Introduction to Analysis 4th Editi on Wade Sol uti ons Manual

CHAPTER 2

2.1 Limits of Sequences.

2.1.0. a) True. If z,, converges, then there is an M > 0 such that |z,| < M. Choose by Archimedes an N € N
such that N > M/e. Then n > N implies |z, /n| < M/n < M/N <e.

b) False. z,, = /n does not converge, but z,/n =1/y/n — 0 as n — oo.

c) False. x,, = 1 converges and y,, = (—1)" is bounded, but z,y, = (—1)™ does not converge.

d) False. x,, = 1/n converges to 0 and y,, = n? > 0, but z,y, = n does not converge.

2.1.1. a) By the Archimedean Principle, given € > 0 there is an N € N such that N > 1/e. Thus n > N
implies

[(2—-1/n)—2]=|1/n| <1/N <e.

b) By the Archimedean Principle, given ¢ > 0 there is an N € N such that N > 72/¢2. Thus n > N implies

1+7/v/n—1|=|r/vn| <n/VN <e.

¢) By the Archimedean Principle, given ¢ > 0 there is an N € N such that N > 3/e. Thus n > N implies
3(14+1/n) —3|=|3/n| <3/N <e.

d) By the Archimedean Principle, given € > 0 there is an N € N such that N > 1/ V/3e. Thus n > N implies

|(2n% +1)/(3n?) — 2/3| = [1/(3n?)| < 1/(3N?) < e.

2.1.2. a) By hypothesis, given ¢ > 0 there is an N € N such that n > N implies |z, — 1| < /2. Thus n > N
implies
1 +2z, —3| =2z, — 1| <e.

b) By hypothesis, given ¢ > 0 there is an N € N such that n > N implies z, > 1/2 and |z, — 1| < e/4. In
particular, 1/z, < 2. Thus n > N implies

[(rxy, — 2) /@y — (7 = 2)| =2 |(xy, — 1) /| < 4]|zp, — 1] <e.

c¢) By hypothesis, given € > 0 there is an N € N such that n > N implies =, > 1/2 and |z, — 1| < ¢/(1 + 2e).
Thus n > N and the triangle inequality imply

(22 — €)/n — (1—€)| = |zn — 1] 'ern

<l — 1 (1+i) <z — 1|(1+2¢) < e.

|

2.1.3. a) If np = 2k, then 3 — (—1)™ = 2 converges to 2; if ny = 2k + 1, then 3 — (—=1)™ = 4 converges to 4.

b) If ng = 2k, then (—1)3" +2 = (-1)%% 4 2 = 1 4+ 2 = 3 converges to 3; if ny, = 2k + 1, then (—1)3" +2 =
(—1)0k+3 4 2 = —1 42 =1 converges to 1.

c) If ng, = 2k, then (ng—(—1)"*ni—1)/n; = —1/(2k) converges to 0; if np, = 2k+1, then (npy—(—1)" ni—1)/n; =
(2ng — 1)/n, = (4k +1)/(2k + 1) converges to 2.

2.1.4. Suppose z,, is bounded. By Definition 2.7, there are numbers M and m such that m < x,, < M for all
n € N. Set C := max{1, |M|,|m|}. Then C >0, M < C, and m > —C'". Therefore, —C < z,, < C, i.e., |z,| < C
for all n € N.

Conversely, if |z,| < C for all n € N, then z,, is bounded above by C' and below by —C.

2.1.5. If C' =0, there is nothing to prove. Otherwise, given € > 0 use Definition 2.1 to choose an N € N such
that n > N implies |b,| = b, < £/|C|. Hence by hypothesis, n > N implies

|zn, — a| < |Clb, < e.

By definition, z,, — a as n — co.

2.1.6. If z,, = a for all n, then |x,, —a| = 0 is less than any positive ¢ for all n € N. Thus, by definition, =, — a
as n — oo.
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2.1.7. a) Let a be the common limit point. Given € > 0, choose N € N such that n > N implies |z,, — a| and
|yn, — a| are both < &/2. By the Triangle Inequality, n > N implies

[Zn, = yn| < |20 —al + |yn —a] <e.

