the thermal conductivity,  is the thermal diffusivity, and t is the time.  

 

 

 

2-22 We consider a thin element of thickness x in a large plane wall (see Fig. 2-12 in the text). The density of the wall is , 

the specific heat is c, and the area of the wall normal to the direction of heat transfer is A. In the absence of any heat 

generation, an energy balance on this thin element of thickness x during a small time interval t can be expressed as 

 
t

E
QQ xxx




 

element  

where   

 )()(element ttttttttt TTxcATTmcEEE     

Substituting, 

 
t

TT
xcAQQ ttt

xxx



 

   

Dividing by Ax gives  

 
t

TT
c

x

QQ

A

tttxxx









  

1
 

Taking the limit as x  0  and t  0 yields 

 
t

T
ρc

x

T
kA

xA 


















1
 

since from the definition of the derivative and Fourier’s law of heat conduction,  

 



























 x

T
kA

xx

Q

x

QQ xxx

x



0
lim  

Noting that the area A of a plane wall is constant, the one-dimensional transient heat conduction equation in a plane wall with 

constant thermal conductivity k becomes  

 
t

T

αx

T








 1
2

2

 

where the property ck  /  is the thermal diffusivity of the material.   
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2-23 We consider a thin cylindrical shell element of thickness r in a long cylinder (see Fig. 2-14 in the text). The density of 

the cylinder is , the specific heat is c, and the length is L. The area of the cylinder normal to the direction of heat transfer at 

any location is rLA 2  where r is the value of the radius at that location. Note that the heat transfer area A depends on r in 

this case, and thus it varies with location.  An energy balance on this thin cylindrical shell element of thickness r during a 

small time interval  t can be expressed as 

 
t

E
EQQ rrr




 

element
element

   

where 

 )()(element ttttttttt TTrcATTmcEEE     

 rAeeE  genelementgenelement
 V   

Substituting, 

 
t

TT
rcArAeQQ ttt

rrr



 

 gen
  

where rLA 2 .  Dividing the equation above by Ar gives  

 
t

TT
ce

r

QQ

A

tttrrr









  gen

1



 

Taking the limit as 0r  and 0t yields 

 
t

T
ce

r

T
kA

rA 



















gen

1
  

since, from the definition of the derivative and Fourier’s law of heat conduction,  

 



























 r

T
kA

rr

Q

r

QQ rrr

r



0
lim  

Noting that the heat transfer area in this case is rLA 2  and the thermal conductivity is constant, the one-dimensional 

transient heat conduction equation in a cylinder becomes  

 
t

T
e

r

T
r

rr 




















 11
gen
  

where ck  /  is the thermal diffusivity of the material.  
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2-24 We consider a thin spherical shell element of thickness r in a sphere (see Fig. 2-16 in the text).. The density of the 

sphere is , the specific heat is c, and the length is L. The area of the sphere normal to the direction of heat transfer at any 

location is 24 rA   where r is the value of the radius at that location. Note that the heat transfer area A depends on r in this 

case, and thus it varies with location.  When there is no heat generation, an energy balance on this thin spherical shell element 

of thickness r during a small time interval  t can be expressed as 

 
t

E
QQ rrr




 

element  

where   

 )()(element ttttttttt TTrcATTmcEEE     

Substituting, 

 
t

TT
rcAQQ ttt

rrr



 

   

where 24 rA  .  Dividing the equation above by Ar gives 

 
t

TT
c

r

QQ

A

tttrrr









  

1
  

Taking the limit as 0r  and 0t yields 

 
t

T
ρc

r

T
kA

rA 


















1
 

since, from the definition of the derivative and Fourier’s law of heat conduction,  

 



























 r

T
kA

rr

Q

r

QQ rrr

r



0
lim  

Noting that the heat transfer area in this case is 24 rA   and the thermal conductivity k is constant, the one-dimensional 

transient heat conduction equation in a sphere becomes 

 
t

T

αr

T
r

rr 


















 11 2

2
  

where ck  /  is the thermal diffusivity of the material.  

 

 

 

 

2-25  For a medium in which the heat conduction equation is given in its simplest by 
t

T

x

T










 1
2

2

: 

(a) Heat transfer is transient, (b) it is one-dimensional, (c) there is no heat generation, and (d) the thermal conductivity is 

constant. 

 



 

PROPRIETARY MATERIAL. © 2015 The McGraw-Hill Companies, Inc.  Limited distribution permitted only to teachers and educators for course 

preparation.  If you are a student using this Manual, you are using it without permission. 

2-9 

 

2-26  For a medium in which the heat conduction equation is given by 
t

T

y

T

x

T















 1
2

2

2

2

: 

(a) Heat transfer is transient, (b) it is two-dimensional, (c) there is no heat generation, and (d) the thermal conductivity is 

constant. 

 

 

 

 

2-27  For a medium in which the heat conduction equation is given in its simplest by 0
1

gen 







e

dr

dT
rk

dr

d

r
 : 

(a) Heat transfer is steady, (b) it is one-dimensional, (c) there is heat generation, and (d) the thermal conductivity is variable. 

 

 

 

 

2-28  For a medium in which the heat conduction equation is given by 0
1

gen 































e

z

T
k

zr

T
kr

rr
 : 

(a) Heat transfer is steady, (b) it is two-dimensional, (c) there is heat generation, and (d) the thermal conductivity is variable. 

 

 

 

 

2-29  For a medium in which the heat conduction equation is given in its simplest by 02
2

2


dr

dT

dr

Td
r : 

(a) Heat transfer is steady, (b) it is one-dimensional, (c) there is no heat generation, and (d) the thermal conductivity is 

constant. 

 

 

 

 

2-30 For a medium in which the heat conduction equation is given by 
t

T

αr

T
r

rr 


















 11 2

2
 

(a) Heat transfer is transient, (b) it is one-dimensional, (c) there is no heat generation, and (d) the thermal conductivity is 

constant. 
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2-31  For a medium in which the heat conduction equation is given by  
t

TT

rr

T
r

rr 



























 1

sin

11
2

2

22

2

2
 

(a) Heat transfer is transient, (b) it is two-dimensional, (c) there is no heat generation, and (d) the thermal conductivity is 

constant. 

 

 

 

 

2-32 We consider a small rectangular element of length x, width y, and height z = 1 (similar to the one in Fig. 2-20). The 

density of the body is  and the specific heat is c. Noting that heat conduction is two-dimensional and assuming no heat 

generation, an energy balance on this element during a small time interval t can be expressed as 





















































element  theof    

content energy  the

 of change of Rate 

  and +

at  surfaces at the 

conductionheat  of Rate

 and at   surfaces

 at the conduction

heat  of Rate  

yyxxyx

 

or 
t

E
QQQQ yyxxyx




 

element  

Noting that the volume of the element is 1element  yxzyxV , the change in the energy content of the element can be 

expressed as 

 )()(element ttttttttt TTyxcTTmcEEE     

Substituting,  
t

TT
yxcQQQQ ttt

yyxxyx



 

   

Dividing by xy gives  

 
t

TT
c

y

QQ

xx

QQ

y

tttyyyxxx


















  

 11
 

Taking the thermal conductivity k to be constant and noting that the heat transfer surface areas of the element for heat 

conduction in the x and y directions are ,1 and 1  xAyA yx  respectively, and taking the limit as 0 and , ,  tyx  

yields  

 
t

T

αy

T

x

T













 1
2

2

2

2

 

since, from the definition of the derivative and Fourier’s law of heat conduction,  

 
2

2

0

111
lim

x

T
k

x

T
k

xx

T
zyk

xzyx

Q

zyx

QQ

zy

xxxx

x 



























































 

 
2

2

0

111
lim

y

T
k

y

T
k

yy

T
zxk

yzxy

Q

zxy

QQ

zx

yyyy

y 



























































 

Here the property ck  /  is the thermal diffusivity of the material. 
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2-33 We consider a thin ring shaped volume element of width z and thickness r in a cylinder. The density of the cylinder is 

 and the specific heat is c.  In general, an energy balance on this ring element during a small time interval  t can be 

expressed as  

 
t

E
QQQQ zzzrrr




 

element)()(   

But the change in the energy content of the element can be expressed as 

      )()2()(element ttttttttt TTzrrcTTmcEEE    

Substituting, 

 
t

TT
zrrcQQQQ ttt

zzzrrr



 

 )2()()(   

Dividing the equation above by  zrr  )2(   gives  

 
t

TT
c

z

QQ

rrr

QQ

zr

tttzzzrrr


















  





2

1

2

1
 

Noting that the heat transfer surface areas of the element for heat conduction in the r and z directions are 

,2  and 2 rrAzrA zr    respectively, and taking the limit as 0 and  ,  tzr  yields  

 
t

T
c

z

T
k

z

T
k

rr

T
kr

rr 



















































2

11
 

since, from the definition of the derivative and Fourier’s law of heat conduction,  






















































 r

T
kr

rrr

T
zrk

rzrr

Q

zrr

QQ

zr

rrr

r

1
)2(

2

1

2

1

2

1
lim

0


 






















































 z

T
k

zz

T
rrk

zrrz

Q

rrz

QQ

rr

zzzz

z
)2(

2

1

2

1

2

1
lim

0


 

For the case of constant thermal conductivity the equation above reduces to  

 
t

T

z

T

r

T
r

rr 
























 11
2

2

 

where ck  /  is the thermal diffusivity of the material. For the case of steady heat conduction with no heat generation it 

reduces to  

 0
1

2

2






















z

T

r

T
r

rr
 

z 

r+r r r 
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2-34 Consider a thin disk element of thickness z and diameter D in a long cylinder. The density of the cylinder is , the 

specific heat is c, and the area of the cylinder normal to the direction of heat transfer is 4/2DA  , which is constant. An 

energy balance on this thin element of thickness z during a small time interval  t can be expressed as 






































































element  theof    

content energy  the

 of change of Rate 

element     the

inside generation

heat  of Rate   

 +at  surface  

 at the conduction 

heat of Rate    

at  surface the

at  conduction 

heat  of Rate   

zzz

 

or, 

 
t

E
EQQ zzz




 

element
element

  

But the change in the energy content of the element and the rate of heat generation within the element can be expressed as 

 )()(element ttttttttt TTzcATTmcEEE     

and 

 zAeeE  genelementgenelement
 V  

Substituting, 

 
t

TT
zcAzAeQQ ttt

zzz



 

 gen
  

Dividing by Az gives  

 
t

TT
ce

z

QQ

A

tttzzz









  gen

1



 

Taking the limit as 0z  and 0t yields 

 
t

T
ce

z

T
kA

zA 



















gen

1
  

since, from the definition of the derivative and Fourier’s law of heat conduction,  

 



























 z

T
kA

zz

Q

z

QQ zzz

z



0
lim  

Noting that the area A and the thermal conductivity k are constant,  the one-dimensional transient heat conduction equation in 

the axial direction in a long cylinder becomes  

 
t

T

k

e

z

T










 1gen

2

2 
 

where the property ck  /  is the thermal diffusivity of the material. 
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Boundary and Initial Conditions; Formulation of Heat Conduction Problems 

 

2-35C The mathematical expressions of the thermal conditions at the boundaries are called the boundary conditions. To 

describe a heat transfer problem completely,  two boundary conditions must be given for each direction of the coordinate 

system along which heat transfer is significant. Therefore, we need to specify four boundary conditions for two-dimensional 

problems.  

 

 

2-36C The mathematical expression for the temperature distribution of the medium initially is called the initial condition. 

We need only one initial condition for a heat conduction problem regardless of the dimension since the conduction equation is 

first order in time (it involves the first derivative of temperature with respect to time). Therefore, we need only 1 initial 

condition for a two-dimensional problem. 

 

 

2-37C A heat transfer problem that is symmetric about a plane, line, or point is said to have thermal symmetry about that 

plane, line, or point. The thermal symmetry boundary condition is a mathematical expression of this thermal symmetry. It is 

equivalent to insulation or zero heat flux boundary condition, and is expressed at a point x0 as 0/),( 0  xtxT . 

 

 

2-38C The boundary condition at a perfectly insulated surface (at x = 0, for example) can be expressed as 

0
),0(

or                0
),0(












x

tT

x

tT
k

 
which indicates zero heat flux.

 

 

 

2-39C Yes, the temperature profile in a medium must be perpendicular to an insulated surface since the slope  0/  xT  at 

that surface. 

 

 

2-40C We try to avoid the radiation boundary condition in heat transfer analysis because it is a non-linear expression that 

causes mathematical difficulties while solving the problem; often making it impossible to obtain analytical solutions. 
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2-41 Heat conduction through the bottom section of an aluminum pan that is used to cook stew on top of an electric range is 

considered. Assuming variable thermal conductivity and one-dimensional heat transfer, the mathematical formulation (the 

differential equation and the boundary conditions) of this heat conduction problem is to be obtained for steady operation.  

Assumptions 1 Heat transfer is given to be steady and one-dimensional. 2 Thermal conductivity is given to be variable.  3 

There is no heat generation in the medium. 4 The top surface at x = L is subjected to specified temperature and the bottom 

surface at x = 0 is subjected to uniform heat flux. 

Analysis The heat flux at the bottom of the pan is 

 2

22

gen

s

 W/m831,31
4/m) 18.0(

 W)900(90.0

4/




D

E

A

Q
q s

s


  

Then the differential equation and the boundary conditions for this heat conduction problem can be expressed as 

 0








dx

dT
k

dx

d
 

 

C108)(      

 W/m831,31
)0( 2





L

s

TLT

q
dx

dT
k 

 

 

 

 

 

2-42  Heat conduction through the bottom section of a steel pan that is used to boil water on top of an electric range is 

considered. Assuming constant thermal conductivity and one-dimensional heat transfer, the mathematical formulation (the 

differential equation and the boundary conditions) of this heat conduction problem is to be obtained for steady operation.  

Assumptions 1 Heat transfer is given to be steady and one-dimensional. 2 Thermal conductivity is given to be constant.  3 

There is no heat generation in the medium. 4 The top surface at x = L is subjected to convection and the bottom surface at x = 

0 is subjected to uniform heat flux. 

Analysis The heat flux at the bottom of the pan is 

 2

22

gen
 W/m820,33

4/m) 20.0(

 W)1250(85.0

4/




D

E

A

Q
q

s

s
s


  

Then the differential equation and the boundary conditions for this heat conduction problem can be expressed as 

  0
2

2


dx

Td
 

      

])([
)(

 W/m280,33
)0( 2





TLTh
dx

LdT
k

q
dx

dT
k s


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2-43   The outer surface of the East wall of a house exchanges heat with both convection and radiation., while the interior 

surface is subjected to convection only.  Assuming the heat transfer through the wall to be steady and one-dimensional, the 

mathematical formulation (the differential equation and the boundary  and initial conditions) of this heat conduction problem 

is to be obtained. 

Assumptions 1 Heat transfer is given to be steady and one-dimensional. 2 Thermal 

conductivity is given to be constant.  3 There is no heat generation in the medium.    

4 The outer surface at x = L is subjected to convection and radiation while the inner 

surface at  x = 0 is subjected to convection only. 

Analysis Expressing all the temperatures in Kelvin, the differential equation and the 

boundary conditions for this heat conduction problem can be expressed as 

 0
2

2


dx

Td
 

)]0([
)0(

11 TTh
dx

dT
k    

 4
sky

4
221 )(])([

)(
TLTTLTh

dx

LdT
k     

 

 

 

 

2-44  Heat is generated in a long wire of radius ro covered with a plastic insulation layer at a constant rate of gene . The heat 

flux boundary condition at the interface (radius ro) in terms of the heat generated is to be expressed. The total heat generated 

in the wire and the heat flux at the interface are 

 

2)2(

)(

)(

gen
2

gengen

2
genwiregengen

o

o

os
s

o

re

Lr

Lre

A

E

A

Q
q

LreeE














V

 

Assuming steady one-dimensional conduction in the radial direction, the heat flux boundary condition can be expressed as 

 
2

)( gen oo
re

dr

rdT
k


  

 

 

 

 

2-45  A long pipe of inner radius r1, outer radius r2, and thermal conductivity 

k is considered. The outer surface of the pipe is subjected to convection to a 

medium at T  with a heat transfer coefficient of h. Assuming steady one-

dimensional conduction in the radial direction, the convection boundary 

condition on the outer surface of the pipe can be expressed as  

  ])([
)(

2
2

 TrTh
dr

rdT
k  

egen  

L 

D 

r2 

h, T 

r1 

x 

T2 

h2 

L 

Tsky 

T1 

h1 
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2-46E  A 2-kW resistance heater wire is used for space heating. Assuming constant thermal conductivity and one-dimensional 

heat transfer, the mathematical formulation (the differential equation and the boundary conditions) of this heat conduction 

problem is to be obtained for steady operation. 

Assumptions 1 Heat transfer is given to be steady and one-dimensional. 2 Thermal conductivity is given to be constant.  3 

Heat is generated uniformly in the wire. 

Analysis  The heat flux at the surface of the wire is 

 2gen

s

 W/in.7353
in) in)(15 06.0(2

 W2000

2


 Lr

E

A

Q
q

o

s
s


  

Noting that there is thermal symmetry about the center line and there is uniform heat flux at the outer surface, the differential 

equation and the boundary conditions for this heat conduction problem can be expressed as 

 0
1 gen










k

e

dr

dT
r

dr

d

r


 

 
2 W/in.7353

)(

0
)0(





s
o q

dr

rdT
k

dr

dT



 

 

 

 

 

2-47  Water flows through a pipe whose outer surface is wrapped with a thin electric heater that consumes 400 W per m 

length of the pipe. The exposed surface of the heater is heavily insulated so that the entire heat generated in the heater is 

transferred to the pipe. Heat is transferred from the inner surface of the pipe to the water by convection. Assuming constant 

thermal conductivity and one-dimensional heat transfer, the mathematical formulation (the differential equation and the 

boundary conditions) of the heat conduction in the pipe is to be obtained for steady operation. 

Assumptions 1 Heat transfer is given to be steady and one-dimensional. 2 Thermal conductivity is given to be constant.  3 

There is no heat generation in the medium. 4 The outer surface at r = r2 is subjected to uniform heat flux and the inner surface 

at r = r1 is subjected to convection.   

Analysis  The heat flux at the outer surface of the pipe is 

 2

2s

 W/m4.979
m) cm)(1 065.0(2

 W400

2


 Lr

Q

A

Q
q ss

s


  

Noting that there is thermal symmetry about the center line and there is 

uniform heat flux at the outer surface, the differential equation and the 

boundary conditions for this heat conduction problem can be expressed as 

 0








dr

dT
r

dr

d
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1

 W/m6.734
)(
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

 

s
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q
dr

rdT
k

rTTrTh
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2 kW 

L = 15 in 

D = 0.12 in 

r1 r2 h 

T 

Q = 400 W 
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2-48 A spherical container of inner radius r1 , outer radius r2 , and thermal conductivity k is 

given. The boundary condition on the inner surface of the container for steady one-dimensional 

conduction is to be expressed for the following cases:  

(a) Specified temperature of 50C: C50)( 1 rT  

(b) Specified heat flux of 45 W/m
2
 towards the center: 21  W/m45

)(


dr

rdT
k  

(c) Convection to a medium at T  with a heat transfer coefficient of h: ])([
)(

1
1

 TrTh
dr

rdT
k  

 

 

 

 

2-49  A spherical shell of inner radius r1, outer radius r2, and thermal 

conductivity k is considered. The outer surface of the shell is subjected to 

radiation to surrounding surfaces at surrT . Assuming no convection and 

steady one-dimensional conduction in the radial direction, the radiation 

boundary condition on the outer surface of the shell can be expressed as  

   4
surr

4
2

2 )(
)(

TrT
dr

rdT
k    

 

 

 

 

2-50 A spherical container consists of two spherical layers A and B that are at 

perfect contact. The radius of the interface is ro. Assuming transient one-

dimensional conduction in the radial direction, the boundary conditions at the 

interface can be expressed as 

 ),(),( trTtrT oBoA   

and  
r

trT
k

r

trT
k oB

B
oA

A









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r1 r2 
Tsurr 

k 

 

ro 

r1 r2 
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2-51  A spherical metal ball  that is heated in an oven to a temperature of Ti throughout is dropped into a large body of water 

at T where it is cooled by convection. Assuming constant thermal conductivity and transient one-dimensional heat transfer, 

the mathematical formulation (the differential equation and the boundary  and initial conditions) of this heat conduction 

problem is to be obtained. 

