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Chapter 1

Problem 1-1

With log,(q) plotted on the abscissa and R, = source rate plotted on the ordinate in kbps, the plot is a straight
line starting at (log, g = 1, R,, = 8 kbps) ending at (log, g = 8, R,, = 64 kbps).

Problem 1-2
Using (1-2),

R = 2Wlog,q or 18,000 = 2(3,000)log,q or log,g = ~5000 _ 3

6000
Thus, g = 8 levels.
Problem 1-3

(a) Raise both sides of (1-4) to the power of 2:

2C/W — 1+E(

Solve for E,/N, to get (1-5).
(¢ ) The required transmission bandwidth is B, = 2W = 2/T, = 2R Hz (R in bps). Therefore, the point to be
plotted is R/B; = Y2 and E,/N, = 6 dB.

Problem 1-4

Use Shannon’s capacity formula, (1-4) rewritten as

EJT,| b . 1
C = Wlog,|1 + N bits per second where — = carrier power, R = —

0 b Tb

Thus,

10—12

a0 mao| 10*log,[1 + 10°] = 99.67 kbps

c = 10 log2[1 +

Hence, C=99.67 kbps is geather than the required R = 60 kbps and it is theoretically possible to achieve the

desired performance. Therefore, your company is safe in submitting a bid in terms of the project being
theoretically possible.



Problem 1-5

Using the rules in the problem statement written for n = 3, wehave g, = b,, g, =b, ® b, and gy;=bs; & b,.

Application of these rules give the results in the table below:

Decimal number Binary representation Gray code, £,8,85
0 000 000
1 001 001
2 010 011 I
3 011 010
4 100 110
5 101 111
6 110 101
7 111 100

Problem 1-6

(a) Equation (1-6) gives

Py = 0)| |07 o1lfo.4| [0.34
Py = 1| |03 09]{0.6] |0.66
(b) By Bayes’ rule

PX=1|Y=1) = PY=1]X=1DPX=1) _ (0.9(0.6) _ 0.818
P(Y=1) 0.66
where P(Y=1) = P(Y=11X=0PX=0) + PY=11X=1)PX=1)

(c)Since PX=01Y=1)+PX=11Y=1)=1, PX=01Y=1)=1-0.818 =0.182. As a check, apply

Bayes’ rule to find the same answer.



Problem 1-7

(a) Expand the two expressions for y(f) using trigonometric identities:

y(t) = A[alcos Wyt + a,cosw,(t - r)]
= A[(a1 + a,c0s wor)cos W,t + a,sineT sinwot]
= ABcos(w,t + 0)

EA[BCOSB COS Wt - Bsin0 sinwot]

Equate coefficients of cos w,t and sin w,t on the second and fourth lines to get

BcosO = a, +a,coswyt and -BsinO = a,sinw,t

Solve for B and 6 to get

> 5 a,sinw,T
B = yla; +2a,a,cos®,T +a, and tanf = ~—=—— —
a, +a,cosw,t

(b) Substitute values in the equations immediately above to get max(B) = la, + a,| = 1.2 for cos(w,t) = 1, and
min(B) = la, - a,l = 0.8 for cos(w,7) = -1. Maxima and minima are spaced by 1 MHz.

(¢ ) For 10 kHz, negligible unless signal spectrum is located at a notch of B; for 100 kHz, negligible to
moderate; for 1 MHz, severe; for 10 MHz, very severe to unusable unless steps are taken to undo the effects
of the channel.

Problem 1-8

(a) Given that a, = 0.5a,. Thus,

E, = (a, +a)*T, = 1.5%/T,

Therefore

1 -
P, = 5exp(—2.25a12Tb/N0) = —exp(-2.25k) = 1073

1
2

Solve to find that k = - In(2x107)/2.25 = 4.81.



