Intermediate Algebra Within Reach 6th Edition Larson Solutions Manual

NOT FOR SALE

CHAPTER 1 Fundamentals of Algebra

Section 1.1	The Real Number System	2
Section 1.2	Operations with Real Numbers	5
Section 1.3	Properties of Real Numbers	10
Mid-Chapter	·Quiz	14
Section 1.4	Algebraic Expressions	15
Section 1.5	Constructing Algebraic Expressions	21
Review Exercises		
Chapter Test	i	28

Visit TestBankDeal.com to get complete for all chapters

NOT FOR SALE

CHAPTER 1 Fundamentals of Algebra

Section 1.1 The Real Number System

- **1.** $\left\{-6, -\sqrt{6}, -\frac{4}{3}, 0, \frac{5}{8}, 1, \sqrt{2}, 2, \pi, 6\right\}$
 - (a) Natural numbers: $\{1, 2, 6\}$
 - (b) Integers: $\{-6, 0, 1, 2, 6\}$
 - (c) Rational numbers: $\left\{-6, -\frac{4}{3}, 0, \frac{5}{8}, 1, 2, 6\right\}$
 - (d) Irrational numbers: $\left\{-\sqrt{6}, \sqrt{2}, \pi\right\}$

2.
$$\left\{-\frac{10}{3}, -\pi, -\sqrt{3}, -1, 0, \frac{2}{5}, \sqrt{3}, \frac{5}{2}, 5, 101\right\}$$

- (a) Natural numbers: $\{5, 101\}$
- (b) Integers: {-1, 0, 5, 101}
- (c) Rational numbers: $\left\{-\frac{10}{3}, -1, 0, \frac{2}{5}, \frac{5}{2}, 5, 101\right\}$
- (d) Irrational numbers: $\{-\pi, -\sqrt{3}, \sqrt{3}\}$
- **5.** (a) The point representing the real number 3 lies between 2 and 4.

- (c) The point representing the real number $-\frac{7}{2}$ lies between -4 and -3.
- **6.** (a) The point representing the real number 8 lies between 7 and 9.

(b) The point representing the real number ⁴/₃ lies between 1 and 2, but closer to 1.

- **3.** $\left\{-4.2, \sqrt{4}, -\frac{1}{9}, 0, \frac{3}{11}, \sqrt{11}, 5.5, 5.543\right\}$
 - (a) Natural numbers: $\left\{\sqrt{4}\right\}$
 - (b) Integers: $\left\{\sqrt{4}, 0\right\}$
 - (c) Rational numbers: $\{4.2, \sqrt{4}, -\frac{1}{9}, 0, \frac{3}{11}, 5.\overline{5}, 5.543\}$
 - (d) Irrational numbers: $\left\{\sqrt{11}\right\}$

4.
$$\left\{-\sqrt{25}, -\sqrt{6}, -0.\overline{1}, -\frac{5}{3}, 0, 0.85, 3, 110\right\}$$

(a) Natural numbers: $\{3, 110\}$

(b) Integers:
$$\{-\sqrt{25}, 0, 3, 110\}$$

- (c) Rational numbers: $\left\{-\sqrt{25}, -0.\overline{1}, -\frac{5}{3}, 0, 0.85, 3, 110\right\}$
- (d) Irrational numbers: $\left\{-\sqrt{6}\right\}$
- (b) The point representing the real number $\frac{5}{2}$ lies between 2 and 3.

(d) The point representing the real number -5.2 lies between -6 and -5, but closer to -5.

(c) The point representing the real number -6.75 lies between -7 and -6, but closer to -7.

(d) The point representing the real number $-\frac{9}{2}$ lies between -5 and -4.

$$-\frac{9}{2}$$

-5 -4 -3 -2 -1 0

FOR Section 1.1 The Real Number System 3

- 7. $\frac{4}{5} < 1$ because $\frac{4}{5}$ is to the left of 1 on the real number line.
- 8. $2 > \frac{5}{3}$ because 2 is to the right of $\frac{5}{3}$ on the real number line.
- **9.** -5 < 2 because -5 is to the left of 2 on the real number line.
- **10.** 9 > -1 because 9 is to the right of -1 on the real number line.
- **11.** -5 < -2 because -5 is to the left of -2 on the real number line.
- 12. -8 < -3 because -8 is to the left of -3 on the real number line.
- 13. $\frac{5}{8} > \frac{1}{2}$ because $\frac{5}{8}$ is to the right of $\frac{1}{2}$ on the real number line.
- 14. $\frac{3}{2} < \frac{5}{2}$ because $\frac{3}{2}$ is to the left of $\frac{5}{2}$ on the real number line.
- 15. $-\frac{2}{3} > -\frac{10}{3}$ because $-\frac{2}{3}$ is to the right of $-\frac{10}{3}$ on the real number line.
- 16. $-\frac{5}{3} < -\frac{3}{2}$ because $-\frac{5}{3}$ lies to the left of $-\frac{3}{2}$ on the real number line.
- **17.** Distance = 10 4 = 6
- **18.** Distance = 75 20 = 55
- **19.** Distance = 7 (-12) = 7 + 12 = 19
- **20.** Distance = 32 (-54) = 86
- **21.** Distance = 18 (-32) = 18 + 32 = 50
- **22.** Distance = 14 (-6) = 14 + 6 = 20
- **23.** Distance = 0 (-8) = 0 + 8 = 8
- **24.** Distance = 125 0 = 125
- **25.** Distance = 35 0 = 35

29. |10| = 10

- **26.** Distance = 0 (-35) = 0 + 35 = 35
- **27.** Distance = (-6) (-9) = (-6) + 9 = 3
- **28.** Distance = -7 (-12) = -7 + 12 = 5

- **30.** |62| = 62
- **31.** |-225| = 225
- **32.** |-14| = 14
- **33.** $-\left|-\frac{3}{4}\right| = -\frac{3}{4}$
- **34.** $-\left|\frac{3}{8}\right| = -\frac{3}{8}$
- **35.** |-6| > |2| because |-6| = 6 and |2| = 2, and 6 is greater than 2.
- **36.** |-2| = |2| because |-2| = 2 and |2| = 2.
- **37.** |47| > |-27| because |47| = 47 and |-27| = 27, and 47 is greater than 27.
- **38.** |150| < |-310| because |150| = 150 and |-310| = 310, and 150 is less than 310.
- **39.** *Label:* The weight on the elevator = x*Inequality:* $x \le 2500$
- **40.** Label: The speed of a car = xInequality: $x \le 65$
- **41.** *Label:* Contestant's weight = x*Inequality:* x > 200
- **42.** Label: Money saved = xInequality: $x \le 2$
- **43.** Label: Person's height = xInequality: $x \ge 52$
- **44.** *Label:* Time to run a mile = x*Inequality:* $8 \le x \le 10$
- **45.** *Label:* Balance of checking account = x*Inequality:* 200 $\le x \le$ 700
- **46.** *Label:* The number of pages read = x*Inequality:* 40 $\leq x \leq$ 70
- **47.** The number line shows -2.5 < 2 because -2.5 is to the left of -2.
- **48.** The number on the right is greater than the number on the left.
- **49.** The fractions are converted to decimals and plotted on a number line to determine the order.