Assumptions 1 Heat transfer is given to be transient and one-dimensional. 2 Thermal conductivity is given to be constant.  3 

There is no heat generation in the medium. 4 The outer surface at r = r0 is subjected to convection.   

Analysis  Noting that there is thermal symmetry about the midpoint and convection at the outer surface, the differential 

equation and the boundary conditions for this heat conduction problem can be expressed as 
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2-52  A spherical metal ball  that is heated in an oven to a temperature of Ti throughout is allowed to cool in ambient air at T 

by convection and radiation. Assuming constant thermal conductivity and transient one-dimensional heat transfer, the 

mathematical formulation (the differential equation and the boundary  and initial conditions) of this heat conduction problem 

is to be obtained. 

Assumptions 1 Heat transfer is given to be transient and one-dimensional. 2 Thermal conductivity is given to be variable.  3 

There is no heat generation in the medium. 4 The outer surface at r = ro is subjected to convection and radiation.   

Analysis   Noting that there is thermal symmetry about the midpoint and convection and radiation at the outer surface and 

expressing all temperatures in Rankine, the differential equation and the boundary conditions for this heat conduction problem 

can be expressed as 
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
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Solution of Steady One-Dimensional Heat Conduction Problems 

 

2-53C Yes, the temperature in a plane wall with constant thermal conductivity and no heat generation will vary linearly during 

steady one-dimensional heat conduction even when the wall loses heat by radiation from its surfaces. This is because the 

steady heat conduction equation in a plane wall is 22 / dxTd = 0 whose solution is 21)( CxCxT   regardless of the 

boundary conditions. The solution function represents a straight line whose slope is C1. 

 

 

2-54C Yes, this claim is reasonable since in the absence of any heat generation the rate of heat transfer through a plain wall in 

steady operation must be constant. But the value of this constant must be zero since one side of the wall is perfectly insulated. 

Therefore, there can be no temperature difference between different parts of the wall; that is, the temperature in a plane wall 

must be uniform in steady operation. 

 

 

2-55C Yes, this claim is reasonable since no heat is entering the cylinder and thus there can be no heat transfer from the 

cylinder in steady operation. This condition will be satisfied only when there are no temperature differences within the 

cylinder and the outer surface temperature of the cylinder is the equal to the temperature of the surrounding medium. 

 

 

2-56C Yes, in the case of constant thermal conductivity and no heat generation, the temperature in a solid cylindrical rod 

whose ends are maintained at constant but different temperatures while the side surface is perfectly insulated will vary linearly 

during steady one-dimensional heat conduction.  This is because the steady heat conduction equation in this case is 
22 / dxTd = 0 whose solution is 21)( CxCxT   which  represents a straight line whose slope is C1. 
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2-57 A large plane wall is subjected to specified heat flux and temperature on the left surface and no conditions on the right 

surface.  The mathematical formulation, the variation of temperature in the plate, and the right surface temperature are to be 

determined for steady one-dimensional heat transfer.  

Assumptions 1 Heat conduction is steady and one-dimensional since the wall is large relative to its thickness, and the thermal 

conditions on both sides of the wall are uniform. 2 Thermal conductivity is constant.  3 There is no heat generation in the 

wall. 

Properties The thermal conductivity is given to be  k =2.5 W/m°C. 

Analysis (a) Taking the direction normal to the surface of the wall to 

be the x direction with x = 0 at the left surface, the mathematical 

formulation of this problem can be expressed as  

                     0
2

2


dx

Td
  

and       2
0  W/m700

)0(
 q

dx

dT
k   

                     C80)0( 1 TT                 

 (b)  Integrating the differential equation twice with respect to x  yields 

 1C
dx

dT
  

 21)( CxCxT   

where C1 and C2  are arbitrary constants.  Applying the boundary conditions give  

Heat flux at x = 0:            
k

q
CqkC 0

101      


    

Temperature at x = 0:      12121        0)0( TCTCCT   

Substituting C1 and C2 into the general solution, the variation of temperature is determined to be 

 80280C80
C W/m5.2

 W/m700
)(

2

1
0 


 xxTx

k

q
xT


 

 (c) The temperature at x = L  (the right surface of the wall) is 

 C-4 80m) 3.0(280)(LT  

Note that the right surface temperature is lower as expected. 

 

x 

q=700 W/m
2
 

T1=80°C 

L=0.3 m 

k 
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2-58 The base plate of a household iron is subjected to specified heat flux on the left surface and to specified temperature on 

the right surface.  The mathematical formulation, the variation of temperature in the plate, and the inner surface temperature 

are to be determined for steady one-dimensional heat transfer.  

Assumptions 1 Heat conduction is steady and one-dimensional since the surface area of the base plate is large relative to its 

thickness, and the thermal conditions on both sides of the plate are uniform. 2 Thermal conductivity is constant.  3 There is no 

heat generation in the plate. 4 Heat loss through the upper part of the iron is negligible. 

Properties The thermal conductivity is given to be  k = 60 W/m°C. 

Analysis (a) Noting that the upper part of the iron is well insulated and thus the entire heat generated in the resistance wires is 

transferred to the base plate, the heat flux through the inner surface is determined to be 

 2

24
base

0
0  W/m000,50

m 10160

 W800





A

Q
q


  

Taking the direction normal to the surface of the wall to be the x 

direction with x = 0 at the left surface, the mathematical formulation 

of this problem can be expressed as  

0
2

2


dx

Td
  

and 2
0  W/m000,50

)0(
 q

dx

dT
k   

C112)( 2 TLT  

 (b)  Integrating the differential equation twice with respect to x yields 

1C
dx

dT
  

21)( CxCxT   

where C1 and C2  are arbitrary constants.  Applying the boundary conditions give  

x = 0:            
k

q
CqkC 0

101      


    

x = L:             
k

Lq
TCLCTCTCLCLT 0

22122221              )(


  

Substituting 21   and  CC  into the general solution, the variation of temperature is determined to be 

 

112)006.0(3.833

C112
C W/m60

m)006.0)( W/m000,50(
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2

2
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2
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x

x

T
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xLq
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q
xT



 

 (c) The temperature at x = 0 (the inner surface of the plate) is 

 C117 112)0006.0(3.833)0(T  

Note that the inner surface temperature is higher than the exposed surface temperature, as expected. 

 

x 

T2 =112°C Q =800 W 

A=160 cm
2
 

L=0.6 cm 

k 
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2-59 A large plane wall is subjected to specified temperature on the left surface and convection on the right surface.  The 

mathematical formulation, the variation of temperature, and the rate of heat transfer are to be determined for steady one-

dimensional heat transfer.  

Assumptions 1 Heat conduction is steady and one-dimensional. 2 Thermal conductivity is constant.  3 There is no heat 

generation. 

Properties The thermal conductivity is given to be  k = 1.8 W/m°C. 

Analysis (a) Taking the direction normal to the surface of the wall to be the x direction with x = 0 at the left surface, the 

mathematical formulation of this problem can be expressed as  

0
2

2


dx

Td
  

and 

C90)0( 1 TT  

])([
)(

 TLTh
dx

LdT
k  

(b) Integrating the differential equation twice with respect to  x  yields 

1C
dx

dT
  

21)( CxCxT   

where C1  and C2  are arbitrary constants.  Applying the boundary conditions give  

x = 0:              1221        0)0( TCCCT   

x = L:              
hLk

TTh
C

hLk

TCh
CTCLChkC









 



)(
     

)(
     ])[( 1

1
2

1211  

Substituting 21   and  CC  into the general solution, the variation of temperature is determined to be 

 

x

x

Tx
hLk

TTh
xT

3.9090

C90
m) 4.0)(C W/m24()C W/m8.1(

C)2590)(C W/m24(

)(
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2

2

1
1













 

 

 (c) The rate of heat conduction through the wall is 

 

 W7389









 

m) 4.0)(C W/m24()C W/m8.1(

C)2590)(C W/m24(
)m 30)(C W/m8.1(
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2
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2

1
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hLk

TTh
kAkAC

dx
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kAQ

 

Note that under steady conditions the rate of heat conduction through a plain wall is constant.   

x 

T =25°C 

h=24 W/m
2
.°C 

T1=90°C 

A=30 m
2
 

L=0.4 m 

k 
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2-60 A large plane wall is subjected to convection on the inner and outer surfaces. The mathematical formulation, the 

variation of temperature, and the temperatures at the inner and outer surfaces to be determined for steady one-dimensional 

heat transfer.  

Assumptions 1 Heat conduction is steady and one-dimensional. 2 Thermal conductivity is constant.  3 There is no heat 

generation. 

Properties The thermal conductivity is given to be  k = 0.77 W/mK. 

Analysis (a) Taking the direction normal to the surface of the wall to be the x direction with x = 0 at the inner surface, the 

mathematical formulation of this problem can be expressed as  

               0
2

2


dx

Td
  

The boundary conditions for this problem are:   

              
dx

dT
kTTh

)0(
)]0([ 11   

              ])([
)(

22  TLTh
dx

LdT
k  

(b)  Integrating the differential equation twice with respect to x  yields 

             1C
dx

dT
  

            21)( CxCxT   

where C1 and C2  are arbitrary constants.  Applying the boundary conditions give  

x = 0:              12111 )]0([ kCCCTh   

x = L:              ])[( 22121  TCLChkC  

Substituting the given values, the above boundary condition equations can be written as 

 12 77.0)27(5 CC   

 )82.0)(12(77.0 211  CCC  

Solving these equations simultaneously give 

 20        45.45 21  CC  

Substituting 21   and  CC  into the general solution, the variation of temperature is determined to be 

 xxT 45.4520)(   

 (c) The temperatures at the inner and outer surfaces are 

 
C10.9

C20





2.045.4520)(

045.4520)0(

LT
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2-61    An engine housing (plane wall) is subjected to a uniform heat flux on the inner surface, while the outer surface is 

subjected to convection heat transfer. The variation of temperature in the engine housing and the temperatures of the inner and 

outer surfaces are to be determined for steady one-dimensional heat transfer. 

Assumptions 1 Heat conduction is steady and one-dimensional. 2 Thermal conductivity is constant. 3 There is no heat 

generation in the engine housing (plane wall). 4 The inner surface at x = 0 is subjected to uniform heat flux while the outer 

surface at x = L is subjected to convection. 

Properties Thermal conductivity is given to be k = 13.5 W/m∙K. 

Analysis Taking the direction normal to the surface of the wall to be the x direction with x = 0 at the inner surface, the 

mathematical formulation can be expressed as  

 0
2

2


dx

Td
   

Integrating the differential equation twice with respect to x yields       

 
1C

dx

dT
    

 21)( CxCxT     

where C1 and C2 are arbitrary constants. Applying the boundary 

conditions give 

 :0x    10

)0(
kCq

dx

dT
k              

k

q
C 0

1


    

 :Lx     )(])([
)(

21   TCLChTLTh
dx

LdT
k            )( 211  TCLChkC    

Solving for C2 gives 

  
















 TL

h

k

k

q
TL

h

k
CC 0

12


   

Substituting C1 and C2 into the general solution, the variation of temperature is determined to be 

 







 TL

h

k
CxCxT 11)(            








 TxL

h

k

k

q
xT 0)(


    

The temperature at x = 0 (the inner surface) is 

 C339























  C35m 010.0

K W/m20

K W/m5.13

K W/m5.13

 W/m6000
)0(

2

2
0 TL

h

k

k

q
T


   

The temperature at x = L = 0.01 m (the outer surface) is 

 C335


  C35
K W/m20

 W/m6000
)(

2

2
0 T

h

q
LT


   

Discussion The outer surface temperature of the engine is 135°C higher than the safe temperature of 200°C. The outer surface 

of the engine should be covered with protective insulation to prevent fire hazard in the event of oil leakage.  
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2-62 A plane wall is subjected to uniform heat flux on the left surface, while the right surface is subjected to convection and 

radiation heat transfer. The variation of temperature in the wall and the left surface temperature are to be determined for 

steady one-dimensional heat transfer. 

Assumptions 1 Heat conduction is steady and one-dimensional. 2 Temperatures on both sides of the wall are uniform. 3 

Thermal conductivity is constant. 4 There is no heat generation in the wall. 5 The surrounding temperature T∞ = Tsurr = 25°C. 

Properties Emissivity and thermal conductivity are given to be 0.70 and 25 W/m∙K, respectively. 

Analysis Taking the direction normal to the surface of the wall to be the x direction with x = 0 at the left surface, the 

mathematical formulation can be expressed as 

 0
2

2


dx

Td
   

Integrating the differential equation twice with respect to x yields                                

 1C
dx

dT
    

 21)( CxCxT     

where C1 and C2 are arbitrary constants. Applying the boundary 

conditions give 

 :0x    10

)0(
kCq

dx

dT
k        

k

q
C 0

1


    

 :Lx     21)( CLCTLT L        LL TL
k

q
TLCC  0

12


   

Substituting C1 and C2 into the general solution, the variation of temperature is determined to be 

 LTL
k

q
x

k

q
xT  00)(


           LTxL

k

q
xT  )()( 0


    

The uniform heat flux subjected on the left surface is equal to the sum of heat fluxes transferred by convection and radiation 

on the right surface: 

 )()( 4
surr

4
0 TTTThq LL       

 
4444282

0 K ]273)(25273)[(225)K W/m1067.5)(70.0(K )25225)(K W/m15(  q    

 
2

0 W/m 5128q    

The temperature at x = 0 (the left surface of the wall) is 

 C327.6 


 C225)m 50.0(
K W/m25

 W/m5128
)0()0(

2
0

LTL
k

q
T


 

Discussion As expected, the left surface temperature is higher than the right surface temperature. The absence of radiative 

boundary condition may lower the resistance to heat transfer at the right surface of the wall resulting in a temperature drop on 

the left wall surface by about 40°C. 
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2-63  A flat-plate solar collector is used to heat water. The top surface (x = 0) is subjected to convection, radiation, and 

incident solar radiation. The variation of temperature in the solar absorber and the net heat flux absorbed by the solar 

collector are to be determined for steady one-dimensional heat transfer. 

Assumptions 1 Heat conduction is steady and one-dimensional. 2 Thermal conductivity is constant. 3 There is no heat 

generation in the plate. 4 The top surface at x = 0 is subjected to convection, radiation, and incident solar radiation. 

Properties The absorber surface has an absorptivity of 0.9 and an emissivity of 0.9. 

Analysis Taking the direction normal to the surface of the plate to be the x direction with x = 0 at the top surface, the 

mathematical formulation can be expressed as  

 0
2

2


dx

Td
   

Integrating the differential equation 

twice with respect to x yields    

 1C
dx

dT
    

 21)( CxCxT     

where C1 and C2 are arbitrary constants. Applying the boundary conditions give 

 :0x    10

)0(
kCq

dx

dT
k              

k

q
C 0

1


    

 :0x    20)0( CTT     

Substituting C1 and C2 into the general solution, the variation of temperature is determined to be 

 0
0)( Tx

k

q
xT 


   

At the top surface (x = 0), the net heat flux absorbed by the solar collector is 

 )()( 0
4

surr
4

0solar0  TThTTqq      

 K25)K)(35 W/m(5K)]273)(0273))[(35K W/m10(0.9)(5.67) W/m(0.9)(500 24444282
0  q  

 
2

 W/m2240q    

Discussion The absorber plate is generally very thin. Thus, the temperature difference between the top and bottom surface 

temperatures of the plate is miniscule. The net heat flux absorbed by the solar collector increases with the increase in the 

ambient and surrounding temperatures and thus the use of solar collectors is justified in hot climatic conditions.   
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2-64 A 20-mm thick draw batch furnace front is subjected to 

uniform heat flux on the inside surface, while the outside 

surface is subjected to convection and radiation heat transfer. 

The inside surface temperature of the furnace front is to be 

determined. 

Assumptions 1 Heat conduction is steady. 2 One dimensional 

heat conduction across the furnace front thickness. 3 Thermal 

properties are constant. 4 Inside and outside surface 

temperatures are constant. 

Properties Emissivity and thermal conductivity are given to be 

0.30 and 25 W/m ∙ K, respectively 

Analysis The uniform heat flux subjected on the inside surface 

is equal to the sum of heat fluxes transferred by convection and 

radiation on the outside surface: 

)()( 4
surr

4
0 TTTThq LL     

     
444428

22

K ])27320()[K W/m1067.5)(30.0(

K )]27320()[K W/m10( W/m5000






L

L

T

T
 

Copy the following line and paste on a blank EES screen to solve the above equation: 

5000=10*(T_L-(20+273))+0.30*5.67e-8*(T_L^4-(20+273)^4) 

Solving by EES software, the outside surface temperature of the furnace front is 

 K 594LT  

For steady heat conduction, the Fourier’s law of heat conduction can be expressed as 

 
dx

dT
kq 0

  

Knowing that the heat flux and thermal conductivity are constant, integrating the differential equation once with respect to x 

yields 

 1
0)( Cx

k

q
xT 


 

Applying the boundary condition gives 

 :Lx     1
0)( CL

k

q
TLT L 


           LTL

k

q
C  0

1


 

Substituting 1C  into the general solution, the variation of temperature in the furnace front is determined to be 

 LTxL
k

q
xT  )()( 0


 

The inside surface temperature of the furnace front is 

 K 598


 K 594m) 020.0(
K W/m25

 W/m5000
)0(

2
0

0 LTL
k

q
TT


 

Discussion By insulating the furnace front, heat loss from the outer surface can be reduced.  
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2-65E A large plate is subjected to convection, radiation, and specified temperature on the top surface and no conditions on 

the bottom surface.  The mathematical formulation, the variation of temperature in the plate, and the bottom surface 

temperature are to be determined for steady one-dimensional heat transfer.  

Assumptions 1 Heat conduction is steady and one-dimensional since the plate is large relative to its thickness, and the thermal 

conditions on both sides of the plate are uniform. 2 Thermal conductivity is constant.  3 There is no heat generation in the 

plate. 

Properties The thermal conductivity and emissivity are given to be 

k =7.2 Btu/hft°F and  = 0.7. 

