Intermediate Algebra with Applications and Visualization 3rd Edition Rockswold Test Bank

Chapter 2, Test Form A	Name:
1. Evaluate $f(-2)$ if $f(x) = 4 - 3x^2$.	1
 Write a symbolic representation (formula) for a f S that calculates the number of seconds in x mi Evaluate S(4) and interpret your result. 	nutes.
3. Sketch a graph of $f(x) = x^2 - 2$.	3. y
4. Use the graph of f to evaluate $f(-1)$.	4
5. Determine the domain and range of f .	5

7._____

- 6. A function *f* is represented verbally by "Square the input *x*6. ______and then add 3." Give a symbolic representation of *f*.
- 7. Determine whether the graph represents a function.

- 8. Find the domain of $f(x) = \frac{3}{4}x + 7$.
- 9. Find the slope and *y*-intercept of the graph of $y = 3x \frac{5}{2}$. 9. _____
- 10. Find the slope of the line passing through $\left(\frac{1}{2}, -2\right)$ and $\left(0, -3\right)$.
- 11. Determine the slope of the line shown in the graph.

12. Write the slope-intercept form of a line with *x*-intercept -2 12. _______ and *y*-intercept $\frac{3}{2}$.

 8.

 9.

 10.

 11.

13. Write the slope-intercept form of the line passing through13.(1,3) and $(\frac{1}{2},1)$.

14. Let f be a linear function. Find the slope of the graph of f.

x	-4	-2	-1	0	1
f(x)	-6	0	3	6	9

15. Let f be a linear function. Find the *x*- and *y*-intercepts of the graph of f.

x	-2	0	1	2	3
f(x)	8	4	2	0	-2

- 16. Give the slope-intercept form of a line parallel to 16. ______ y = 5 - 4x, passing through $(\frac{1}{2}, 1)$.
- 17. Find the slope-intercept form for the line shown in the graph. 17. _____

18. Use the graph in #17 to find the equation of a line that passes 18. ______ through the origin and is perpendicular to the given line.

14.

- 19. Find an equation of the vertical line passing through the point $\left(\frac{1}{2}, -\frac{3}{4}\right)$.
- 19._____
- 20. Find an equation of the horizontal line passing through the 20. _____ point $\left(-\frac{2}{3},1\right)$.

- 1. Evaluate f(-2) if f(x) = -3x+1.
- 2. Write a symbolic representation (formula) for a function C that calculates the cost of x gallons of gasoline at \$2.50 per gallon. Evaluate C(10) and interpret your result.
- 3. Sketch a graph of f(x) = x + 3.

4. Use the graph of f to evaluate f(2).

5. Determine the domain and range of f.

5. _____

- 6. A function f is represented verbally by "Cube the input x and then subtract 4." Give a symbolic representation of f.
- 7. Determine whether the graph represents a function.

8. Find the domain of $f(x) = \sqrt{x-5}$.

- 9. Find the slope and *y*-intercept of the graph of y = 2x 3.
- 10. Find the slope of the line passing through (1,3) and $(\frac{1}{2},1)$.
- 11. Determine the slope of the line shown in the graph.

12. Write the slope-intercept form of a line with *x*-intercept -1 12. ______ and *y*-intercept $\frac{5}{3}$.

- 6._____
- 7._____

8._____

9._____

10._____

13. Write the slope-intercept form of the line passing through 13. ______ the points $\left(\frac{3}{2}, 2\right)$ and $\left(1, \frac{1}{2}\right)$.

14. Let f be a linear function. Find the slope of the graph of f.

x	-2	0	2	3	4
f(x)	6	4	2	1	0

15. Let f be a linear function. Find the *x*- and *y*-intercepts of the graph of f.

x	-2	-1	0	1	2
f(x)	9	6	3	0	-3

- 16. Give the slope-intercept form of a line perpendicular to 16. ______ $y = -\frac{3}{5}x 2$, passing through (6, -2).
- 17. Find the slope-intercept form for the line shown in the graph. 17. _____

18. Use the graph in #17 to find the equation of a line that passes 18. ______ through the origin and is perpendicular to the given line.