(b) For a reinforcing case (i.e., 1 followed by a 1 or a -1 followed by a -1), we have an ampltude of 1.5a, or
-1.5a, for an energy of E,, =2.25a,’T,. For a partial cancellation case, half the pulse has amplitude 0.5a,
and half of it has amplitude 1.54, for an energy of E,, = 0.5[0.25a,* + 2.25a,’] = 1.25a,’T,. We leave out
the first bit from the average because it is a transient situation. From Figure 1-8, we have six cancellation
cases and three reinforcement cases. From our previous normalization procedure, we have an error
probability of 107 for each of the reinforcement cases. For the cancellation cases, we have an error
probability of

P, = %exp(—1.25x4.81) = 0.0012

The average bit error probability averaged over bits 2 through 10 (bit 1 was left out because it is a transient
situation) is
= _ 3x107° + 6x0.0012

P, - 5 = 8.033x10™*

Note that as more bits are included in the average, it will approach a limit which is the average bit error
probability for the intersymbol interference being considered.
(c ) For arbitrary T < T, we can show with the aid of a sketch like the one in part (b) that

E, = 225a/T,
and E, = (0.5a)*t +(1.5a)%(T, - 7)
2.25a.T, (1 - 0.89%/T,)

Il

Therefore,

=~
I

or 107 (due to calibration)

~
I

.. = exp[-2.25(aT,)(1 - 0.897/T})

exp[-2.25(4.81)(1 - 0.89T/T,) = 10 5xexp(9.637/T,), T < T,

A plot is shown below:
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Problem 1-9

(a) From the information given in the problem, take «, = 1 and &, = 0.2. The Doppler shift is

_ (75x10°/3600 km/s)(900x10° Hz)

f
4 3x10% m/s

= 62.5 Hz or w, = 392.7 rad/s

Since the automobile is traveling away from the base station the reflected component is at 900 MHz minus
62.5 Hz. This only makes a difference on the phase. Plots will be furnished after the answer to part (b).



(b) The period of the fading envelope is f;' = 1/62.5 = 16 ms. The bit periods corresponding to the various
data rates given are 1 ms, 0.1 ms, and 20 ps, respectively. Thus, the degradations would be moderate,
negligible, and negligible, respectively.

phi(t), rad.
o
N o
g
[ |

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

Problem 1-10

(a) a=0.0215(1)""*°=0.0215 dB/km; (b) o =0.362(1)*""=0.362 dB/km; (¢) a=0.0215(25)""* =0.833
dB/km; (d) «=0.362(25)*"* = 8.27 dB/km; (e) & = 0.0719(10)"*" = 0.8989 dB/km.

Problem 1-11

The available power is

P . = kT = (1.38x107)(290) = 4.002x102! = -204 dBw = -174 dBm



Problem 1-12

The received power in dBW is

A
Pp agw = 2010g10( m) *Prgw * Orag * Oras ~ Lo an

The wavelength is A = ¢/f = 3x10%/12x10° = 0.025 m. The antenna gains are

G, - G, = MDOD 140743 - 4148 dB
(0.025)?
The free-space loss is
0.025
L, 4 = -20lo = 205.1 dB
odB S1 4nx35,784,000]

Therefore, the received power is

Py apw = ~205.1 +101og,,(100) +2(41.48) - 6

-108.1 dBW = -78.1 dBm

1l

1.549x10® mW = 1.549x1075 pW

Problem 1-13

(a) The transmit and receive antenna gains in this case are

_ 4m(2)(0.75) _ 4993 dB: ) - 3x108

G. =G
koo 0.0152 20%10°

= 0.015 m

The attenuation due to rain is

L

rain

= 2(0.8989) = 1.7978 dB - from Problem 1-10e

The total attenuation (other than free space) is

L, os = Lo * Lyoraware + Lamos = 17978 +2 +0.4 = 4.1978 dB

rain hardware atmos



Solve (1-25) for Py g,

A

Pr gw = _2010g104—nd -~ Grgg ~ Gra *L P

o,dBW T 'R dBW

where
_ -12 _
PR,dBW = 1010g1010 = -120 dBW
and
Free space loss = -20log,, 0.015 = 209.54 dB
471tx35,784,000
Therefore,