- **50.** Rewrite the fractions with the same denominator 6, then plot each number on a number line or compare the numerators. Because the fractions are negative, the greater fraction has the lesser numerator.
- **51.** $\{-5, -4, -3, -2, -1, 0, 1, 2, 3\}$
- **52.** {-2, 0, 2, 4, 6, 8, 10}
- **53.** {5, 7, 9}
- **54.** {5, 7, 11, 13, 17, 19, 23}
- **55.** $a = -1, b = \frac{1}{2}$ $-1 < \frac{1}{2}$
- **56.** $a = -\frac{3}{2}, b = \frac{7}{2}$ $-\frac{3}{2} < \frac{7}{2}$
- **57.** $a = -\frac{9}{2}, b = -2,$ $-\frac{9}{2} < -2$
- **58.** *a* = 61.2, *b* = 65 61.2 < 65
- **59.** -|-85| = -85
- **60.** -|-36.5| = -36.5
- **61.** -|3.5| = -3.5
- **62.** |-1.4| = 1.4
- **63.** $|-\pi| = \pi$
- **64.** $-|\pi| = -\pi$
- **65.** The opposite of -7 is 7.

The distance of both -7 and 7 from 0 is 7.

66. The opposite of -4 is 4.

The distance of both -4 and 4 from 0 is 4.

67. The opposite of 5 is -5.

The distance of both -5 and 5 from 0 is 5.

68. The opposite of 6 is -6.

$$-6$$
 -6 -6 -6 -4 -2 0 2 4 -6

The distance of both 6 and -6 from 0 is 6.

69. The opposite of $-\frac{3}{5}$ is $\frac{3}{5}$.

$$\begin{array}{c|c} -\frac{3}{5} & \frac{3}{5} \\ \hline \\ -1 & 0 & 1 \end{array}$$

The distance of both $-\frac{3}{5}$ and $\frac{3}{5}$ from 0 is $\frac{3}{5}$.

70. The opposite of $\frac{7}{4}$ is $-\frac{7}{4}$.

$$\begin{array}{c|c} -\frac{7}{4} & \frac{7}{4} \\ \hline -2 & -1 & 0 & 1 & 2 \end{array}$$

The distance of both $\frac{7}{4}$ and $-\frac{7}{4}$ from 0 is $\frac{7}{4}$.

71. The opposite of $\frac{5}{3}$ is $-\frac{5}{3}$.

$$\begin{array}{c|c} -\frac{5}{3} & \frac{5}{3} \\ \hline -2 & -1 & 0 & 1 & 2 \end{array}$$

The distance of both $\frac{5}{3}$ and $-\frac{5}{3}$ from 0 is $\frac{5}{3}$.

72. The opposite of $-\frac{3}{4}$ is $\frac{3}{4}$.

$$-\frac{3}{4}$$
 $\frac{3}{4}$
 -2 -1 0 1 2

The distance of both $-\frac{3}{4}$ and $\frac{3}{4}$ from 0 is $\frac{3}{4}$.

73. The opposite of -4.25 is 4.25.

The distance of both -4.25 and 4.25 from 0 is 4.25.

74. The opposite of 3.5 is -3.5.

The distance of both 3.5 and -3.5 from 0 is 3.5.

75.
$$x < 0$$

76. y > 25

NOT FO Section 1.2 Operations with Real Numbers 5

77. $u \ge 16$

- **78.** $x \ge 0$
- **79.** You have more than 30 coins and fewer than 50 coins in a jar.
- **80.** A basketball player scores no more than 310 points and no less than 280 points this season.
- 81. Because |-4| = 4 and |4| = 4, the two possible values of *a* are -4 and 4.
- 82. Because -|-7| = -7 and -|7| = -7, the two possible values of *a* are -7 and 7.
- 83. Because |-2 3| = |-5| = 5 and |8 3| = |5| = 5, the two possible values of *a* are -2 and 8.
- 84. Because |-7 (-1)| = |-6| = 6 and |5 - (-1)| = |6| = 6, the two possible values of *a* are -7 and 5.

- **85.** Sample answers: $-3, -100, -\frac{4}{1}$
- 86. Sample answers: 7, 1032, 15
- **87.** Sample answers: $\sqrt{2}$, π , $-3\sqrt{3}$
- **88.** Sample answers: $\frac{2}{3}$, 201, 3. $\overline{3}$
- **89.** Sample answers: $\frac{3}{4}$, $1\frac{1}{2}$, $0.1\overline{6}$
- **90.** Sample answers: $\frac{1}{2}$, 10, 20 $\frac{1}{5}$
- **91.** Sample answers: $-\frac{1}{2}, \pi, -\sqrt{2}$
- **92.** Sample answers: -1, -10, -100
- **93.** True. If a number can be written as ratio of two integers, it is rational. If not, the number is irrational.
- **94.** True. The distance between 0 and the number *b* is the same as the distance between 0 and the opposite of *b*.

95. $0.15 = \frac{15}{100}$ and $0.\overline{15} = 0.151515 \dots = \frac{15}{99}$