Analysis (a) Taking the direction normal to the surface of the plate to be 

the x direction with x = 0 at the bottom surface, and the mathematical 

formulation of this problem can be expressed as  

0
2

2


dx

Td
  

and  ])460[(][])([])([
)( 4

sky
4

22
4

sky
4 TTTThTLTTLTh

dx

LdT
k     

F80)( 2 TLT                 

 (b)  Integrating the differential equation twice with respect to  x  yields 

 1C
dx

dT
  

 21)( CxCxT   

where C1 and C2 are arbitrary constants. Applying the boundary conditions give  

Convection at x = L:       
kTTTThC

TTTThkC

/]})460[(][{   

])460[(][   

4
sky

4
221

4
sky

4
221












  

Temperature at x = L:      LCTCTCLCLT 122221     )(   

Substituting C1 and C2 into the general solution, the variation of temperature is determined to be 

)3/1(3.1180

ft )12/4(
FftBtu/h 2.7

]R) 480()R 540)[(RftBtu/h 100.7(0.1714+F)9080)(FftBtu/h 12(
F80

)(
])460[(][

)()()(

44428-2

4
sky

4
22

212121

x

x

xL
k

TTTTh
TCxLTLCTxCxT













 

 

(c) The temperature at x = 0 (the bottom surface of the plate) is 

 F76.2 )03/1(3.1180)0(T  

 

 

x 
T 

h 

Tsky 

L 

80°F 
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2-66 The top and bottom surfaces of a solid cylindrical rod are maintained at constant temperatures of 20C and 95C while 

the side surface is perfectly insulated. The rate of heat transfer through the rod is to be determined for the cases of copper, 

steel, and granite rod.  

Assumptions 1 Heat conduction is steady and one-dimensional. 2 Thermal conductivity is constant.  3 There is no heat 

generation. 

Properties The thermal conductivities are given to be  k = 380 W/m°C for copper, k = 18 W/m°C for steel, and k = 1.2  

W/m°C for granite. 

Analysis Noting that the heat transfer area (the area normal to 

the direction of heat transfer) is constant, the rate of heat 

transfer along the rod is determined from 

 
L

TT
kAQ 21   

where L = 0.15 m and the heat transfer area A is  

2322 m 10964.14/m) 05.0(4/  DA  

Then the heat transfer rate for each case is determined as follows: 

(a) Copper:   W373.1





 

m 0.15

C20)(95
)m 10C)(1.964 W/m380( 2321

L

TT
kAQ  

(b) Steel:  W17.7





 

m 0.15

C20)(95
)m 10C)(1.964 W/m18( 2321

L

TT
kAQ  

(c) Granite:  W1.2





 

m 0.15

C20)(95
)m 10C)(1.964 W/m2.1( 2321

L

TT
kAQ  

Discussion: The steady rate of heat conduction can differ by orders of magnitude, depending on the thermal conductivity of 

the material. 

 

 

Insulated 

T1=25°C 

L=0.15 m 

D = 0.05 m T2=95°C 
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2-67 Chilled water flows in a pipe that is well insulated from outside. The mathematical formulation and the variation of 

temperature in the pipe are to be determined for steady one-dimensional heat transfer.  

Assumptions 1 Heat conduction is steady and one-dimensional since the pipe is long relative to its thickness, and there is 

thermal symmetry about the center line. 2 Thermal conductivity is constant.  3 There is no heat generation in the pipe. 

Analysis (a) Noting that heat transfer is one-dimensional in the radial r direction, the mathematical formulation of this 

problem can be expressed as  

0








dr

dT
r

dr

d
  

and )]([
)(

1
1 rTTh

dr

rdT
k f   

   0
)( 2 

dr

rdT
 

(b) Integrating the differential equation once with respect to r gives 

1C
dr

dT
r   

Dividing both sides of the equation above by r to bring it to a readily integrable form and then integrating,  

r

C

dr

dT 1    

21 ln)( CrCrT   

where C1 and C2  are arbitrary constants.  Applying the boundary conditions give  

r = r2:             00 1
2

1  C
r

C
 

r = r1:            

ff

f

TCCTh

CrCTh
r

C
k





22

211
1

1

)(0

)]ln([
 

Substituting C1 and C2 into the general solution, the variation of temperature is determined to be 

 fTrT )(  

This result is not surprising since steady operating conditions exist. 

 

 

Water 
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L 
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2-68E A steam pipe is subjected to convection on the inner surface and to specified temperature on the outer surface.  The 

mathematical formulation, the variation of temperature in the pipe, and the rate of heat loss are to be determined for steady 

one-dimensional heat transfer.  

Assumptions 1 Heat conduction is steady and one-dimensional since the pipe is long relative to its thickness, and there is 

thermal symmetry about the center line. 2 Thermal conductivity is constant.  3 There is no heat generation in the pipe. 

Properties The thermal conductivity is given to be  k = 7.2 Btu/hft°F. 

Analysis (a) Noting that heat transfer is one-dimensional in the radial r direction, the mathematical formulation of this 

problem can be expressed as  

0








dr

dT
r

dr

d
  

and )]([
)(

1
1 rTTh

dr

rdT
k    

F175)( 22 TrT                 

(b)  Integrating the differential equation once with respect to  r gives 

 1C
dr

dT
r   

Dividing both sides of the equation above by r to bring it to a readily integrable form and then integrating,  

 
r

C

dr

dT 1  

 21 ln)( CrCrT   

where C1 and C2  are arbitrary constants.  Applying the boundary conditions give  

r = r1:            )]ln([ 211
1

1 CrCTh
r

C
k     

r = r2:             22212 ln)( TCrCrT   

Solving for C1 and C2 simultaneously gives 

 2

11

2

2
22122

11

2

2
1 ln

ln

ln      and    

ln

r

hr

k

r

r

TT
TrCTC

hr

k

r

r

TT
C









   

Substituting C1 and C2 into the general solution, the variation of temperature is determined to be 

 

F175
in 4.2

ln36.34F175
in 4.2

ln

)ft 12/2)(FftBtu/h 5.12(

FftBtu/h 2.7

2

4.2
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F)300175(
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)ln(lnlnln)(

2

2
2
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2

2
2212121
















 

rr

T
r

r

hr

k

r

r

TT
TrrCrCTrCrT

 

 (c) The rate of heat conduction through the pipe is 

Btu/h 46,630












 

)ft 12/2)(FftBtu/h 5.12(

FftBtu/h 2.7

2

4.2
ln

F)300175(
F)ftBtu/h 2.7ft)( 30(2

ln

2)2(

2

11

2

21





hr

k

r

r

TT
Lk

r

C
rLk

dr

dT
kAQ
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2-69 The convection heat transfer coefficient between the surface of a pipe carrying superheated vapor and the surrounding 

air is to be determined. 

Assumptions 1 Heat conduction is steady and one-dimensional and there is thermal symmetry about the centerline. 2 Thermal 

properties are constant. 3 There is no heat generation in the pipe. 4 Heat transfer by radiation is negligible. 

Properties The constant pressure specific heat of vapor is given to be 2190 J/kg ∙ °C and the pipe thermal conductivity is 17 

W/m ∙ °C. 

               

Analysis The inner and outer radii of the pipe are 

 m 025.02/m 05.01 r  

 m 031.0m 006.0m 025.02 r  

The rate of heat loss from the vapor in the pipe can be determined from 

  W4599C )7(C)J/kg 2190)(kg/s 3.0()( outinloss  TTcmQ p
  

For steady one-dimensional heat conduction in cylindrical coordinates, the heat conduction equation can be expressed as 

 0








dr

dT
r

dr

d
 

and 
Lr

Q

A

Q

dr

rdT
k

1

lossloss1

 2

)(




      (heat flux at the inner pipe surface) 

 C 120)( 1 rT      (inner pipe surface temperature) 

Integrating the differential equation once with respect to r gives 

 
r

C

dr

dT 1  

Integrating with respect to r again gives 

 21 ln)( CrCrT   

where 1C  and 2C  are arbitrary constants. Applying the boundary conditions gives 

 :1rr    
1

1

1

loss1

 2

1)(

r

C

Lr

Q

kdr

rdT





           

kL

Q
C loss

1
2

1 


  

 :1rr    21
loss

1 ln
2

1
)( Cr

kL

Q
rT 




           )(ln

2

1
11

loss
2 rTr

kL

Q
C 




 

Substituting 1C  and 2C  into the general solution, the variation of temperature is determined to be 
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1

)(ln
2

1
ln
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1
)(

11
loss
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lossloss

rTrr
kL

Q

rTr
kL

Q
r

kL

Q
rT












 

The outer pipe surface temperature is 

 

C 1.119

C 120
025.0

031.0
ln

)m 10)(C W/m17(

 W4599

2

1

)()/ln(
2

1
)( 112

loss
2




















rTrr

kL

Q
rT



 

From Newton’s law of cooling, the rate of heat loss at the outer pipe surface by convection is 

   TrTLrhQ )() 2( 22loss   

Rearranging and the convection heat transfer coefficient is determined to be 

 C W/m25.1
2 







 C )251.119)(m 10)(m 031.0(2

 W4599

])([ 2 22

loss

 TrTLr

Q
h


 

Discussion If the pipe wall is thicker, the temperature difference between the inner and outer pipe surfaces will be greater. If 

the pipe has very high thermal conductivity or the pipe wall thickness is very small, then the temperature difference between 

the inner and outer pipe surfaces may be negligible. 
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2-70 A subsea pipeline is transporting liquid hydrocarbon. The temperature variation in the pipeline wall, the inner surface 

temperature of the pipeline, the mathematical expression for the rate of heat loss from the liquid hydrocarbon, and the heat 

flux through the outer pipeline surface are to be determined. 

Assumptions 1 Heat conduction is steady and one-dimensional and there is thermal symmetry about the centerline. 2 Thermal 

properties are constant. 3 There is no heat generation in the pipeline. 

Properties The pipeline thermal conductivity is given to be 60 W/m ∙ °C. 

 

               

 

 

 

 

 

 

 

Analysis The inner and outer radii of the pipeline are 

 m 25.02/m 5.01 r  

 m 258.0m 008.0m 25.02 r  

(a) For steady one-dimensional heat conduction in cylindrical coordinates, the heat conduction equation can be expressed as 

 0








dr

dT
r

dr

d
 

and )]([
)(

111
1 rTTh

dr

rdT
k ,        (convection at the inner pipeline surface) 

 ])([
)(

2,22
2

 TrTh
dr

rdT
k      (convection at the outer pipeline surface) 

Integrating the differential equation once with respect to r gives 

 
r

C

dr

dT 1  

Integrating with respect to r again gives 

 21 ln)( CrCrT   

where 1C  and 2C  are arbitrary constants. Applying the boundary conditions gives 

 :1rr    )ln( 21111
1

11 CrCTh
r

C
k

dr

)dT(r
k ,    

 :2rr    )ln(
)(

2,2212
2

12
 TCrCh

r

C
k

dr

rdT
k  

1C  and 2C  can be expressed explicitly as 

 
)/()/ln()/( 221211
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
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 






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 1

11221211

2,1
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)/()/ln()/(
r
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k

hrkrrhrk
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,
,  

Substituting 1C  and 2C  into the general solution, the variation of temperature is determined to be 

 11
11221211

2,1
)/ln(

)/()/ln()/(
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,
Trr
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TT
rT 


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

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




  

(b) The inner surface temperature of the pipeline is 

 

C 45.5
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





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(c) The mathematical expression for the rate of heat loss through the pipeline can be determined from Fourier’s law to be 
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1
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
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
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(d) Again from Fourier’s law, the heat flux through the outer pipeline surface is 

 

2
 W/m5947








 
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
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
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Discussion Knowledge of the inner pipeline surface temperature can be used to control wax deposition blockages in the 

pipeline. 
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2-71    Liquid ethanol is being transported in a pipe where the outer surface is subjected to heat flux. Convection heat 

transfer occurs on the inner surface of the pipe. The variation of temperature in the pipe wall and the inner and outer surface 

temperatures are to be determined for steady one-dimensional heat transfer. 

Assumptions 1 Heat conduction is steady and one-dimensional. 2 Thermal conductivity is constant. 3 There is no heat 

generation in the wall. 4 The inner surface at r = r1 is subjected to convection while the outer surface at r = r2 is subjected to 

uniform heat flux. 

Properties Thermal conductivity is given to be 15 W/m∙K. 

Analysis For one-dimensional heat transfer in the radial r direction, the differential equation for heat conduction in cylindrical 

coordinate can be expressed as 

 0








dr

dT
r

dr

d
   

Integrating the differential equation twice 

with respect to r yields  

 1C
dr

dT
r       or     

r

C

dr

dT 1    

 21 ln)( CrCrT     

where C1 and C2 are arbitrary constants. Applying the boundary conditions give 
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Solving for C2 gives 
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Substituting C1 and C2 into the general solution, the variation of temperature is determined to be 
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The temperature at r = r1 = 0.015 m (the inner surface of the pipe) is 
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The temperature at r = r2 = 0.018 m (the outer surface of the pipe) is 
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r
qrT s
    
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Both the inner and outer surfaces of the pipe are at higher temperatures than the flashpoint of ethanol (16.6°C). 

Discussion The outer surface of the pipe should be wrapped with protective insulation to keep the heat input from heating the 

ethanol inside the pipe. 
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2-72  A spherical container is subjected to uniform heat flux on the inner surface, while the outer surface maintains a constant 

temperature. The variation of temperature in the container wall and the inner surface temperature are to be determined for 

steady one-dimensional heat transfer. 

Assumptions 1 Heat conduction is steady and one-dimensional. 2 Temperatures on both surfaces are uniform. 3 Thermal 

conductivity is constant. 4 There is no heat generation in the wall. 5 The inner surface at r = r1 is subjected to uniform heat 

flux while the outer surface at r = r2 is at constant temperature T2. 

Properties Thermal conductivity is given to be k = 1.5 W/m∙K. 

Analysis For one-dimensional heat transfer in the radial direction, the differential equation for heat conduction in spherical 

coordinate can be expressed as  

 02 








dr

dT
r

dr

d
   

Integrating the differential equation twice with respect to r yields     

 1
2 C

dr

dT
r       or     

2
1

r

C

dr

dT
    

 2
1)( C

r

C
rT     

where C1 and C2 are arbitrary constants. Applying the boundary 

conditions give 
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Substituting C1 and C2 into the general solution, the variation of temperature is determined to be 
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The temperature at r = r1 = 1 m (the inner surface of the container) is 
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2
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Discussion As expected the inner surface temperature is higher than the outer surface temperature. 
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2-73  A spherical shell is subjected to uniform heat flux on the inner surface, while the outer surface is subjected to 

convection heat transfer. The variation of temperature in the shell wall and the outer surface temperature are to be determined 

for steady one-dimensional heat transfer. 

Assumptions 1 Heat conduction is steady and one-dimensional. 2 Thermal conductivity is constant. 3 There is no heat 

generation in the wall. 4 The inner surface at r = r1 is subjected to uniform heat flux while the outer surface at r = r2 is 

subjected to convection. 

Analysis For one-dimensional heat transfer in the radial r direction, the differential equation for heat conduction in spherical 

coordinate can be expressed as  

 02 








dr

dT
r

dr

d
   

Integrating the differential equation twice with respect to r yields             

 1
2 C

dr

dT
r       or     

2
1

r

C
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    
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1)( C

r

C
rT     

where C1 and C2 are arbitrary constants. Applying the boundary conditions give 
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Solving for C2 gives 

 
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Substituting C1 and C2 into the general solution, the variation of temperature is determined to be 
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The temperature at r = r2 (the outer surface of the shell) can be expressed as 

 









 T

r
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rT

2

2
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2 )(


   

Discussion Increasing the convection heat transfer coefficient h would decrease the outer surface temperature T(r2).  
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2-74 A spherical container is subjected to specified temperature on the inner surface and convection on the outer surface. The 

mathematical formulation, the variation of temperature, and the rate of heat transfer are to be determined for steady one-

dimensional heat transfer.  

Assumptions 1 Heat conduction is steady and one-dimensional since there is no change with time and there is thermal 

symmetry about the midpoint. 2 Thermal conductivity is constant.  3 There is no heat generation. 

Properties The thermal conductivity is given to be  k = 30 W/m°C. 

Analysis (a) Noting that heat transfer is one-dimensional in the radial r direction, the mathematical formulation of this 

problem can be expressed as 

02 








dr

dT
r

dr

d
  

and C0)( 11 TrT  

])([
)(

2
2

 TrTh
dr

rdT
k  

(b)  Integrating the differential equation once with respect to r gives 

 1
2 C

dr

dT
r   

Dividing both sides of the equation above by r to bring it to a readily integrable form and then integrating,  
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  
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C
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where C1 and C2 are arbitrary constants.  Applying the boundary conditions give  
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Solving for C1 and C2 simultaneously gives 
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Substituting C1 and C2 into the general solution, the variation of temperature is determined to be 
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(c) The rate of heat conduction through the wall is 
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2-75    A spherical container is used for storing chemicals undergoing exothermic reaction that provides a uniform heat 

flux to its inner surface. The outer surface is subjected to convection heat transfer. The variation of temperature in the 

container wall and the inner and outer surface temperatures are to be determined for steady one-dimensional heat transfer. 

Assumptions 1 Heat conduction is steady and one-dimensional. 2 Thermal conductivity is constant. 3 There is no heat 

generation in the wall. 4 The inner surface at r = r1 is subjected to uniform heat flux while the outer surface at r = r2 is 

subjected to convection. 

Properties Thermal conductivity is given to be 15 W/m∙K. 

Analysis For one-dimensional heat transfer in the radial r direction, the differential equation for heat conduction in spherical 

coordinate can be expressed as  

 02 








dr

dT
r

dr

d
   

Integrating the differential equation twice with respect to r yields  
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where C1 and C2 are arbitrary constants. Applying the boundary 

conditions give 
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Solving for C2 gives 
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Substituting C1 and C2 into the general solution, the variation of temperature is determined to be 
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The temperature at r = r1 = 0.5 m (the inner surface of the container) is 
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The temperature at r = r2 = 0.55 m (the outer surface of the container) is 
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The outer surface temperature of the container is above the safe temperature of 50°C. 

Discussion To prevent thermal burn, the container’s outer surface should be covered with insulation. 
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2-76 A spherical container is subjected to uniform heat flux on the outer surface and specified temperature on the inner 

surface.  The mathematical formulation, the variation of temperature in the pipe, and the outer surface temperature, and the 

maximum rate of hot water supply are to be determined for steady one-dimensional heat transfer.  

Assumptions 1 Heat conduction is steady and one-dimensional since there is no change with time and  there is thermal 

symmetry about the mid point. 2 Thermal conductivity is constant.  3 There is no heat generation in the container. 

Properties The thermal conductivity is given to be  k = 1.5 W/m°C. The specific heat of water at the average temperature of 

(100+20)/2 = 60C is 4.185 kJ/kgC (Table A-9). 

Analysis (a) Noting that the 90% of the 800 W generated by the strip heater is transferred to the container, the heat flux 

through the outer surface is determined to be 

 2

22
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m) (0.414

 W80090.0

4





r

Q

A

Q
q ss

s


  

Noting that heat transfer is one-dimensional in the radial r direction and heat flux is in the negative r direction, the 

mathematical formulation of this problem can be expressed as  
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(b) Integrating the differential equation once with respect to r gives 
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where C1 and C2  are arbitrary constants.  Applying the boundary conditions give  

r = r2: 
k

rq
Cq

r

C
k s

s

2
2

12
2

1     


   

r = r1: 
1

2
2

1
1

1
122

1

1
11     )(

kr

rq
T

r

C
TCC

r

C
TrT s


  

Substituting C1 and C2 into the general solution, the variation of temperature is determined to be 
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(c) The outer surface temperature is determined by direct substitution to be 

Outer surface (r = r2):   C122.3
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Noting that the maximum rate of heat supply to the water is  W,720= W 8009.0   water can be heated from 20 to 100C at a 

rate of  

 kg/h 7.74=kg/s 002151.0
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2-77    Prob. 2-76 is reconsidered. The temperature as a function of the radius is to be plotted. 

Analysis The problem is solved using EES, and the solution is given below. 

