Instructor's Solution Manual
 Introduction to Electrodynamics
 Fourth Edition

David J. Griffiths

2014

Contents

1 Vector Analysis 4
2 Electrostatics 26
3 Potential 53
4 Electric Fields in Matter 92
5 Magnetostatics 110
6 Magnetic Fields in Matter 133
7 Electrodynamics 145
8 Conservation Laws 168
9 Electromagnetic Waves 185
10 Potentials and Fields 210
11 Radiation 231
12 Electrodynamics and Relativity 262

Preface

Although I wrote these solutions, much of the typesetting was done by Jonah Gollub, Christopher Lee, and James Terwilliger (any mistakes are, of course, entirely their fault). Chris also did many of the figures, and I would like to thank him particularly for all his help. If you find errors, please let me know (griffith@reed.edu).

David Griffiths

Chapter 1

Vector Analysis

Problem 1.1

(a) From the diagram, $|\mathbf{B}+\mathbf{C}| \cos \theta_{3}=|\mathbf{B}| \cos \theta_{1}+|\mathbf{C}| \cos \theta_{2}$. Multiply by $|\mathbf{A}|$.
$\left|\mathbf{A}\left\|\mathbf{B}+\mathbf{C}\left|\cos \theta_{3}=\left|\mathbf{A}\left\|\mathbf{B}\left|\cos \theta_{1}+|\mathbf{A} \| \mathbf{C}| \cos \theta_{2}\right.\right.\right.\right.\right.\right.$.
So: $\mathbf{A} \cdot(\mathbf{B}+\mathbf{C})=\mathbf{A} \cdot \mathbf{B}+\mathbf{A} \cdot \mathbf{C}$. (Dot product is distributive)
Similarly: $|\mathbf{B}+\mathbf{C}| \sin \theta_{3}=|\mathbf{B}| \sin \theta_{1}+|\mathbf{C}| \sin \theta_{2}$. Mulitply by $|\mathbf{A}| \hat{\mathbf{n}}$.
$|\mathbf{A}||\mathbf{B}+\mathbf{C}| \sin \theta_{3} \hat{\mathbf{n}}=|\mathbf{A}||\mathbf{B}| \sin \theta_{1} \hat{\mathbf{n}}+|\mathbf{A}||\mathbf{C}| \sin \theta_{2} \hat{\mathbf{n}}$.
If $\hat{\mathbf{n}}$ is the unit vector pointing out of the page, it follows that
$\mathbf{A} \times(\mathbf{B}+\mathbf{C})=(\mathbf{A} \times \mathbf{B})+(\mathbf{A} \times \mathbf{C}) .($ Cross product is distributive $)$

(b) For the general case, see G. E. Hay's Vector and Tensor Analysis, Chapter 1, Section 7 (dot product) and Section 8 (cross product)

Problem 1.2

The triple cross-product is not in general associative. For example, suppose $\mathbf{A}=\mathbf{B}$ and \mathbf{C} is perpendicular to \mathbf{A}, as in the diagram. Then $(\mathbf{B} \times \mathbf{C})$ points out-of-the-page, and $\mathbf{A} \times(\mathbf{B} \times \mathbf{C})$ points down, and has magnitude $A B C$. But $(\mathbf{A} \times \mathbf{B})=\mathbf{0}$, so $(\mathbf{A} \times \mathbf{B}) \times \mathbf{C}=\mathbf{0} \neq$ $\mathbf{A} \times(\mathbf{B} \times \mathbf{C})$.

Problem 1.3

$\mathbf{A}=+1 \hat{\mathbf{x}}+1 \hat{\mathbf{y}}-1 \hat{\mathbf{z}} ; A=\sqrt{3} ; \mathbf{B}=1 \hat{\mathbf{x}}+1 \hat{\mathbf{y}}+1 \hat{\mathbf{z}} ; B=\sqrt{3}$.
$\mathbf{A} \cdot \mathbf{B}=+1+1-1=1=A B \cos \theta=\sqrt{3} \sqrt{3} \cos \theta \Rightarrow \cos \theta=\frac{1}{3}$.
$\theta=\cos ^{-1}\left(\frac{1}{3}\right) \approx 70.5288^{\circ}$

Problem 1.4

The cross-product of any two vectors in the plane will give a vector perpendicular to the plane. For example, we might pick the base (A) and the left side (B):
$\mathbf{A}=-1 \hat{\mathbf{x}}+2 \hat{\mathbf{y}}+0 \hat{\mathbf{z}} ; \mathbf{B}=-1 \hat{\mathbf{x}}+0 \hat{\mathbf{y}}+3 \hat{\mathbf{z}}$.

$$
\mathbf{A} \times \mathbf{B}=\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
-1 & 2 & 0 \\
-1 & 0 & 3
\end{array}\right|=6 \hat{\mathbf{x}}+3 \hat{\mathbf{y}}+2 \hat{\mathbf{z}}
$$