By definition, =, —y, — 0 as n — oo.

b) If n converges to some a, then givene =1/2, 1 =|(n+1) —n| < |(n+1) —a|+ |n — a| < 1 for n sufficiently
large, a contradiction.

c¢) Let z, = n and y, = n+ 1/n. Then |z, — y,| = 1/n — 0 as n — oo, but neither z,, nor y, converges.

2.1.8. By Theorem 2.6, if ,, — a then z,, — a. Conversely, if z,, — a for every subsequence, then it
converges for the “subsequence” x,,.

2.2 Limit Theorems.

2.2.0. a) False. Let x,, = n? and y,, = —n and note by Exercise 2.2.2a that x,, + y, — 00 as n — co.

b) True. Let ¢ > 0. If 2, — —o0 as n — oo, then choose N € N such that n > N implies x,, < —1/e. Then
xn < 0 so |z,| = —x, > 0. Multiply =, < —1/e by e/(—x,) which is positive. We obtain —e < 1/z,, ie.,
/x| = —1/x, <e.

c) False. Let x, = (—1)"/n. Then 1/z, = (—1)"n has no limit as n — oco.
d) True. Since (2 —z) = 2%log2 — 1 > 1 for all © > 2, i.e., 2 — x is increasing on [2,00). In particular,
2 — 2 >22_-2>0,ie., 2% >z for x > 2. Thus, since z,, — 00 as n — oo, we have 2%» > z,, for n large, hence

1
27 < — — 0
Tn

as n — oQ.

2.2.1. a) |z, < 1/n — 0 as n — oo and we can apply the Squeeze Theorem.

b) 2n/(n? + ) = (2/n)/(1 + 7/n?) — 0/(1 + 0) = 0 by Theorem 2.12.

¢) (V2n+1)/(n++v2) = (vV2/y/n) + (1/n))/(1 + (v/2/n)) — 0/(1 +0) = 0 by Exercise 2.2.5 and Theorem
2.12.

d) An easy induction argument shows that 2n 41 < 2" for n = 3,4, .... We will use this to prove that n? < 2"
for n =4,5,.... It’s surely true for n = 4. If it’s true for some n > 4, then the inductive hypothesis and the fact
that 2n 4+ 1 < 2™ imply

(n+1)?=n?+2n+1<2"+2n+1<2" 42" =2""!

so the second inequality has been proved.
Now the second inequality implies n/2" < 1/n for n > 4. Hence by the Squeeze Theorem, n/2" — 0 as n — oco.

2.2.2. a) Let M € R and choose by Archimedes an N € N such that N > max{M,2}. Then n > N implies
n2—n=nn-1)>NN-1)>M2-1)=M.

b) Let M € R and choose by Archimedes an N € N such that N > —M/2. Notice that n > 1 implies —3n < —3
s0 1 —3n < —2. Thus n > N implies n — 3n2 = n(1 —3n) < —2n < —2N < M.

¢) Let M € R and choose by Archimedes an N € N such that N > M. Then n > N implies (n? + 1)/n =
n+1/n>N+0> M.

d) Let M € R satisfy M < 0. Then 2 +sinf > 2 —1 = 1 implies n?(2 +sin(n® +n+1)) >n%-1> 0> M for
all n € N. On the other hand, if M > 0, then choose by Archimedes an N € N such that N > v/M. Then n > N
implies n2(2 + sin(n® +n+1)) >n?-1> N2 > M.

2.2.3. a) Following Example 2.13,

2+3n—4n?  (2/n?)+(3/n)—4 -4

1-2n+3n2  (1/n2)—(2/n)+3 3
as n — oo.
b) Following Example 2.13,
nd+n—2 1+ (1/n?) —(2/n®)
2n3 +n—2 2+ (1/n2) — (2/n3)

1
N
2
as n — oo.
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¢) Rationalizing the expression, we obtain

s o T EWET24VE) _ mta
I+2—vn= St 2+ n T VBnt2+vn

as n — oo by the method of Example 2.13. (Multiply top and bottom by 1/y/n.)
d) Multiply top and bottom by 1/4/n to obtain

Vin+1—vn  _ yA+1l/n—y1-1/n 2-1 1
VIn+1-+vn+2 J9+1/n—+/1+2/n 3—-1 2

2.2.4. a) Clearly,
Tn {_ﬂﬂny—ﬂﬂyn_?ﬁny—zy‘*‘ﬂfy—fyn

Yn Y YYn YYn
Thus
Tn @ 1 ||
— = §7|$7L—$|+ ‘yn_y|
Yo Y1 lynl Yy
Since y # 0, |yn| > |y|/2 for large n. Thus
Ty @ 2 2|x|
— < e -+ Ty —yl =0
yn Yl lyl [yl

as n — oo by Theorem 2.12i and ii. Hence by the Squeeze Theorem, z,,/y, — x/y as n — 0.