 

"GIVEN" 
r_1=0.40 [m] 
r_2=0.41 [m] 
k=1.5 [W/m-C] 
T_1=120 [C] 
Q_dot=800 [W] 
f_loss=0.10 
 
"ANALYSIS" 
q_dot_s=((1-f_loss)*Q_dot)/A 
A=4*pi*r_2^2 
T=T_1+(1/r_1-1/r)*(q_dot_s*r_2^2)/k "Variation of temperature" 
 

 

r  

[m] 

T  

[C] 

0.4 

0.4011 

0.4022 

0.4033 

0.4044 

0.4056 

0.4067 

0.4078 

0.4089 

0.41 

120 

120.3 

120.5 

120.8 

121 

121.3 

121.6 

121.8 

122.1 

122.3 
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Heat Generation in a Solid 

 

2-78C Heat generation in a solid is simply conversion of some form of energy into sensible heat energy. Some examples of 

heat generations are resistance heating in wires, exothermic chemical reactions in a solid, and nuclear reactions in nuclear fuel 

rods. 

 

 

2-79C No. Heat generation in a solid is simply the conversion of some form of energy into sensible heat energy. For example 

resistance heating in wires is conversion of electrical energy to heat.  

 

 

2-80C The cylinder will have a higher center temperature since the cylinder has less surface area to lose heat from per unit 

volume than the sphere. 

 

 

2-81C  The rate of heat generation inside an iron becomes equal to the rate of heat loss from the iron when steady operating 

conditions are reached and the temperature of the iron stabilizes. 

 

 

2-82C No, it is not possible since the highest temperature in the plate will occur at its center, and heat cannot flow “uphill.” 

 

 

 

2-83 Heat is generated uniformly in a large brass plate. One side of the plate is insulated while the other side is subjected to 

convection.  The location and values of the highest and the lowest temperatures in the plate are to be determined. 

Assumptions 1 Heat transfer is steady since there is no indication of any change with time. 2 Heat transfer is one-dimensional 

since the plate is large relative to its thickness, and there is thermal symmetry about the center plane 3 Thermal conductivity is 

constant. 4 Heat generation is uniform. 

Properties The thermal conductivity is given to be k =111 W/m°C. 

Analysis This insulated plate whose thickness is L is equivalent to one-half of 

an uninsulated plate whose thickness is 2L since the midplane of the 

uninsulated plate can be treated as insulated surface. The highest temperature 

will occur at the insulated surface while the lowest temperature will occur at 

the surface which is exposed to the environment. Note that L in the following 

relations is the full thickness of the given plate since the insulated side 

represents the center surface of a plate whose thickness is doubled. The 

desired values are determined directly from 
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2-84    Prob. 2-83 is reconsidered. The effect of the heat transfer coefficient on the highest and lowest temperatures in 

the plate is to be investigated. 

Analysis The problem is solved using EES, and the solution is given below. 

 

"GIVEN" 
L=0.05 [m] 
k=111 [W/m-C] 
g_dot=2E5 [W/m^3] 
T_infinity=25 [C] 
h=44 [W/m^2-C] 
 
"ANALYSIS" 
T_min=T_infinity+(g_dot*L)/h 
T_max=T_min+(g_dot*L^2)/(2*k) 
 

 

h 

[W/m
2
.C] 

Tmin 

[C] 

Tmax 

[C] 

20 525 527.3 

25 425 427.3 

30 358.3 360.6 

35 310.7 313 

40 275 277.3 

45 247.2 249.5 

50 225 227.3 

55 206.8 209.1 

60 191.7 193.9 

65 178.8 181.1 

70 167.9 170.1 

75 158.3 160.6 

80 150 152.3 

85 142.6 144.9 

90 136.1 138.4 

95 130.3 132.5 

100 125 127.3 
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2-85 Both sides of a large stainless steel plate in which heat is generated uniformly are exposed to convection with the 

environment. The location and values of the highest and the lowest temperatures in the plate are to be determined. 

Assumptions 1 Heat transfer is steady since there is no indication of any change with time. 2 Heat transfer is one-dimensional 

since the plate is large relative to its thickness, and there is thermal symmetry about the center plane 3 Thermal conductivity is 

constant. 4 Heat generation is uniform. 

Properties The thermal conductivity is given to be k =15.1 W/m°C. 

Analysis  The lowest temperature will occur at surfaces of plate 

while the highest temperature will occur at the midplane. Their 

values are determined directly from 

C155
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 

C W/m60
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TTs
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2-86 Heat is generated in a large plane wall whose one side is insulated while the other side is subjected to convection. The 

mathematical formulation, the variation of temperature in the wall, the relation for the surface temperature, and the relation 

for the maximum temperature rise in the plate are to be determined for steady one-dimensional heat transfer. 

Assumptions 1 Heat transfer is steady since there is no indication of any change with time. 2 Heat transfer is one-dimensional 

since the wall is large relative to its thickness. 3 Thermal conductivity is constant. 4 Heat generation is uniform. 

Analysis (a) Noting that heat transfer is steady and one-dimensional in x direction, the mathematical formulation of this 

problem can be expressed as   

0
gen

2

2


k

e

dx

Td 
    

and 0
)0(


dx

dT
   (insulated surface at x = 0) 

 ])([
)(

 TLTh
dx

LdT
k  

(b) Rearranging the differential equation and integrating,  

 1

gengen

2

2

       Cx
k

e

dx

dT

k

e

dx

Td



 

Integrating one more time, 

 21

2
gen

2
)( CxC

k

xe
xT 





 (1) 

Applying the boundary conditions: 

B.C. at  x = 0: 0      0)0(0
)0(

11

gen



 CC

k

e

dx

dT 
 

B. C. at   x = L:      




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


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




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
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




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2
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2
gen

gen

2

2
gengen









 

Dividing by h:  T
k

Le

h

Le
C

2

2
gengen

2


 

Substituting the  C1  and C2  relations into Eq. (1) and rearranging give 

  
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)(
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which is the desired solution for the temperature distribution in the wall as a function of x.  

(c) The temperatures at two surfaces and the temperature difference between these surfaces are 

 

k
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T
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LT

T
h

Le

k

Le
T

2
)()0(

)(
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Discussion These relations are obtained without using differential equations in the text (see Eqs. 2-67 and 2-73). 
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2-87E Heat is generated in a large plane wall whose one side is insulated while the other side is maintained at a specified 

temperature. The mathematical formulation, the variation of temperature in the wall, and the highest temperature in the wall are 

to be determined for steady one-dimensional heat transfer. 

Assumptions 1 Heat transfer is steady. 2 Heat transfer is one-dimensional, and there is thermal symmetry about the center 

plane. 3 Thermal conductivity is constant. 4 Heat generation varies with location in the x direction. 

Properties The thermal conductivity is given to be k = 5 Btu/h·ft·ºF. 

Analysis (a) Noting that heat transfer is steady and one-dimensional in x direction, the mathematical formulation of this 

problem can be expressed as   

0
)(gen

2

2


k

xe

dx

Td 
    

where  2axegen     

                                2gen

2

2 )(
x

k

a

k

xe

dx

Td



 

 The boundary conditions for this problem are:   

   0)0( TT        (specified surface temperature at x = 0) 

  0
)(


dx

LdT

    
(insulated surface at  x = L) 

(b) Rearranging the differential equation and integrating,  

1

32

2

2

3

1
Cx

k

a

dx

dT
x

k

a

dx

Td
  

Integrating one more time, 

       
12

1
)( 21

4 CxCx
k

a
xT       (1) 

Applying the boundary conditions: 

B.C.  at  x = 0:    20)0( CTT    

B.C.  at  x = L:   
k

aL
CCL

k

a

dx

LdT

3
       0 

3

1)( 3

11
3   

Substituting the C1 and C2 relations into Eq. (1) and rearranging gives 

    0

3
4

312

1
)( Tx

k

aL
x

k

a
xT          (2) 

(c) The highest (maximum) temperature occurs at the insulate surface (x = L) and is determined by substituting the given 

quantities into Eq. (2), the result is 

        F760 








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2-88 Heat is generated in a large plane wall whose one side is insulated while the other side is maintained at a specified 

temperature. The mathematical formulation, the variation of temperature in the wall, and the temperature of the insulated 

surface are to be determined for steady one-dimensional heat transfer. 

Assumptions 1 Heat transfer is steady since there is no indication of any change with time. 2 Heat transfer is one-dimensional 

since the wall is large relative to its thickness, and there is thermal symmetry about the center plane. 3 Thermal conductivity is 

constant. 4 Heat generation varies with location in the x direction. 

Properties The thermal conductivity is given to be k = 30 W/m°C. 

Analysis (a) Noting that heat transfer is steady and one-dimensional in x 

direction, the mathematical formulation of this problem can be expressed as   

0
)(gen

2

2


k

xe

dx

Td 
    

where  Lxeee /5.0
0gen

     and   0e = 810
6
  W/m

3
 

and 0
)0(


dx

dT
   (insulated surface at x = 0) 

  2)( TLT 30C  (specified surface temperature) 

(b) Rearranging the differential equation and integrating,  

 1
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Integrating one more time, 
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 (1) 

Applying the boundary conditions: 

B.C. at  x = 0: 
k
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k
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0
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/05.00 2
      

2
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B. C. at   x = L: 
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2
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4
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Substituting the C1 and C2 relations into Eq. (1) and rearranging give 

 )]/1(2)(4[)( /5.05.0
2

0
2 Lxee

k

Le
TxT Lx  

 

which is the desired solution for the temperature distribution in the wall as a function of x.  

(c) The temperature at the insulate surface (x = 0) is determined by substituting the known quantities to be 

 

C314





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Therefore, there is a temperature difference of almost 300°C between the two sides of the plate. 

T2 =30°C 

x 

k 
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 L 
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2-89    Prob. 2-88 is reconsidered. The heat generation as a function of the distance is to be plotted.  

Analysis The problem is solved using EES, and the solution is given below. 

 

"GIVEN" 
L=0.05 [m] 
T_s=30 [C] 
k=30 [W/m-C] 
e_dot_0=8E6 [W/m^3] 
 
"ANALYSIS" 
e_dot=e_dot_0*exp((-0.5*x)/L) "Heat generation as a function of x" 
"x is the parameter to be varied" 
 

 

x  

[m] 

e  

[W/m
3
] 

0 8.000E+06 

0.005 7.610E+06 

0.01 7.239E+06 

0.015 6.886E+06 

0.02 6.550E+06 

0.025 6.230E+06 

0.03 5.927E+06 

0.035 5.638E+06 

0.04 5.363E+06 

0.045 5.101E+06 

0.05 4.852E+06 

 

 

0 0.01 0.02 0.03 0.04 0.05

4.500x106
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2-90 A nuclear fuel rod with a specified surface temperature is used as the fuel in a nuclear reactor. The center  temperature of 

the rod is to be determined. 

Assumptions 1 Heat transfer is steady since there is no indication of any 

change with time. 2 Heat transfer is one-dimensional since there is thermal 

symmetry about the center line and no change in the axial direction.               

3 Thermal conductivity is constant. 4 Heat generation in the rod is uniform. 

Properties The thermal conductivity is given to be k = 29.5 W/m°C. 

Analysis  The center temperature of the rod is determined from 

C228





C) W/m.5.29(4

m) 005.0)( W/m104(
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4

2372
gen
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re
TT

o

so


 

 

 

 

 

2-91E Heat is generated uniformly in a resistance heater wire. The temperature difference between the center and the surface 

of the wire is to be determined. 

Assumptions 1 Heat transfer is steady since there is no change with time. 2 Heat 

transfer is one-dimensional since there is thermal symmetry about the center line 

and no change in the axial direction. 3 Thermal conductivity is constant. 4 Heat 

generation in the heater is uniform. 

Properties The thermal conductivity is given to be  k = 5.8 Btu/hft°F. 

Analysis The resistance heater converts electric energy into heat at a rate 

of 3 kW. The rate of heat generation per unit length of the wire is 

 38

22
wire

gen

gen ftBtu/h 10933.2
ft) (1ft) 12/04.0(

Btu/h) 14.34123(




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e

o

gen



V

 

Then the temperature difference between the centerline and the surface becomes 

 F140.5

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2-92 A 2-kW resistance heater wire with a specified surface temperature is used to boil water. The center  temperature of the 

wire is to be determined. 

Assumptions 1 Heat transfer is steady since there is no change with time. 2 Heat transfer is 

one-dimensional since there is thermal symmetry about the center line and no change in 

the axial direction. 3 Thermal conductivity is constant. 4 Heat generation in the heater is 

uniform. 

Properties The thermal conductivity is given to be k = 20 W/m°C. 

Analysis The resistance heater converts electric energy into heat at a rate of 2 kW. The 

rate of heat generation per unit volume of the wire is 

    38

22

gen

wire

gen

gen  W/m10768.1
m) (0.9m) 002.0(

 W2000
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 Lr

EE
e

o



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The center temperature of the wire is then determined from Eq. 2-71 to be 

    C238.8
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2-93 Heat is generated in a long solid cylinder with a specified surface temperature. The variation of temperature in the 

cylinder is given by 

 s
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(a) Heat conduction is steady since there is no time t variable involved. 

(b) Heat conduction is a one-dimensional. 

(c) Using Eq. (1), the heat flux on the surface of the cylinder at r = ro 

is determined from its definition to be 
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2-94    Prob. 2-93 is reconsidered. The temperature as a function of the radius is to be plotted. 

Analysis The problem is solved using EES, and the solution is given below. 

 
"GIVEN" 
r_0=0.04 [m] 
k=25 [W/m-C] 
e_dot_gen=35E+6 [W/m^3] 
T_s=80 [C] 
 
"ANALYSIS" 
T=(e_dot_gen*r_0^2)/k*(1-(r/r_0)^2)+T_s "Variation of temperature" 
 
 

r [m] T [C] 

0 2320 

0.004444 2292 

0.008889 2209 

0.01333 2071 

0.01778 1878 

0.02222 1629 

0.02667 1324 

0.03111 964.9 

0.03556 550.1 

0.04 80 
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2-95 A cylindrical nuclear fuel rod is cooled by water flowing through its encased concentric tube. The average temperature 

of the cooling water is to be determined. 

Assumptions 1 Heat conduction is steady and one-dimensional. 2 Thermal properties are constant. 3 Heat generation in the 

fuel rod is uniform. 

Properties The thermal conductivity is given to be 30 W/m ∙ °C. 

 

Analysis The rate of heat transfer by convection at the fuel rod surface is equal to that of the concentric tube surface: 

 )()( tube,2,2rod,1,1 ssss TTAhTTAh    

 ))( 2())( 2( tube,22rod,11 ss TTLrhTTLrh     

   TTT
rh

rh
T ss )( tube,

11

22
rod,    (a) 

The average temperature of the cooling water can be determined by applying Eq. 2-68: 

 
1

1gen
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2h
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TTs


      (b) 

Substituting Eq. (a) into Eq. (b) and solving for the average temperature of the cooling water gives 
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Discussion The given information is not sufficient for one to determine the fuel rod surface temperature. The convection heat 

transfer coefficient for the fuel rod surface (h1) or the centerline temperature of the fuel rod (T0) is needed to determine the 

fuel rod surface temperature. 
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2-96 The heat generation and the maximum temperature rise in a solid stainless steel wire. 

Assumptions 1 Heat transfer is steady since there is no change with time. 2 Heat transfer is one-dimensional since there is 

thermal symmetry about the centerline and no change in the axial direction. 3 Thermal conductivity is constant. 4 Heat 

generation in the heater is uniform. 

Properties The thermal conductivity is given to be k = 14 W/mK. 

Analysis (a) The heat generation per unit volume of the wire is  

  
Lr

RI

V

E
e

o

e

wire

electric,gen

gen 2

2





  

With electrical resistance defined as  

A

L
Re


    () 

where  = electrical resistivity (m), L = wire length (m), A = wire cross-sectional area D
2
/4 (m

2
) 

Combining equations for gene and Re, we have 

42

2

22

2

2

2 16

)4/( D

I

D

I

A

I
egen








   

42

-82

m) (0.001 

m) 10  (45 (120A) 16




gene  = 1.05  10

10
 W/m

3 

(b) The maximum temperature rise in the solid stainless steel wire is obtained from 

k

r e
TTT

ogen

cylindermax,so
4

2
    (W/m

3
) 

           

 
K)  m W / (14 4

0005.0)m W / 10  05.1(
2310

max





m
T  = 47ºC  

Discussion The maximum temperature rise in the wire can be reduced by increasing the convective heat transfer coefficient 

and thus reducing the surface temperature. 
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2-97 A long homogeneous resistance heater wire with specified convection conditions at the surface is used to boil water. The 

mathematical formulation, the variation of temperature in the wire, and the temperature at the centerline of the wire are to be 

determined.  

Assumptions 1 Heat transfer is steady since there is no indication of any change with time. 2 Heat transfer is one-dimensional 

since there is thermal symmetry about the center line and no change in the axial direction. 3 Thermal conductivity is constant. 

4 Heat generation in the wire is uniform. 

Properties The thermal conductivity is given to be k = 15.2 W/mK. 

Analysis Noting that heat transfer is steady and one-dimensional in 

the radial r direction, the mathematical formulation of this problem 

can be expressed as   

0
1 gen










k

e

dr

dT
r

dr

d

r


 

and ])([
)(

 TrTh
dr

rdT
k o

o   (convection at the outer surface) 

0
)0(


dr

dT
   (thermal symmetry about the centerline) 

Multiplying both sides of the differential equation by r and rearranging gives 

 r
k

e

dr

dT
r

dr

d gen










 

Integrating with respect to r gives 

 1

2
gen

2
C

r

k

e

dr

dT
r 


               (a) 

It is convenient at this point to apply the second boundary condition since it is related to the first derivative of the temperature 

by replacing all occurrences of r and dT/dr in the equation above by zero. It yields 

B.C. at  r = 0: 0        0
2

)0(
0 11

gen
 CC

k

e

dr

dT 
 

Dividing both sides of Eq. (a) by r to bring it to a readily integrable form and integrating,  

 r
k

e

dr

dT

2

gen


  

and 2
2gen

4
)( Cr

k

e
rT 


                  (b) 

Applying the second boundary condition at orr  , 

B. C. at  orr  :        2gengen

22
2gengen
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o

o

o

o
r

k

e

h
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TCTCr

k

e
h

k
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k

















   

Substituting this 2C  relation into Eq. (b) and rearranging give  

 
h
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e
TrT

o

o
2

)(
4

)(
gen22gen


   

which is the desired solution for the temperature distribution in the wire as a function of r. Then the temperature at the center 

line (r = 0) is determined by substituting the known quantities to be 

      

C125










 

K) W/m3200(2

)m 006.0)( W/m10(16.4

K) W/m2.15(4

m) 006.0)( W/m10(16.4
+C100

24
)0(

2

36236

gen2gen

h

re
r

k

e
TT

o

o



 

Thus the centerline temperature will be 25°C above the temperature of the surface of the wire. 

r 
T 

h 
ro 

Water 

Heater 
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2-98 A long resistance heater wire is subjected to convection at its outer surface. The surface temperature of the wire is to be 

determined using the applicable relations directly and by solving the applicable differential equation.  

Assumptions 1 Heat transfer is steady since there is no indication of any change with time. 2 Heat transfer is one-dimensional 

since there is thermal symmetry about the center line and no change in the axial direction. 3 Thermal conductivity is constant. 

4 Heat generation in the wire is uniform. 

Properties The thermal conductivity is given to be k = 15.1 W/m°C. 