This has the right direction, but the wrong magnitude. To make a unit vector out of it, simply divide by its length:

$$
|\mathbf{A} \times \mathbf{B}|=\sqrt{36+9+4}=7 . \quad \hat{\mathbf{n}}=\frac{\mathbf{A} \times \mathbf{B}}{|\mathbf{A} \times \mathbf{B}|}=\frac{6}{7} \hat{\mathbf{x}}+\frac{3}{7} \hat{\mathbf{y}}+\frac{2}{7} \hat{\mathbf{z}} .
$$

Problem 1.5

$$
\begin{aligned}
& \mathbf{A} \times(\mathbf{B} \times \mathbf{C})=\left|\begin{array}{cc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} \\
A_{x} & A_{z} \\
\left(B_{y} C_{z}-B_{z} C_{y}\right)\left(B_{z} C_{x}-B_{x} C_{z}\right)\left(B_{x} C_{y}-B_{y} C_{x}\right)
\end{array}\right| \\
&=\hat{\mathbf{x}}\left[A_{y}\left(B_{x} C_{y}-B_{y} C_{x}\right)-A_{z}\left(B_{z} C_{x}-B_{x} C_{z}\right)\right]+\hat{\mathbf{y}}()+\hat{\mathbf{z}}() \\
&(\text { I'll just check the x-component; the others go the same way }) \\
&=\hat{\mathbf{x}}\left(A_{y} B_{x} C_{y}-A_{y} B_{y} C_{x}-A_{z} B_{z} C_{x}+A_{z} B_{x} C_{z}\right)+\hat{\mathbf{y}}()+\hat{\mathbf{z}}() . \\
& \mathbf{B}(\mathbf{A} \cdot \mathbf{C})-\mathbf{C}(\mathbf{A} \cdot \mathbf{B})=\left[B_{x}\left(A_{x} C_{x}+A_{y} C_{y}+A_{z} C_{z}\right)-C_{x}\left(A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}\right)\right] \hat{\mathbf{x}}+() \hat{\mathbf{y}}+() \hat{\mathbf{z}} \\
&=\hat{\mathbf{x}}\left(A_{y} B_{x} C_{y}+A_{z} B_{x} C_{z}-A_{y} B_{y} C_{x}-A_{z} B_{z} C_{x}\right)+\hat{\mathbf{y}}()+\hat{\mathbf{z}}() . \text { They agree. }
\end{aligned}
$$

Problem 1.6

$\mathbf{A} \times(\mathbf{B} \times \mathbf{C})+\mathbf{B} \times(\mathbf{C} \times \mathbf{A})+\mathbf{C} \times(\mathbf{A} \times \mathbf{B})=\mathbf{B}(\mathbf{A} \cdot \mathbf{C})-\mathbf{C}(\mathbf{A} \cdot \mathbf{B})+\mathbf{C}(\mathbf{A} \cdot \mathbf{B})-\mathbf{A}(\mathbf{C} \cdot \mathbf{B})+\mathbf{A}(\mathbf{B} \cdot \mathbf{C})-\mathbf{B}(\mathbf{C} \cdot \mathbf{A})=\mathbf{0}$. So: $\mathbf{A} \times(\mathbf{B} \times \mathbf{C})-(\mathbf{A} \times \mathbf{B}) \times \mathbf{C}=-\mathbf{B} \times(\mathbf{C} \times \mathbf{A})=\mathbf{A}(\mathbf{B} \cdot \mathbf{C})-\mathbf{C}(\mathbf{A} \cdot \mathbf{B})$.
If this is zero, then either \mathbf{A} is parallel to \mathbf{C} (including the case in which they point in opposite directions, or one is zero), or else $\mathbf{B} \cdot \mathbf{C}=\mathbf{B} \cdot \mathbf{A}=0$, in which case \mathbf{B} is perpendicular to \mathbf{A} and \mathbf{C} (including the case $\mathbf{B}=\mathbf{0}$.)
Conclusion: $\mathbf{A} \times(\mathbf{B} \times \mathbf{C})=(\mathbf{A} \times \mathbf{B}) \times \mathbf{C} \Longleftrightarrow$ either \mathbf{A} is parallel to \mathbf{C}, or \mathbf{B} is perpendicular to \mathbf{A} and \mathbf{C}.
Problem 1.7
$r=(4 \hat{\mathbf{x}}+6 \hat{\mathbf{y}}+8 \hat{\mathbf{z}})-(2 \hat{\mathbf{x}}+8 \hat{\mathbf{y}}+7 \hat{\mathbf{z}})=2 \hat{\mathbf{x}}-2 \hat{\mathbf{y}}+\hat{\mathbf{z}}$
$r=\sqrt{4+4+1}=3$
$\hat{\boldsymbol{n}}=\frac{\boldsymbol{r}}{\boldsymbol{r}}=\frac{2}{3} \hat{\mathbf{x}}-\frac{2}{3} \hat{\mathbf{y}}+\frac{1}{3} \hat{\mathbf{z}}$