14.

- 19. Find an equation of the vertical line passing through the point $\left(-\frac{2}{3},1\right)$.
- 19._____
- 20. Find an equation of the horizontal line passing through the 20. _____ point $\left(\frac{3}{2}, -\frac{1}{2}\right)$.

27

single-family home in 1998.

3. Use your graphing calculator to graph f(x) = -3x + 5.

3.

4. Susan begins driving along a country road at a rate of 40 mph. 4. _____ The graph illustrates the distance from her place of origin after *t* hours. How far has Susan traveled after 3 hours?

5. Determine the domain and range of f.

- 6. A function *f* is represented verbally by "Square the input *x* and then subtract 4." Give symbolic, numerical and graphical representations of *f*. Let x = -3, -2, -1, ..., 3 in the numerical representation (table) and let $-4 \le x \le 4$ for the graph.
- 6. ______
- 7. Determine whether the graph represents a function.

- 8. Find the domain of f(x) = |x 2.5|.
- 9. The monthly cost of operating a car can be modeled by the linear function C(x) = 0.39x + 395, where x represents the number of miles driven.
 - (a) Find the slope of the graph of the function. What does the slope represent?
 - (b) Find the *y*-intercept of the graph of the function. What does the *y*-intercept represent?
- 10. In 1994, tuition and fees at a public four-year college were \$2125. In 1997, tuition and fees increased to \$2689. What was the average yearly increase in fees from 1994 to 1997?

7._____

8. _____

9. (a)_____

(b)_____

11. The graph represents the amount of water (in gallons) remaining in a tank after *t* hours. At what rate was water being drained from the tank when $2 \le t \le 4$?

- 12. Write the slope-intercept form of a line with *x*-intercept 1.29 and *y*-intercept -2.58.
- 13. On Labor Day 2000, there were 24.8 travelers (in millions). On Labor Day 2004, there were 29.2 travelers (in millions). Let *x* represent the number of years since 2000. Write the slope-intercept equation of the line that passes through (0, 24.8) and (4, 29.2).
- 14. The following table shows equivalent temperatures in degrees Celsius and degrees Fahrenheit. This data can be modeled by a linear function. Use your graphing calculator to find the slope of the graph of that function.

C	-40°	0°	15°	35°	100°
F	-40°	32°	59°	95°	212°

- 15. (a) Find the *y*-intercept of the graph of the linear function modeled in #14.
 - (b) What does the *y*-intercept represent?
- 16. Give the slope-intercept form of a line parallel to y = 1.28x 7.18, passing through (2, 3.17).

 12.

 s).

 13.

 14.

 14.

 15. (a)

 (b)

 16.

17. Find the slope-intercept form for the line shown in the graph. 17. _____

[-6, 6, 1] by [-6, 6, 1]

- 18. Use the graph in #17 to find the equation of a line that passes 18. ______ through the origin and is parallel to the given line.
- 19. Find an equation of the horizontal line in the graph.

19._____

20. From 1980 to 1997, the number of U.S. marriages (in millions) could be modeled by f(x) = 2.4, where *x* represents the years since 1980. Estimate the number of marriages in 1986.

С	hapter 2, Test Forn	n D	Name:		
1.	Evaluate $f(-3)$ if	$f(x) = -x^2 + 2.$			1
	(a) 11	(b) -7	(c) -11	(d) -1	
2.	Evaluate $f(2)$ if f	f(x) = -5x + 6.			2
	(a) -4	(b) -16	(c) 16	(d) 4	

3. Sketch a graph of $f(x) = \sqrt{x} - 2$.

4. Use the graph of f to evaluate f(1).

5. Determine the range of f.

(a) $-4 \le y \le 2$ (b) $-2 \le y \le 2$ (c) $y \ge -4$ (d) all real numbers

- 6. A function *f* is represented verbally by "Cube the input *x* and then add 4."6. _____Give a symbolic representation of *f*.
 - (a) $f(x) = \sqrt[3]{x+4}$ (b) $f(x) = x^3 + 4$ (c) $f(x) = x^3 + 64$ (d) $f(x) = (x+4)^3$