96. Yes, the nonnegative real numbers include 0.

Section 1.2 Operations with Real Numbers

1.
$$-8 + 12 = +(12 - 8) = 4$$

2. $-5 + 9 = +(9 - 5) = 4$
3. $13 + (-6) = +(13 - 6) = 7$
4. $12 + (-10) = +(12 - 10) = 2$
5. $-17 + (-6) = -(17 + 6) = -23$
6. $-6.4 + (-3.7) = -(6.4 + 3.7) = -10.1$
7. $-8 - 12 = -8 + (-12) = -(8 + 12) = -20$
8. $-3 - 17 = -3 + (-17) = -(3 + 17) = -20$
9. $13 - (-9) = 13 + 9 = 22$
10. $4 - (-11) = 4 + 11 = 15$
11. $-15 - (-18) = -15 + 18 = +(18 - 15)$
13. $\frac{3}{8} + \frac{7}{8} = \frac{3 + 7}{8} = \frac{10}{8} = \frac{5}{4}$
13. $\frac{3}{8} + \frac{7}{8} = \frac{3 + 7}{8} = \frac{10}{8} = \frac{5}{4}$
14. $\frac{5}{6} + \frac{7}{6} = \frac{5 + 7}{6} = \frac{12}{6} = 2$
15. $\frac{3}{4} - \frac{1}{4} = \frac{3 - 1}{4} = \frac{2}{4} = \frac{1}{2}$
16. $\frac{5}{9} - \frac{1}{9} = \frac{5 - 1}{9} = \frac{4}{9}$
17. $\frac{3}{5} + \left(-\frac{1}{2}\right) = \frac{3(2)}{5(2)} - \frac{1(5)}{2(5)}$
 $= \frac{6}{10} - \frac{5}{10}$
 $= \frac{1}{10}$
18. $\frac{6}{7} + \left(-\frac{3}{7}\right) = \frac{6}{7} - \frac{3}{7} = \frac{6 - 3}{7} = \frac{3}{7}$
C2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or applicated, or posted to a publicly accessible website, in whole or in part. By Charge Learning. All Rights Reserved. May not be scanned, copied or applicated, or posted to a publicly accessible website, in whole or in part. By Charge Learning. All Rights Reserved. May not be scanned, copied or applicated, or posted to a publicly accessible website, in whole or in part.

19. $\frac{5}{8} - \frac{1}{8} = \frac{5-1}{8}$ $=\frac{4}{2}$ $=\frac{4}{2\cdot 4}$ $=\frac{1}{2}$ **20.** $\frac{3}{10} - \frac{5}{2} = \frac{3}{10} - \frac{5(5)}{2(5)}$ $=\frac{3}{10}-\frac{25}{10}$ $=\frac{3-25}{10}$ $=\frac{-22}{10}=-\frac{11}{5}$ **21.** $3\frac{1}{2} + 4\frac{3}{8} = \frac{7}{2} + \frac{35}{8}$ $=\frac{7(4)}{2(4)}+\frac{35}{8}$ $=\frac{28}{8}+\frac{35}{8}$ $=\frac{28+35}{8}=\frac{63}{8}$ **22.** $5\frac{3}{4} + 7\frac{3}{8} = \frac{23}{4} + \frac{59}{8}$ $=\frac{23(2)}{4(2)}+\frac{59(1)}{8(1)}$ $=\frac{46+59}{8}=\frac{105}{8}$ **23.** $10\frac{5}{8} - 6\frac{1}{4} = \frac{85}{8} - \frac{25}{4}$ $=\frac{85}{8}-\frac{25(2)}{4(2)}$ $=\frac{85}{8}-\frac{50}{8}$ $=\frac{85-50}{8}=\frac{35}{8}$ **24.** $8\frac{1}{2} - 4\frac{2}{3} = \frac{17}{2} - \frac{14}{3}$ $=\frac{17(3)}{2(3)}-\frac{14(2)}{3(2)}$ $=\frac{51}{6}-\frac{28}{6}$ $=\frac{51-28}{6}=\frac{23}{6}$

25.
$$5(-6) = -30$$

26. $3(-9) = -27$
27. $(-8)(-6) = 48$
28. $(-4)(-7) = 28$
29. $2(4)(-5) = 8(-5) = -40$
30. $3(-7)(10) = (-21)(10) = -210$
31. $(-1)(12)(-3) = (-12)(-3) = 36$
32. $(-2)(-6)(4) = (12)(4) = 48$
33. $\frac{1}{2}(\frac{1}{6}) = \frac{1}{12}$
34. $\frac{1}{3}(\frac{2}{3}) = \frac{2}{9}$
35. $-\frac{3}{2}(\frac{8}{5}) = -\frac{24}{10} = -\frac{12}{5}$
36. $(\frac{10}{13})(-\frac{3}{5}) = -\frac{6}{13}$
37. $(-\frac{5}{8})(-\frac{4}{5}) = \frac{1}{2}$
38. $(-\frac{4}{7})(-\frac{4}{5}) = \frac{16}{35}$
39. $-\frac{18}{-3} = -\frac{6 \cdot -3}{-3} = 6$
40. $-\frac{30}{-15} = -\frac{2 \cdot -15}{-15} = 2$
41. $-\frac{48}{16} = -\frac{3 \cdot 16}{16} = -3$
42. $63 \div (-7) = \frac{63}{-7} = \frac{9 \cdot 7}{-7} = -9$
43. $-10 \div 0$ is undefined.
Division by zero is undefined.

44. $-125 \div 0$ is undefined.

Division by zero is undefined.

45.
$$-\frac{4}{5} \div \frac{8}{25} = -\frac{4}{5} \cdot \frac{25}{8} = \frac{(-4)(25)}{(5)(8)} = -\frac{5}{2}$$

Section 1.2 Operations with Real Numbers 7

46. $-\frac{11}{12} \div \frac{5}{24} = -\frac{11}{12} \cdot \frac{24}{5} = -\frac{(11)(24)}{(12)(5)} = -\frac{22}{5}$
$47. \ \left(-\frac{1}{3}\right) \div \left(-\frac{5}{6}\right) = \left(-\frac{1}{3} \div -\frac{5}{6}\right)$
$=\left(\frac{-1}{3}\cdot\frac{-6}{5}\right)=\frac{(-1)(-6)}{(3)(5)}=\frac{2}{5}$
48. $\left(-\frac{3}{8}\right) \div \left(-\frac{4}{3}\right) = \left(-\frac{3}{8}\right) \cdot \left(-\frac{3}{4}\right) = \frac{3(3)}{8(4)} = \frac{9}{32}$
49. $4\frac{1}{8} \div 4\frac{1}{2} = \frac{33}{8} \div \frac{9}{2} = \frac{33}{8} \cdot \frac{2}{9} = \frac{(33)(2)}{(8)(9)} = \frac{11}{12}$
50. $26\frac{2}{3} \div 10\frac{5}{6} = \frac{80}{3} \div \frac{65}{6} = \frac{80}{3} \cdot \frac{6}{65} = \frac{(80)(6)}{(3)(65)} = \frac{32}{13}$
51. $-4\frac{1}{4} \div \left(-5\frac{5}{8}\right) = -\frac{17}{4} \div \left(-\frac{45}{8}\right)$
$= -\frac{17}{4} \cdot \left(-\frac{8}{45}\right) = \frac{17(8)}{4(45)} = \frac{34}{45}$
52. $-3\frac{5}{6} \div -2\frac{2}{3} = -\frac{23}{6} \div \frac{-8}{3}$ = $\frac{-23}{6} \cdot \frac{3}{-8} = \frac{(-23)(3)}{(6)(-8)} = \frac{23}{16}$
53. $(-7) \cdot (-7) \cdot (-7) = (-7)^3$
54. $(-4)(-4)(-4)(-4)(-4)(-4) = (-4)^6$
55. $\left(\frac{1}{4}\right) \cdot \left(\frac{1}{4}\right) \cdot \left(\frac{1}{4}\right) \cdot \left(\frac{1}{4}\right) = \left(\frac{1}{4}\right)^4$
56. $\left(\frac{5}{8}\right) \cdot \left(\frac{5}{8}\right) \cdot \left(\frac{5}{8}\right) \cdot \left(\frac{5}{8}\right) = \left(\frac{5}{8}\right)^4$
57. $-(7 \cdot 7 \cdot 7) = -7^3$
58. $-(5 \cdot 5 \cdot 5 \cdot 5 \cdot 5 \cdot 5) = -5^6$
59. $2^5 = (2)(2)(2)(2)(2) = 32$
60. $5^3 = (5)(5)(5) = 125$
61. $(-2)^4 = (-2)(-2)(-2)(-2) = 16$
62. $(-3)^3 = (-3)(-3)(-3) = -27$
63. $-4^3 = -(4)(4)(4) = -64$
INSTRUCTO