Problem 1.8

(a) $\bar{A}_{y} \bar{B}_{y}+\bar{A}_{z} \bar{B}_{z}=\left(\cos \phi A_{y}+\sin \phi A_{z}\right)\left(\cos \phi B_{y}+\sin \phi B_{z}\right)+\left(-\sin \phi A_{y}+\cos \phi A_{z}\right)\left(-\sin \phi B_{y}+\cos \phi B_{z}\right)$
$=\cos ^{2} \phi A_{y} B_{y}+\sin \phi \cos \phi\left(A_{y} B_{z}+A_{z} B_{y}\right)+\sin ^{2} \phi A_{z} B_{z}+\sin ^{2} \phi A_{y} B_{y}-\sin \phi \cos \phi\left(A_{y} B_{z}+A_{z} B_{y}\right)+$ $\cos ^{2} \phi A_{z} B_{z}$

$$
=\left(\cos ^{2} \phi+\sin ^{2} \phi\right) A_{y} B_{y}+\left(\sin ^{2} \phi+\cos ^{2} \phi\right) A_{z} B_{z}=A_{y} B_{y}+A_{z} B_{z}
$$

(b) $\left(\bar{A}_{x}\right)^{2}+\left(\bar{A}_{y}\right)^{2}+\left(\bar{A}_{z}\right)^{2}=\Sigma_{i=1}^{3} \bar{A}_{i} \bar{A}_{i}=\Sigma_{i=1}^{3}\left(\sum_{j=1}^{3} R_{i j} A_{j}\right)\left(\sum_{k=1}^{3} R_{i k} A_{k}\right)=\Sigma_{j, k}\left(\Sigma_{i} R_{i j} R_{i k}\right) A_{j} A_{k}$.

This equals $A_{x}^{2}+A_{y}^{2}+A_{z}^{2}$ provided $\Sigma_{i=1}^{3} R_{i j} R_{i k}=\left\{\begin{array}{lll}1 & \text { if } & j=k \\ 0 & \text { if } & j \neq k\end{array}\right\}$
Moreover, if R is to preserve lengths for all vectors \mathbf{A}, then this condition is not only sufficient but also necessary. For suppose $\mathbf{A}=(1,0,0)$. Then $\Sigma_{j, k}\left(\Sigma_{i} R_{i j} R_{i k}\right) A_{j} A_{k}=\Sigma_{i} R_{i 1} R_{i 1}$, and this must equal 1 (since we want $\bar{A}_{x}^{2}+\bar{A}_{y}^{2}+\bar{A}_{z}^{2}=1$). Likewise, $\Sigma_{i=1}^{3} R_{i 2} R_{i 2}=\Sigma_{i=1}^{3} R_{i 3} R_{i 3}=1$. To check the case $j \neq k$, choose $\mathbf{A}=(1,1,0)$. Then we want $2=\Sigma_{j, k}\left(\Sigma_{i} R_{i j} R_{i k}\right) A_{j} A_{k}=\Sigma_{i} R_{i 1} R_{i 1}+\Sigma_{i} R_{i 2} R_{i 2}+\Sigma_{i} R_{i 1} R_{i 2}+\Sigma_{i} R_{i 2} R_{i 1}$. But we already know that the first two sums are both 1 ; the third and fourth are equal, so $\Sigma_{i} R_{i 1} R_{i 2}=\Sigma_{i} R_{i 2} R_{i 1}=0$, and so on for other unequal combinations of j, k. \checkmark In matrix notation: $\tilde{R} R=1$, where \tilde{R} is the transpose of R.

[^0]
Problem 1.9

A 120° rotation carries the z axis into the $y(=\bar{z})$ axis, y into $x(=\bar{y})$, and x into $z(=\bar{x})$. So $\bar{A}_{x}=A_{z}$, $\bar{A}_{y}=A_{x}, \bar{A}_{z}=A_{y}$.