P, gw = 209.54 -2(49.23) +4.1978 - 120 = -4.7222 dBW = 0.3371 watts

(b) The rain attenuation is

= 0.0368(15)"!"® = 0.7598 dB/km and L_. = 2(0.7598) = 1.5196 dB

arain rain

The atmospheric loss is

_ [ 15)? )
L..=|=](04) =0255dB
20

and the total loss is

L, 5 = 2+0.966 +0.225 = 3.7446 dB

The antenna gains are

3x108
15%10°

41(2)(0.75)
0.022

Gy = G, = 1010g10[ ] = 46.73 dB; A = = 0.02 m

The free-space loss is



0.02
41x35,784,000

Free space loss = —2010g10( ) = 207.04 dB

Thus, the transmit power is

Pp gw = 207.04 - 2(46.73) +3.7446 - 120 = -2.6754 dBW = 0.5401 watts

Problem 1-14

For the uplink, A = 3x10%/12x10° = 0.025 m. The transmit and receive antenna gains are

Grup = Grpop = 10l0g o ZUOD | 4355 4p
' ' (0.025)?
The free-space loss is
Free space loss = -20log,, 0.025 = 206.07 dB
P 471x40,000,000

Overall losses are L, ,, = 3 + 0.2 = 3.2 dB. The effective noise temperature is 7, = T,(F-1) =
290(10°* - 1) = 527.33 K. The overall equivalent noise temperature for the uplink is 7,, = T, + T, = 527.33
+ 300 = 827.33 K. The noise power for the uplink is

P, = 10log,((kT B) = 10log, [(1.38x107)(827.33)(10%)] = -149.42 dBW

The uplink signal-to-noise power ratio is to be 20 dB, so

Py asw.sae = Pyagw = 20 dB or Pp oo = 20 - 149.42 = -129.42 dBW

From (1-27),

Pr asw, wp Pr apw,sar * FSLup ~Grgp -

G

R " Lo up an
= -129.42 +206.07 - 2(43.25) + 3.2
= -6.65 dBW = 0.216 W

On the downlink, A = 3x10%/10x10° = 0.03 m. The transmit and receive antenna gains are



B B 41 (1.5)(0.7)| _
Gr down = O7 gown = 10l0g;, ——(0‘03)2 = 41.66 dB
The free-space loss is
Free space loss, = -20log,, 0.03 -| = 204.48 dB
own 41x40,000,000

Overall losses are the same as on the uplink, and the effective noise temperature is the same. The overall

equivalent noise temperature for the downlink is Ty, =T, + T, = 527.33 + 50 = 577.33 K. The noise power
for the downlink is

P iow = 10log, (KT, B) = 10log, [(1.38x10"2)(577.33)(10%)] = -151 dBW

The received signal power is

Py gbw,grouna = 20~ 151 dB = 131 dBW

From (1-27), the transmit power on the downlink may be calculated as

A
Pr agw, gma, a8 = Pr apw ~ 20l0g,, and) Gras = Gras * Ly ap

=-131 +204.48 - 2(41.66) +3.2 = -6.64 dBW = 0.217 W

Problem 1-15

(a) The effective aperture for a circular antenna of diameter d is

1td?
A = e———
off p[ 1 ]

o-ol o) o)

Therefore, (1-22 becomes

(b) Putting the numbers into the above equation and expressing in dB gives Gy = 19.15 + 20 log,,(fin GHz),
and ¢; 45 = 0.346/(f in Ghz) radians. The following table results:

10



f, GHz G ¢, 4p, radians (degrees) |
10 39.5 0.035 (2)
15 427 0.023 (1.32)
20 452 0.017 (0.97)
30 48.7 0.012 (0.69)

Problem 1-16

The gain in terms of frequency is

1 103 172
30 = 10log,[0.75(5dp] or d = — | -235m

Also,

Gy g = 0.2 = 0.1 rad = 5.69 degrees

2.3254/0.75

Problem 1-17

(a) For 20 GHz, the wavelength is A = 0.015 m. We want ¢, 43 = 2 degrees = 0.035 radians. Solve the 3
dB beamwidth equation given in Problem 1-15 for d to get

A 0015

b, g/p  0.035,/0.65

5

(b) A 150 mile spot at d = 35,784 km is desired. Note that 1 mi = 1.6093 km, so 150 mi = 241.4 km.
Therefore,

d

= 0533 m

The gain is

Gy = 10log, o

2
- 1010g10[0.65(—0(')—50313—5n) } - 39.1 dB = 8.1x10° ratio

11



d)3 B - 2414 = 0.00675 rad = _)“._
35,784 \/B

Solving for d gives
d ’ 001> =276 m

b, sV/p  0.00675,0.65
The required gain is

= 53.36 dB = 2.167x10° ratio

nd |’ 27672
Gap = 1010g10[p( T) ] = 1010g100.65( 0'015)