Analysis (a) The heat generation per unit volume of the wire is  

38

22

gen

wire

gen

gen  W/m10592.1
m) (6m) 001.0(

 W3000


 Lr

EE
e

o




V
 

The surface temperature of the wire is then (Eq. 2-68) 

C475



 

C) W/m175(2

m) 001.0)( W/m10592.1(
C20

2 2

38
gen

h
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o

s


 

(b) The mathematical formulation of this problem can be expressed as   

    0
1 gen










k

e

dr

dT
r

dr

d

r


 

and ])([
)(

 TrTh
dr

rdT
k o

o   (convection at the outer surface) 

0
)0(


dr

dT
   (thermal symmetry about the centerline) 

Multiplying both sides of the differential equation by r and integrating gives 

 r
k

e

dr

dT
r

dr

d gen










    1

2
gen

2
C

r

k

e

dr

dT
r 


  (a) 

Applying the boundary condition at the center line,   

B.C. at  r = 0: 0        0
2

)0(
0 11

gen
 CC

k

e

dr

dT 
 

Dividing both sides of Eq. (a) by r to bring it to a readily integrable form and integrating,  
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k

e

dr

dT

2
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

              2
2gen

4
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k

e
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Applying the boundary condition at orr  , 
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














   

Substituting this C2  relation into Eq. (b) and rearranging give  
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   

which is the temperature distribution in the wire as a function of r. Then the temperature of the wire at the surface (r = ro ) is 

determined by substituting the known quantities to be 
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Note that both approaches give the same result. 
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2-99 A long homogeneous resistance heater wire with specified surface temperature is used to heat the air. The temperature of 

the wire 3.5 mm from the center is to be determined in steady operation.  

Assumptions 1 Heat transfer is steady since there is no indication of any change with time. 2 Heat transfer is one-dimensional 

since there is thermal symmetry about the center line and no change in the axial direction. 3 Thermal conductivity is constant. 

4 Heat generation in the wire is uniform. 

Properties The thermal conductivity is given to be k = 6 W/m°C. 

Analysis Noting that heat transfer is steady and one-dimensional in the radial r 

direction, the mathematical formulation of this problem can be expressed as   

0
1 gen










k

e

dr

dT
r

dr

d

r


 

and  so TrT )( 180C  (specified surface temperature) 

0
)0(


dr

dT
   (thermal symmetry about the centerline) 

Multiplying both sides of the differential equation by r and rearranging gives 
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dr
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d gen
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






 

Integrating with respect to r gives 
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2
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e

dr

dT
r 


                (a) 

It is convenient at this point to apply the boundary condition at the center since it is related to the first derivative of the 

temperature. It yields 

B.C. at  r = 0: 0        0
2

)0(
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gen
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k

e

dr

dT 
 

Dividing both sides of Eq. (a) by r to bring it to a readily integrable form and integrating,  
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e
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                   (b) 

Applying the other boundary condition at orr  , 

B. C. at  orr  :        2gen
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Substituting this C2  relation into Eq. (b) and rearranging give  

 )(
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)( 22gen
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k

e
TrT os 


 

which is the desired solution for the temperature distribution in the wire as a function of r. The temperature 3.5 mm from the 

center line (r = 0.0035 m) is determined by substituting the known quantities to be 

C207

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Thus the temperature at that location will be about 20°C above the temperature of the outer surface of the wire. 
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2-100    A cylindrical fuel rod is cooled by water flowing through its encased concentric tube while generating a uniform 

heat. The variation of temperature in the fuel rod and the center and surface temperatures are to be determined for steady one-

dimensional heat transfer. 

Assumptions 1 Heat transfer is steady and one-dimensional with thermal symmetry about the center line. 2 Thermal 

conductivity is constant. 3 The rod surface at r = ro is subjected convection. 4 Heat generation in the rod is uniform. 

Properties The thermal conductivity is given to be 30 W/mK. 

Analysis For one-dimensional heat transfer in the radial r direction, the differential equation for heat conduction in cylindrical 

coordinate with heat generation can be expressed as 

0
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




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Integrating the differential equation twice with 

respect to r yields 
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where C1 and C2 are arbitrary constants. Applying the boundary conditions give 
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Solving for C2 gives 
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Substituting C1 and C2 into the general solution, the variation of temperature is determined to be 
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The temperature at r = 0 (the centerline of the rod) is 
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The temperature at r = ro = 0.01 m (the surface of the rod) is 
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2
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e
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
   

Fuel rod surface not cooled adequately. 

Discussion The temperature of the fuel rod surface is 75°C higher than the temperature necessary to prevent the cooling water 

from reaching the CHF. To keep the temperature of the fuel rod surface below 200°C, the convection heat transfer coefficient 

of the cooling water should be kept above 4000 W/m
2
∙K. This can be done either by increasing the mass flow rate of the 

cooling water or by decreasing the inlet temperature of the cooling water. The topic of critical heat flux is covered in Chapter 

10 (Boiling and Condensation).   
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2-101 Heat is generated uniformly in a spherical radioactive material with specified surface temperature. The mathematical 

formulation, the variation of temperature in the sphere, and the center temperature are to be determined for steady one-

dimensional heat transfer. 

Assumptions 1 Heat transfer is steady since there is no indication of any changes with time. 2 Heat transfer is one-

dimensional since there is thermal symmetry about the mid point. 3 Thermal conductivity is constant. 4 Heat generation is 

uniform. 

Properties The thermal conductivity is given to be k = 15 W/m°C. 

Analysis (a) Noting that heat transfer is steady and one-dimensional in the radial 

r direction, the mathematical formulation of this problem can be expressed as   

    constant       with 0
1

gen

gen2

2
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

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e

k

e

dr

dT
r

dr

d

r



 

and  so TrT )( 110C  (specified surface temperature) 

0
)0(


dr

dT
   (thermal symmetry about the mid point) 

(b) Multiplying both sides of the differential equation by r
2
 and rearranging gives 
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Integrating with respect to r gives 
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Applying the boundary condition at the mid point, 
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Dividing both sides of Eq. (a) by r
2
  to bring it to a readily integrable form and integrating,  
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Applying the other boundary condition at r r 0 , 
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Substituting this 2C  relation into Eq. (b) and rearranging give  
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which is the desired solution for the temperature distribution in the wire as a function of r.  

(c) The temperature at the center of the sphere (r = 0) is determined by substituting the known quantities to be 
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Thus the temperature at center will be 999°C above the temperature of the outer surface of the sphere. 
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k 

egen 

 
 r 



 

PROPRIETARY MATERIAL. © 2015 The McGraw-Hill Companies, Inc.  Limited distribution permitted only to teachers and educators for course 

preparation.  If you are a student using this Manual, you are using it without permission. 

2-61 

 

2-102    Prob. 2-101 is reconsidered. The temperature as a function of the radius is to be plotted. Also, the center 

temperature of the sphere as a function of the thermal conductivity is to be plotted. 

Analysis The problem is solved using EES, and the solution is given below. 

 

"GIVEN" 
r_0=0.04 [m] 
g_dot=5E7 [W/m^3] 
T_s=110 [C] 
k=15 [W/m-C] 
r=0 [m] 
 
"ANALYSIS" 
T=T_s+g_dot/(6*k)*(r_0^2-r^2) "Temperature distribution as a function of r" 
T_0=T_s+g_dot/(6*k)*r_0^2 "Temperature at the center (r=0)" 
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2-103 A spherical communication satellite orbiting in space absorbs solar radiation while losing heat to deep space by thermal 

radiation. The heat generation rate and the surface temperature of the satellite are to be determined. 

Assumptions 1 Heat transfer is steady and one-dimensional. 2 Heat generation is uniform. 3 Thermal properties are constant. 

Properties The properties of the satellite are given to be  = 0.75,  = 0.10, and k = 5 W/m ∙ K. 

Analysis For steady one-dimensional heat conduction in sphere, the differential equation is 
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and K 273)0( 0  TT      (midpoint temperature of the satellite) 
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)0(
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dr
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     (thermal symmetry about the midpoint) 

Multiply both sides of the differential equation by 2r  and rearranging gives 
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Integrating with respect to r gives 
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Applying the boundary condition at the midpoint (thermal symmetry about the midpoint), 

:0r   1

gen
0

)0(
0 C

k

e

dr

dT



           01 C  

Dividing both sides of Eq. (a) by 2r  and integrating, 

 r
k

e

dr

dT

3

gen


  

and 2
2gen

6
)( Cr

k

e
rT 


  (b) 

Applying the boundary condition at the midpoint (midpoint temperature of the satellite), 

 :0r   2

gen

0 0
6

C
k

e
T 


           02 TC   

Substituting 2C  into Eq. (b), the variation of temperature is determined to be 

 0
2gen

6
)( Tr

k

e
rT 


 

At the satellite surface ( orr  ), the temperature is 

 0
2gen

6
Tr

k

e
T os 


  (c) 

Also, the rate of heat transfer at the surface of the satellite can be expressed as 

 solar
4

space
43

gen )( 
3

4
qATTAre sssso   








     where     0space T  

The surface temperature of the satellite can be explicitly expressed as 

 

4/1

solargen

4/1

solargen
3

3/
 

3

41












 


























qre
qAer

A
T

so

sso
s

s


   (d) 
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Substituting Eq. (c) into Eq. (d) 

 0
2gen

4/1

solargen

6

3/
Tr

k

eqre
o

so














  




 

 K 273
)K W/m5(6

)m 25.1(

)K W/m1067.5)(75.0(

) W/m1000)(10.0(3/)m 25.1( 2
gen

4/1

428

2
gen

























ee 
 

Copy the following line and paste on a blank EES screen to solve the above equation: 

((e_gen*1.25/3+0.10*1000)/(0.75*5.67e-8))^(1/4)=-e_gen*1.25^2/(6*5)+273 

Solving by EES software, the heat generation rate is 

3
 W/m233gene  

Using Eq. (c), the surface temperature of the satellite is determined to be 

 K 261


 K 273)m 25.1(
)K W/m5(6

) W/m233( 2
3

sT  

Discussion The surface temperature of the satellite in space is well below freezing point of water. 
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Variable Thermal Conductivity, k(T) 

 

2-104C  The thermal conductivity of a medium, in general, varies with temperature.  

 

 

2-105C  Yes, when the thermal conductivity of a medium varies linearly with temperature, the average thermal conductivity is 

always equivalent to the conductivity value at the average temperature.  

 

 

2-106C No, the temperature variation in a plain wall will not be linear when the thermal conductivity varies with temperature. 

 

 

2-107C During steady one-dimensional heat conduction in a plane wall in which the thermal conductivity varies linearly, the 

error involved in heat transfer calculation by assuming constant thermal conductivity at the average temperature is (a) none.  

 

 

2-108C During steady one-dimensional heat conduction in a plane wall, long cylinder, and sphere with constant thermal 

conductivity and no heat generation, the temperature in only the plane wall will vary linearly. 
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2-109 A silicon wafer with variable thermal conductivity is subjected to uniform heat flux at the lower surface. The maximum 

allowable heat flux such that the temperature difference across the wafer thickness does not exceed 2 °C is to be determined. 

Assumptions 1 Heat conduction is steady and one-dimensional. 2 There is no heat generation. 3 Thermal conductivity varies 

with temperature. 

Properties The thermal conductivity is given to be k(T) = (a + bT + cT
2
) W/m ∙ K. 

Analysis For steady heat transfer, the Fourier’s law of heat conduction can be expressed as 

 
dx

dT
cTbTa

dx

dT
Tkq )()( 2  

Separating variable and integrating from 0x  where 

1)0( TT   to Lx   where 2)( TLT  , we obtain 

 dTcTbTadxq
T

T

L

 
2

1

)( 2

0

  

Performing the integration gives 

 







 )(

3
)(

2
)( 3

1
3

2
2

1
2

212 TT
c

TT
b

TTaLq  

The maximum allowable heat flux such that the temperature difference across the wafer thickness does not exceeding 2 °C is 

 

25
 W/m101.35














 )m 10925(

 W/m)600598(
3

00111.0
)600598(

2

29.1
)600598(437

6

3322

q  

Discussion For heat flux less than 135 kW/m
2
, the temperature difference across the silicon wafer thickness will be 

maintained below 2 °C. 
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2-110   A plate with variable conductivity is subjected to specified temperatures on both sides. The rate of heat transfer 

through the plate is to be determined. 

Assumptions 1 Heat transfer is given to be steady and one-dimensional. 2 Thermal conductivity varies linearly.  3 There is no 

heat generation. 

Properties The thermal conductivity is given to be )1()( 0 TkTk  . 

Analysis The average thermal conductivity of the medium in this case is simply 

the conductivity value at the average temperature since the thermal conductivity 

varies linearly with temperature, and is determined to be 

 

K W/m66.24

2

K 350)+(500
)K 10(8.7+1K) W/m18(

2
1)(

1-4-

12
0avgave




















 


TT
kTkk 

 

Then the rate of heat conduction through the plate becomes 

 kW 22.2





  W,19022
m 15.0

0)K35(500
m) 0.6  m K)(1.5 W/m66.24(21

avg
L

TT
AkQ  

Discussion We would obtain the same result if we substituted the given  k(T) relation into the second part of Eq, 2-76, and 

performed the indicated integration. 

 

 

 

 

2-111  On one side, a steel plate is subjected to a uniform heat flux and maintained at a constant temperature. On the other 

side, the temperature is maintained at a lower temperature. The plate thickness is to be determined. 

Assumptions 1 Heat transfer is steady and one-dimensional. 2 There is no heat generation. 3 Thermal conductivity varies with 

temperature. 

Properties The thermal conductivity is given to be k(T) = k0 (1 + βT). 

Analysis For steady heat transfer, the Fourier’s law of heat conduction can be expressed as 

 
L

TT
kq 21

avg


      

Solving for the plate thickness from the above equation  

 
q

TT
kL


21

avg


    

The average thermal conductivity of the steel plate is 

KW/m86.23
2

K)800600(
)K0023.0(1)KW/m14.9(

2
1 1-12

0avg 






 








 


TT
kk     

Substituting into the equation for the plate thickness, 

 m.0950



2W/m50000

K)600800(
)KW/m86.23(L    

Discussion We would obtain the same result if we substituted the given k(T) relation into 

the second part of Eq. 2-76, and performed the indicated integration. 

T2 

k(T) 

T1 

 L 
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2-112 A plate with variable conductivity is subjected to specified temperatures on both sides. The rate of heat transfer through 

the plate is to be determined. 

Assumptions 1 Heat transfer is given to be steady and one-dimensional. 2 

Thermal conductivity varies quadratically.  3 There is no heat generation. 

Properties The thermal conductivity is given to be )1()( 2
0 TkTk  . 

Analysis When the variation of thermal conductivity with temperature k(T) is 

known, the average value of the thermal conductivity in the temperature range 

between 21   and  TT  can be determined from 

     

   

 













































2
121

2
20

12

3
1

3
2120

12

3
0

12

2
0

12
avg

3
1

33)1()(

2

1

2

1

2

1

TTTTk

TT

TTTTk

TT

TTk

TT

dTTk

TT

dTTk

k

T

T

T

T

T

T






 

This relation is based on the requirement that the rate of heat transfer through a medium with constant average thermal 

conductivity kavg equals the rate of heat transfer through the same medium with variable conductivity k(T). Then the rate of 

heat conduction through the plate can be determined to be 

  
L

TT
ATTTTk

L

TT
AkQ 212

121
2

20
21

avg
3

1















  

Discussion We would obtain the same result if we substituted the given  k(T) relation into the second part of Eq. 2-76, and 

performed the indicated integration. 

 

 

 

T2 

x 

k(T) 

 L 

T1 
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2-113  The thermal conductivity of stainless steel has been characterized experimentally to vary with temperature. The 

average thermal conductivity over a given temperature range and the k(T) = k0 (1 + βT) expression are to be determined. 

Assumptions 1 Thermal conductivity varies with temperature. 

Properties The thermal conductivity is given to be k(T) = 9.14 + 0.021T for 273 < T < 1500 K. 

Analysis The average thermal conductivity can be determined using 

 K W/m24.9 














3001200

)0105.014.9(

3001200

)021.014.9()(
1200

300

2
1200

300

12
avg

2

1

TTdTT

TT

dTTk

k

T

T
   

To express k(T) = 9.14 + 0.021T as k(T) = k0 (1 + βT), we have 

 TkkTk 00)(     

and comparing with k(T) = 9.14 + 0.021T, we have 

 K W/m14.90 k      and     
2

0 K W/m021.0 k    

which gives 

 
1-

2

0

2

K 0023.0
K W/m14.9

K W/m021.0K W/m021.0










k
    

Thus, 

 )1()( 0 TkTk       where     K W/m9.14 0k      and     
-1

K 0.0023    

Discussion The average thermal conductivity can also be determined using the average temperature: 

 K W/m9.24
2

3001200
021.014.9)( avgavg 







 
 Tkk
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2-114  A pipe outer surface is subjected to a uniform heat flux and has a known temperature. The metal pipe has a variable 

thermal conductivity. The inner surface temperature of the pipe is to be determined. 

Assumptions 1 Heat transfer is steady and one-dimensional. 2 There is no heat generation. 3 Thermal conductivity varies with 

temperature. 

Properties The thermal conductivity is given to be k(T) = k0 (1 + βT). 

Analysis For steady heat transfer, the heat conduction through a 

cylindrical layer can be expressed as 

 
)/ln()/ln(2

2

2 12

12

2

avg

12

12

2

avg

2 rr

TT

r

k

rr

TT

Lr

kL

Lr

Q
q














    

The inner and outer radii of the pipe are 

 m 05.0m2/1.01 r      and     m 06.0m)01.005.0(2 r  

The average thermal conductivity is 

 

KW/m)]773(0045.05.7[

2

K)773(
)K0012.0(1)KW/m5.7(

2
1

1

11-12
0avg










 








 


T

TTT
kk 

   

Thus, 

 






 
 K 

)05.0/06.0ln(

773

m06.0

KW/m)]773(0045.05.7[
W/m5000 112 TT

   

Solving for the inner pipe temperature T1, 

 C496.2 K21.7691T    

Discussion There is about 4°C drop in temperature across the pipe wall.  
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2-115      A pipe is used for transporting boiling water with a known inner surface temperature in surroundings of 

cooler ambient temperature and known convection heat transfer coefficient. The pipe wall has a variable thermal conductivity. 

The outer surface temperature of the pipe is to be determined to ensure that it is below 50°C. 

Assumptions 1 Heat transfer is steady and one-dimensional. 2 There is no heat generation. 3 Thermal conductivity varies with 

temperature. 4 Inner pipe surface temperature is constant at 100°C. 

Properties The thermal conductivity is given to be k(T) = k0 (1 + βT). 

Analysis The inner and outer radii of the pipe are 

m 015.0m 2/030.01 r          

m 018.0m)003.0015.0(2 r  

The rate of heat transfer at the pipe’s outer surface can be expressed 

as  

 convcylinder QQ      

 ))(2(
)/ln(

2 22
12

21
avg 


TTLrh

rr

TT
Lk     

 )(
)/ln(

2
12

21

2

avg



TTh

rr

TT

r

k
                      (1) 

where 

 h = 70 W/m
2
 K,   T1 = 373 K,   and   T∞ = 283 K 

The average thermal conductivity is 

 






 








 


2

 K373
K00201KW/m231

2
1 21-12

0avg

)(T
).().(

TT
kk     

 KW/m373)]0.00123([1.23avg  2Tk                   (2) 

Solving Eqs. (1) & (2) for the outer surface temperature yields 

 C91.3K 364.3 2T    

Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES screen. 