$$
R=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Problem 1.10

(a) No change. $\left(\bar{A}_{x}=A_{x}, \bar{A}_{y}=A_{y}, \bar{A}_{z}=A_{z}\right)$
(b) $\mathbf{A} \longrightarrow-\mathbf{A}$, in the sense $\left(\bar{A}_{x}=-A_{x}, \bar{A}_{y}=-A_{y}, \bar{A}_{z}=-A_{z}\right)$
(c) $(\mathbf{A} \times \mathbf{B}) \longrightarrow(-\mathbf{A}) \times(-\mathbf{B})=(\mathbf{A} \times \mathbf{B})$. That is, if $\mathbf{C}=\mathbf{A} \times \mathbf{B}, \mathbf{C} \longrightarrow \mathbf{C}$. No minus sign, in contrast to behavior of an "ordinary" vector, as given by (b). If \mathbf{A} and \mathbf{B} are pseudovectors, then $(\mathbf{A} \times \mathbf{B}) \longrightarrow(\mathbf{A}) \times(\mathbf{B})=$ $(\mathbf{A} \times \mathbf{B})$. So the cross-product of two pseudovectors is again a pseudovector. In the cross-product of a vector and a pseudovector, one changes sign, the other doesn't, and therefore the cross-product is itself a vector. Angular momentum $(\mathbf{L}=\mathbf{r} \times \mathbf{p})$ and torque $(\mathbf{N}=\mathbf{r} \times \mathbf{F})$ are pseudovectors.
(d) $\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C}) \longrightarrow(-\mathbf{A}) \cdot((-\mathbf{B}) \times(-\mathbf{C}))=-\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})$. So, if $a=\mathbf{A} \cdot(\mathbf{B} \times \mathbf{C})$, then $a \longrightarrow-a$; a pseudoscalar changes sign under inversion of coordinates.

Problem 1.11

$(a) \boldsymbol{\nabla} f=2 x \hat{\mathbf{x}}+3 y^{2} \hat{\mathbf{y}}+4 z^{3} \hat{\mathbf{z}}$
(b) $\boldsymbol{\nabla} f=2 x y^{3} z^{4} \hat{\mathbf{x}}+3 x^{2} y^{2} z^{4} \hat{\mathbf{y}}+4 x^{2} y^{3} z^{3} \hat{\mathbf{z}}$
(c) $\boldsymbol{\nabla} f=e^{x} \sin y \ln z \hat{\mathbf{x}}+e^{x} \cos y \ln z \hat{\mathbf{y}}+e^{x} \sin y(1 / z) \hat{\mathbf{z}}$

Problem 1.12

(a) $\boldsymbol{\nabla} h=10[(2 y-6 x-18) \hat{\mathbf{x}}+(2 x-8 y+28) \hat{\mathbf{y}}]$. $\boldsymbol{\nabla} h=0$ at summit, so
$\left.\begin{array}{l}2 y-6 x-18=0 \\ 2 x-8 y+28=0 \Longrightarrow 6 x-24 y+84=0\end{array}\right\} 2 y-18-24 y+84=0$.
$22 y=66 \Longrightarrow y=3 \Longrightarrow 2 x-24+28=0 \Longrightarrow x=-2$.
Top is 3 miles north, 2 miles west, of South Hadley.
(b) Putting in $x=-2, y=3$:
$h=10(-12-12-36+36+84+12)=720 \mathrm{ft}$.
(c) Putting in $x=1, y=1: \nabla h=10[(2-6-18) \hat{\mathbf{x}}+(2-8+28) \hat{\mathbf{y}}]=10(-22 \hat{\mathbf{x}}+22 \hat{\mathbf{y}})=220(-\hat{\mathbf{x}}+\hat{\mathbf{y}})$.
$|\nabla h|=220 \sqrt{2} \approx 311 \mathrm{ft} / \mathrm{mile} ;$ direction: northwest.

Problem 1.13

$$
\boldsymbol{\imath}=\left(x-x^{\prime}\right) \hat{\mathbf{x}}+\left(y-y^{\prime}\right) \hat{\mathbf{y}}+\left(z-z^{\prime}\right) \hat{\mathbf{z}} ; \quad \imath=\sqrt{\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}}
$$

(a) $\boldsymbol{\nabla}\left(\boldsymbol{r}^{2}\right)=\frac{\partial}{\partial x}\left[\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}\right] \hat{\mathbf{x}}+\frac{\partial}{\partial y}() \hat{\mathbf{y}}+\frac{\partial}{\partial z}() \hat{\mathbf{z}}=2\left(x-x^{\prime}\right) \hat{\mathbf{x}}+2\left(y-y^{\prime}\right) \hat{\mathbf{y}}+2\left(z-z^{\prime}\right) \hat{\mathbf{z}}=2 \boldsymbol{\varkappa}$.
(b) $\boldsymbol{\nabla}\left(\frac{1}{r}\right)=\frac{\partial}{\partial x}\left[\left(x-x^{\prime}\right)^{2}+\left(y-y^{\prime}\right)^{2}+\left(z-z^{\prime}\right)^{2}\right]^{-\frac{1}{2}} \hat{\mathbf{x}}+\frac{\partial}{\partial y}()^{-\frac{1}{2}} \hat{\mathbf{y}}+\frac{\partial}{\partial z}()^{-\frac{1}{2}} \hat{\mathbf{z}}$ $=-\frac{1}{2}()^{-\frac{3}{2}} 2\left(x-x^{\prime}\right) \hat{\mathbf{x}}-\frac{1}{2}()^{-\frac{3}{2}} 2\left(y-y^{\prime}\right) \hat{\mathbf{y}}-\frac{1}{2}()^{-\frac{3}{2}} 2\left(z-z^{\prime}\right) \hat{\mathbf{z}}$ $=-()^{-\frac{3}{2}}\left[\left(x-x^{\prime}\right) \hat{\mathbf{x}}+\left(y-y^{\prime}\right) \hat{\mathbf{y}}+\left(z-z^{\prime}\right) \hat{\mathbf{z}}\right]=-\left(1 / r^{3}\right) \boldsymbol{r}=-\left(1 / r^{2}\right) \hat{\boldsymbol{r}}$.
(c) $\frac{\partial}{\partial x}\left(r^{n}\right)=n r^{n-1} \frac{\partial r}{\partial x}=n r^{n-1}\left(\frac{1}{2} \frac{1}{r} 2 r_{x}\right)=n r^{n-1} \hat{\boldsymbol{r}}_{x}$, so $\nabla\left(r^{n}\right)=n r^{n-1} \hat{\boldsymbol{r}}$