b) By symmetry, we may suppose that z = y = co. Since y,, — oo implies y,, > 0 for n large, we can apply
Theorem 2.15 directly to obtain the conclusions when a > 0. For the case o < 0, z,, > M implies ax,, < aM.
Since any My € R can be written as aM for some M € R, we see by definition that z,, — —oc0 as n — .

2.2.5. Case 1. x = 0. Let € > 0 and choose N so large that n > N implies |z,| < 2. By (8) in 1.1, \/z, < ¢
forn> N, ie., /x, — 0asn— co.
Case 2. x > 0. Then

Vv = (Vi - va) (

Since /x, > 0, it follows that

\/:1:7+\/5) T, —

VEn+VE) T JE T

|Tn — |
VIn — V| < ——m.
‘ n f| — \/5
This last quotient converges to 0 by Theorem 2.12. Hence it follows from the Squeeze Theorem that /z, — /&
as n — oo.

2.2.6. By the Density of Rationals, there is an r,, between x + 1/n and z for each n € N. Since |z —r,| < 1/n,
it follows from the Squeeze Theorem that r, — x as n — oo.

2.2.7. a) By Theorem 2.9 we may suppose that |x| = co. By symmetry, we may suppose that x = co. By
definition, given M € R, there is an N € N such that n > N implies x,, > M. Since w, > x,, it follows that
wy, > M for all n > N. By definition, then, w, — oo as n — co.

b) If x and y are finite, then the result follows from Theorem 2.17. If x = y = +o00 or —x = y = o0, there is
nothing to prove. It remains to consider the case = oo and y = —oo. But by Definition 2.14 (with M = 0),
Zn > 0>y, for n sufficiently large, which contradicts the hypothesis x,, < y,.

2.2.8. a) Take the limit of z,,41 = 1 — /1 —z,, asn — co. We obtain x = 1 — /1 —ux, ie., 22 — 2 = 0.
Therefore, x = 0, 1.

b) Take the limit of 2,41 = 2+ +/z, — 2 as n — co. We obtain z = 2+ +/z — 2, i.e., 22 — 52 +6 = 0. Therefore,
x = 2,3. But ; > 3 and induction shows that x,,+1 =2+ Vx, —2 > 24 +1/3 — 2 = 3, so the limit must be x = 3.

c) Take the limit of z,.1 = /2 4+, as n — co. We obtain x = /2 +z, i.e., 22 — z — 2 = 0. Therefore,
x =2,—1. But x,11 = V2 + z, > 0 by definition (all square roots are nonnegative), so the limit must be x = 2.

This proof doesn’t change if 1 > —2, so the limit is again x = 2.
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2.29. a)Let E={k€Z:k>0andk < 10" !y}. Since 10"y < 10, E C {0,1,...,9}. Hence w :=sup E €
E. Tt follows that w < 10"+1y, ie., w/10"! < y. On the other hand, since w + 1 is not the supremum of F,
w+ 1> 10"y, Therefore, y < w/10"+! 4 1/107+1,

b) Apply a) for n = 0 to choose x; = w such that z1/10 < z < x1/10 + 1/10. Suppose

S = Y qor < Z
k=1 k=1
Then 0 < 2 — s, < 1/10", so by a) choose 2, such that x,11/10"" < 2 — s, < 7,11 /10" T +1/10"H e,
n+1 n+1
DIEEEE Z T 10n+1
k=1

c¢) Combine b) with the Squeeze Theorem.
d) Since an easy induction proves that 9" > n for all n € N, we have 97" < 1/n. Hence the Squeeze Theorem
implies that 97" — 0 as n — oo. Hence, it follows from Exercise 1.4.4c and definition that

4 =9 4 1 1 4 1
A9 =g+ D =gt i 5 (1- ) = 16+ 15 =05
Similarly,
999 .- = i ii—l' P
: "'*ninéok 108 e " Ton ) T

