
CHAPTER 2

2.1 Limits of Sequences.

2.1.0. a) True. If xn converges, then there is an M > 0 such that |xn| ≤ M . Choose by Archimedes an N ∈ N
such that N > M/ε. Then n ≥ N implies |xn/n| ≤ M/n ≤ M/N < ε.

b) False. xn =
√

n does not converge, but xn/n = 1/
√

n → 0 as n →∞.
c) False. xn = 1 converges and yn = (−1)n is bounded, but xnyn = (−1)n does not converge.
d) False. xn = 1/n converges to 0 and yn = n2 > 0, but xnyn = n does not converge.

2.1.1. a) By the Archimedean Principle, given ε > 0 there is an N ∈ N such that N > 1/ε. Thus n ≥ N
implies

|(2− 1/n)− 2| ≡ |1/n| ≤ 1/N < ε.

b) By the Archimedean Principle, given ε > 0 there is an N ∈ N such that N > π2/ε2. Thus n ≥ N implies

|1 + π/
√

n− 1| ≡ |π/
√

n| ≤ π/
√

N < ε.

c) By the Archimedean Principle, given ε > 0 there is an N ∈ N such that N > 3/ε. Thus n ≥ N implies

|3(1 + 1/n)− 3| ≡ |3/n| ≤ 3/N < ε.

d) By the Archimedean Principle, given ε > 0 there is an N ∈ N such that N > 1/
√

3ε. Thus n ≥ N implies

|(2n2 + 1)/(3n2)− 2/3| ≡ |1/(3n2)| ≤ 1/(3N2) < ε.

2.1.2. a) By hypothesis, given ε > 0 there is an N ∈ N such that n ≥ N implies |xn − 1| < ε/2. Thus n ≥ N
implies

|1 + 2xn − 3| ≡ 2 |xn − 1| < ε.

b) By hypothesis, given ε > 0 there is an N ∈ N such that n ≥ N implies xn > 1/2 and |xn − 1| < ε/4. In
particular, 1/xn < 2. Thus n ≥ N implies

|(πxn − 2)/xn − (π − 2)| ≡ 2 |(xn − 1)/xn| < 4 |xn − 1| < ε.

c) By hypothesis, given ε > 0 there is an N ∈ N such that n ≥ N implies xn > 1/2 and |xn − 1| < ε/(1 + 2e).
Thus n ≥ N and the triangle inequality imply

|(x2
n − e)/xn − (1− e)| ≡ |xn − 1|

∣∣∣∣1 +
e

xn

∣∣∣∣ ≤ |xn − 1|
(

1 +
e

|xn|
)

< |xn − 1|(1 + 2e) < ε.

2.1.3. a) If nk = 2k, then 3− (−1)nk ≡ 2 converges to 2; if nk = 2k + 1, then 3− (−1)nk ≡ 4 converges to 4.
b) If nk = 2k, then (−1)3nk + 2 ≡ (−1)6k + 2 = 1 + 2 = 3 converges to 3; if nk = 2k + 1, then (−1)3nk + 2 ≡

(−1)6k+3 + 2 = −1 + 2 = 1 converges to 1.
c) If nk = 2k, then (nk−(−1)nknk−1)/nk ≡ −1/(2k) converges to 0; if nk = 2k+1, then (nk−(−1)nknk−1)/nk ≡

(2nk − 1)/nk = (4k + 1)/(2k + 1) converges to 2.

2.1.4. Suppose xn is bounded. By Definition 2.7, there are numbers M and m such that m ≤ xn ≤ M for all
n ∈ N. Set C := max{1, |M |, |m|}. Then C > 0, M ≤ C, and m ≥ −C. Therefore, −C ≤ xn ≤ C, i.e., |xn| < C
for all n ∈ N.

Conversely, if |xn| < C for all n ∈ N, then xn is bounded above by C and below by −C.

2.1.5. If C = 0, there is nothing to prove. Otherwise, given ε > 0 use Definition 2.1 to choose an N ∈ N such
that n ≥ N implies |bn| ≡ bn < ε/|C|. Hence by hypothesis, n ≥ N implies

|xn − a| ≤ |C|bn < ε.

By definition, xn → a as n →∞.

2.1.6. If xn = a for all n, then |xn−a| = 0 is less than any positive ε for all n ∈ N. Thus, by definition, xn → a
as n →∞.
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2.1.7. a) Let a be the common limit point. Given ε > 0, choose N ∈ N such that n ≥ N implies |xn − a| and
|yn − a| are both < ε/2. By the Triangle Inequality, n ≥ N implies

|xn − yn| ≤ |xn − a|+ |yn − a| < ε.

By definition, xn − yn → 0 as n →∞.
b) If n converges to some a, then given ε = 1/2, 1 = |(n + 1)− n| < |(n + 1)− a|+ |n− a| < 1 for n sufficiently

large, a contradiction.
c) Let xn = n and yn = n + 1/n. Then |xn − yn| = 1/n → 0 as n →∞, but neither xn nor yn converges.