Problem 1.14

$\bar{y}=+y \cos \phi+z \sin \phi$; multiply by $\sin \phi: \bar{y} \sin \phi=+y \sin \phi \cos \phi+z \sin ^{2} \phi$.
$\bar{z}=-y \sin \phi+z \cos \phi$; multiply by $\cos \phi: \bar{z} \cos \phi=-y \sin \phi \cos \phi+z \cos ^{2} \phi$.
Add: $\bar{y} \sin \phi+\bar{z} \cos \phi=z\left(\sin ^{2} \phi+\cos ^{2} \phi\right)=z$. Likewise, $\bar{y} \cos \phi-\bar{z} \sin \phi=y$.
So $\frac{\partial y}{\partial \bar{y}}=\cos \phi ; \frac{\partial y}{\partial \bar{z}}=-\sin \phi ; \frac{\partial z}{\partial \bar{y}}=\sin \phi ; \frac{\partial z}{\partial \bar{z}}=\cos \phi$. Therefore
$\left.\begin{array}{l}\overline{(\nabla f)}_{y}=\frac{\partial f}{\partial \bar{y}}=\frac{\partial f}{\partial y} \frac{\partial y}{\partial \bar{y}}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial \bar{y}}=+\cos \phi(\boldsymbol{\nabla} f)_{y}+\sin \phi(\boldsymbol{\nabla} f)_{z} \\ \overline{(\boldsymbol{\nabla} f)_{z}}=\frac{\partial f}{\partial \bar{z}}=\frac{\partial f}{\partial y} \frac{\partial y}{\partial \bar{z}}+\frac{\partial f}{\partial z} \frac{\partial z}{\partial \bar{z}}=-\sin \phi(\boldsymbol{\nabla} f)_{y}+\cos \phi(\boldsymbol{\nabla} f)_{z}\end{array}\right\}$ So $\boldsymbol{\nabla} f$ transforms as a vector. qed

Problem 1.15

$(a) \nabla \cdot \mathbf{v}_{a}=\frac{\partial}{\partial x}\left(x^{2}\right)+\frac{\partial}{\partial y}\left(3 x z^{2}\right)+\frac{\partial}{\partial z}(-2 x z)=2 x+0-2 x=0$.
$(b) \nabla \cdot \mathbf{v}_{b}=\frac{\partial}{\partial x}(x y)+\frac{\partial}{\partial y}(2 y z)+\frac{\partial}{\partial z}(3 x z)=y+2 z+3 x$.
$(c) \boldsymbol{\nabla} \cdot \mathbf{v}_{c}=\frac{\partial}{\partial x}\left(y^{2}\right)+\frac{\partial}{\partial y}\left(2 x y+z^{2}\right)+\frac{\partial}{\partial z}(2 y z)=0+(2 x)+(2 y)=2(x+y)$

Problem 1.16

$$
\begin{aligned}
& \boldsymbol{\nabla} \cdot \mathbf{v}=\frac{\partial}{\partial x}\left(\frac{x}{r^{3}}\right)+\frac{\partial}{\partial y}\left(\frac{y}{r^{3}}\right)+\frac{\partial}{\partial z}\left(\frac{z}{r^{3}}\right)=\frac{\partial}{\partial x}\left[x\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}\right] \\
& +\frac{\partial}{\partial y}\left[y\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}\right]+\frac{\partial}{\partial z}\left[z\left(x^{2}+y^{2}+z^{2}\right)^{-\frac{3}{2}}\right] \\
& =()^{-\frac{3}{2}}+x(-3 / 2)()^{-\frac{5}{2}} 2 x+()^{-\frac{3}{2}}+y(-3 / 2)()^{-\frac{5}{2}} 2 y+()^{-\frac{3}{2}} \\
& +z(-3 / 2)()^{-\frac{5}{2}} 2 z=3 r^{-3}-3 r^{-5}\left(x^{2}+y^{2}+z^{2}\right)=3 r^{-3}-3 r^{-3}=0 .
\end{aligned}
$$

This conclusion is surprising, because, from the diagram, this vector field is obviously diverging away from the origin. How, then, can $\boldsymbol{\nabla} \cdot \mathbf{v}=0$? The answer is that $\boldsymbol{\nabla} \cdot \mathbf{v}=0$ everywhere except at the origin, but at the origin our calculation is no good, since $r=0$, and the expression for \mathbf{v} blows up. In fact, $\boldsymbol{\nabla} \cdot \mathbf{v}$ is infinite at that one point, and zero elsewhere, as we shall see in Sect. 1.5.