2.3 The Bolzano—Weierstrass Theorem.

2.3.0. a) False. z, = 1/4+ 1/(n + 4) is strictly decreasing and |z,| < 1/4+1/5 < 1/2, but z,, — 1/4 as
n — 00.

b) True. Since (n—1)/(2n —1) — 1/2 as n — oo, this factor is bounded. Since |cos(n? +n + 1)| < 1, it follows
that {z,} is bounded. Hence it has a convergent subsequence by the Bolzano—Weierstrass Theorem.

c) False. x,, =1/2 — 1/n is strictly increasing and |z,| < 1/2 < 1+ 1/n, but z, — 1/2 as n — cc.

d) False. x, = (14 (—1)")n satisfies x,, = 0 for n odd and x,, = 2n for n even. Thus zo;11 — 0 as k — oo, but
2, is NOT bounded.

2.3.1. Suppose that —1 < z,_; <0 for somen >0. Then 0 < 2,1 +1<1s00<x,_1+1<+/2,_1+1and
it follows that x,—1 < y/Zn—1 +1 — 1 = z,,. Moreover, \/z,—1 +1—1<1—1=0. Hence by induction, z,, is
increasing and bounded above by 0. It follows from the Monotone Convergence Theorem that z,, — a as n — oo.
Taking the limit of \/z,_; + 1 — 1 = x,, we see that a®> + a = 0, i.e., a = —1,0. Since z,, increases from xy > —1,
the limit is 0. If 2o = —1, then x,, = —1 for all n. If o = 0, then z,, = 0 for all n.

Finally, it is easy to verify that if xo = ¢ for £ = —1 or 0, then «,, = ¢ for all n, hence z,, — ¢ as n — oo.

2.3.2. If 1 = 0 then z,, = 0 for all n, hence converges to 0. If 0 < x; < 1, then by 1.4.1c, x,, is decreasing
and bounded below. Thus the limit, a, exists by the Monotone Convergence Theorem. Taking the limit of
Tpy1 =1—+1—1x,, a8 n — 00, we have a =1 — /1 —a, i.e., a = 0,1. Since 1 < 1, the limit must be zero.

Finally,
Tpyr  1—=V1—-2,  1—(1—2y,) 1 1

= N -
T T, Tn(l+ V1 —12,) 141 2

2.3.3. Case 1. xg = 2. Then z,, = 2 for all n, so the limit is 2.

Case 2. 2 < xp < 3. Suppose that 2 < z,_; < 3forsomen > 1. Then0 < 2, 1—2 <180 /Zp_1 — 2 > Tp_1—2,
ie, xn =24+\2Tp_1 —2 > xy_1. Moreover, z, = 2++/z,—1 — 2 < 2+1 = 3. Hence by induction, x,, is increasing
and bounded above by 3. It follows from the Monotone Convergence Theorem that x, — a as n — oco. Taking
the limit of 2 + v/x,,_1 — 2 = x,, we see that a> —5a + 6 = 0, i.e., a = 2,3. Since z,, increases from xy > 2, the
limit is 3.

Case 3. xg > 3. Suppose that x,,_1 > 3 for some n > 1. Then x,,_1 —2 > 150 V/Tp_1 — 2 < xp1 — 2, e,
Tn =24 \/Tpn-1 — 2 < Tp_1. Moreover, z, = 2+ /T,—1 — 2 > 2+ 1 = 3. Hence by induction, z,, is decreasing
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and bounded above by 3. By repeating the steps in Case 2, we conclude that x,, decreases from zy > 3 to the
limit 3.

2.3.4. Case 1. o < 1. Suppose x,_1 < 1. Then
2$n—1 1+ Tp—1

2
Tp_1 = 5 < 5 :xn<§=1.

Thus {z,} is increasing and bounded above, so z,, — z. Taking the limit of z,, = (1 + z,_1)/2 as n — 00, we see
that z = (1 4+ x)/2, i.e., x = 1.
Case 2. xg > 1. If ,,_1 > 1 then

Thus {z,} is decreasing and bounded below. Repeating the argument in Case 1, we conclude that z,, — 1 as
n — 00.

2.3.5. The result is obvious when x = 0. If z > 0 then by Example 2.2 and Theorem 2.6,

lim 2/ Y = lim 2™ =1.
n—oo m—0o0
If # < 0 then since 2n — 1 is odd, we have by the previous case that z'/("—1) = —(—x)l/(g"*l) — —1asn — oo.