12



Chapter 2

Problem 2-1
Part Energy or Power Periodic? Power, W Energy, J

a Power Yes; period =1s 1 o

b Energy No 0 - 1/10

c Energy No 0 2

d Energy No 0 |

€ Power No 1 o
Problem 2-2

(a) Linear, fixed, noncausal; (b) Linear, fixed, causal; (¢ ) Linear, time varying, causal; (d) Linear, fixed,
noncausal; (e) Nonlinear, fixed, causal.

Problem 2-3

(a) The response is

fe<] t
(1) f10e40<’-f>u(1:)u(t—r)dr = flOe’lO("‘)dr, >0
-e 0

(1 - e 1)y(p)

(b) Using the superposition integral, the response is

t
y(t) = floe-w("f)dc, f < 1

-1

0, r< -1
1-e e 14 <1
(elo_e—lo)e—IOt’ > 1

Another way is to write the input as x(f) = u(¢ + 1) - u(z - 1) and use superposition with the result of (a).
(c ) Consider the input x(#) = exp(-af) u(z) so that it can be used in both parts (c ) and (d). For¢> 0,

13



t

y(t) = fe “4T()e —10(t—r)d,E - -101—(_)0((8 —at_e—lOt), t>0
0

Now let o = 3 to obtain the answer for part (c):

) - ?(e B g 10y 3p)

(d) Use the general result for part (c) with o = -j6T to get the result

10
@) = 10+ 360

o (ej6nt —e ’IOt)u(t)

(e) Use superposition with x(f) = 0.5exp(jémz) + 0.5exp(-j6m¢) and the result for part (d) to get

5 : ) 5 B ]
1) = ___ej6m_e IOtut —2 (e j6TEt_e IOtut
) = e Ju(t) 1O_ﬂsn( o
= l—o[locos&tt +6Tsin67s - 10e '10’]u(t)
100 +36T|:2

Problem 2-4

(a) Sketches show that ¢,(#) is 1 between 0 and 1 and O elsewhere, ¢,(¢) is 1 between 1 and 2 and 0
elsewhere, 5(7) is 1 between 2 and 3 and O elsewhere, and ¢,(¢) is 1 between 3 and 4 and 0 elsewhere.
Clearly, the area under the square of each is 1. Since there is no overlap between differing functions, the set
is clearly orthogonal.

(b) The expansion of (2-17) with four terms can be found by applying (2-22). The expansion coefficients
are

1 2
d, = fe 24t = 2(1 -e P, d, = fe Rt = 21 - e V?)e 12,
0 1
3 4
d3 _ fe —t/2dt — 2(1 _ 6_1/2)8_1, d4 _ fe —t/Zdt _ 2(1 _e-l/2)6—3/2
2 3

Therefore,

14



50 = 21 - e D)[d,(1) + e (1) + e Ty(1) + e PR b (o)

The minimum integral-squared error is

4 4
Comn = [ed- Y d) = 1-e -4l - P (Lre e re) = 0.02
0 n=1

Problem 2-5

Use Euler’s theorem to expand the complex exponential Fourier series expression:

x(1) fj X exp(jnwyt) = fj X, [cos(nwyt) + jsin(noy)]

h = - n = -
oo "1

X, + 2:1 X, cosnwyt + ¥ X, cosnw,t

n-

n=-o

0 _1
+ Y jX, sinnot + Y. jX, sinnot
n=1

n=-«

Let m = -n in the second and fourth sums:

x(0) = Xy + ), (X, +X_)cosnwyt + Y. j(X, - X_)sinnwt
n=1 n=1

i

a, + Y a,cosnw,t + y b, sinnwyt (Fourier sine-cosine series)

n=1 n=1

Equate coefficients to get
a, = Xy a, =X, +X b, =jX,-X_)