Problem 1.17

$$
\begin{aligned}
\bar{v}_{y} & =\cos \phi v_{y}+\sin \phi v_{z} ; \bar{v}_{z}=-\sin \phi v_{y}+\cos \phi v_{z} . \\
\frac{\partial \bar{v}_{y}}{\partial \bar{y}} & =\frac{\partial v_{y}}{\partial \bar{y}} \cos \phi+\frac{\partial v_{z}}{\partial \bar{y}} \sin \phi=\left(\frac{\partial v_{y}}{\partial y} \frac{\partial y}{\partial \bar{y}}+\frac{\partial v_{y}}{\partial z} \frac{\partial z}{\partial \bar{y}}\right) \cos \phi+\left(\frac{\partial v_{z}}{\partial y} \frac{\partial y}{\partial \bar{y}}+\frac{\partial v_{z}}{\partial z} \frac{\partial z}{\partial \bar{y}}\right) \sin \phi . \text { Use result in Prob. 1.14: } \\
& =\left(\frac{\partial v_{y}}{\partial y} \cos \phi+\frac{\partial v_{y}}{\partial z} \sin \phi\right) \cos \phi+\left(\frac{\partial v_{z}}{\partial y} \cos \phi+\frac{\partial v_{z}}{\partial z} \sin \phi\right) \sin \phi . \\
\frac{\partial \bar{v}_{z}}{\partial \bar{z}} & =-\frac{\partial v_{y}}{\partial \bar{z}} \sin \phi+\frac{\partial v_{z}}{\partial \bar{z}} \cos \phi=-\left(\frac{\partial v_{y}}{\partial y} \frac{\partial y}{\partial \bar{z}}+\frac{\partial v_{y}}{\partial z} \frac{\partial z}{\partial \bar{z}}\right) \sin \phi+\left(\frac{\partial v_{z}}{\partial y} \frac{\partial y}{\partial \bar{z}}+\frac{\partial v_{z}}{\partial z} \frac{\partial z}{\partial \bar{z}}\right) \cos \phi \\
& =-\left(-\frac{\partial v_{y}}{\partial y} \sin \phi+\frac{\partial v_{y}}{\partial z} \cos \phi\right) \sin \phi+\left(-\frac{\partial v_{z}}{\partial y} \sin \phi+\frac{\partial v_{z}}{\partial z} \cos \phi\right) \cos \phi . \text { So }
\end{aligned}
$$

$$
\begin{gathered}
\frac{\partial \bar{v}_{y}}{\partial \bar{y}}+\frac{\partial \bar{v}_{z}}{\partial z}=\frac{\partial v_{y}}{\partial y} \cos ^{2} \phi+\frac{\partial v_{y}}{\partial z} \sin \phi \cos \phi+\frac{\partial v_{z}}{\partial y} \sin \phi \cos \phi+\frac{\partial v_{z}}{\partial z} \sin ^{2} \phi+\frac{\partial v_{y}}{\partial y} \sin ^{2} \phi-\frac{\partial v_{y}}{\partial z} \sin \phi \cos \phi \\
\quad-\frac{\partial v_{z}}{\partial y} \sin \phi \cos \phi+\frac{\partial v_{z}}{\partial z} \cos ^{2} \phi \\
=\frac{\partial v_{y}}{\partial y}\left(\cos ^{2} \phi+\sin ^{2} \phi\right)+\frac{\partial v_{z}}{\partial z}\left(\sin ^{2} \phi+\cos ^{2} \phi\right)=\frac{\partial v_{y}}{\partial y}+\frac{\partial v_{z}}{\partial z} \cdot \checkmark \\
\hline
\end{gathered}
$$