 

"GIVEN" 
h=70 [W/(m^2*K)]   "convection heat transfer coefficient" 
r_1=0.030/2 [m]   "inner radius" 
r_2=r_1+0.003 [m]   "outer radius" 
T_1=100+273 [K]   "inner surface temperature" 
T_inf=10+273 [K]   "ambient temperature" 
k_0=1.23 [W/(m*K)] 
beta=0.002 [K^-1] 
"SOLVING FOR OUTER SURFACE TEMPERATURE" 
k_avg=k_0*(1+beta*(T_2+T_1)/2) 
Q_dot_cylinder=2*pi*k_avg*(T_1-T_2)/ln(r_2/r_1)   "heat rate through the cylindrical layer" 
Q_dot_conv=h*2*pi*r_2*(T_2-T_inf)   "heat rate by convection" 
Q_dot_cylinder=Q_dot_conv 

 

The outer surface temperature of the pipe is more than 40°C above the safe temperature of 50°C to prevent thermal burn on 

skin tissues. 

Discussion It is necessary to wrap the pipe with insulation to prevent thermal burn. 
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2-116    A pipe is used for transporting hot fluid with a known inner surface temperature. The pipe wall has a variable 

thermal conductivity. The pipe’s outer surface is subjected to radiation and convection heat transfer. The outer surface 

temperature of the pipe is to be determined. 

Assumptions 1 Heat transfer is steady and one-dimensional. 2 There is 

no heat generation. 3 Thermal conductivity varies with temperature. 

Properties The thermal conductivity is given to be k(T) = k0 (1 + βT), 

α = ε = 0.9 at the outer pipe surface. 

Analysis The inner and outer radii of the pipe are 

 m 075.0m2/15.01 r          

m 08.0m)005.0075.0(2 r    

The rate of heat transfer at the pipe’s outer surface can be expressed as  

 absradconvcyl QQQQ      

solar2
4

surr
4

2222
12

21
avg )2())(2())(2(

)/ln(
2 qLrTTLrTTLrh

rr

TT
Lk  


    

 solar
4

surr
4

22
12

21

2

avg
)()(

)/ln(
qTTTTh

rr

TT

r

k
 


                      (1) 

where h = 60 W/m
2
 K,     q∙ solar = 100 W/m

2
,   T1 = 423 K,   and   T∞ = Tsurr = 273 K 

The average thermal conductivity is 

 






 








 


2

 K)(423T
)K(0.0011KW/m58

2
1 21-12

0avg ).(
TT

kk     

 KW/m423)]0.00425([8.5avg  2Tk                        (2) 

Solving Eqs. (1) & (2) for the outer surface temperature yields 

 C145.8K 418.8 2T    

Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES screen. 

 

"GIVEN" 
h=60 [W/(m^2*K)]   "outer surface h" 
r_1=0.15/2 [m]   "inner radius" 
r_2=r_1+0.005 [m]   "outer radius" 
T_1=423 [K]   "inner surface T" 
T_inf=273 [K]   "ambient T" 
T_surr=273 [K]  "surrounding surface T" 
alpha=0.9   "outer surface absorptivity" 
epsilon=0.9   "outer surface emissivity" 
q_dot_solar=100 [W/m^2]   "incident solar radiation" 
k_0=8.5 [W/(m*K)] 
beta=0.001 [K^-1] 
"SOLVING FOR OUTER SURFACE TEMPERATURE" 
k_avg=k_0*(1+beta*(T_2+T_1)/2) 
q_dot_cyl=k_avg/r_2*(T_1-T_2)/ln(r_2/r_1)   "heat flux through the cylindrical layer" 
q_dot_conv=h*(T_2-T_inf)   "heat flux by convection" 
q_dot_rad=epsilon*sigma#*(T_2^4-T_surr^4)   "heat flux by radiation emission" 
q_dot_abs=alpha*q_dot_solar   "heat flux by radiation absorption" 
q_dot_cyl-q_dot_conv-q_dot_rad+q_dot_abs=0 

 

Discussion Increasing h or decreasing kavg would decrease the pipe’s outer surface temperature.  
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2-117  A spherical container has its inner surface subjected to a uniform heat flux and its outer surface is at a known 

temperature. The container wall has a variable thermal conductivity. The temperature drop across the container wall thickness 

is to be determined. 

Assumptions 1 Heat transfer is steady and one-dimensional. 2 There 

is no heat generation. 3 Thermal conductivity varies with 

temperature. 

Properties The thermal conductivity is given to be k(T) = k0 (1 + βT). 

Analysis For steady heat transfer, the heat conduction through a 

spherical layer can be expressed as 

 
12

21

1

2
avg

12

21

2

1

21avg

2

1 4

4

4 rr

TT

r

r
k

rr

TT

r

rrk
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
















    

The inner and outer radii of the container are 

 m 11 r           

m 005.1m 005.0m 12 r  

The average thermal conductivity is 

 

KW/m)]30.00153(29[1.33

2

K293
K002301KW/m331

2
1

1

11-12
0avg










 








 


T

T)(
).().(

TT
kk 

   

Thus, 

 






 










m

K

0050

293

m1

m 0051
KW/m)]30.00153(29[1.33W/m7000 12

.

T.
T1    

Solving for the inner pipe temperature T1, 

 K53081 .T     

The temperature drop across the container wall is, 

 C15.5  K293 K530821 .TT    

Discussion The temperature drop across the container wall would decrease if a material with a higher kavg value is used.  
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2-118  A spherical shell with variable conductivity is subjected to specified temperatures on both sides. The variation of 

temperature and the rate of heat transfer through the shell are to be determined. 

Assumptions 1 Heat transfer is given to be steady and one-dimensional. 2 Thermal conductivity varies linearly.  3 There is no 

heat generation. 

Properties The thermal conductivity is given to be )1()( 0 TkTk  . 

Analysis (a) The rate of heat transfer through the shell is expressed as 

 
12

21
21avgsphere 4

rr

TT
rrkQ




   

where  r1 is the inner radius, r2 is the outer radius, and 

 






 


2
1)( 12

0avgavg

TT
kTkk   

is the average thermal conductivity. 

(b) To determine the temperature distribution in the shell, we begin with the Fourier’s law of heat conduction expressed as 

 
dr

dT
ATkQ )(  

where the rate of conduction heat transfer Q  is constant and the heat conduction area A = 4r
2
 is variable. Separating the 

variables in the above equation and integrating from r = r1 where  11)( TrT    to any r where TrT )( , we get 

  
T

T

r

r
dTTk

r

dr
Q

11

)(4
2

  

Substituting )1()( 0 TkTk   and performing the integrations gives 

 ]2/)()[(4
11 2

1
2

10
1

TTTTk
rr

Q 









   

Substituting the Q  expression from part (a) and rearranging give 

 0
2

)(
)(

)(22
1

2
121

12

12

0

avg2 



 TTTT

rrr

rrr

k

k
TT


 

which is a quadratic equation in the unknown temperature T. Using the quadratic formula, the temperature distribution T(r) in 

the cylindrical shell is determined to be 

 1
2

121
12

12

0

avg

2

2
)(

)(

)(211
)( TTTT

rrr

rrr

k

k
rT







  

Discussion The proper sign of the square root term (+ or -) is determined from the requirement that the temperature at any 

point within the medium must remain between 21   and  TT .  

r1 r2 

T1 k(T) 

r 

T2 
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2-119    A spherical vessel, filled with chemicals undergoing an exothermic reaction, has a known inner surface 

temperature. The wall of the vessel has a variable thermal conductivity. Convection heat transfer occurs on the outer surface 

of the vessel. The minimum wall thickness of the vessel is to be determined so that the outer surface temperature is 50°C or 

lower. 

Assumptions 1 Heat transfer is steady and one-dimensional. 2 There is no heat generation. 3 Thermal conductivity varies with 

temperature. 

Properties The thermal conductivity is given to be k(T) = k0 (1 + βT). 

Analysis The inner and outer radii of the vessel are 

 m 5.2m2/51 r     and    )( 12 trr     

where  t = wall thickness 

The rate of heat transfer at the vessel’s outer surface can be 

expressed as  

 convsph QQ      

 ))(4(4 2
2

2
12

21
21avg 




TTrh

rr

TT
rrk     

 )( 2
12

21

2

1
avg 




TTh

rr

TT

r

r
k                     (1) 

where 

 h = 80 W/m
2
 K,   T1 = 393 K,   T2 = 323 K,   and   T∞ = 288 K 

The average thermal conductivity is 

 KW/m66111
2

 K)(393 K)(323
)K(0.00181KW/m011

2
1 1-12

0avg 






 








 
 .).(

TT
kk     

Solving Eq. (1) for r2 yields 

 m 54122 .r     

Thus, the minimum wall thickness of the vessel should be 

 mm 41 m 041012 .rrt  

Discussion To prevent the outer surface temperature of the vessel from causing thermal burn, the wall thickness should be at 

least 41 mm. As the wall thickness increases, it would decrease the outer surface temperature. 
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2-120    A spherical tank, filled with ice slurry, has a known inner surface temperature. The tank wall has a variable 

thermal conductivity. The tank’s outer surface is subjected to radiation and convection heat transfer. The outer surface 

temperature of the tank is to be determined. 

Assumptions 1 Heat transfer is steady and one-dimensional. 2 There 

is no heat generation. 3 Thermal conductivity varies with 

temperature. 

Properties The thermal conductivity is given to be k(T) = k0 (1 + βT), 

α = ε = 0.75 at the outer tank surface. 

Analysis The inner and outer radii of the tank are  

 m 5.4m2/91 r      and     m 52.4m)02.05.4(2 r    

The rate of heat transfer at the tank’s outer surface can be expressed 

as  

 absradconvsph QQQQ      

solar
2
2

4
2

4
surr

2
22

2
2

12

21
21avg )4())(4())(4(4 qrTTrTTrh

rr

TT
rrk  




    

 solar
4

2
4

surr2
12

21

2

1
avg )()( qTTTTh

rr

TT

r

r
k  




                     (1) 

where 

 h = 70 W/m
2
 K,   q∙ solar = 150 W/m

2
,   T1 = 273 K,   and   T∞ = Tsurr = 308 K 

The average thermal conductivity is 

 






 








 


2

)K 15.273(
)K0025.0(1)KW/m33.0(

2
1 21-12

0avg

TTT
kk     

 KW/m273)]T0.0004125([0.33 2avg k                     (2) 

Solving Eqs. (1) & (2) for the outer surface temperature yields 

 C26.5K 299.5 2T    

Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES screen. 

 

"GIVEN" 
h=70 [W/(m^2*K)]   "outer surface h" 
r_1=9/2 [m]   "inner radius" 
r_2=r_1+0.020 [m]   "outer radius" 
T_1=273 [K]   "inner surface T" 
T_inf=308 [K]   "ambient T" 
T_surr=308 [K]  "surrounding surface T" 
alpha=0.75   "outer surface absorptivity" 
epsilon=0.75   "outer surface emissivity" 
q_dot_solar=150 [W/m^2]   "incident solar radiation" 
k_0=0.33 [W/(m*K)] 
beta=0.0025 [K^-1] 
"SOLVING FOR OUTER SURFACE TEMPERATURE" 
k_avg=k_0*(1+beta*(T_2+T_1)/2) 
q_dot_sph=k_avg*r_1/r_2*(T_1-T_2)/(r_2-r_1)   "heat flux through the spherical layer" 
q_dot_conv=h*(T_inf-T_2)   "heat flux by convection" 
q_dot_rad=epsilon*sigma#*(T_surr^4-T_2^4)   "heat flux by radiation emission" 
q_dot_abs=alpha*q_dot_solar   "heat flux by radiation absorption" 
q_dot_sph+q_dot_conv+q_dot_rad+q_dot_abs=0 
 

Discussion Increasing the tank wall thickness would increase the tanks’ outer surface temperature.  
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Special Topic: Review of Differential equations 

 

2-121C We utilize appropriate simplifying assumptions when deriving differential equations to obtain an equation that we can 

deal with and solve. 

 

 

2-122C A variable is a quantity which may assume various values during a study. A variable whose value can be changed 

arbitrarily is called an independent variable (or argument). A variable whose value depends on the value of other variables 

and thus cannot be varied independently is called a dependent variable (or a function). 

 

 

2-123C A differential equation may involve more than one dependent or independent variable. For example, the equation 

t

txT

k

e

x

txT










 ),(1),( gen

2

2 
 has one dependent (T) and 2 independent variables (x and t). the equation 

t

txW

t

txT

x

txW

x

txT






















 ),(1),(1),(),(
2

2

 has 2 dependent (T and W) and 2 independent variables (x and t). 

 

 

2-124C Geometrically, the derivative of a function y(x) at a point represents the slope of the tangent line to the graph of the 

function at that point.  The derivative of a function that depends on two or more independent variables with respect to one 

variable while holding the other variables constant is called the partial derivative. Ordinary and partial derivatives are 

equivalent for functions that depend on a single independent variable. 

 

 

2-125C  The order of a derivative represents the number of times a function is differentiated, whereas the degree of a 

derivative represents how many times a derivative is multiplied by itself. For example, y   is the third order derivative of y, 

whereas 3)(y  is the third degree of the first derivative of y. 

 

 

2-126C For a function ),( yxf , the partial derivative xf  / will be equal to the ordinary derivative dxdf /  when f does not 

depend on y or this dependence is negligible. 

 

 

2-127C For a function )(xf , the derivative dxdf /  does not have to be a function of x. The derivative will be a constant 

when the f  is a linear function of x. 

 

 

2-128C Integration is the inverse of derivation. Derivation increases the order of a derivative by one, integration reduces it by 

one.  
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2-129C A differential equation involves derivatives, an algebraic equation does not. 

 

 

2-130C A differential equation that involves only ordinary derivatives is called an ordinary differential equation, and a 

differential equation that involves partial derivatives is called a partial differential equation. 

 

 

2-131C The order of a differential equation is the order of the highest order derivative in the equation. 

 

 

2-132C A differential equation is said to be linear if the dependent variable and all of its derivatives are of the first degree, 

and their coefficients depend on the independent variable only. In other words, a differential equation is linear if it can be 

written in a form which does not involve (1) any powers of the dependent variable or its derivatives such as 3y  or 2)(y , (2) 

any products of the dependent variable or its derivatives such as yy   or yy  , and (3) any other nonlinear functions of the 

dependent variable such as sin y or ye . Otherwise, it is nonlinear. 

 

 

2-133C A linear homogeneous differential equation of order n is expressed in the most general form as  

 0)()(  )( 1
)1(

1
)(  

 yxfyxfyxfy nn
nn   

Each term in a linear homogeneous equation contains the dependent variable or one of its derivatives after the equation is 

cleared of any common factors. The equation 04 2  yxy  is linear and homogeneous since each term is linear in  y, and 

contains the dependent variable or one of its derivatives. 

 

 

2-134C A differential equation is said to have constant coefficients if the coefficients of all the terms which involve the 

dependent variable or its derivatives are constants. If, after cleared of any common factors, any of the terms with the 

dependent variable or its derivatives involve the independent variable as a coefficient, that equation is said to have variable 

coefficients The equation 04 2  yxy  has variable coefficients whereas the equation 04  yy has constant coefficients.  

 

 

2-135C A linear differential equation that involves a single term with the derivatives can be solved by direct integration. 

 

 

2-136C The general solution of a 3rd order linear and homogeneous differential equation will involve 3 arbitrary constants.  
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Review Problems 

 

2-137 A plane wall is subjected to uniform heat flux on the left surface, while the right surface is subjected to convection and 

radiation heat transfer. The boundary conditions and the differential equation of this heat conduction problem are to be 

obtained. 

Assumptions 1 Heat conduction is steady and one-dimensional. 2 Thermal conductivity is constant. 3 There is no heat 

generation in the wall. 4 The left surface at x = 0 is subjected to uniform heat flux while the right surface at x = L is subjected 

to convection and radiation. 5 The surrounding temperature is T∞ = Tsurr. 

Analysis Taking the direction normal to the surface of the wall to be the x 

direction with x = 0 at the left surface, the differential equation for heat 

conduction can be expressed as  

 0
2

2


dx

Td
   

The boundary conditions for the left and right surfaces are 

 :0x    0

)0(
q

dx

dT
k     

 :Lx     ])([])([
)( 4

surr
4 TLTTLTh

dx

LdT
k          

where      

T∞ = Tsurr   

Discussion Due to the radiation heat transfer equation, all temperatures are expressed in absolute temperatures, i.e. K or °R. 

 

 

 

 

2-138 A long rectangular bar is initially at a uniform temperature of Ti. The surfaces of the bar at x = 0 and y = 0 are insulated 

while heat is lost from the other two surfaces by convection. The mathematical formulation of this heat conduction problem is 

to be expressed for transient two-dimensional heat transfer with no heat generation. 

Assumptions 1 Heat transfer is transient and two-dimensional. 2 Thermal conductivity is constant. 3 There is no heat 

generation. 

Analysis The differential equation and the boundary conditions for this heat conduction problem can be expressed as 
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2-139E A large plane wall is subjected to a specified temperature on the left (inner) surface and solar radiation and heat loss 

by radiation to space on the right (outer) surface. The temperature of the right surface of the wall and the rate of heat transfer 

are to be determined when steady operating conditions are reached.  

Assumptions 1 Steady operating conditions are reached. 2 Heat transfer is one-

dimensional since the wall is large relative to its thickness, and the thermal conditions on 

both sides of the wall are uniform. 3 Thermal properties are constant.  4 There is no heat 

generation in the wall. 

Properties The properties of the plate are given to be  k = 1.2 Btu/hft°F and  

 = 0.80, and 60.0s . 

Analysis In steady operation, heat conduction through the wall must be equal 

to net heat transfer from the outer surface. Therefore, taking the outer surface 

temperature of the plate to be T2 (absolute, in R), 

 solar
4

2
21 qATA

L

TT
kA ssss

 


 

Canceling the area A and substituting the known quantities, 

)ftBtu/h 300(60.0)RftBtu/h 101714.0(8.0
ft 0.8

R) 520(
)FftBtu/h 2.1( 24

2
4282 


  T

T
 

Solving for T2 gives the outer surface temperature to be  

T2 = 553.9 R 

Then the rate of heat transfer through the wall becomes 

 2ftBtu/h 50.9 






ft 0.8

R )9.553520(
)FftBtu/h 2.1(21

L

TT
kq    (per unit area) 

Discussion The negative sign indicates that the direction of heat transfer is from the outside to the inside. Therefore, the 

structure is gaining heat. 

 

 

qsolar 

x 

520 R 

 L 

T2 
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2-140 A spherical vessel is subjected to uniform heat flux on the inner surface, while the outer surface is subjected to 

convection and radiation heat transfer. The boundary conditions and the differential equation of this heat conduction problem 

are to be obtained. 

Assumptions 1 Heat conduction is steady and one-dimensional. 2 Thermal conductivity is constant. 3 There is no heat 

generation in the wall. 4 The inner surface at r = r1 is subjected to uniform heat flux while the outer surface at r = r2 is 

subjected to convection and radiation. 5 The surrounding temperature is T∞ = Tsurr. 

Analysis For one-dimensional heat transfer in the radial r direction, the 

differential equation for heat conduction in spherical coordinate can be 

expressed as  

 02 








dr

dT
r

dr

d
   

The boundary conditions for the inner and outer surfaces are 

:1rr     1
1)(

q
dr

rdT
k     

:2rr     ])([])([
)( 4

surr
4

22
2 TrTTrTh

dr

rdT
k          

where     T∞ = Tsurr   

Discussion Due to the radiation heat transfer equation, all temperatures are expressed in absolute temperatures, i.e. K or °R. 