2.3.6. a) Suppose that {z,} is increasing. If {z,,} is bounded above, then there is an = € R such that z, — =
(by the Monotone Convergence Theorem). Otherwise, given any M > 0 there is an N € N such that zy > M.
Since {z,} is increasing, n > N implies z,, > xnx > M. Hence z,, — 00 as n — oo.

b) If {z,,} is decreasing, then —x,, is increasing, so part a) applies.

2.3.7. Choose by the Approximation Property an z; € E such that sup E —1 < 27 <sup E. Since supE ¢ F,
we also have z1 < sup E. Suppose 1 < 9 < --- < &, in F have been chosen so that sup F — 1/n < z,, < sup E.
Choose by the Approximation Property an z,41 € E such that max{z,,supFE — 1/(n + 1)} < zp+1 < supE.
Then supFE —1/(n+1) < 41 < sup E and z,, < ,,11. Thus by induction, 21 < z2 < ... and by the Squeeze
Theorem, x,, — sup £ as n — oo.

2.3.8. a) This follows immediately from Exercise 1.2.6.

b) By a), Znt+1 = (Tn + yn)/2 < 22,/2 = x,. Thus yp41 < Tpy1 < -+ < 1. Similarly, y, = \/¥2 < \/Tnln =
Yn+1 implies Tp11 > Ynt1 > Yn -+ > y1. Thus {x,} is decreasing and bounded below by y; and {y,} is increasing
and bounded above by ;.

c) By b),

T x Ty —
Tpyl = Ynt1 = In L = VTnyn < In L n gy =
2 2 2
Hence by induction and a), 0 < &p41 — Ynt1 < (x1 —y1)/2™.

d) By b), there exist x,y € R such that z,, | z and y, Ty as n — oco. By ¢), |z —y| < (x1 —y1) - 0 = 0. Hence

T =y.

2.3.9. Since zg = 1 and yo = 0,

xSL+1 - 2y721+1 = (vp + 2yn)2 —2(x, + yn)2
= a2 42 = = (1) (a0~ 290) = (1"

Notice that ;1 = 1 = gy;. fy,—1 >n—1and 2,1 > 1 then y, = 21 +yp—1 > 1+ (n—1) = n and
T = Tp-1+2yn—1 > 1. Thus 1/y, — 0 as n — oo and x,, > 1 for all n € N. Since

L
= — -
Y2

x5 — 2yn

Y2

n
In _9
y2

: ’

as n — 00, it follows that x, /y, — £v/2 as n — co. Since ,,,y, > 0, the limit must be v/2.
14
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2.3.10. a) Notice 29 > yo > 1. If 2,1 > yn_1 > 1 then 92 | — 2p_1Yn—1 = Yn—1Un—1 — Tn_1) > 0 s0
yn—l(yn—l + xn—l) < an—lyn—l- In particular:

It follows that \/z, > /yn—1 > 1, 80 ,, > \/TpYn—1 = Yn > 1-1 = 1. Hence by induction, x,, > y,, > 1 for all
n € N.
Now y,, < x, implies 2y,, < x, + y,. Thus

2z
Tyl = i I
Tn + Yn

Hence, {z,} is decreasing and bounded below (by 1). Thus by the Monotone Convergence Theorem, x,, — = for
some z € R.

On the other hand, y,1 is the geometric mean of z,1 and y,, so by Exercise 1.2.6, y,4+1 > yn. Since y, is
bounded above (by z¢), we conclude that y, — y as n — oo for some y € R.

b) Let n — oo in the identity yn,11 = \/Tny1Yn. We obtain, from part a), y = /7y, i.e., z = y. A direct
calculation yields yg > 3.141557494 and z7 < 3.14161012.

2.4 Cauchy sequences.

2.4.0. a) False. a, = 1 is Cauchy and b, = (—1)" is bounded, but a,b, = (—1)" does not converge, hence
cannot be Cauchy by Theorem 2.29.

b) False. a, = 1 and b, = 1/n are Cauchy, but a, /b, = n does not converge, hence cannot be Cauchy by
Theorem 2.29.