2.1.8. By Theorem 2.6, if xn → a then xnk
→ a. Conversely, if xnk

→ a for every subsequence, then it
converges for the “subsequence” xn.

2.2 Limit Theorems.

2.2.0. a) False. Let xn = n2 and yn = −n and note by Exercise 2.2.2a that xn + yn →∞ as n →∞.
b) True. Let ε > 0. If xn → −∞ as n → ∞, then choose N ∈ N such that n ≥ N implies xn < −1/ε. Then

xn < 0 so |xn| = −xn > 0. Multiply xn < −1/ε by ε/(−xn) which is positive. We obtain −ε < 1/xn, i.e.,
|1/xn| = −1/xn < ε.

c) False. Let xn = (−1)n/n. Then 1/xn = (−1)nn has no limit as n →∞.
d) True. Since (2x − x)′ = 2x log 2 − 1 > 1 for all x ≥ 2, i.e., 2x − x is increasing on [2,∞). In particular,

2x − x ≥ 22 − 2 > 0, i.e., 2x > x for x ≥ 2. Thus, since xn →∞ as n →∞, we have 2xn > xn for n large, hence

2−xn <
1
xn

→ 0

as n →∞.

2.2.1. a) |xn| ≤ 1/n → 0 as n →∞ and we can apply the Squeeze Theorem.
b) 2n/(n2 + π) = (2/n)/(1 + π/n2) → 0/(1 + 0) = 0 by Theorem 2.12.
c) (

√
2n + 1)/(n +

√
2) = ((

√
2/
√

n) + (1/n))/(1 + (
√

2/n)) → 0/(1 + 0) = 0 by Exercise 2.2.5 and Theorem
2.12.

d) An easy induction argument shows that 2n + 1 < 2n for n = 3, 4, . . . . We will use this to prove that n2 ≤ 2n

for n = 4, 5, . . . . It’s surely true for n = 4. If it’s true for some n ≥ 4, then the inductive hypothesis and the fact
that 2n + 1 < 2n imply

(n + 1)2 = n2 + 2n + 1 ≤ 2n + 2n + 1 < 2n + 2n = 2n+1

so the second inequality has been proved.
Now the second inequality implies n/2n < 1/n for n ≥ 4. Hence by the Squeeze Theorem, n/2n → 0 as n →∞.

2.2.2. a) Let M ∈ R and choose by Archimedes an N ∈ N such that N > max{M, 2}. Then n ≥ N implies
n2 − n = n(n− 1) ≥ N(N − 1) > M(2− 1) = M .

b) Let M ∈ R and choose by Archimedes an N ∈ N such that N > −M/2. Notice that n ≥ 1 implies −3n ≤ −3
so 1− 3n ≤ −2. Thus n ≥ N implies n− 3n2 = n(1− 3n) ≤ −2n ≤ −2N < M .

c) Let M ∈ R and choose by Archimedes an N ∈ N such that N > M . Then n ≥ N implies (n2 + 1)/n =
n + 1/n > N + 0 > M .

d) Let M ∈ R satisfy M ≤ 0. Then 2 + sin θ ≥ 2− 1 = 1 implies n2(2 + sin(n3 + n + 1)) ≥ n2 · 1 > 0 ≥ M for
all n ∈ N. On the other hand, if M > 0, then choose by Archimedes an N ∈ N such that N >

√
M . Then n ≥ N

implies n2(2 + sin(n3 + n + 1)) ≥ n2 · 1 ≥ N2 > M .

2.2.3. a) Following Example 2.13,

2 + 3n− 4n2

1− 2n + 3n2
=

(2/n2) + (3/n)− 4
(1/n2)− (2/n) + 3

→ −4
3

as n →∞.
b) Following Example 2.13,

n3 + n− 2
2n3 + n− 2

=
1 + (1/n2)− (2/n3)
2 + (1/n2)− (2/n3)

→ 1
2

as n →∞.
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c) Rationalizing the expression, we obtain

√
3n + 2−√n =

(
√

3n + 2−√n)(
√

3n + 2 +
√

n)√
3n + 2 +

√
n

=
2n + 2√

3n + 2 +
√

n
→∞

as n →∞ by the method of Example 2.13. (Multiply top and bottom by 1/
√

n.)
d) Multiply top and bottom by 1/

√
n to obtain

√
4n + 1−√n√

9n + 1−√n + 2
=

√
4 + 1/n−

√
1− 1/n√

9 + 1/n−
√

1 + 2/n
→ 2− 1

3− 1
=

1
2
.

2.2.4. a) Clearly,
xn

yn
− x

y
=

xny − xyn

yyn
=

xny − xy + xy − xyn

yyn
.