 

 

 

 

2-141  Heat is generated at a constant rate in a short cylinder. Heat is lost from the cylindrical surface at r = ro by convection 

to the surrounding medium at temperature T  with a heat transfer coefficient of h. The bottom surface of the cylinder at r = 0 

is insulated, the top surface at z = H is subjected to uniform heat flux hq , and the cylindrical surface at r = ro is subjected to 

convection. The mathematical formulation of this problem is to be expressed for steady two-dimensional heat transfer. 

Assumptions 1 Heat transfer is given to be steady and two-dimensional. 2 Thermal conductivity is constant. 3 Heat is 

generated uniformly.  

Analysis The differential equation and the boundary conditions for this heat conduction problem can be expressed as 
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2-142 A small hot metal object is allowed to cool in an environment by convection. The differential equation that describes 

the variation of temperature of the ball with time is to be derived. 

Assumptions 1 The temperature of the metal object changes uniformly with time during cooling so that T = T(t). 2 The 

density, specific heat, and thermal conductivity of the body are constant.  3 There is no heat generation. 

Analysis Consider a body of arbitrary shape of mass m, volume V, surface area A, density , and specific heat cp initially at a 

uniform temperature Ti. At time t = 0, the body is placed into a medium at temperature T , and heat transfer takes place 

between the body and its environment with a heat transfer coefficient h.  

 During a differential time interval dt, the temperature of the body rises by a 

differential amount dT. Noting that the temperature changes with time only, an energy 

balance of the solid for the time interval dt can be expressed as 

 

















dtdt  duringbody   theof   

energy in the decrease The

 during              

body  thefromfer Heat trans
 

or )()( dTmcdtTThA ps    

Noting that  Vm  and  )(  TTddT  since T  constant, the equation above can be rearranged as 

 dt
c

hA

TT

TTd

p

s

V








 )(
 

which is the desired differential equation. 

 

 

h 

T m,  c,  Ti 

T=T(t) 
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2-143 The base plate of an iron is subjected to specified heat flux on the left surface and convection and radiation on the right 

surface. The mathematical formulation, and an expression for the outer surface temperature and its value are to be determined 

for steady one-dimensional heat transfer. 

Assumptions 1 Heat conduction is steady and one-dimensional. 2 Thermal conductivity is constant.  3 There is no heat 

generation. 4 Heat loss through the upper part of the iron is negligible. 

Properties The thermal conductivity and emissivity are given to be  k = 18 W/m°C and   = 0.7. 

Analysis (a) Noting that the upper part of the iron is well insulated and thus the entire 

heat generated in the resistance wires is transferred to the base plate, the heat flux 

through the inner surface is determined to be 

 2

24
base

0
0  W/m0000,80

m 10150

 W1200





A

Q
q


  

Taking the direction normal to the surface of the wall to be the x direction with x = 0 at 

the left surface, the mathematical formulation of this problem can be expressed as   

0
2

2


dx

Td
  

and 
2

0  W/m000,80
)0(

 q
dx

dT
k   

])273[(][])([])([
)( 4

surr
4

22
4

surr
4 TTTThTLTTLTh

dx

LdT
k   

(b)  Integrating the differential equation twice with respect to  x  yields 

 1C
dx

dT
  

 21)( CxCxT   

where C1 and C2  are arbitrary constants.  Applying the boundary conditions give  

x = 0:              
k

q
CqkC 0

101      


   

x = L:              ])273[(][ 4
surr

4
221 TTTThkC     

Eliminating the constant C1 from the two relations above gives the following expression for the outer surface temperature T2,  

 0
4

surr
4

22 ])273[()( qTTTTh     

(c) Substituting the known quantities into the implicit relation above gives    

 244
2

428
2

2  W/m000,80]295)273)[(K W/m1067.5(7.0)26)(C W/m30(   TT  

Using an equation solver (or a trial and error approach), the outer surface temperature is determined from the relation above 

to be 

 T2 = 819C 

  

 

x 

h 

T 

 L 

Tsurr 
q 
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2-144 A large plane wall is subjected to convection on the inner and outer surfaces. The mathematical formulation, the 

variation of temperature, and the temperatures at the inner and outer surfaces to be determined for steady one-dimensional 

heat transfer.  

Assumptions 1 Heat conduction is steady and one-dimensional. 2 Thermal conductivity is constant.  3 There is no heat 

generation. 

Properties The thermal conductivity is given to be  k = 0.77 W/m°C. 

Analysis (a) Taking the direction normal to the surface of the wall to be the x direction with x = 0 at the inner surface, the 

mathematical formulation of this problem can be expressed as  

0
2

2


dx

Td
  

and 

dx

dT
kTTh

)0(
)]0([ 11   

])([
)(

22  TLTh
dx

LdT
k  

(b)  Integrating the differential equation twice with respect to  x  yields 

1C
dx

dT
  

21)( CxCxT   

where C1 and C2  are arbitrary constants.  Applying the boundary conditions give  

x = 0:              12111 )]0([ kCCCTh   

x = L:              ])[( 22121  TCLChkC  

Substituting the given values, these equations can be written as 

 12 77.0)22(8 CC   

 )82.0)(12(77.0 211  CCC  

Solving these equations simultaneously give 

 26.18        84.38 21  CC  

Substituting 21   and  CC  into the general solution, the variation of temperature is determined to be 

 xxT 84.3826.18)(   

 (c) The temperatures at the inner and outer surfaces are 

 
C10.5

C18.3





2.084.3826.18)(

084.3826.18)0(

LT

T
 

 

 

 

 

k 

h1 

T1 

 L 

h2 

T2 
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2-145 A steam pipe is subjected to convection on both the inner and outer surfaces.  The mathematical formulation of the 

problem and expressions for the variation of temperature in the pipe and on the outer surface temperature are to be obtained 

for steady one-dimensional heat transfer.  

Assumptions 1 Heat conduction is steady and one-dimensional since the pipe is long relative to its thickness, and there is 

thermal symmetry about the center line. 2 Thermal conductivity is constant.  3 There is no heat generation in the pipe. 

Analysis (a) Noting that heat transfer is steady and one-dimensional in the radial 

r direction, the mathematical formulation of this problem can be expressed as  

0








dr

dT
r

dr

d
  

and )]([
)(

1
1 rTTh

dr

rdT
k ii   

])([
)(

2
2

oo TrTh
dr

rdT
k                  

(b) Integrating the differential equation once with respect to  r gives 

 1C
dr

dT
r   

Dividing both sides of the equation above by r to bring it to a readily integrable form and then integrating,  

 
r

C

dr

dT 1  

 21 ln)( CrCrT   

where C1 and C2  are arbitrary constants.  Applying the boundary conditions give  

r = r1:            )]ln([ 211
1

1 CrCTh
r

C
k ii    

r = r2:             ])ln[( 221
2

1
oo TCrCh

r

C
k   

Solving for C1 and C2 simultaneously gives 

      






































1
1

211

2

0

1
112

211

2

0
1 ln

ln

ln      and    

ln
rh

k
r

rh

k

rh

k

r

r

TT
T

rh

k
rCTC

rh

k

rh

k

r

r

TT
C

i

oi

i
i

i
i

oi

i  

Substituting 21   and  CC  into the general solution and simplifying, we get the variation of temperature to be 

 

211

2

11
0

1
111

ln

ln)(

)(lnln)(

rh

k

rh

k

r

r

rh

k

r

r
TT

T
rh

k
rCTrCrT

oi

i
i

i
i

i





  

 (c) The outer surface temperature is determined by simply replacing r in the relation above by r2. We get 

  

211

2

11

2
0

2

ln

ln)(

)(

rh

k

rh

k

r

r

rh

k

r

r
TT

TrT

oi

i
i

i





  

r2 
r 

r1 Ti 

hi 
To 

ho 
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2-146 A 10-m tall exhaust stack discharging exhaust gases at a rate of 1.2 kg/s is subjected to solar radiation and convection 

at the outer surface. The variation of temperature in the exhaust stack and the inner surface temperature of the exhaust stack 

are to be determined. 

Assumptions 1 Heat conduction is steady and one-dimensional and there is thermal symmetry about the centerline. 2 Thermal 

properties are constant. 3 There is no heat generation in the pipe. 

Properties The constant pressure specific heat of exhaust gases is given to be 1600 J/kg ∙ °C and the pipe thermal conductivity 

is 40 W/m ∙ K. Both the emissivity and solar absorptivity of the exhaust stack outer surface are 0.9. 

 

Analysis The outer and inner radii of the pipe are 

 m 5.02/m 12 r  

 m 4.0m 1.0m 5.01 r  

The outer surface area of the exhaust stack is 

 2
22, m 42.31)m 10)(m 5.0(2 2   LrAs  

The rate of heat loss from the exhaust gases in the exhaust stack can be determined from 

  W57600C )30(C)J/kg 1600)(kg/s 2.1()( outinloss  TTcmQ p
  

The heat loss on the outer surface of the exhaust stack by radiation and convection can be expressed as 

 solar
4

surr
4

22
2,

loss ])([ ])([ qTrTTrTh
A

Q
s

s




    

 

) W/m150)(9.0(K ])27327()()[K W/m1067.5)(9.0(

K )]27327()()[K W/m8(
m 42.31

 W57600

2444
2

428

2
2

2





 rT

rT
 

Copy the following line and paste on a blank EES screen to solve the above equation: 

57600/31.42=8*(T_r2-(27+273))+0.9*5.67e-8*(T_r2^4-(27+273)^4)-0.9*150 

Solving by EES software, the outside surface temperature of the furnace front is 

 K 7.412)( 2 rT  

(a) For steady one-dimensional heat conduction in cylindrical coordinates, the heat conduction equation can be expressed as 

 0








dr

dT
r

dr

d
 

and 
Lr

Q

A

Q

dr

rdT
k

s 1

loss

1,

loss1

 2

)(




      (heat flux at the inner exhaust stack surface) 

 K 7.412)( 2 rT      (outer exhaust stack surface temperature) 
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Integrating the differential equation once with respect to r gives 

 
r

C

dr

dT 1  

Integrating with respect to r again gives 

 21 ln)( CrCrT   

where 1C  and 2C  are arbitrary constants. Applying the boundary conditions gives 

 :1rr    
1

1

1

loss1

 2

1)(

r

C

Lr

Q

kdr

rdT





           

kL

Q
C loss

1
2

1 


  

 :2rr    22
loss

2 ln
2

1
)( Cr

kL

Q
rT 




           )(ln

2

1
22

loss
2 rTr

kL

Q
C 




 

Substituting 1C  and 2C  into the general solution, the variation of temperature is determined to be 

 

)()/ln(
2

1

)(ln
2

1
ln

2

1
)(

22
loss

22
lossloss

rTrr
kL

Q

rTr
kL

Q
r

kL

Q
rT












 

(b) The inner surface temperature of the exhaust stack is 

 

K 418















K7417

K 7.412
5.0

4.0
ln

)m 10)(K W/m40(

 W57600

2

1

)()/ln(
2

1
)( 221

loss
1

 .

rTrr
kL

Q
rT







 

Discussion There is a temperature drop of 5 °C from the inner to the outer surface of the exhaust stack. 
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2-147E A steam pipe is subjected to convection on the inner surface and to specified temperature on the outer surface.  The 

mathematical formulation, the variation of temperature in the pipe, and the rate of heat loss are to be determined for steady 

one-dimensional heat transfer.  

Assumptions 1 Heat conduction is steady and one-dimensional since the pipe is long relative to its thickness, and there is 

thermal symmetry about the center line. 2 Thermal conductivity is constant.  3 There is no heat generation in the pipe. 

Properties The thermal conductivity is given to be  k = 8 Btu/hft°F. 

Analysis (a) Noting that heat transfer is one-dimensional in the radial r direction, the mathematical formulation of this 

problem can be expressed as  

                0








dr

dT
r

dr

d
  

 The boundary conditions for this problem are:   

     )]([
)(

1
1 rTTh

dr

rdT
k    

                F16022 T)r(T                 

(b)  Integrating the differential equation once with respect to r gives 

 1C
dr

dT
r   

Dividing both sides of the equation above by r to bring it to a readily integrable form and then integrating,  

 
r

C

dr

dT 1  

 21 ln)( CrCrT   

where C1 and C2  are arbitrary constants.  Applying the boundary conditions give  

r = r1:            )]ln([ 211
1

1 CrCTh
r

C
k     

r = r2:             22212 ln)( TCrCrT   

Solving for C1 and C2 simultaneously gives 

 
2

11

2

2
22122

11

2

2
1       and    rln

hr

k

r

r
ln

TT
TrlnCTC

hr

k

r

r
ln

TT
C









   

Substituting C1 and C2 into the general solution, the variation of temperature is determined to be 

 

F160
in 4.2

ln61.26F160
in 4.2

ln

ft) F)(2/12ftBtu/h (15

FftBtu/h 8

2

2.4
ln

F250)(160

ln

ln

)ln(lnlnln)(

2

2
2

11

2

2
2212121
















 

rr

T
r

r

hr

k

r

r

TT
TrrCrCTrCrT

 

 (c) The rate of heat conduction through the pipe is 

         

Btu/h 46,813












 

ft) F)(2/12ftBtu/h (15

FftBtu/h 8

2

2.4
ln

F250)(160
F)ftBtu/h 8ft)( 35(2

ln

2)2(

2

11

2

21





hr

k

r

r

TT
Lk

r

C
rLk

dr

dT
kAQ

 

Steam 

250F 

h=12.5 

L = 35 ft 

 T =160F 
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2-148 A compressed air pipe is subjected to uniform heat flux on the outer surface and convection on the inner surface.  The 

mathematical formulation, the variation of temperature in the pipe, and the surface temperatures are to be determined for 

steady one-dimensional heat transfer.  

Assumptions 1 Heat conduction is steady and one-dimensional since the pipe is long relative to its thickness, and there is 

thermal symmetry about the center line. 2 Thermal conductivity is constant.  3 There is no heat generation in the pipe. 

Properties The thermal conductivity is given to be  k = 14 W/mK. 

Analysis (a) Noting that the 85% of the 300 W generated by the strip heater is transferred to the pipe, the heat flux through 

the outer surface is determined to be 

 
2

22

W/m 1169
m) m)(6 (0.042

W 300850

2
.

.

Lr

Q

A

Q
q ss

s 






  

Noting that heat transfer is one-dimensional in the radial r direction and heat flux is in the negative r direction, the 

mathematical formulation of this problem can be expressed as  

               0








dr

dT
r

dr

d
  

The boundary conditions for this problem are:   

)]([
)(

1
1 rTTh

dr

rdT
k    

                sq
dr

rdT
k 

)( 2                 

(b)  Integrating the differential equation once with respect to r gives 

 1C
dr

dT
r   

Dividing both sides of the equation above by r to bring it to a readily integrable form and then integrating,  

 
r

C

dr

dT 1  

 21 ln)( CrCrT   

where C1 and C2 are arbitrary constants.  Applying the boundary conditions give  

r = r2:             
k

rq
Cq

r

C
k s

s
2

1

2

1     


   

r = r1:         
k

rq

hr

k
rTC

hr

k
rTCCrCTh

r

C
k s 2

1
11

1
12211

1

1 ln=ln    )]ln([























   

Substituting C1 and C2 into the general solution, the variation of temperature is determined to be 

        
































































 

61.12ln483.010
K W/m14

m) )(0.04 W/m(169.1

m) K)(0.037 W/m(30

K W/m14

r

r
lnC10

lnlnlnlnln)(

1

2

2
1

2

11
1

1
11

1
11

r

r

k

rq

hr

k

r

r
TC

hr

k
rrTC

hr

k
rTrCrT s



 

(c) The inner and outer surface temperatures are determined by direct substitution to be 

Inner surface (r = r1):     C3.91









 61.120483.01061.12ln483.010)(

1

1
1

r

r
rT  

Outer surface (r = r2):   C3.87


















 61.12

037.0

04.0
ln483.01061.12ln483.010)(

1

2
2

r

r
rT  

Discussion Note that the pipe is essentially isothermal at a temperature of about -3.9C. 

Heater 

L=6 m 

Air, -10°C 

r 

r1 

r2 
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2-149 In a quenching process, steel ball bearings at a given instant have a rate of temperature decrease of 50 K/s. The rate of 

heat loss is to be determined. 

Assumptions 1 Heat conduction is one-dimensional. 2 There is no heat generation. 3 Thermal properties are constant. 

Properties The properties of the steel ball bearings are given to be c = 500 J/kg ∙ K, k = 60 W/m ∙ K, and  = 7900 kg/m
3
. 

Analysis The thermal diffusivity on the steel ball bearing is 

 /sm 1019.15
)KJ/kg 500)(kg/m 7900(

K W/m60 26

3







c

k


  

The given rate of temperature decrease can be expressed as 

 K/s 50
)(


dt

rdT
 

For one-dimensional transient heat conduction in a sphere with no heat generation, the differential equation is 

 
t

T

r

T
r

rr 






















11 2

2
 

Substituting the thermal diffusivity and the rate of temperature decrease, the differential equation can be written as 

 
/sm 1019.15

K/s 501
26

2

2 












dr

dT
r

dr

d

r
 

Multiply both sides of the differential equation by 
2r  and rearranging gives 

 2

26

2

/sm 1019.15

K/s 50
r

dr

dT
r

dr

d












 

Integrating with respect to r gives 

 1

3

26

2

3/sm 1019.15

K/s 50
C

r

dr

dT
r 





















  (a) 

Applying the boundary condition at the midpoint (thermal symmetry about the midpoint), 

 :0r   126 3

0

/sm 1019.15

K/s 50)0(
0 C

dr

dT
















           01 C  

Dividing both sides of Eq. (a) by 2r  gives 

 













 3/sm 1019.15

K/s 50
26

r

dr

dT
 

The rate of heat loss through the steel ball bearing surface can be determined from Fourier’s law to be 

 

kW 1.62































3

m 125.0

/sm 1019.15

K/s 50
)m 125.0)(4)(K W/m60(

3/sm 1019.15

K/s 50
) 4(

)(
) 4(

26

2

26

22

loss



 o
o

o
o

r
rk

dr

rdT
rk

dr

dT
kAQ

 

Discussion The rate of heat loss through the steel ball bearing surface determined here is for the given instant when the rate of 

temperature decrease is 50 K/s. 
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2-150 A hollow pipe is subjected to specified temperatures at the inner and outer surfaces. There is also heat generation in the 

pipe. The variation of temperature in the pipe and the center surface temperature of the pipe are to be determined for steady 

one-dimensional heat transfer.  

Assumptions 1 Heat conduction is steady and one-dimensional since the pipe is long relative to its thickness, and there is 

thermal symmetry about the centerline. 2 Thermal conductivity is constant.   

Properties The thermal conductivity is given to be  k = 14 W/m°C. 