64.
$$-6^4 = -(6)(6)(6)(6) = -1296$$

65. $(\frac{4}{5})^3 = (\frac{4}{5})(\frac{4}{5})(\frac{2}{3})(\frac{2}{3})(\frac{2}{3}) = \frac{64}{125}$
66. $(\frac{2}{3})^4 = (\frac{2}{3})(\frac{2}{3})(\frac{2}{3})(\frac{2}{3}) = \frac{16}{81}$
67. $(-\frac{1}{2})^2 = (-\frac{1}{2})(-\frac{1}{2})$
 $= \frac{1}{4}$
68. $(-\frac{3}{4})^3 = (-\frac{3}{4})(-\frac{3}{4})(-\frac{3}{4}) = -\frac{27}{64}$
69. $-((-\frac{1}{2})^5 = -(-\frac{1}{2})(-\frac{1}{2})(-\frac{1}{2})(-\frac{1}{2})(-\frac{1}{2}) = -(-\frac{1}{32}) = \frac{1}{32}$
70. $-(-\frac{1}{4})^3 = -(-\frac{1}{4})(-\frac{1}{4})(-\frac{1}{4})$
 $= -(-\frac{1}{64})$
 $= \frac{1}{64}$
71. $(0.3)^3 = (0.3)(0.3)(0.3) = 0.027$
72. $(0.2)^4 = (0.2)(0.2)(0.2)(0.2) = 0.0016$
73. $5(-0.4)^3 = 5(-0.4)(-0.4)(-0.4) = 5(-0.064) = -0.32$
74. $-3(0.8)^2 = -3(0.8)(0.8) = -3(0.64) = -1.92$
75. $16 - 6 - 10 = (16 - 6) - 10 = 10 - 10 = 0$
76. $18 - 12 + 4 = (18 - 12) + 4 = 6 + 4 = 10$
77. $24 - 5 \cdot 2^2 = 24 - 5 \cdot 4$
 $= 24 - (5 \cdot 4) = 24 - 20 = 4$
78. $18 + 3^2 - 12 = 18 + 9 - 12$
 $= (18 + 9) - 12$
 $= 27 - 12$
 $= 15$
79. $28 + 4 + 3 \cdot 5 = (28 + 4) + (3 \cdot 5)$
 $= 7 + 15$
 $= 22$
80. $6 \cdot 7 - 6^2 + 4 = 6 \cdot 7 - 36 + 4$
 $= (6 \cdot 7) - (36 + 4)$
 $= 42 - 9$
 $= 33$
RUSEONLLY

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. © Cengage Learning. All Rights Reserved.

81. 14 - 2(8 - 4) = 14 - 2(4)= 14 - 8 = 6 82. 21 - 5(7 - 5) = 21 - 5(2)= 21 - 10 = 11 **83.** $17 - 5(16 \div 4^2) = 17 - 5(16 \div 16)$ = 17 - 5(1)= 17 - 5 = 12**84.** $72 - 8(6^2 \div 9) = 72 - 8(36 \div 9)$ = 72 - 8(4)= 72 - 32= 40 **85.** $5^2 - 2[9 - (18 - 8)] = 25 - 2[9 - 10]$ = 25 - 2[-1]= 25 + 2= 27 **86.** $8 \cdot 3^2 - 4(12 + 3) = 8 \cdot 9 - 4(15)$ = 72 - 60= 12**87.** $5^3 + |-14 + 4| = 125 + |-10|$ = 125 + 10= 135**88.** $|(-2)^5| - (25 + 7) = |-32| - 32$ = 32 - 32= 0**89.** $\frac{6+8(3)}{7-12} = [6+8(3)] \div (7-12)$ $= (6 + 24) \div (7 - 12)$ $= 30 \div (-5)$ = -6 **90.** $\frac{9+6(2)}{3+4} = [9+6(2)] \div (3+4)$ $= (9 + 12) \div (3 + 4)$ $= 21 \div 7$ = 3

- **92.** The first step in evaluating the expression $6^2 8(3 + 4)$ is to evaluate 3 + 4 because this expression is inside parentheses.
- **93.** To subtract the real number b from the real number a, add the opposite of b to a.

94. If a > 0, then $(-a)^n = -a^n$ when *n* is odd.

95.
$$85 - |-25| = 85 - 25 = 60$$

96. $-36 + |-8| = -36 + 8 = -(36 - 8) = -28$
97. $-(-11.325) + |34.625| = 11.325 + 34.625 = 45.95$
98. $|-16.25| - 54.78 = 16.25 + (-54.78)$
 $= -(54.78 - 16.25)$
 $= -38.53$
99. $-\left|-6\frac{7}{8}\right| - 8\frac{1}{4} = -6\frac{7}{8} - 8\frac{1}{4}$
 $= -\frac{55}{8} - \frac{33(2)}{4(2)}$
 $= -\frac{55}{8} - \frac{66}{8}$
 $= -\frac{121}{8}$
100. $-\left|-15\frac{2}{3}\right| - 12\frac{1}{3} = -15\frac{2}{3} - 12\frac{1}{3}$
 $= -\frac{47}{3} - \frac{37}{3}$
 $= -\frac{47 + 37}{3}$
 $= -\frac{84}{3}$
 $= -28$
101. $\frac{4^2 - 5}{11} - 7 = \left[(4^2 - 5) \div 11\right] - 7$
 $= \left[(16 - 5) \div 11\right] - 7$
 $= (11 \div 11) - 7$
 $= 1 - 7$
 $= -6$

91. Apply the order of operations as follows: Parentheses, Exponents, Multiplication and Division, Addition and

Subtraction.