¢) True. If (a, + b,)~! converged to 0, then given any M € R, M # 0, there is an N € N such that n > N
implies |an + bn|~t < 1/|M]|. Tt follows that n > N implies |a, + b,| > |[M| > 0 > M. In particular, |a, + by|
diverges to co. But if a,, and b,, are Cauchy, then by Theorem 2.29, a,,+b, — x where z € R. Thus |a,,+b,| — |z|,
NOT oc.

d) False. If zor = logk and z,, = 0 for n # 2*, then zor — 29x—1 = log(k/(k — 1)) — 0 as k — oo, but x;, does
not converge, hence cannot be Cauchy by Theorem 2.29.

2.4.1. Since (2n? +3)/(n® +5n? +3n+1) — 0 as n — oo, it follows from the Squeeze Theorem that x, — 0
as n — oo. Hence by Theorem 2.29, x,, is Cauchy.

2.4.2. If z,, is Cauchy, then there is an N € N such that n > N implies |z, — xn| < 1. Since x,, —zy € Z, it
follows that x,, = z for all n > N. Thus set a := zxn.

2.4.3. Suppose z, and y, are Cauchy and let £ > 0.
a) If a« = 0, then ax,, =0 for all n € N, hence is Cauchy. If « # 0, then there is an N € N such that n,m > N
implies |z, — 2., | < €/|a|. Hence
lax, — azy| < |af|z, —z,| <e

for n,m > N.
b) There is an N € N such that n,m > N implies |2, — T | and |y, — ym| are < £/2. Hence

for n,m > N.
¢) By repeating the proof of Theorem 2.8, we can show that every Cauchy sequence is bounded. Thus choose

M > 0 such that |z,| and |y, | are both < M for all n € N. There is an N € N such that n,m > N implies
|z, — 2| and |y, — ym| are both < £/(2M). Hence

‘xnyn - (xmym)l S |xn - xm| ‘ym| + |xn| ‘yn - yml <e€

for n,m > N.

2.4.4. Let s, = 22;11 zp, for n=2,3,.... If m > n then S;,11 — s, = >4, Tk. Therefore, s, is Cauchy by
hypothesis. Hence s,, converges by Theorem 2.29.
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2.4.5. Let z, = >_;_,(—1)*/k for n € N. Suppose n and m are even and m > n. Then

(=D 1 1 1 1
S.sz:% k" n n+l n+2 m—1 m)’

Each term in parentheses is positive, so the absolute value of S is dominated by 1/n. Similar arguments prevail
for all integers n and m. Since 1/n — 0 as n — oo, it follows that x,, satisfies the hypotheses of Exercise 2.4.4.
Hence x,, must converge to a finite real number.

2.4.6. By Exercise 1.4.4c, if m > n then

m m

1 1 1 1
Iwm+1—xn|:|2(xk+1—xk)|§Zafk: (1—67,1—(1—@7)) a1

k=n k=n

Thus |zZm+1 — zp| < (1/a™ —1/a™)/(a — 1) — 0 as n,m — oo since a > 1. Hence {z,} is Cauchy and must
converge by Theorem 2.29.

2.4.7. a) Suppose a is a cluster point for some set E and let » > 0. Since F N (a — r,a + r) contains infinitely
many points, so does EN (a —r,a +7) \ {a}. Hence this set is nonempty. Conversely, if EN (a — s,a + s) \ {a}
is always nonempty for all s > 0 and r > 0 is given, choose 1 € E N (a — r,a + r). If distinct points z1,...,
have been chosen so that x, € EN(a —r,a+r) and s := min{|z; — al,...,|zx — a|}, then by hypothesis there is
an zx41 € EN(a—s,a+s). By construction, x,11 does not equal any z; for 1 < j < k. Hence z1,...,x,41 are
distinct points in E N (a — r,a + r). By induction, there are infinitely many points in EN (a — r,a + r).

b) If E is a bounded infinite set, then it contains distinct points z1, z3,.... Since {z,} C E, it is bounded. It
follows from the Bolzano—Weierstrass Theorem that x,, contains a convergent subsequence, i.e., there is an a € R
such that given r > 0 there is an N € N such that &k > N implies |z,, — a] < r. Since there are infinitely many
zp,’s and they all belong to E, a is by definition a cluster point of E.