Thus ∣∣∣∣
xn

yn
− x

y

∣∣∣∣ ≤
1
|yn| |xn − x|+ |x|

|yyn| |yn − y|.

Since y 6= 0, |yn| ≥ |y|/2 for large n. Thus

∣∣∣∣
xn

yn
− x

y

∣∣∣∣ ≤
2
|y| |xn − x|+ 2|x|

|y|2 |yn − y| → 0

as n →∞ by Theorem 2.12i and ii. Hence by the Squeeze Theorem, xn/yn → x/y as n →∞.
b) By symmetry, we may suppose that x = y = ∞. Since yn → ∞ implies yn > 0 for n large, we can apply

Theorem 2.15 directly to obtain the conclusions when α > 0. For the case α < 0, xn > M implies αxn < αM .
Since any M0 ∈ R can be written as αM for some M ∈ R, we see by definition that xn → −∞ as n →∞.

2.2.5. Case 1. x = 0. Let ε > 0 and choose N so large that n ≥ N implies |xn| < ε2. By (8) in 1.1,
√

xn < ε
for n ≥ N , i.e.,

√
xn → 0 as n →∞.

Case 2. x > 0. Then
√

xn −
√

x = (
√

xn −
√

x)
(√

xn +
√

x√
xn +

√
x

)
=

xn − x√
xn +

√
x

.

Since
√

xn ≥ 0, it follows that

|√xn −
√

x| ≤ |xn − x|√
x

.

This last quotient converges to 0 by Theorem 2.12. Hence it follows from the Squeeze Theorem that
√

xn →
√

x
as n →∞.

2.2.6. By the Density of Rationals, there is an rn between x + 1/n and x for each n ∈ N. Since |x− rn| < 1/n,
it follows from the Squeeze Theorem that rn → x as n →∞.

2.2.7. a) By Theorem 2.9 we may suppose that |x| = ∞. By symmetry, we may suppose that x = ∞. By
definition, given M ∈ R, there is an N ∈ N such that n ≥ N implies xn > M . Since wn ≥ xn, it follows that
wn > M for all n ≥ N . By definition, then, wn →∞ as n →∞.

b) If x and y are finite, then the result follows from Theorem 2.17. If x = y = ±∞ or −x = y = ∞, there is
nothing to prove. It remains to consider the case x = ∞ and y = −∞. But by Definition 2.14 (with M = 0),
xn > 0 > yn for n sufficiently large, which contradicts the hypothesis xn ≤ yn.

2.2.8. a) Take the limit of xn+1 = 1 − √
1− xn, as n → ∞. We obtain x = 1 − √

1− x, i.e., x2 − x = 0.
Therefore, x = 0, 1.

b) Take the limit of xn+1 = 2+
√

xn − 2 as n →∞. We obtain x = 2+
√

x− 2, i.e., x2− 5x+6 = 0. Therefore,
x = 2, 3. But x1 > 3 and induction shows that xn+1 = 2 +

√
xn − 2 > 2 +

√
3− 2 = 3, so the limit must be x = 3.

c) Take the limit of xn+1 =
√

2 + xn as n → ∞. We obtain x =
√

2 + x, i.e., x2 − x − 2 = 0. Therefore,
x = 2,−1. But xn+1 =

√
2 + xn ≥ 0 by definition (all square roots are nonnegative), so the limit must be x = 2.

This proof doesn’t change if x1 > −2, so the limit is again x = 2.
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2.2.9. a) Let E = {k ∈ Z : k ≥ 0 and k ≤ 10n+1y}. Since 10n+1y < 10, E ⊆ {0, 1, . . . , 9}. Hence w := sup E ∈
E. It follows that w ≤ 10n+1y, i.e., w/10n+1 ≤ y. On the other hand, since w + 1 is not the supremum of E,
w + 1 > 10n+1y. Therefore, y < w/10n+1 + 1/10n+1.

b) Apply a) for n = 0 to choose x1 = w such that x1/10 ≤ x < x1/10 + 1/10. Suppose

sn :=
n∑

k=1

xk

10k
≤ x <

n∑

k=1

xk

10k
+

1
10n

.

Then 0 < x− sn < 1/10n, so by a) choose xn+1 such that xn+1/10n+1 ≤ x− sn < xn+1/10n+1 + 1/10n+1, i.e.,

n+1∑

k=1

xk

10k
≤ x <

n+1∑

k=1

xk

10k
+

1
10n+1

.

c) Combine b) with the Squeeze Theorem.
d) Since an easy induction proves that 9n > n for all n ∈ N, we have 9−n < 1/n. Hence the Squeeze Theorem

implies that 9−n → 0 as n →∞. Hence, it follows from Exercise 1.4.4c and definition that

.4999 · · · = 4
10

+ lim
n→∞

n∑

k=2

9
10k

=
4
10

+ lim
n→∞

1
10

(
1− 1

9n

)
=

4
10

+
1
10

= 0.5.