Section 1.2 Operations with Real Numbers 9

$$102. \quad \frac{5^3 - 50}{-15} + 27 = \left[\left(5^3 - 50 \right) \div -15 \right] + 27 \\ = \left[\left(125 - 50 \right) \div -15 \right] + 27 \\ = \left(75 \div -15 \right) + 27 \\ = -5 + 27 \\ = 22 \end{aligned}$$
$$103. \quad \frac{6 \cdot 2^2 - 12}{3^2 + 3} = \left[\left(6 \cdot 2^2 \right) - 12 \right] \div \left(3^2 + 3 \right) \\ = \left(24 - 12 \right) \div \left(9 + 3 \right) \\ = 12 \div 12 \\ = 1 \end{aligned}$$
$$104. \quad \frac{7^2 - 2(11)}{5^2 + 8(-2)} = \left[7^2 - 2(11) \right] \div \left[5^2 + 8(-2) \right] \\ = \left(49 - 22 \right) \div \left(25 - 16 \right) \\ = 27 \div 9 \\ = 3 \end{aligned}$$
$$105. \quad \frac{3 + \frac{3}{4}}{\frac{1}{8}} = \left(3 + \frac{3}{4} \right) \div \frac{1}{8} \\ = \left(\frac{12}{4} + \frac{3}{4} \right) \div \frac{1}{8} \\ = \frac{15}{4} \div \frac{1}{8} \\ = \frac{15}{4} \cdot \frac{8}{1} \\ = \frac{15(8)}{4} = 30$$

$$106. \quad \frac{6-\frac{2}{3}}{\frac{4}{9}} = \left(6-\frac{2}{3}\right) \div \frac{4}{9} \\ = \left(\frac{18}{3}-\frac{2}{3}\right) \div \frac{4}{9} \\ = \frac{16}{3} \div \frac{4}{9} \\ = \frac{16}{3} \div \frac{9}{4} \\ = \frac{16(9)}{3(4)} \\ = 12 \\ 107. \quad \frac{1}{4} + \frac{2}{9} + \frac{1}{10} + x + \frac{1}{3} = 1 \\ \text{So,} \\ x = 1 - \left(\frac{1}{4} + \frac{2}{9} + \frac{1}{10} + \frac{1}{3}\right) \\ = 1 - \left(\frac{45}{180} + \frac{40}{180} + \frac{18}{180} + \frac{60}{180}\right) \\ = 1 - \left(\frac{45 + 40 + 18 + 60}{180}\right) \\ = 1 - \left(\frac{45 + 40 + 18 + 60}{180}\right) \\ = 1 - \frac{163}{180} = \frac{180}{180} - \frac{163}{180} = \frac{17}{180}. \\ 108. \quad \frac{1}{7} + \frac{1}{6} + \frac{1}{5} + x + \frac{1}{3} = 1 \\ \text{So,} \\ x = 1 - \left(\frac{30}{210} + \frac{35}{210} + \frac{42}{210} + \frac{70}{210}\right) \\ = 1 - \left(\frac{30 + 35 + 42 + 70}{210}\right) \\ = 1 - \left(\frac{30 + 35 + 42 + 70}{210}\right) \\ = 1 - \frac{177}{210} \\ = \frac{210}{210} - \frac{177}{210} \\ = \frac{33}{210} = \frac{11}{70}. \end{cases}$$

109. \$2618.68 + \$1236.45 - \$25.62 - \$455.00 - \$125.00 - \$715.95 = \$2533.56The balance at the end of the month was \$2533.56.

- **110.** l = 5 meters, w = 3 meters
 - A = lw
 - $A = 5 \cdot 3 = 15$ square meters

- **111.** I = 14 centimeters, w = 8 centimeters A = lw
 - $A = 14 \cdot 8 = 112$ square centimeters

- 112. b = 8 inches, h = 5 inches $A = \frac{1}{2}bh$ $A = \frac{1}{2}(8)(5) = 20$ square inches
- **113.** b = 10 feet, h = 7 feet

$$A = \frac{1}{2}bh$$

- $A = \frac{1}{2} \cdot 10 \cdot 7 = 35$ square feet
- **114.** (a) \$50(12)(18) = \$10,800
 - (b) The account would have \$15,832.22.
 - (c) \$15,832.22 \$10,800 = \$5032.22

\$5032.22 is earnings from interest.

- **115.** True. A nonzero rational number is an integer divided by an integer. The reciprocal of such a number is still an integer divided by an integer, and so it is a rational number.
- **116.** False. The product of two fractions is the product of the numerators over the product of the denominators.
- **117.** True. Any negative real number raised to an even numbered power will be a positive real number.
- **118.** False. If a negative number is raised to an odd power, the result will be negative.
- 119. False. Division is not commutative.
- **120.** No, the expressions are not equal. $(2^2)^3 = 4^3 = 64$ and $2^{(2^3)} = 2^8 = 256$. Since $64 \neq 256, (2^2)^3 \neq 2^{(2^3)}$.

Section 1.3 Properties of Real Numbers

1. 18 - 18 = 0

Additive Inverse Property

2. 5 + 0 = 5

Additive Identity Property

3. $\frac{1}{12} \cdot 12 = 1$

Multiplicative Inverse Property

4. $52 \cdot 1 = 52$

Multiplicative Identity Property

- 5. $(8-5)(10) = 8 \cdot 10 5 \cdot 10$ Distributive Property
- **6.** $7(9+15) = 7 \cdot 9 + 7 \cdot 15$

Distributive Property

- **121.** If the numbers have like signs, the product or quotient is positive. If the numbers have unlike signs, the product or quotient is negative.
- **122.** (a) $40 10 + 3 = 30 + 3 = 33 \neq 27$

Insert parentheses: 40 - (10 + 3) = 40 - 13 = 27

(b)
$$5^2 + \frac{1}{2} \cdot 4 = 25 + \frac{1}{2} \cdot 4 = 25 + 2 = 27$$

(c) $8 \cdot 3 + 30 \div 2 = 24 + 15 = 39 + 27$

Insert parentheses: $(8 \cdot 3 + 30) \div 2 = (24 + 30) \div 2$ $= 54 \div 2 = 27$