2.4.8. a) To show E := [a,}] is sequentially compact, let 2, € E. By the Bolzano-Weierstrass Theorem, x,,
has a convergent subsequence, i.e., there is an zy € R and integers nj, such that x,,, — z¢ as k — oco. Moreover,
by the Comparison Theorem, z,, € F implies g € E. Thus E is sequentially compact by definition.

b) (0,1) is bounded and 1/n € (0,1) has no convergent subsequence with limit in (0, 1).

¢) [0,00) is closed and n € [0, 00) is a sequence which has no convergent subsequence.

2.5 Limits supremum and infimum.

2.5.1. a) Since 3 — (—1)" = 2 when n is even and 4 when n is odd, limsup,, ., ©, = 4 and liminf, . z, = 2.

b) Since cos(nw/2) = 0 if n is odd, 1 if n = 4m and —1 if n = 4m + 2, limsup,,_, . ¢, = 1 and liminf,, o 2, =
—1.

¢) Since (—=1)"*! + (=1)"/n = —1 + 1/n when n is even and 1 — 1/n when n is odd, limsup,,_,., z, = 1 and
liminf,, .o x, = —1.

d) Since z,, — 1/2 as n — oo, limsup,,_, o, ©n = liminf, o x, = 1/2 by Theorem 2.36.

e) Since |y,| < M, |y,/n| < M/n — 0 as n — co. Therefore, limsup,,_,, , = liminf,_,. x, = 0 by Theorem
2.36.

f) Since n(1+ (=1)") +n"1((=1)" — 1) = 2n when n is even and —2/n when n is odd, limsup,,_, . 2, = 0o and
liminf,,_ o x, = 0.

g) Clearly z,, — 0o as n — oo. Therefore, limsup,,_, . ©, = liminf,,_, 2, = oo by Theorem 2.36.

2.5.2. By Theorem 1.20,

liminf(—z,) := lim (inf (—z)) = — lim (sup z) = — limsup z,.
n— 00 n—oo k>n n—00 k>p n—00

A similar argument establishes the second identity.

2.5.3. a) Since lim,,—, o0 (SUpy>, Tk) < 7, there is an N € N such that supys y x <7, i.e., z, < r forall k > N.

b) Since lim,, .o (SUpy,, ¥x) > 7, there is an N € N such that supys y ¥x > 7, i.e., there is a k; € N such that
Ty, > 7. Suppose k, € N have been chosen so that ky < ky < --- < k;j and xy, > r for v = 1,2,...,j. Choose
N > k; such that sup;s y 2r > r. Then there is a kj41 > N > k; such that z,,, > r. Hence by induction, there
are distinct natural numbers ki,ka,... such that x, >r for all j € N.

j+1
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2.5.4. a) Since infy>p x + infi>, Y is a lower bound of z; +y; for any j > n, we have infy>,, ) +infy>, yp <
inf;>p(z; + y;j). Taking the limit of this inequality as n — oo, we obtain

n—oo n—oo n

liminf z,, + liminf y,, <liminf(z, + yn).

Note, we used Corollary 1.16 and the fact that the sum on the left is not of the form co — co. Similarly, for each
Jj=zmn,

inf (zp + yx) < z; +y; < supxy + yj.

k>n k>n

Taking the infimum of this inequality over all j > n, we obtain infy>, (zx +yr) < supy>,, x +inf;>, y;. Therefore,

liminf(z, + y,) < limsup z,, + liminf y,,.
n—oo n—oo

n—oo

The remaining two inequalities follow from Exercise 2.5.2. For example,

limsup z,, + liminf y,, = — liminf(—z,) — limsup(—y,)
n—oo n—0o0 n—oo n—oo
< —liminf(—x, — yn) = imsup(z, + yn)-
n—oo n—00

b) It suffices to prove the first identity. By Theorem 2.36 and a),

lim z, + liminf y, <liminf(x, + y,).
n—oo n—oo n—oo

To obtain the reverse inequality, notice by the Approximation Property that for each n € N there is a j, > n
such that infr>, (xr + yr) > 5, —1/n +y;,. Hence

inf (z) + yi) > L + inf
inf (z zj ——+in
Pad kT Yk Jn n e Yk
for all n € N. Taking the limit of this inequality as n — oo, we obtain

liminf(z, + y,) > lim , + liminf y,.