Analysis The rate of heat generation is determined from 

 
 

3

222
1

2
2

gen  W/m750,26
4/)m 17(m) 3.0(m) 4.0(

 W000,25

4/)(








 LDD

WW
e




V
 

Noting that heat transfer is one-dimensional in the radial  r direction, the mathematical formulation of this problem can be 

expressed as  

0
1 gen










k

e

dr

dT
r

dr

d

r


  

and C60)( 11 TrT  

C80)( 22 TrT  

Rearranging the differential equation 

 0
gen













k

re

dr

dT
r

dr

d 
   

and then integrating once with respect to r, 

 1

2
gen

2
C

k

re

dr

dT
r 





 

Rearranging the differential equation again 

 
r

C

k

re

dr

dT 1gen

2






 

and finally integrating again with respect to r, we obtain 

 21

2
gen

ln
4

)( CrC
k

re
rT 





 

where C1 and C2  are arbitrary constants.  Applying the boundary conditions give  

r = r1:            211

2
1gen

1 ln
4

)( CrC
k

re
rT 





  

r = r2:             221

2
2gen

2 ln
4

)( CrC
k

re
rT 





 

Substituting the given values, these equations can be written as 

 21

2

)15.0ln(
)14(4

)15.0)(750,26(
60 CC 


  

 21

2

)20.0ln(
)14(4

)20.0)(750,26(
80 CC 


  

Solving for 21   and  CC  simultaneously gives 

 8.257        58.98 21  CC  

Substituting 21   and  CC  into the general solution, the variation of temperature is determined to be 

 rrr
r

rT ln58.987.4778.2578.257ln58.98
)14(4

750,26
)( 2

2




  

The temperature at the center surface of the pipe is determined by setting radius r to be 17.5 cm, which is the average of the 

inner radius and outer radius.  

 C71.3 )175.0ln(58.98)175.0(7.4778.257)( 2rT  

r2 

T2 

r 

r1 

T1 
egen 
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2-151 A spherical ball in which heat is generated uniformly is exposed to iced-water. The temperatures at the center and at the 

surface of the ball are to be determined. 

Assumptions 1 Heat transfer is steady since there is no indication of any change with time. 2 Heat transfer is one-

dimensional., and there is thermal symmetry about the center point. 3 Thermal conductivity is constant. 4 Heat generation is 

uniform. 

Properties The thermal conductivity is given to be k = 45 W/m°C. 

Analysis  The temperatures at the center and at the surface of the ball 

are determined directly from 

 C140



 

C). W/m1200(3

m) 12.0)( W/m102.4(
C0

3 2

36
gen

h

re
TT

o

s



 C364





C) W/m.45(6

m) 12.0)( W/m102.4(
C140

6

2362
gen

0
k

re
TT

o

s


 

 

 

 

 

2-152 A spherical reactor of 5-cm diameter operating at steady condition has its heat generation suddenly set to 9 MW/m
3
. 

The time rate of temperature change in the reactor is to be determined. 

Assumptions 1 Heat conduction is one-dimensional. 2 Heat generation is uniform. 3 Thermal properties are constant. 

Properties The properties of the reactor are given to be c = 200 J/kg∙°C, k = 40 W/m∙°C, and  = 9000 kg/m
3
. 

Analysis The thermal diffusivity of the reactor is 

 /sm 1022.22
)CJ/kg 200)(kg/m 9000(

C W/m40 26

3







c

k


  

For one-dimensional transient heat conduction in a sphere with heat generation, the differential equation is 

 
t

T

k

e

r

T
r

rr 






















11 gen2

2


     or     































k

e

r

T
r

rrt

T gen2

2

1 
  

At the instant when the heat generation of reactor is suddenly set to 90 MW/m
3
 (t = 0), the temperature variation can be 

expressed by the given T(r) = a – br
2
, hence 

 

 
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







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
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



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
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gen22
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The time rate of temperature change in the reactor when the heat generation suddenly set to 9 MW/m
3
 is determined to be 

 

C/s 61.7



































 

C W/m40

 W/m109
)C/m 105(6)/sm 1022.22(6

36
2526gen

k

e
b

t

T 


 

Discussion Since the time rate of temperature change is a negative value, this indicates that the heat generation of reactor is 

suddenly decreased to 9 MW/m
3
. 

 

h 

T 

gene  

D 
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2-153 A cylindrical shell with variable conductivity is subjected to specified temperatures on both sides. The rate of heat 

transfer through the shell is to be determined. 

Assumptions 1 Heat transfer is given to be steady and one-dimensional. 2 Thermal conductivity varies quadratically.  3 There 

is no heat generation. 

Properties The thermal conductivity is given to be )1()( 2
0 TkTk  . 

Analysis When the variation of thermal conductivity with temperature k(T) is known, the average value of the thermal 

conductivity in the temperature range between 21   and  TT  is determined from 

       

   

 
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
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TTk

TT

dTTk

TT

dTTk

k

T

T

T

T

T

T




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This relation is based on the requirement that the rate of heat transfer through a medium with constant average thermal 

conductivity avgk equals the rate of heat transfer through the same medium with variable conductivity k(T). Then the rate of 

heat conduction through the cylindrical shell can be determined from Eq. 2-77  to be 

 

 
)/ln(3

12

)/ln(
2

12

212
121

2
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12

21
avgcylinder

rr

TT
LTTTTk

rr

TT
LkQ
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


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







 

Discussion We would obtain the same result if we substituted the given k(T) relation into the second part of Eq. 2-77, and 

performed the indicated integration. 

 

r2 

T2 

r 

r1 

T1 
k(T) 
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2-154    A pipe is used for transporting boiling water with a known inner surface temperature in a surrounding of cooler 

ambient temperature and known convection heat transfer coefficient. The pipe wall has a variable thermal conductivity. The 

outer surface temperature of the pipe is to be determined. 

Assumptions 1 Heat transfer is steady and one-dimensional. 2 There is no heat generation. 3 Thermal conductivity varies with 

temperature. 4 Inner pipe surface temperature is constant at 100°C. 

Properties The thermal conductivity is given to be k(T) = k0 (1 + βT).  

Analysis The inner and outer radii of the pipe are 

 m 0125.0m 2/025.01 r      and     m 0155.0m)003.00125.0(2 r  

The rate of heat transfer at the pipe’s outer surface can be expressed as  

 convcylinder QQ      

 ))(2(
)/ln(

2 22
12

21
avg 


TTLrh

rr

TT
Lk     

 )(
)/ln(

2
12

21

2

avg



TTh

rr

TT

r

k
                     (1) 

where 

 h = 50 W/m
2
 K,   T1 = 373 K,   and   T∞ = 293 K 

The average thermal conductivity is 

 






 








 


2

 K)(373
)K(0.0031KW/m51

2
1 1-12

0avg
2T

).(
TT

kk     

 KW/m373)]0.00225([1.5avg  2Tk  (2) 

Solving Eqs. (1) & (2) for the outer surface temperature yields 

 C96K 369 2T    

Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES screen. 

"GIVEN" 
h=50 [W/(m^2*K)]   "convection heat transfer coefficient" 
r_1=0.025/2 [m]   "inner radius" 
r_2=r_1+0.003 [m]   "outer radius" 
T_1=373 [K]   "inner surface temperature" 
T_inf=293 [K]   "ambient temperature" 
k_0=1.5 [W/(m*K)] 
beta=0.003 [K^-1] 
"SOLVING FOR OUTER SURFACE TEMPERATURE" 
k_avg=k_0*(1+beta*(T_2+T_1)/2) 
Q_dot_cylinder=2*pi*k_avg*(T_1-T_2)/ln(r_2/r_1)   "heat rate through the cylindrical layer" 
Q_dot_conv=h*2*pi*r_2*(T_2-T_inf)   "heat rate by convection" 
Q_dot_cylinder=Q_dot_conv 

 

Discussion Increasing h or decreasing kavg would decrease the pipe’s outer surface temperature.  
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2-155    A metal spherical tank, filled with chemicals undergoing an exothermic reaction, has a known inner surface 

temperature. The tank wall has a variable thermal conductivity. Convection heat transfer occurs on the outer tank surface. The 

heat flux on the inner surface of the tank is to be determined. 

Assumptions 1 Heat transfer is steady and one-dimensional. 2 There is no heat generation. 3 Thermal conductivity varies with 

temperature. 

Properties The thermal conductivity is given to be k(T) = k0 (1 + βT). 

Analysis The inner and outer radii of the tank are 

 m 5.2m2/51 r      and     m 51.2m)01.05.2(2 r    

The rate of heat transfer at the tank’s outer surface can be 

expressed as  

 convsph QQ      

 ))(4(4 2
2

2
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21
21avg 
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TTrh
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TT
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2

1
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
TTh

rr

TT

r

r
k                     (1) 

where 

 h = 80 W/m
2
 K,   T1 = 393 K,   and   T∞ = 288 K 

The average thermal conductivity is 

 
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



 
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





 


2

 K)(393
)K(0.00181KW/m19

2
1 1-12

0avg
2T

).(
TT

kk     

 KW/m393)]0.00819([9.1avg  2Tk                     (2) 

Solving Eqs. (1) & (2) for T2 and kavg yields 

  K83872 .T       and     KW/m5.15avg k    

Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES screen. 

 

"GIVEN" 
h=80 [W/(m^2*K)]   "outer surface h" 
r_1=5/2 [m]   "inner radius" 
r_2=r_1+0.010 [m]   "outer radius" 
T_1=120+273 [K]   "inner surface T" 
T_inf=15+273 [K]   "ambient T" 
k_0=9.1 [W/(m*K)] 
beta=0.0018 [K^-1] 
"SOLVING FOR OUTER SURFACE TEMPERATURE AND k_avg" 
k_avg=k_0*(1+beta*(T_2+T_1)/2) 
q_dot_sph=k_avg*r_1/r_2*(T_1-T_2)/(r_2-r_1)   "heat flux through the spherical layer" 
q_dot_conv=h*(T_inf-T_2)   "heat flux by convection" 
q_dot_sph+q_dot_conv=0 

Thus, the heat flux on the inner surface of the tank is 
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W/m8092.21q  

Discussion The inner-to-outer surface heat flux ratio can be related to r1 and r2:  
2

1221 )/(/ rrqq  .  
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Fundamentals of Engineering (FE) Exam Problems 

 

2-156 The heat conduction equation in a medium is given in its simplest form as 0
1

gen 







e

dr

dT
rk

dr

d

r
  Select the wrong 

statement below.  

(a) the medium is of cylindrical shape.  

(b) the thermal conductivity of the medium is constant. 

(c) heat transfer through the medium is steady. 

(d) there is heat generation within the medium. 

(e) heat conduction through the medium is one-dimensional.   

 

Answer  (b) thermal conductivity of the medium is constant 

 

 

 

 

2-157 Consider a medium in which the heat conduction equation is given in its simplest form as 

 
t

T

r

T
r

rr 




















 11 2

2
  

(a) Is heat transfer steady or transient? 

(b) Is heat transfer one-, two-, or three-dimensional? 

(c) Is there heat generation in the medium? 

(d) Is the thermal conductivity of the medium constant or variable? 

(e) Is the medium a plane wall, a cylinder, or a sphere? 

(f) Is this differential equation for heat conduction linear or nonlinear? 

 

Answers: (a) transient, (b) one-dimensional, (c) no, (d) constant, (e) sphere, (f) linear 

 

 

 

 

2-158  Consider a large plane wall of thickness L, thermal conductivity k, and surface area A. The left surface of the wall is 

exposed to the ambient air at T with a heat transfer coefficient of h while the right surface is insulated. The variation of 

temperature in the wall for steady one-dimensional heat conduction with no heat generation is  

(a) 


 T

k

xLh
xT

)(
)(   (b) 


 T

Lxh

k
xT

)5.0(
)(   (c) 








 T

k

xh
xT 1)(  (d)  TxLxT )()(   

(e) TxT )(  

 

Answer  (e) TxT )(  
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2-159 A solar heat flux sq  is incident on a sidewalk whose thermal conductivity is k, solar absorptivity is s and convective 

heat transfer coefficient is h.  Taking the positive x direction to be towards the sky and disregarding radiation exchange with 

the surroundings surfaces, the correct boundary condition for this sidewalk surface is  

(a) ss q
dx

dT
k   (b) )(  TTh

dx

dT
k    (c) ss qTTh

dx

dT
k   )(   

(d) ssqTTh   )(  (e)  None of them 

 

Answer (c) ss qTTh
dx

dT
k   )(  

 

 

 

 

2-160 A plane wall of thickness L is subjected to convection at both surfaces with ambient temperature T1 and heat transfer 

coefficient h1 at inner surface, and corresponding T2 and h2 values at the outer surface. Taking the positive direction of x to 

be from the inner surface to the outer surface, the correct expression for the convection boundary condition is  

(a)  ))0(
)0(

11  TTh
dx

dT
k  (b)  ))(

)(
22  TLTh

dx

LdT
k   

(c)  )
)0(

211   TTh
dx

dT
k  (d)  )

)(
212   TTh

dx

LdT
k  (e) None of them 

 

Answer  (a)  ))0(
)0(

11  TTh
dx

dT
k  

 

 

 

 

2-161 Consider steady one-dimensional heat conduction through a plane wall, a cylindrical shell, and a spherical shell of 

uniform thickness with constant thermophysical properties and no thermal energy generation. The geometry in which the 

variation of temperature in the direction of heat transfer be linear is   

(a) plane wall (b) cylindrical shell  (c) spherical shell (d) all of them (e) none of them   

 

Answer  (a) plane wall 
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2-162 The conduction equation boundary condition for an adiabatic surface with direction n being normal to the surface is  

(a) T = 0  (b) dT/dn = 0 (c) d
2
T/dn

2
 = 0 (d) d

3
T/dn

3
 = 0 (e)  -kdT/dn = 1 

 

Answer (b) dT/dn = 0 

 

 

 

 

2-163 The variation of temperature in a plane wall is determined to be T(x)=52x+25 where x is in m and T is in °C. If the 

temperature at one surface is 38ºC, the thickness of the wall is 

(a) 0.10 m (b) 0.20 m (c) 0.25 m (d) 0.40 m (e) 0.50 m 

 

Answer  (c) 0.25 m 

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES 

screen.  

38=52*L+25 

 

 

 

 

2-164 The variation of temperature in a plane wall is determined to be T(x)=110 - 60x where x is in m and T is in °C. If the 

thickness of the wall is 0.75 m, the temperature difference between the inner and outer surfaces of the wall is 

(a) 30ºC  (b) 45ºC  (c) 60ºC  (d) 75ºC  (e) 84ºC 

 

Answer  (b) 45ºC 

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES 

screen.  

T1=110 [C] 
L=0.75 
T2=110-60*L 
DELTAT=T1-T2 
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2-165 The temperatures at the inner and outer surfaces of a 15-cm-thick plane wall are measured to be 40ºC and 28ºC, 

respectively. The expression for steady, one-dimensional variation of temperature in the wall is 

(a) 4028)(  xxT   (b) 2840)(  xxT   (c) 2840)(  xxT    

(d) 4080)(  xxT   (e) 8040)(  xxT  

 

Answer  (d) 4080)(  xxT   

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES 

screen.  

T1=40 [C] 
T2=28 [C] 
L=0.15 [m] 
"T(x)=C1x+C2" 
C2=T1 
T2=C1*L+T1 

 

 

 

 

2-166 The thermal conductivity of a solid depends upon the solid’s temperature as k = aT + b where a and b are constants. 

The temperature in a planar layer of this solid as it conducts heat is given by   

(a) aT + b = x + C2 (b) aT + b = C1x
2
 + C2        (c)  aT

2
 + bT = C1x + C2  

(d) aT
2
 + bT = C1x

2
 + C2 (e)  None of them 

 

Answer  (c)  aT
2
 + bT = C1x + C2 

 

 

 

 

2-167 Hot water flows through a PVC (k = 0.092 W/mK) pipe whose inner diameter is 2 cm and outer diameter is 2.5 cm.  

The temperature of the interior surface of this pipe is 50
o
C and the temperature of the exterior surface is 20

o
C.  The rate of 

heat transfer per unit of pipe length is 

(a) 77.7 W/m (b) 89.5 W/m (c) 98.0 W/m (d) 112 W/m (e)  168 W/m 

 

Answer (a) 77.7 W/m 

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES 

screen.  

do=2.5 [cm] 
di=2.0 [cm] 
k=0.092 [W/m-C] 
T2=50 [C] 
T1=20 [C] 
Q=2*pi*k*(T2-T1)/LN(do/di) 
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2-168 Heat is generated in a long 0.3-cm-diameter cylindrical electric heater at a rate of 180 W/cm
3
. The heat flux at the 

surface of the heater in steady operation is 

(a) 12.7 W/cm
2
 (b) 13.5 W/cm

2
  (c) 64.7 W/cm

2
 (d) 180 W/cm

2
 (e) 191 W/cm

2
   

 

Answer  (b) 13.5 W/cm
2
 

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES 

screen.  

"Consider a 1-cm long heater:" 
L=1 [cm] 
e=180 [W/cm^3] 
D=0.3 [cm] 
V=pi*(D^2/4)*L 
A=pi*D*L "[cm^2]” 
Egen=e*V "[W]" 
Qflux=Egen/A "[W/cm^2]" 
“Some Wrong Solutions with Common Mistakes:” 
W1=Egen "Ignoring area effect and using the total" 
W2=e/A "Threating g as total generation rate" 
W3=e “ignoring volume and area effects” 

 

 

 

 

2-169 Heat is generated uniformly in a 4-cm-diameter, 12-cm-long solid bar (k = 2.4 W/mºC). The temperatures at the center 

and at the surface of the bar are measured to be 210ºC and 45ºC, respectively. The rate of heat generation within the bar is 

(a) 597 W (b) 760 W  b) 826 W (c) 928 W (d) 1020 W 

 

Answer  (a) 597 W 

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES 

screen.  

D=0.04 [m] 
L=0.12 [m] 
k=2.4 [W/m-C] 
T0=210 [C] 
T_s=45 [C] 
T0-T_s=(e*(D/2)^2)/(4*k) 
V=pi*D^2/4*L 
E_dot_gen=e*V 
"Some Wrong Solutions with Common Mistakes" 
W1_V=pi*D*L "Using surface area equation for volume" 
W1_E_dot_gen=e*W1_V  
T0=(W2_e*(D/2)^2)/(4*k) "Using center temperature instead of temperature difference" 
W2_Q_dot_gen=W2_e*V  
W3_Q_dot_gen=e "Using heat generation per unit volume instead of total heat generation as the result"  
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2-170 Heat is generated in a 10-cm-diameter spherical radioactive material whose thermal conductivity is 25 W/m.C 

uniformly at a rate of 15 W/cm
3
. If the surface temperature of the material is measured to be 120C, the center temperature of 

the material during steady operation is 

(a) 160C (b) 205C   (c) 280C (d) 370C (e) 495C   

 

Answer  (d) 370C 

D=0.10 
Ts=120 
k=25 
e_gen=15E+6 
T=Ts+e_gen*(D/2)^2/(6*k) 
“Some Wrong Solutions with Common Mistakes:” 
W1_T= e_gen*(D/2)^2/(6*k) "Not using Ts" 
W2_T= Ts+e_gen*(D/2)^2/(4*k) "Using the relation for cylinder" 
W3_T= Ts+e_gen*(D/2)^2/(2*k) "Using the relation for slab" 

 

 

 

 

2-171 Heat is generated in a 3-cm-diameter spherical radioactive material uniformly at a rate of 15 W/cm
3
. Heat is dissipated 

to the surrounding medium at 25C with a heat transfer coefficient of 120 W/m
2
C. The surface temperature of the material 

in steady operation is 

(a) 56C  (b) 84C   (c) 494C (d) 650C (e) 108C   

 

Answer  (d) 650C 

Solution Solved by EES Software. Solutions can be verified by copying-and-pasting the following lines on a blank EES 

screen.  

h=120 [W/m^2-C] 
e=15 [W/cm^3] 
Tinf=25 [C] 
D=3 [cm] 
V=pi*D^3/6 "[cm^3]" 
A=pi*D^2/10000 "[m^2]" 
Egen=e*V "[W]" 
Qgen=h*A*(Ts-Tinf) 
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