(d) $75 \div 2 + 1 + 2 = 37.5 + 1 + 2$ = $38.5 + 2 = 40.5 \neq 27$

Insert parentheses: $75 \div (2 + 1) + 2 = 75 \div 3 + 2 = 25 + 2 = 27$

123. To add fractions with unlike denominators, you first find the least common denominator.

$$\frac{2}{3} + \frac{3}{2} = \frac{2(2)}{3(2)} + \frac{3(3)}{2(3)} = \frac{4}{6} + \frac{9}{6} = \frac{13}{6}$$

124. Only common factors (not terms) of the numerator and denominator can be divided out.

$$\frac{5+12}{5} = \frac{17}{5}$$

7. 15(-3) = (-3)158. 6 + (5 + y) = (6 + 5) + y9. $5(6 + z) = 5 \cdot 6 + 5 \cdot z$ 10. (8 - y)(4) = 8(4) - y(4)11. x + 4 = 5(x + 4) - 4 = 5 - 4

Addition Property of Equality

12.
$$7x = 14$$

 $\frac{1}{7}(7x) = \frac{1}{7}(14)$

Multiplication Property of Equality

FORSection 1.3 Properties of Real Numbers 11

13.
$$20(2 + 5) = 20 \cdot 2 + 20 \cdot 5$$

14. $-3(4 - 8) = -3(4) + (-3)(-8)$
15. $(x + 6)(-2) = x \cdot (-2) + 6 \cdot (-2)$ or $-2x - 12$
16. $(z - 10)(12) = z(12) - 10(12)$ or $12z - 120$
17. $-6(2y - 5) = -6(2y) + (-6)(-5)$ or $-12y + 30$

23.	$ac = bc, c \neq 0$	Write original equation.
	$\frac{1}{c}(ac) = \frac{1}{c}(bc)$	Multiplication Property of Equality
	$\frac{1}{c}(ca) = \frac{1}{c}(cb)$	Commutative Property of Multiplication
	$\left(\frac{1}{c} \cdot c\right)a = \left(\frac{1}{c} \cdot c\right)b$	Associative Property of Multiplication
	$1 \cdot a = 1 \cdot b$	Multiplicative Inverse Property
	a = b	Multiplicative Identity Property
24.	$a \cdot 1 = 1 \cdot a$	Write original equation.
	$a \cdot 1 = a \cdot 1$	Commutative Property of Multiplication
	a = a	Multiplicative Identity Property

25.	a = (a + b) + (-b)	Write original equation.
	$a = a + \left[b + \left(-b\right)\right]$	Associative Property of Addition
	a = a + 0	Additive Inverse Property
	a = a	Additive Identity Property

26. a + (-a) = 0 Write original equation. 0 = 0 Additive Inverse Property

- **27.** 13 + 12 = 12 + 13Commutative Property of Addition
- **28.** (5+10)(8) = 8(5+10)

Commutative Property of Multiplication

29. $(-4 \cdot 10) \cdot 8 = -4(10 \cdot 8)$

Associative Property of Multiplication

30.
$$3 + (12 - 9) = (3 + 12) - 9$$

Associative Property of Addition

31. $10(2x) = (10 \cdot 2)x$

Associative Property of Multiplication

32. $1 \cdot 9k = 9k$

Multiplicative Identity Property

18. -4(10 - b) = -4(10) + (-4)(-b) or -40 + 4b **19.** 7x + 2x = (7 + 2)x = 9x **20.** 8x - 6x = (8 - 6)x = 2x**21.** $\frac{7x}{2} - \frac{5x}{2} = (7 - 5)\left(\frac{x}{2}\right) = \frac{2x}{8} = \frac{x}{4}$

21.
$$\frac{1}{8} - \frac{1}{8} = (7 - 5)(\frac{1}{8}) = \frac{1}{8} = \frac{1}{8}$$

22. $\frac{3x}{5} + \frac{x}{5} = (3+1)\left(\frac{x}{5}\right) = \frac{4x}{5}$

- **33.** $10x \cdot \frac{1}{10x} = 1$ Multiplicative Inverse Property
- **34.** 0 + 4x = 4xAdditive Identity Property
- **35.** 2x 2x = 0Additive Inverse Property
- **36.** 4 + (3 x) = (4 + 3) x

Associative Property of Addition

37.
$$3(2 + x) = 3 \cdot 2 + 3x$$

Distributive Property

38.
$$3(6 + b) = 3 \cdot 6 + 3 \cdot b$$

Distributive Property

39.	(x+1)-(x+1)=0	40. $6(x+3) = 6 \cdot x + 6 \cdot 3$
	Additive Inverse Property	Distributive Property
41.	x + 5 = 3	Write original equation.
	(x + 5) + (-5) = 3 + (-5)	Addition Property of Equality
	x + (5 + (-5)) = 3 - 5	Associative Property of Addition
	x + 0 = -2	Additive Inverse Property
	x = -2	Additive Identity Property
42.	x - 8 = 20 W	rite original equation.
	(x-8)+8 = 20+8 A	ddition Property of Equality
	$x + \left(-8 + 8\right) = 28 \qquad A$	ssociative Property of Addition
	x + 0 = 28 A	dditive Inverse Property
	x = 28 A	dditive Identity Property
43.	$2x - 5 = 6 \qquad W$	rite original equation.
	(2x-5)+5=6+5 A	ddition Property of Equality
	2x + (-5 + 5) = 11 A	ssociative Property of Addition
	$2x + 0 = 11 \qquad A$	dditive Inverse Property
	$2x = 11 \qquad A$	dditive Identity Property
	$\frac{1}{2}(2x) = \frac{1}{2}(11)$ M	Iultiplication Property of Equality
	$\left(\frac{1}{2} \cdot 2\right)x = \frac{11}{2} \qquad \mathbf{A}$	ssociative Property of Multiplication
	$1 \cdot x = \frac{11}{2}$ M	Iultiplicative Inverse Property
	$x = \frac{11}{2} \qquad M$	Iultiplicative Identity Property
44.	3x + 4 = 10	Write original equation.
	(3x + 4) + (-4) = 10 + (-4)	4) Addition Property of Equality
	$3x + \left[4 + \left(-4\right)\right] = 6$	Associative Property of Addition
	3x + 0 = 6	Additive Inverse Property
	3x = 6	Additive Identity Property
	$\frac{1}{3}3x = \frac{1}{3}(6)$	Multiplication Property of Equality
	$\left(\frac{1}{3}\cdot 3\right)x = 2$	Associative Property of Multiplication
	$1 \cdot x = 2$	Multiplicative Inverse Property
	x = 2	Multiplicative Identity Property
45.	-4x - 4 = 0	Write original equation.
	-4x - 4 + 4 = 0 + 4	Addition Property of Equality
	-4x + (-4 + 4) = 4	Associative Property of Addition
	-4x + 0 = 4	Additive Inverse Property
	-4x = 4	Additive Identity Property
	$-\frac{1}{4}(-4x) = -\frac{1}{4}(4)$	Multiplication Property of Equality
	$\left\lfloor -\frac{1}{4} \cdot \left(-4\right) \right\rfloor x = -1$	Associative Property of Multiplication
	$1 \cdot x = -1$	Multiplicative Inverse Property
	x = -1	Multiplicative Identity Property