Problem 2-6

Write the Fourier sum in terms of

|X,|exp(j6,) = X = Ti x(t)exp(—jnwt)dt

OT0

15



to get

0

x(t) = Z [Xn|exp[j(noo0t+0n)]

n = -

If x(z) is real, X, = X" as can be seen by conjugating the integral for X, and replacing n by -n. This implies
that IX, 1 =1X,land 6, = 6,,. Now write the Fourier series sum as

-1

x(t) = Xy + Y |X, |expli(nwyt + 0] + Y |X | expli(nwyt + 6)]
n=0

n=-«

In the last sum, replace n by -m and then change back to n. Put both sums together and use Euler’s theorem
to get

x(t) = X, + Y, 2|X,|cos(nwyt +6,) = A, + Y A, cos(nwyt + 6 )
n=1 n=1

Problem 2-7

Iny,IX,P=Y, XX, replace X, by the integral expression for it:

Z |Xn|2 _ E Xn*Tifx(t)e—jnmotdt _ _Tl_ (1) Z Xn*e —jnwotdt
OTO

n=-w n=-w 0 n=-o
Ty

But

x®) = Y X" soxr) = Y X e

n=-o n=-o

Therefore,

oo

2 _ i * — _1__ 2
> x| - x(Ox " (H)dt T [ |x(®)|?dt

n=-w OTO

16



Problem 2-8

(a) For the half-rectified sine wave

T(,/z
X, - — f Asin(@e " ar + L f e " dr
On/z
0, n odd
A [ PO T2 o T+ Myt T2 —————— neven and # *1
= | + = = {7l -n?
J2T0l1(1 - ), (1 +mw, | A
—, n = =#l1
4j

(b) For a full-rectified sine wave, the period is really 7;/2. Furthermore, it is an even signal, so
Ty2
X =2 f sin(wf) cos(nwgn)dr, wy = 21ATy2) = 2,
T(/z

= = f {sin[(1 - 2m)wr] + sin[(1 + 2n)w, ]} dt

_ A _cos[(1 -2nm)m] -1 cos[(1 +2n)m] - 1
w, T, 1-2n 1+2n
_ 2A
(1l - 4n?)
(c) For the pulse train:
ty + T2 . fy + T2
exp(—jnw,t
X = —%- f Aexp(-jnw b)dt = LS —M
04y -2 0 1 ty - /2

%Sinc(n‘l:/ T exp(-j2mnty/T,)
0

17



(d) For an even square wave

14 T2
f cos(nw,f) dt - f cos(nw, ) dt

0 Ty4

SR

| _ 24sin(nm/2)

sin(nw,) [ sin(nw,f)
nw

nwo

I’l(n)0

Bl

Ty/4

(e) For an even triangle signal,

S

Ty2
X, = f(l - ; ] cos(nw, 1) dt
o|% 0

I T2

4

sin(nw, t
24 —(L) - —ftcos(nu)ot)dt
T T,

nw,

0 o

The first term in the brackets is zero upon substitution of limits. The second term must be integrated
by parts or looked up in a table. We get
_ ZA( 4 ) tsin(nw, ) [ﬁ

sin nw,t
x -4 4 ()
TO TO

=

The first term in the brackets again evaluates to 0. The remaining integral evaluates to

4A

(nm)*
0, n even

M cos(n(oot)‘To/2 )

n

, n odd

18



Problem 2-9

(a) Using the notation of (2-39), p(?) is a triangle function centered at ¢ = 0, of peak amplitude 1, and with
half width 2. From pair 3, Table F-7,

A(t/2) ‘97 2sinc 2(2f)

Again, in the notation of (2-40), f; = 1/T, = 1/4 = 0.25, so (2-40) becomes

X() = 025 2sinc?(0.57)8(z - 0.25n)

n=-o

(b) In this case, p(r) = II(#/4) and T, = 8, so (2-40) becomes

X(H = 0.125 Y, 4sinc(0.51)8(r - 0.125n)

n= -

where use has been made of the transform pair

II(#/4) ~ 4sinc(4f)