Similarly,

.999 · · · = lim
n→∞

n∑

k=1

9
10k

= lim
n→∞

(
1− 1

9n

)
= 1.

2.3 The Bolzano–Weierstrass Theorem.

2.3.0. a) False. xn = 1/4 + 1/(n + 4) is strictly decreasing and |xn| ≤ 1/4 + 1/5 < 1/2, but xn → 1/4 as
n →∞.

b) True. Since (n− 1)/(2n− 1) → 1/2 as n →∞, this factor is bounded. Since | cos(n2 + n + 1)| ≤ 1, it follows
that {xn} is bounded. Hence it has a convergent subsequence by the Bolzano–Weierstrass Theorem.

c) False. xn = 1/2− 1/n is strictly increasing and |xn| ≤ 1/2 < 1 + 1/n, but xn → 1/2 as n →∞.
d) False. xn = (1 + (−1)n)n satisfies xn = 0 for n odd and xn = 2n for n even. Thus x2k+1 → 0 as k →∞, but

xn is NOT bounded.

2.3.1. Suppose that −1 < xn−1 < 0 for some n ≥ 0. Then 0 < xn−1 + 1 < 1 so 0 < xn−1 + 1 <
√

xn−1 + 1 and
it follows that xn−1 <

√
xn−1 + 1 − 1 = xn. Moreover,

√
xn−1 + 1 − 1 ≤ 1 − 1 = 0. Hence by induction, xn is

increasing and bounded above by 0. It follows from the Monotone Convergence Theorem that xn → a as n →∞.
Taking the limit of

√
xn−1 + 1− 1 = xn we see that a2 + a = 0, i.e., a = −1, 0. Since xn increases from x0 > −1,

the limit is 0. If x0 = −1, then xn = −1 for all n. If x0 = 0, then xn = 0 for all n.
Finally, it is easy to verify that if x0 = ` for ` = −1 or 0, then xn = ` for all n, hence xn → ` as n →∞.

2.3.2. If x1 = 0 then xn = 0 for all n, hence converges to 0. If 0 < x1 < 1, then by 1.4.1c, xn is decreasing
and bounded below. Thus the limit, a, exists by the Monotone Convergence Theorem. Taking the limit of
xn+1 = 1−√1− xn, as n →∞, we have a = 1−√1− a, i.e., a = 0, 1. Since x1 < 1, the limit must be zero.

Finally,
xn+1

xn
=

1−√1− xn

xn
=

1− (1− xn)
xn(1 +

√
1− xn)

→ 1
1 + 1

=
1
2
.

2.3.3. Case 1. x0 = 2. Then xn = 2 for all n, so the limit is 2.
Case 2. 2 < x0 < 3. Suppose that 2 < xn−1 ≤ 3 for some n ≥ 1. Then 0 < xn−1−2 ≤ 1 so

√
xn−1 − 2 ≥ xn−1−2,

i.e., xn = 2+
√

xn−1 − 2 ≥ xn−1. Moreover, xn = 2+
√

xn−1 − 2 ≤ 2+1 = 3. Hence by induction, xn is increasing
and bounded above by 3. It follows from the Monotone Convergence Theorem that xn → a as n → ∞. Taking
the limit of 2 +

√
xn−1 − 2 = xn we see that a2 − 5a + 6 = 0, i.e., a = 2, 3. Since xn increases from x0 > 2, the

limit is 3.
Case 3. x0 ≥ 3. Suppose that xn−1 ≥ 3 for some n ≥ 1. Then xn−1 − 2 ≥ 1 so

√
xn−1 − 2 ≤ xn−1 − 2, i.e.,

xn = 2 +
√

xn−1 − 2 ≤ xn−1. Moreover, xn = 2 +
√

xn−1 − 2 ≥ 2 + 1 = 3. Hence by induction, xn is decreasing
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and bounded above by 3. By repeating the steps in Case 2, we conclude that xn decreases from x0 ≥ 3 to the
limit 3.

2.3.4. Case 1. x0 < 1. Suppose xn−1 < 1. Then

xn−1 =
2xn−1

2
<

1 + xn−1

2
= xn <

2
2

= 1.

Thus {xn} is increasing and bounded above, so xn → x. Taking the limit of xn = (1 + xn−1)/2 as n →∞, we see
that x = (1 + x)/2, i.e., x = 1.

Case 2. x0 ≥ 1. If xn−1 ≥ 1 then

1 =
2
2
≤ 1 + xn−1

2
= xn ≤ 2xn−1

2
= xn−1.

Thus {xn} is decreasing and bounded below. Repeating the argument in Case 1, we conclude that xn → 1 as
n →∞.