FORSECTION 1.3 Properties of Real Numbers 13

46.
$$-5x + 25 = 5$$
 Write original equation.
 $(-5x + 25) + (-25) = 5 + (-25)$ Addition Property of Equality
 $-5x + [25 + (-25)] = -20$ Associative Property of Addition
 $-5x + 0 = -20$ Additive Inverse Property
 $-5x = -20$ Additive Identity Property
 $-\frac{1}{5}(-5x) = -\frac{1}{5}(-20)$ Multiplication Property of Equality
 $\left[-\frac{1}{5} \cdot (-5)\right]x = 4$ Associative Property of Multiplication
 $1 \cdot x = 4$ Multiplicative Inverse Property
 $x = 4$ Multiplicative Identity Property

- **47.** Every real number except zero has an additive inverse. The additive inverse (or opposite) of a number is the same distance from zero as that number. Because there is no distance from zero to zero, zero does not have an additive inverse.
- **48.** Every real number except zero has a multiplicative inverse. The multiplicative inverse of every number is 1 over that number. Because zero cannot be in the denominator, zero does not have a multiplicative inverse.

49. No.

Subtraction: $8 - 2 = 6 \neq -6 = 2 - 8$ Division: $21 \div 7 = 3 \neq \frac{1}{3} = 7 \div 21$

50. No.

Subtraction: $(12 - 4) - 5 = 3 \neq 13 = 12 - (4 - 5)$ Division: $(48 \div 8) \div 2 = 3 \neq 12 = 48 \div (8 \div 2)$

- **51.** 32 + (4 + y) = (32 + 4) + y
- **52.** 15 + (3 x) = (15 + 3) x
- **53.** $9(6M) = (9 \cdot 6)M$
- **54.** $11(4n) = (11 \cdot 4)n$
- **55.** 3(x + 5) = 3x + 15
- 56. 4(x + 2) = 4x + 8
- **57.** -2(x+8) = -2x 16
- **58.** -9(x + 4) = -9x 36
- **59.** $16(1.75) = 16(2 \frac{1}{4}) = 16(2) 16(\frac{1}{4}) = 32 4 = 28$

60. $15(1\frac{2}{3}) = 15(2 - \frac{1}{3}) = 15(2) - 15(\frac{1}{3}) = 30 - 5 = 25$

61. 7(62) = 7(60 + 2) = 7(60) + 7(2) = 420 + 14 = 434

62.
$$5(51) = 5(50 + 1) = 5(50) + 5(1) = 250 + 5 = 255$$

63. $9(6.98) = 9(7 - 0.02)$
 $= 9(7) - 9(0.02)$
 $= 63 - 0.18$
 $= 62.82$
64. $12(19.95) = 12(20 - 0.05)$
 $= 12(20) - 12(0.05)$
 $= 240 - 0.6$
 $= 239.4$
65. $a(b + c) = ab + ac$
66. $a(b - c) = ab - ac$
67. $4 + (x + 5) + (3x + 2) = 4 + (5 + x) + (3x + 2)$
 $= (4 + 5) + x + (3x + 2)$
 $= 9 + (x + 3x) + 2$
 $= 9 + 4x + 2$
 $= 4x + 9 + 2$
 $= 4x + 11$
68. $2x + (3x - 4) + (2x + 4) = (2x + 3x) - 4 + (2x + 4)$
 $= 5x - 4 + (4 + 2x)$
 $= 5x + (-4 + 4) + 2x$
 $= 5x + 0 + 2x$
 $= 7x$
69. (a) $2(x + 6) + 2(2x) = 2x + 12 + 4x$
 $= 2x + 4x + 12$
 $= 6x + 12$
(b) $(x + 6)(2x) = x(2x) + 6(2x) = 2x^{2} + 12x$
70. (a) $2(5x) + 2(2x - 1) = 10x + 4x - 2$
 $= 14x - 2$
(b) $5x(2x - 1) = 5x(2x) + (-1)(5x)$
 $= 10x^{2} - 5x$

- 71. The additive inverse of a real number *a* is the number -a. The sum of a number and its additive inverse is the additive identity 0. For example, 8 + (-8) = 0.
- **72.** The multiplicative inverse of a real number $a (a \neq 0)$ is

the number $\frac{1}{a}$. The product of a number and its multiplicative inverse is the multiplicative identity 1. For example, $8 \cdot \frac{1}{8} = 1$.

- **73.** Given two real numbers *a* and *b*, the sum *a* plus *b* is the same as the sum *b* plus *a*.
- 74. To subtract the number *a* from both sides of an equation, use the Addition Property of Equality to add (-a) to both sides.
- **75.** Sample answer: $4 \odot 7 = 2 \cdot 4 + 7 = 8 + 7 = 15$ $7 \odot 4 = 2 \cdot 7 + 4 = 14 + 4 = 18$

Because $15 \neq 18$, $4 \odot 7 \neq 7 \odot 4$. So, the operation is not commutative.

$$3 \odot (4 \odot 7) = 3 \odot (2 \cdot 4 + 7) = 3 \odot 15 = 2 \cdot 3 + 15 = 6 + 15 = 21 (3 \odot 4) \odot 7 = (2 \cdot 3 + 4) \odot 7 = 10 \odot 7 = 2 \cdot 10 + 7 = 20 + 7 = 27$$

Because $21 \neq 27$, $3 \odot (4 \odot 7) \neq (3 \odot 4) \odot 7$. So, the operation is not associative.