Problem 2-10

Let

oo

y() = x(f) i 8t -nT) = Y x(nT)d(t - nT)

n=-o n=-oo

By the multiplication theorem of Fourier transforms and pair 17 of Table F-7,

Y() = X(N+f, Y 8¢ -mT) = £, Y X(Pd(f-mf) = £ Y. X(f-mf)

m= —oo m= —o m= -

Problem 2-11

Use the delay theorem followed by the frequency translation theorem to get

?[II( L f) eﬂ“("?')} = 4sinc[4(f - 1)]e 7V

19



Problem 2-12

The spectra are shown below:

M(f)

Xoss()

T 0.5

110 90 /\/oj\/ 90 0 7

A o) AArea=0.5

1705

-110 -90 /\/E)Jy 90 110 /

The single sideband spectra consist of the portion of the DSB spectrum from -110 to -100 and 100 to 110 Hz
for USB, or the portion from -100 to -90 and from 90 to 100 for LSB.

Problem 2-13

For DSB and AM, we need m(f) = F ' [M(f)] = 20 sinc(20¢). The modulated wave for for AM is
Xan® = A[l +am ()] cos(2007z)

where, for convenience, we take A = 1. It was given that a = 1/2. From above, we have m,(¢) = sinc(205).
Thus,

X(® = [1 +0.5sinc(20£)] cos(2007)

20



For DSB,

Xpsp(®) = m(f)cos(2mf f) = 20sinc(207) cos(2007r)

where the carrier amplitude = 1 for convenience. For single sideband, we need the Hilbert transform of the
modulating signal. Its Fourier transform is -jsgn(f)M(f), so by inverse Fourier transformation

10
M) = 7 -sgn(HM(] = [ jelrdf + [ ~jeldf

-10

mi(t)

i[1 - cos(20m1)] = —z—sin2(2()nt) = (8007z) sinc 2(20¢)
!t !

where 2 sin*u = 1 - cos(2u). The single-sideband signals, from (2-65), are

1}

Xssgr, ssgul®) % [m(f) cos(20077) + #i(t) sin(2007t7)]

1}

% [205sinc(20¢) cos(2007tf) = (8007¢) sinc %(20¢) sin(2007£)]

= T “ ‘f,'[ | "’!'A”é_
3 ff%f\va\;\W I T (W;’u“xf‘v'afv’\f*u%
i
e @Mwu} W’ L/\ et oo .
-O.I25 -0j2 -0.I15 -0.11 -0.05 (l) 005 0.1 0.I15 0.2 0.25
ig : E vawwvww\/\/w l JM( f\ { \\{ [ \,»T w\/xjvw»lﬂ Wﬁ/\mﬁ

""O—

21



Problem 2-14

For AM:

X cos(oyr) = A[l +am (H]cos*(w,)

%[1 vam (0] + %[1 +am, (D] cos(2w,)

signal with spectrum at O freq. + signal with spectrum at 2xcarrier

If f, >> W (the modulating signal bandwidth), the lowpass filter’s cutoff frequency can be chosen to reject
the second term. A dc blocking capacitor rejects the A/2 term. The output of the lowpass filter is then
proportional to m(f). The proof for DSB is similar to this.

For SSB:

X5 p(0) cos(w, 1) % [m(r) cos(w,f) + i(t) sin(w,f)] cos(w?)

% [1m(1) cos*(w,t) = (1) sin(@,f)cos(w,f)

%[m(t) +m(t) cos(2wf) + r(t) sin(2w t)]]

The lowpass filter will reject the last two terms of the last equation and pass the first, which gives an output
proportional to m(t).

Problem 2-15

The spectrum may be found by applying (2-75) with B = A, f/f,, as given by (2-72).

(a) B =(2)(10)/200 = 0.1; hence, only the first lower and upper sideband lines and the carrier are significant.
We find that Jy(0.1) = 1, J,(0.1) = 0.05 = - J ,(0.1). The lower sideband line is at 800 Hz, the carrier line is
at 100 Hz, and the upper sideband line is at 1200 Hz. The spectrum is shown at the end of the problem.
(b) B = (2)(10)/20 = 1; Use the recursion relationship (2-76) and Table 2-5 to compute J,(1) = 0.765, J,(1)
=044, J,(1) =0.115, Jy(1) = 0.02, and J,(1) = 0.002; also, use (2-76) to get negative-indexed Bessel
functions. Lines are spaced by 20 Hz. The spectrum is shown at the end of the problem.