2.3.5. The result is obvious when x = 0. If x > 0 then by Example 2.2 and Theorem 2.6,

lim
n→∞

x1/(2n−1) = lim
m→∞

x1/m = 1.

If x < 0 then since 2n− 1 is odd, we have by the previous case that x1/(2n−1) = −(−x)1/(2n−1) → −1 as n →∞.

2.3.6. a) Suppose that {xn} is increasing. If {xn} is bounded above, then there is an x ∈ R such that xn → x
(by the Monotone Convergence Theorem). Otherwise, given any M > 0 there is an N ∈ N such that xN > M .
Since {xn} is increasing, n ≥ N implies xn ≥ xN > M . Hence xn →∞ as n →∞.

b) If {xn} is decreasing, then −xn is increasing, so part a) applies.

2.3.7. Choose by the Approximation Property an x1 ∈ E such that sup E − 1 < x1 ≤ sup E. Since sup E /∈ E,
we also have x1 < sup E. Suppose x1 < x2 < · · · < xn in E have been chosen so that sup E − 1/n < xn < supE.
Choose by the Approximation Property an xn+1 ∈ E such that max{xn, sup E − 1/(n + 1)} < xn+1 ≤ supE.
Then sup E − 1/(n + 1) < xn+1 < supE and xn < xn+1. Thus by induction, x1 < x2 < . . . and by the Squeeze
Theorem, xn → sup E as n →∞.

2.3.8. a) This follows immediately from Exercise 1.2.6.
b) By a), xn+1 = (xn + yn)/2 < 2xn/2 = xn. Thus yn+1 < xn+1 < · · · < x1. Similarly, yn =

√
y2

n <
√

xnyn =
yn+1 implies xn+1 > yn+1 > yn · · · > y1. Thus {xn} is decreasing and bounded below by y1 and {yn} is increasing
and bounded above by x1.

c) By b),

xn+1 − yn+1 =
xn + yn

2
−√xnyn <

xn + yn

2
− yn =

xn − yn

2
.

Hence by induction and a), 0 < xn+1 − yn+1 < (x1 − y1)/2n.
d) By b), there exist x, y ∈ R such that xn ↓ x and yn ↑ y as n →∞. By c), |x− y| ≤ (x1 − y1) · 0 = 0. Hence

x = y.

2.3.9. Since x0 = 1 and y0 = 0,

x2
n+1 − 2y2

n+1 = (xn + 2yn)2 − 2(xn + yn)2

= −x2
n + 2y2

n = · · · = (−1)n(x0 − 2y0) = (−1)n.

Notice that x1 = 1 = y1. If yn−1 ≥ n − 1 and xn−1 ≥ 1 then yn = xn−1 + yn−1 ≥ 1 + (n − 1) = n and
xn = xn−1 + 2yn−1 ≥ 1. Thus 1/yn → 0 as n →∞ and xn ≥ 1 for all n ∈ N. Since

∣∣∣∣
x2

n

y2
n

− 2
∣∣∣∣ =

∣∣∣∣
x2

n − 2y2
n

y2
n

∣∣∣∣ =
1
y2

n

→ 0

as n →∞, it follows that xn/yn → ±√2 as n →∞. Since xn, yn > 0, the limit must be
√

2.
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2.3.10. a) Notice x0 > y0 > 1. If xn−1 > yn−1 > 1 then y2
n−1 − xn−1yn−1 = yn−1(yn−1 − xn−1) > 0 so

yn−1(yn−1 + xn−1) < 2xn−1yn−1. In particular,

xn =
2xn−1yn−1

xn−1 + yn−1
> yn−1.

It follows that
√

xn >
√

yn−1 > 1, so xn >
√

xnyn−1 = yn > 1 · 1 = 1. Hence by induction, xn > yn > 1 for all
n ∈ N.

Now yn < xn implies 2yn < xn + yn. Thus

xn+1 =
2xnyn

xn + yn
< xn.

Hence, {xn} is decreasing and bounded below (by 1). Thus by the Monotone Convergence Theorem, xn → x for
some x ∈ R.

On the other hand, yn+1 is the geometric mean of xn+1 and yn, so by Exercise 1.2.6, yn+1 ≥ yn. Since yn is
bounded above (by x0), we conclude that yn → y as n →∞ for some y ∈ R.

b) Let n → ∞ in the identity yn+1 = √
xn+1yn. We obtain, from part a), y =

√
xy, i.e., x = y. A direct

calculation yields y6 > 3.141557494 and x7 < 3.14161012.