4._____

7. Determine which graph represents a function.

8. Find the domain of
$$f(x) = -\frac{2x}{x+4}$$
.

(a) $x \neq -4$ (b) $x \le 4$ (c) $x \neq 0$ (d) $x \ge 0$

9. Find the slope and *y*-intercept of the graph of the linear equation $y = 3x - \frac{5}{2}$.

- (a) $m = 3; \left(\frac{5}{6}, 0\right)$ (b) $m = -\frac{1}{3}; \left(-\frac{5}{2}, 0\right)$ (c) $m = -\frac{1}{3}; \left(0, \frac{5}{6}\right)$ (d) $m = 3; \left(0, -\frac{5}{2}\right)$
- 10. Find the slope of the line passing through $\left(\frac{3}{2},2\right)$ and $\left(1,\frac{1}{2}\right)$.

(a) 1 (b) 3 (c) $\frac{1}{3}$ (d) -1

7._____

10. _____

9

- 12. Write the slope-intercept form of the line with *x*-intercept 3 and *y*-intercept $\frac{3}{4}$. (a) $y = -\frac{1}{4}x + 3$ (b) y = 4x 12 (c) $y = -\frac{1}{4}x + \frac{3}{4}$ (d) y = 4x + 312._____
- 13. Find the slope-intercept form of the line passing through $(\frac{1}{2}, -2)$ and (0, -3). 13. _____

(a)
$$y = \frac{1}{2}x + \frac{5}{4}$$
 (b) $y = \frac{1}{2}x - 3$ (c) $y = 2x - 3$ (d) $y = 2x + 1$

14. Let f be a linear function. Find the slope of the graph of f.

y 8 4 2 0 -4	x	-2	0	1	2	4
	у	8	4	2	0	-4
	(a) 2				(b) /	I

11. Determine which line has a slope of $\frac{1}{3}$.

11. _____

15. Let f be a linear function. Find the x- and y-intercepts of the graph of f.

x	-4	-2	-1	0	1
у	-6	0	3	6	9

- (a) x int: (0,6) (b) x int: (0,-2) (c) x int: (6,0) (d) x int: (-2,0)y - int: (-2,0) y - int: (6,0) y - int: (0,-2) y - int: (0,6)
- 16. Give the slope-intercept form of a line perpendicular to $y = \frac{2}{3}x + 7$, passing through (4, -3).
 - (a) $y = -\frac{3}{2}x + 3$ (b) $y = \frac{2}{3}x \frac{17}{3}$ (c) $y = \frac{2}{3}x 7$ (d) $y = -\frac{3}{2}x 3$
- 17. Find the graph of the linear equation y = -3x + 4.

18. Find the equation of a line that passes through the origin and is perpendicular to the line given in #17.

(a)
$$y = -3x$$
 (b) $y = \frac{1}{3}x$ (c) $x = -3y + 4$ (d) $y = \frac{1}{3}x + 4$

15. _____

17._____

18.

36

INTERMEDIATE ALGEBRA: Chapter 2, Test Form D

- 19. Find an equation of the vertical line passing through the point $\left(\frac{3}{2}, -\frac{1}{2}\right)$. 19. _____
 - (a) $\frac{3}{2}x \frac{1}{2}y = 0$ (b) $x = \frac{3}{2}$ (c) $y = -\frac{1}{2}$ (d) $y = \frac{3}{2}x \frac{1}{2}$

20. Find an equation of the horizontal line passing through the point $\left(\frac{1}{2}, -\frac{3}{4}\right)$. 20. _____

(a) $y = -\frac{3}{4}$ (b) $y = \frac{1}{2}x - \frac{3}{4}$ (c) $x = \frac{1}{2}$ (d) $\frac{1}{2}x - \frac{3}{4}y = 0$