Problem 1.18

(a) $\boldsymbol{\nabla} \times \mathbf{v}_{a}=\left|\begin{array}{ccc}\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x^{2} & 3 x z^{2} & -2 x z\end{array}\right|=\hat{\mathbf{x}}(0-6 x z)+\hat{\mathbf{y}}(0+2 z)+\hat{\mathbf{z}}\left(3 z^{2}-0\right)=-6 x z \hat{\mathbf{x}}+2 z \hat{\mathbf{y}}+3 z^{2} \hat{\mathbf{z}}$.
(b) $\boldsymbol{\nabla} \times \mathbf{v}_{b}=\left|\begin{array}{ccc}\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ x y & 2 y z & 3 x z\end{array}\right|=\hat{\mathbf{x}}(0-2 y)+\hat{\mathbf{y}}(0-3 z)+\hat{\mathbf{z}}(0-x)=-2 y \hat{\mathbf{x}}-3 z \hat{\mathbf{y}}-x \hat{\mathbf{z}}$.
(c) $\boldsymbol{\nabla} \times \mathbf{v}_{c}=\left|\begin{array}{ccc}\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ y^{2} & \left(2 x y+z^{2}\right) & 2 y z\end{array}\right|=\hat{\mathbf{x}}(2 z-2 z)+\hat{\mathbf{y}}(0-0)+\hat{\mathbf{z}}(2 y-2 y)=\mathbf{0}$.

Problem 1.19

As we go from point A to point B (9 o'clock to 10 o'clock), x increases, y increases, v_{x} increases, and v_{y} decreases, so $\partial v_{x} / \partial y>$ 0 , while $\partial v_{y} / \partial y<0$. On the circle, $v_{z}=0$, and there is no dependence on z, so Eq. 1.41 says

$$
\boldsymbol{\nabla} \times \mathbf{v}=\hat{\mathbf{z}}\left(\frac{\partial v_{y}}{\partial x}-\frac{\partial v_{x}}{\partial y}\right)
$$

points in the negative z direction (into the page), as the right hand rule would suggest. (Pick any other nearby points on the circle and you will come to the same conclusion.) [I'm sorry, but I cannot remember who suggested this cute illustration.]

Problem 1.20

$\mathbf{v}=y \hat{\mathbf{x}}+x \hat{\mathbf{y}} ;$ or $\mathbf{v}=y z \hat{\mathbf{x}}+x z \hat{\mathbf{y}}+x y \hat{\mathbf{z}} ;$ or $\mathbf{v}=\left(3 x^{2} z-z^{3}\right) \hat{\mathbf{x}}+3 \hat{\mathbf{y}}+\left(x^{3}-3 x z^{2}\right) \hat{\mathbf{z}} ;$
or $\mathbf{v}=(\sin x)(\cosh y) \hat{\mathbf{x}}-(\cos x)(\sinh y) \hat{\mathbf{y}} ;$ etc.

Problem 1.21

(i) $\boldsymbol{\nabla}(f g)=\frac{\partial(f g)}{\partial x} \hat{\mathbf{x}}+\frac{\partial(f g)}{\partial y} \hat{\mathbf{y}}+\frac{\partial(f g)}{\partial z} \hat{\mathbf{z}}=\left(f \frac{\partial g}{\partial x}+g \frac{\partial f}{\partial x}\right) \hat{\mathbf{x}}+\left(f \frac{\partial g}{\partial y}+g \frac{\partial f}{\partial y}\right) \hat{\mathbf{y}}+\left(f \frac{\partial g}{\partial z}+g \frac{\partial f}{\partial z}\right) \hat{\mathbf{z}}$ $=f\left(\frac{\partial g}{\partial x} \hat{\mathbf{x}}+\frac{\partial g}{\partial y} \hat{\mathbf{y}}+\frac{\partial g}{\partial z} \hat{\mathbf{z}}\right)+g\left(\frac{\partial f}{\partial x} \hat{\mathbf{x}}+\frac{\partial f}{\partial y} \hat{\mathbf{y}}+\frac{\partial f}{\partial z} \hat{\mathbf{z}}\right)=f(\boldsymbol{\nabla} g)+g(\boldsymbol{\nabla} f) . \quad$ qed
(iv) $\boldsymbol{\nabla} \cdot(\mathbf{A} \times \mathbf{B})=\frac{\partial}{\partial x}\left(A_{y} B_{z}-A_{z} B_{y}\right)+\frac{\partial}{\partial y}\left(A_{z} B_{x}-A_{x} B_{z}\right)+\frac{\partial}{\partial z}\left(A_{x} B_{y}-A_{y} B_{x}\right)$

$$
\begin{aligned}
& =A_{y} \frac{\partial B_{z}}{\partial x}+B_{z} \frac{\partial A_{y}}{\partial x}-A_{z} \frac{\partial B_{y}}{\partial x}-B_{y} \frac{\partial A_{z}}{\partial x}+A_{z} \frac{\partial B_{x}}{\partial y}+B_{x} \frac{\partial A_{z}}{\partial y}-A_{x} \frac{\partial B_{z}}{\partial y}-B_{z} \frac{\partial A_{x}}{\partial y} \\
& \quad+A_{x} \frac{\partial B_{y}}{\partial z}+B_{y} \frac{\partial A_{x}}{\partial z}-A_{y} \frac{\partial B_{x}}{\partial z}-B_{x} \frac{\partial A_{y}}{\partial z} \\
& =B_{x}\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right)+B_{y}\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right)+B_{z}\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right)-A_{x}\left(\frac{\partial B_{z}}{\partial y}-\frac{\partial B_{y}}{\partial z}\right) \\
& \quad \quad-A_{y}\left(\frac{\partial B_{x}}{\partial z}-\frac{\partial B_{z}}{\partial x}\right)-A_{z}\left(\frac{\partial B_{y}}{\partial x}-\frac{\partial B_{x}}{\partial y}\right)=\mathbf{B} \cdot(\boldsymbol{\nabla} \times \mathbf{A})-\mathbf{A} \cdot(\boldsymbol{\nabla} \times \mathbf{B}) . \quad \text { qed }
\end{aligned}
$$