2.4 Cauchy sequences.

2.4.0. a) False. an = 1 is Cauchy and bn = (−1)n is bounded, but anbn = (−1)n does not converge, hence
cannot be Cauchy by Theorem 2.29.

b) False. an = 1 and bn = 1/n are Cauchy, but an/bn = n does not converge, hence cannot be Cauchy by
Theorem 2.29.

c) True. If (an + bn)−1 converged to 0, then given any M ∈ R, M 6= 0, there is an N ∈ N such that n ≥ N
implies |an + bn|−1 < 1/|M |. It follows that n ≥ N implies |an + bn| > |M | > 0 > M . In particular, |an + bn|
diverges to∞. But if an and bn are Cauchy, then by Theorem 2.29, an+bn → x where x ∈ R. Thus |an+bn| → |x|,
NOT ∞.

d) False. If x2k = log k and xn = 0 for n 6= 2k, then x2k − x2k−1 = log(k/(k − 1)) → 0 as k →∞, but xk does
not converge, hence cannot be Cauchy by Theorem 2.29.

2.4.1. Since (2n2 + 3)/(n3 + 5n2 + 3n + 1) → 0 as n → ∞, it follows from the Squeeze Theorem that xn → 0
as n →∞. Hence by Theorem 2.29, xn is Cauchy.

2.4.2. If xn is Cauchy, then there is an N ∈ N such that n ≥ N implies |xn − xN | < 1. Since xn − xN ∈ Z, it
follows that xn = xN for all n ≥ N . Thus set a := xN .

2.4.3. Suppose xn and yn are Cauchy and let ε > 0.
a) If α = 0, then αxn = 0 for all n ∈ N, hence is Cauchy. If α 6= 0, then there is an N ∈ N such that n,m ≥ N

implies |xn − xm| < ε/|α|. Hence
|αxn − αxm| ≤ |α| |xn − xm| < ε

for n, m ≥ N .
b) There is an N ∈ N such that n,m ≥ N implies |xn − xm| and |yn − ym| are < ε/2. Hence

|xn + yn − (xm + ym)| ≤ |xn − xm|+ |yn − ym| < ε

for n, m ≥ N .
c) By repeating the proof of Theorem 2.8, we can show that every Cauchy sequence is bounded. Thus choose

M > 0 such that |xn| and |yn| are both ≤ M for all n ∈ N. There is an N ∈ N such that n,m ≥ N implies
|xn − xm| and |yn − ym| are both < ε/(2M). Hence

|xnyn − (xmym)| ≤ |xn − xm| |ym|+ |xn| |yn − ym| < ε

for n, m ≥ N .

2.4.4. Let sn =
∑n−1

k=1 xk for n = 2, 3, . . . . If m > n then sm+1 − sn =
∑m

k=n xk. Therefore, sn is Cauchy by
hypothesis. Hence sn converges by Theorem 2.29.
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2.4.5. Let xn =
∑n

k=1(−1)k/k for n ∈ N. Suppose n and m are even and m > n. Then

S :=
m∑

k=n

(−1)k

k
≡ 1

n
−

(
1

n + 1
− 1

n + 2

)
− · · · −

(
1

m− 1
− 1

m

)
.

Each term in parentheses is positive, so the absolute value of S is dominated by 1/n. Similar arguments prevail
for all integers n and m. Since 1/n → 0 as n → ∞, it follows that xn satisfies the hypotheses of Exercise 2.4.4.
Hence xn must converge to a finite real number.

2.4.6. By Exercise 1.4.4c, if m ≥ n then

|xm+1 − xn| = |
m∑

k=n

(xk+1 − xk)| ≤
m∑

k=n

1
ak

=
(

1− 1
am

− (1− 1
an

)
)

1
a− 1

.

Thus |xm+1 − xn| ≤ (1/an − 1/am)/(a − 1) → 0 as n,m → ∞ since a > 1. Hence {xn} is Cauchy and must
converge by Theorem 2.29.

2.4.7. a) Suppose a is a cluster point for some set E and let r > 0. Since E ∩ (a− r, a + r) contains infinitely
many points, so does E ∩ (a − r, a + r) \ {a}. Hence this set is nonempty. Conversely, if E ∩ (a − s, a + s) \ {a}
is always nonempty for all s > 0 and r > 0 is given, choose x1 ∈ E ∩ (a − r, a + r). If distinct points x1, . . . , xk

have been chosen so that xk ∈ E ∩ (a− r, a + r) and s := min{|x1 − a|, . . . , |xk − a|}, then by hypothesis there is
an xk+1 ∈ E ∩ (a− s, a + s). By construction, xk+1 does not equal any xj for 1 ≤ j ≤ k. Hence x1, . . . , xk+1 are
distinct points in E ∩ (a− r, a + r). By induction, there are infinitely many points in E ∩ (a− r, a + r).

b) If E is a bounded infinite set, then it contains distinct points x1, x2, . . . . Since {xn} ⊆ E, it is bounded. It
follows from the Bolzano–Weierstrass Theorem that xn contains a convergent subsequence, i.e., there is an a ∈ R
such that given r > 0 there is an N ∈ N such that k ≥ N implies |xnk

− a| < r. Since there are infinitely many
xnk

’s and they all belong to E, a is by definition a cluster point of E.