n—oo n—oo n—oo

¢) Let z,, = (=1)" and y,, = (—1)"*!. Then the limits infimum are both —1, the limits supremum are both 1,
but z, + y, =0— 0 as n — oco. If z,, = (—1)" and y,, = 0 then

liminf(x, + y,) = —1 < 1 = limsup z,, + liminf y,,.
n—oo n—oo

n—oo
2.5.5. a) For any j > n, z; < SUPg>p, Tk and y; < supys, yr- Multiplying these inequalities, we have
L5Y;5 S (Sukan CEk)(Sukan yk)7 i'C'7
sup z;y; < (sup zy)(sup y).
ji>n k>n k>n

Taking the limit of this inequality as n — oo establishes a). The inequality can be strict because if

1 B 0 n even
In = n = 1 n odd

then limsup,,, . (Tnyn) = 0 < 1 = (limsup,,_, ., Z»)(limsup,,_, . Yn)-
b) By a),

lim inf(z,yn) = — limsup(—z,yn) > — lim sup(—z,,) lim sup y,, = lim inf z,, lim sup ys,.
n—oo n—o0 n—o0 n—oo n—00 n—oo

2.5.6. Case 1. x = co. By hypothesis, C' := limsup,,_,., ¥n > 0. Let M > 0 and choose N € N such that
n > N implies x,, > 2M/C and sup,,> y yn > C/2. Then supys n(Tryr) > Tnyn > (2M/C)y,, for any n > N and

supy> v (Tryx) > (2M/C) sup,,> § yn > M. Therefore, limsup,, _, . (Tnyn) = 0.
17
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Case 2. 0 < x < co. By Exercise 2.5.6a and Theorem 2.36,

lim sup(z,yn) < (limsup z,,)(limsup y,,) = = limsup y,,.

n—oo n—oo n—oo n—oo

On the other hand, given € > 0 choose n € N so that x > x — € for k > n. Then zxyr > (z — €)yx for each k > n,
i.e., supgs, (Thyr) > (7 — €) supys, yr. Taking the limit of this inequality as n — oo and as € — 0, we obtain

lim sup(z,y,) > x limsup y,.

n—oo n—0o0

2.5.7. It suffices to prove the first identity. Let s = inf,en(supy>,, )
Case 1. s = 0o. Then supy,, T = oo for all n € N so by definition,

limsup z, = lim (sup zx) = 00 = s.
n—oo nN—=00 k>n

Case 2. s = —oo. Let M > 0 and choose N € N such that sup,s y r < —M. Then supys,, £x < supysy Tk <
—M for all n > N, i.e., limsup,,_, ., Tn = —00. N N N

Case 3. —o0 < 8 < —oo. Let ¢ > 0 and use the Approximation Property to choose N € N such that
SUpgsn Tk < 8+ €. Since supys., Tx < supysy Tk < s + € for all n > N, it follows that

s—e<s<suprr <s+e
k>n

for n > N, ie., limsup,,_, ., xn = s.

2.5.8. It suffices to establish the first identity. Let s = liminf, . .

Case 1. s = 0. Then by Theorem 2.35 there is a subsequence k; such that x, — 0, i.e., l/xkj — 00 as j — 00.
In particular, supys, (1/xg) = oo for all n € N, i.e., limsup,,_, . (1/x,) =00 =1/s.

Case 2. s = 0o. Then xy — 00, i.e., 1/x), — 0, as k — oo. Thus by Theorem 2.36, limsup,, . (1/z,) = 0= 1/s.

Case 3. 0 < s < 0o. Fix j > n. Since 1/ infy>,, v, > 1/x; implies 1/infy>, 21 > sup;s,(1/z;), it is clear that
1/s > limsup,, .. (1/xy). On the other hand, given € > 0 and n € N, choose j > N such that infy>, x5 +€ > z;,
ie., 1/(infy>p xp +€) < 1/z; < supys, (1/z5). Taking the limit of this inequality as n — oo and as ¢ — 0, we
conclude that 1/s < limsup,, . (1/x,).

2.5.9. If z,, — 0, then |z,| — 0. Thus by Theorem 2.36, limsup,,_, ., |z,| = 0. Conversely, if limsup,,_, . |z,| <
0, then
0 < liminf |z,| < limsup |z,| <0,
n—oo

n—oo

implies that the limits supremum and infimum of |x,,| are equal (to zero). Hence by Theorem 2.36, the limit exists
and equals zero.
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