(c) B =(2)(10)/4 = 5; Use the recursion relationship (2-76) and Table 2-5 to compute J,(5) = -0.178, J,(5)
=-0.328, J,(5) =0.047, J5(5) = 0.365, J,(5) = 0.391, J4(5) = 0.261, J¢(5) = 0.131, J,(5) = 0.053, and J,(5)
=0.018; also, use (2-76) to get negative-indexed Bessel functions. Lines are spaced by 5 Hz. The spectrum
is shown at the end of the problem.

(d) B =(10)(10)/20 = 5; use the same J,’s as in part (c ). Lines are now spaced by 20 Hz. See the next page
for the amplitude spectrum.
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Problem 2-16

(a) Using the overbar as average, we get for DSB:

Phsp =

(b) For AM, we get

——[1 1
= A?m%(f)|= + —cos2w, ¢
()lz 2 0
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[Am(t)coswf]® = A’m*(1)cos’wt

AZm?(1)



P,y = {All +m(®]coswyt}? = A*[1 + m?()]* cos® ot

= A2[1 + 2am() + m20) B . %cos2(o0t - %Az[l v a?m()]

1
= §A2[1 +a’P,]

(c) For SSB, note that

; 1 2 ~2
cos’w,t = sin’wyt = > and m*(r) = m*(t) = P,

We find that

(d) For PM and FM, the power may be calculated as

Py = {Acos[wg + BO(®]} = %Az + —;—Azcos[Z(th +Bd(®)] = %Az

which follows as long as ¢(7) is not such that a spectral line of the cos[2(w,? + Bd(#)] terms ends up at zero
frequency. This is possible, for example, if ¢(7) is sinusoidal with frequency a subharmonic of .

Problem 2-17

(a) By applying (2-58), the Hilbert transform is

B 1
s o Loex@® , 1edh 1
710 nfm—t—)»dk "_fl_ In

(b) For nonzero spectrum for f> 0,

t
t

Zp(t) = II(#/2) +jIn

+

: ‘
For nonzero spectrum for f < 0,
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2,0 = TI(t12) - jIn

t+1
t-1

(¢ ) The Fourier transform of m(?) is 2 sinc(2f). Z,(f) is the portion to the right of f= 0 (the left-hand part is
zero), Z,(f) is the portion to the left of f = 0 (the right-hand part is zero).

Problem 2-18

(a) Use the transform pair

20
exp(-ali]) - —2%
o? + (27f)?

and the modulation theorem to obtain

X() - 1 . 1
1 +[27(f - 5000)> 1 + [27(f + 500)]?

Take the positive frequency part and shift left 500 Hz to get
X = 2
1 +@2np?

Take the inverse Fourier transform to get (in this case the answer is obvious from the time domain waveform)

() = expl-|t|]

(b) Using (2-104), the lowpass transfer function is

2 ) 2
1 +j2(100)f/500 1+ j2mfi5m

The envelope of the output waveform is

1 1

~ _ 94 ﬁ X = g1
¥(®) [HHXNT = 7 1 +j2nfI5S1 1 + 2np)?

Lets =j2nfand a = Sm. We expand

25
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F(s) =
© T @y

using partial fractions to

Now substitute s = j2mf :

Y(f):F(jan)z—a 1 LG 1 L2 1 o =5
l-a l+2nf 1+a 1-j2nf 1-0¢? o +)20f

Now use
exp(-ar) u(t) « —1—
o +j2nf
to get
(1) = -——2—exp(-Hult) + —E—exp(Du(-) + ——exp(-ar)u(t)
l1-a 1+a 1 - a2

Then find the real signal using

y(®) = Re[y()exp(j10007r)], e = 57

Problem 2-19

The phase response is linear for all frequency. Therefore, there will be no phase distortion.
(a) Cosinusoidal components at 2.5 Hz and 7.5 Hz get different gains — amplitude distortion.
(b) Both components get the same gain = no distortion.

(¢) Cosinusoidal components at 9 Hz and 15 Hz get different gains = amplitude distortion.
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