2.4.8. a) To show E := [a, b] is sequentially compact, let xn ∈ E. By the Bolzano–Weierstrass Theorem, xn

has a convergent subsequence, i.e., there is an x0 ∈ R and integers nk such that xnk
→ x0 as k →∞. Moreover,

by the Comparison Theorem, xn ∈ E implies x0 ∈ E. Thus E is sequentially compact by definition.
b) (0, 1) is bounded and 1/n ∈ (0, 1) has no convergent subsequence with limit in (0, 1).
c) [0,∞) is closed and n ∈ [0,∞) is a sequence which has no convergent subsequence.

2.5 Limits supremum and infimum.

2.5.1. a) Since 3− (−1)n = 2 when n is even and 4 when n is odd, lim supn→∞ xn = 4 and lim infn→∞ xn = 2.
b) Since cos(nπ/2) = 0 if n is odd, 1 if n = 4m and −1 if n = 4m + 2, lim supn→∞ xn = 1 and lim infn→∞ xn =

−1.
c) Since (−1)n+1 + (−1)n/n = −1 + 1/n when n is even and 1 − 1/n when n is odd, lim supn→∞ xn = 1 and

lim infn→∞ xn = −1.
d) Since xn → 1/2 as n →∞, lim supn→∞ xn = lim infn→∞ xn = 1/2 by Theorem 2.36.
e) Since |yn| ≤ M , |yn/n| ≤ M/n → 0 as n →∞. Therefore, lim supn→∞ xn = lim infn→∞ xn = 0 by Theorem

2.36.
f) Since n(1+ (−1)n)+n−1((−1)n− 1) = 2n when n is even and −2/n when n is odd, lim supn→∞ xn = ∞ and

lim infn→∞ xn = 0.
g) Clearly xn →∞ as n →∞. Therefore, lim supn→∞ xn = lim infn→∞ xn = ∞ by Theorem 2.36.

2.5.2. By Theorem 1.20,

lim inf
n→∞

(−xn) := lim
n→∞

( inf
k≥n

(−xk)) = − lim
n→∞

(sup
k≥n

xk) = − lim sup
n→∞

xn.

A similar argument establishes the second identity.

2.5.3. a) Since limn→∞(supk≥n xk) < r, there is an N ∈ N such that supk≥N xk < r, i.e., xk < r for all k ≥ N .
b) Since limn→∞(supk≥n xk) > r, there is an N ∈ N such that supk≥N xk > r, i.e., there is a k1 ∈ N such that

xk1 > r. Suppose kν ∈ N have been chosen so that k1 < k2 < · · · < kj and xkν > r for ν = 1, 2, . . . , j. Choose
N > kj such that supk≥N xk > r. Then there is a kj+1 > N > kj such that xkj+1 > r. Hence by induction, there
are distinct natural numbers k1, k2, . . . such that xkj > r for all j ∈ N.
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2.5.4. a) Since infk≥n xk + infk≥n yk is a lower bound of xj + yj for any j ≥ n, we have infk≥n xk + infk≥n yk ≤
infj≥n(xj + yj). Taking the limit of this inequality as n →∞, we obtain

lim inf
n→∞

xn + lim inf
n→∞

yn ≤ lim inf
n→∞

(xn + yn).

Note, we used Corollary 1.16 and the fact that the sum on the left is not of the form ∞−∞. Similarly, for each
j ≥ n,

inf
k≥n

(xk + yk) ≤ xj + yj ≤ sup
k≥n

xk + yj .

Taking the infimum of this inequality over all j ≥ n, we obtain infk≥n(xk +yk) ≤ supk≥n xk +infj≥n yj . Therefore,

lim inf
n→∞

(xn + yn) ≤ lim sup
n→∞

xn + lim inf
n→∞

yn.

The remaining two inequalities follow from Exercise 2.5.2. For example,

lim sup
n→∞

xn + lim inf
n→∞

yn = − lim inf
n→∞

(−xn)− lim sup
n→∞

(−yn)

≤ − lim inf
n→∞

(−xn − yn) = lim sup
n→∞

(xn + yn).

b) It suffices to prove the first identity. By Theorem 2.36 and a),

lim
n→∞

xn + lim inf
n→∞

yn ≤ lim inf
n→∞

(xn + yn).

To obtain the reverse inequality, notice by the Approximation Property that for each n ∈ N there is a jn > n
such that infk≥n(xk + yk) > xjn − 1/n + yjn . Hence

inf
k≥n

(xk + yk) > xjn
− 1

n
+ inf

k≥n
yk

for all n ∈ N. Taking the limit of this inequality as n →∞, we obtain

lim inf
n→∞

(xn + yn) ≥ lim
n→∞

xn + lim inf
n→∞

yn.

c) Let xn = (−1)n and yn = (−1)n+1. Then the limits infimum are both −1, the limits supremum are both 1,
but xn + yn = 0 → 0 as n →∞. If xn = (−1)n and yn = 0 then

lim inf
n→∞

(xn + yn) = −1 < 1 = lim sup
n→∞

xn + lim inf
n→∞

yn.