Mid-Chapter Quiz: Sections 1.1-1.3

1.
$$-4.5 > -6$$

 $-\frac{6}{-7} - \frac{-4.5}{-5} - \frac{-4}{-4}$
2. $\frac{3}{4} < \frac{3}{2}$
 $\frac{3}{4} < \frac{3}{2}$
3. $|-15 - 7| = |-22| = 22$
4. $|-8.75 - (-2.25)| = |-8.75 + 2.25| = |-6.5| = 6.5$
5. $|-7.6| = 7.6$
6. $-|9.8| = -9.8$
7. $32 + (-18) = 14$
8. $-12 - (-17) = -12 + 17 = 5$
9. $\frac{3}{4} + \frac{7}{4} = \frac{3 + 7}{4} = \frac{10}{4} = \frac{5}{2}$
10. $\frac{2}{3} - \frac{1}{6} = \frac{4}{6} - \frac{1}{6} = \frac{4 - 1}{6} = \frac{3}{6} = \frac{1}{2}$
11. $(-3)(2)(-10) = (-6)(-10) = 60$

© 2014 Cengage Learning. All Rights Reserved. May not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. © Cengage Learning. All Rights Reserved.

76. Sample answer: 9 + 6 = 9 - (6 + 1)

$$= 9 - 7 = 2$$

6 + 9 = 6 - (9 + 1)
= 6 - (10) = -4

Because $2 \neq -4$, $9 \div 6 \neq 6 \div 9$. So, the operation is not commutative.

$$(10 \ddagger 2) \ddagger 7 = [10 - (2 + 1)] \ddagger 7$$
$$= (10 - 3) \ddagger 7$$
$$= 7 \ddagger 7$$
$$= 7 \ddagger 7$$
$$= 7 - (7 + 1)$$
$$= 7 - 8$$
$$= -1$$
$$10 \ddagger (2 \ddagger 7) = 10 \ddagger [2 - (7 + 1)]$$
$$= 10 \ddagger (2 - 8)$$
$$= 10 \ddagger (-6)$$
$$= 10 - (-6 + 1)$$
$$= 10 - (-5)$$
$$= 15$$

Because $-1 \neq 15$, $(10 \div 2) \div 7 \neq 10 \div (2 \div 7)$. So, the operation is not associative.

NOT FOR Section 1.4 Algebraic Expressions 15

12.	$\left(-\frac{4}{5}\right)\left(\frac{15}{32}\right) = \frac{(-4)(15)}{(5)(32)} = -\frac{3}{8}$	14. $\left(-\frac{3}{2}\right)^3 = \left(-\frac{3}{2}\right)\left(-\frac{3}{2}\right)\left(-\frac{3}{2}\right) = -\frac{27}{8}$
13.	$\frac{7}{12} \div \frac{5}{6} = \frac{7}{12} \cdot \frac{6}{5} = \frac{(7)(6)}{(12)(5)} = \frac{7}{10}$	15. $3 - 2^2 + 25 \div 5 = 3 - 4 + 25 \div 5$ = $3 - 4 + 5 = -1 + 5 = 4$
16.	$\frac{18 - 2(3 + 4)}{6^2 - (12 \cdot 2 + 10)} = \left[18 - 2(3 + 4)\right]$	4)] $\div [6^2 - (12 \cdot 2 + 10)] = (18 - 14) \div (36 - 34) = 4 \div 2 = 2$
17.	(a) $8(u-5) = 8 \cdot u - 8 \cdot 5$	Distributive Property
	(b) $10x - 10x = 0$	Additive Inverse Property
18.	(a) $(7 + y) - z = 7 + (y - z)$	Associative Property of Addition
	(b) $2x \cdot 1 = 2x$	Multiplicative Identity Property
19.	\$1406.98 - \$375.03 - \$59.20 - \$	225.00 + \$320.45 = \$1068.20
20.	45(2)(12)(8) = 88640	
21.	$1 = \frac{1}{3} + \frac{1}{4} + \frac{1}{8}$	+ x
	$1 - \frac{1}{3} - \frac{1}{4} - \frac{1}{8} = x$	
	$\frac{24}{24} - \frac{8}{24} - \frac{6}{24} - \frac{3}{24} = x$	
	$\frac{7}{24} = x$	

The sum of the parts of a circle is equal to 1.

Section 1.4 Algebraic Expressions

1. Terms: 10x, 5

Coefficients: 10, 5

2. Terms: 17y, 4

Coefficients: 17, 4

- **3.** Terms: $-6x^2$, 12
 - Coefficients: -6, 12
- **4.** Terms: $-16t^2$, 48 Coefficients: -16, 48
- **5.** Terms: −3*y*², 2*y*, −8 Coefficients: −3, 2, −8
- 6. Terms: 9t², 2t, 10
 Coefficients: 9, 2, 10
- Terms: -4a³, 1.2a
 Coefficients: -4, 1.2

- 8. Terms: 25z³, -4.8z²
 Coefficients: 25, -4.8
- 9. Terms: 4x², −3y², −5x, 21
 Coefficients: 4, −3, −5, 21
- **10.** Terms: 7*a*², −*b*², 4*a*, 19 Coefficients: 7, −1, 4, 19
- **11.** Terms: $-5x^2y$, $2y^2$, xyCoefficients: -5, 2, 1
- 12. Terms: 14u², 25uv, -3v²
 Coefficients: 14, 25, -3
- **13.** Terms: $\frac{1}{4}x^2$, $-\frac{3}{8}x$, 5 Coefficients: $\frac{1}{4}$, $-\frac{3}{8}$, 5

Coefficients: $\frac{2}{3}$, 8, $\frac{5}{6}$

14. Terms: $\frac{2}{3}y$, 8z, $\frac{5}{6}$

16 Computer 1 Fundamental of Algebra **FORR SALE**
15.
$$3x + 4x = (3 + 4)x = 7x$$

16. $|3x - 14x = (18 + 14)x = 32x$
17. $-2x^{3} + 4x^{2} - (2 + 4)x^{3} - 2x^{2}$
18. $20x^{2} - 5x^{2} = (20 - 5)x^{2} - 15x^{2}$
19. $7x - 11x = (7 - 11)x = -4x$
20. $-3x + 11x = (7 - 11)x = -4x$
21. $9y - 5y + 4y = (9 - 5 + 4)y = 8y$
22. $7x^{2} - 2x - x^{2} - 7x^{2} - x^{2} - 2x^{2} - 3x^{2} - 2x - 4x^{2} + 5x + 8x^{2}$
23. $7x^{2} - 2x - x^{2} - 7x^{2} - x^{2} - 2x^{2} - 3x^{2} - 2x - 4x^{2} + 5x + 8x^{2}$
24. $-2x + 4b - 7u - b = (-2u - 7u) + (4b - b) = -9u^{2} + 3y^{2}$
25. $7x^{2} - 2x - x^{2} - 7x^{2} - x^{2} - 2x^{2} - 2x^{2}$

Visit TestBankDeal.com to get complete for all chapters