2.5.5. a) For any j ≥ n, xj ≤ supk≥n xk and yj ≤ supk≥n yk. Multiplying these inequalities, we have
xjyj ≤ (supk≥n xk)(supk≥n yk), i.e.,

sup
j≥n

xjyj ≤ (sup
k≥n

xk)(sup
k≥n

yk).

Taking the limit of this inequality as n →∞ establishes a). The inequality can be strict because if

xn = 1− yn =
{

0 n even
1 n odd

then lim supn→∞(xnyn) = 0 < 1 = (lim supn→∞ xn)(lim supn→∞ yn).
b) By a),

lim inf
n→∞

(xnyn) = − lim sup
n→∞

(−xnyn) ≥ − lim sup
n→∞

(−xn) lim sup
n→∞

yn = lim inf
n→∞

xn lim sup
n→∞

yn.

2.5.6. Case 1. x = ∞. By hypothesis, C := lim supn→∞ yn > 0. Let M > 0 and choose N ∈ N such that
n ≥ N implies xn ≥ 2M/C and supn≥N yn > C/2. Then supk≥N (xkyk) ≥ xnyn ≥ (2M/C)yn for any n ≥ N and
supk≥N (xkyk) ≥ (2M/C) supn≥N yn > M . Therefore, lim supn→∞(xnyn) = ∞.
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Case 2. 0 ≤ x < ∞. By Exercise 2.5.6a and Theorem 2.36,

lim sup
n→∞

(xnyn) ≤ (lim sup
n→∞

xn)(lim sup
n→∞

yn) = x lim sup
n→∞

yn.

On the other hand, given ε > 0 choose n ∈ N so that xk > x− ε for k ≥ n. Then xkyk ≥ (x− ε)yk for each k ≥ n,
i.e., supk≥n(xkyk) ≥ (x− ε) supk≥n yk. Taking the limit of this inequality as n →∞ and as ε → 0, we obtain

lim sup
n→∞

(xnyn) ≥ x lim sup
n→∞

yn.

2.5.7. It suffices to prove the first identity. Let s = infn∈N(supk≥n xk).
Case 1. s = ∞. Then supk≥n xk = ∞ for all n ∈ N so by definition,

lim sup
n→∞

xn = lim
n→∞

(sup
k≥n

xk) = ∞ = s.

Case 2. s = −∞. Let M > 0 and choose N ∈ N such that supk≥N xk ≤ −M . Then supk≥n xk ≤ supk≥N xk ≤
−M for all n ≥ N , i.e., lim supn→∞ xn = −∞.

Case 3. −∞ < s < −∞. Let ε > 0 and use the Approximation Property to choose N ∈ N such that
supk≥N xk < s + ε. Since supk≥n xk ≤ supk≥N xk < s + ε for all n ≥ N , it follows that

s− ε < s ≤ sup
k≥n

xk < s + ε

for n ≥ N , i.e., lim supn→∞ xn = s.

2.5.8. It suffices to establish the first identity. Let s = lim infn→∞ xn.
Case 1. s = 0. Then by Theorem 2.35 there is a subsequence kj such that xkj → 0, i.e., 1/xkj →∞ as j →∞.

In particular, supk≥n(1/xk) = ∞ for all n ∈ N, i.e., lim supn→∞(1/xn) = ∞ = 1/s.
Case 2. s = ∞. Then xk →∞, i.e., 1/xk → 0, as k →∞. Thus by Theorem 2.36, lim supn→∞(1/xn) = 0 = 1/s.
Case 3. 0 < s < ∞. Fix j ≥ n. Since 1/ infk≥n xk ≥ 1/xj implies 1/ infk≥n xk ≥ supj≥n(1/xj), it is clear that

1/s ≥ lim supn→∞(1/xn). On the other hand, given ε > 0 and n ∈ N, choose j > N such that infk≥n xk + ε > xj ,
i.e., 1/(infk≥n xk + ε) < 1/xj ≤ supk≥n(1/xk). Taking the limit of this inequality as n → ∞ and as ε → 0, we
conclude that 1/s ≤ lim supn→∞(1/xn).

2.5.9. If xn → 0, then |xn| → 0. Thus by Theorem 2.36, lim supn→∞ |xn| = 0. Conversely, if lim supn→∞ |xn| ≤
0, then

0 ≤ lim inf
n→∞

|xn| ≤ lim sup
n→∞

|xn| ≤ 0,

implies that the limits supremum and infimum of |xn| are equal (to zero). Hence by Theorem 2.36, the limit exists
and equals zero.
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