(v) $\boldsymbol{\nabla} \times(f \mathbf{A})=\left(\frac{\partial\left(f A_{z}\right)}{\partial y}-\frac{\partial\left(f A_{y}\right)}{\partial z}\right) \hat{\mathbf{x}}+\left(\frac{\partial\left(f A_{x}\right)}{\partial z}-\frac{\partial\left(f A_{z}\right)}{\partial x}\right) \hat{\mathbf{y}}+\left(\frac{\partial\left(f A_{y}\right)}{\partial x}-\frac{\partial\left(f A_{x}\right)}{\partial y}\right) \hat{\mathbf{z}}$

$$
\begin{aligned}
&=\left(f \frac{\partial A_{z}}{\partial y}\right. \\
&\left.\quad+A_{z} \frac{\partial f}{\partial y}-f \frac{\partial A_{y}}{\partial z}-A_{y} \frac{\partial f}{\partial z}\right) \hat{\mathbf{x}}+\left(f \frac{\partial A_{x}}{\partial z}+A_{x} \frac{\partial f}{\partial z}-f \frac{\partial A_{z}}{\partial x}-A_{z} \frac{\partial f}{\partial x}\right) \hat{\mathbf{y}} \\
& \quad+\left(f \frac{\partial A_{y}}{\partial x}+A_{y} \frac{\partial f}{\partial x}-f \frac{\partial A_{x}}{\partial y}-A_{x} \frac{\partial f}{\partial y}\right) \hat{\mathbf{z}} \\
&= f\left[\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right) \hat{\mathbf{x}}+\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right) \hat{\mathbf{y}}+\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right) \hat{\mathbf{z}}\right] \\
& \quad \quad-\left[\left(A_{y} \frac{\partial f}{\partial z}-A_{z} \frac{\partial f}{\partial y}\right) \hat{\mathbf{x}}+\left(A_{z} \frac{\partial f}{\partial x}-A_{x} \frac{\partial f}{\partial z}\right) \hat{\mathbf{y}}+\left(A_{x} \frac{\partial f}{\partial y}-A_{y} \frac{\partial f}{\partial x}\right) \hat{\mathbf{z}}\right] \\
&= f(\boldsymbol{\nabla} \times \mathbf{A})-\mathbf{A} \times(\boldsymbol{\nabla}) . \quad \text { qed }
\end{aligned}
$$

Problem 1.22

(a) $(\mathbf{A} \cdot \nabla) \mathbf{B}=\left(A_{x} \frac{\partial B_{x}}{\partial x}+A_{y} \frac{\partial B_{x}}{\partial y}+A_{z} \frac{\partial B_{x}}{\partial z}\right) \hat{\mathbf{x}}+\left(A_{x} \frac{\partial B_{y}}{\partial x}+A_{y} \frac{\partial B_{y}}{\partial y}+A_{z} \frac{\partial B_{y}}{\partial z}\right) \hat{\mathbf{y}}$

$$
+\left(A_{x} \frac{\partial B_{z}}{\partial x}+A_{y} \frac{\partial B_{z}}{\partial y}+A_{z} \frac{\partial B_{z}}{\partial z}\right) \hat{\mathbf{z}} .
$$

(b) $\hat{\mathbf{r}}=\frac{\mathbf{r}}{r}=\frac{x \hat{\mathbf{x}}+y \hat{\mathbf{y}}+z \hat{\mathbf{z}}}{\sqrt{x^{2}+y^{2}+z^{2}}}$. Let's just do the x component.

$$
\begin{aligned}
{[(\hat{\mathbf{r}} \cdot \nabla) \hat{\mathbf{r}}]_{x} } & =\frac{1}{\sqrt{r}}\left(x \frac{\partial}{\partial x}+y \frac{\partial}{\partial y}+z \frac{\partial}{\partial z}\right) \frac{x}{\sqrt{x^{2}+y^{2}+z^{2}}} \\
& =\frac{1}{r}\left\{x\left[\frac{1}{\sqrt{ }}+x\left(-\frac{1}{2}\right) \frac{1}{(\sqrt{\sqrt{3}}} 2 x\right]+y x\left[-\frac{1}{2} \frac{1}{(\sqrt{\sqrt{3}}} 2 y\right]+z x\left[-\frac{1}{2} \frac{1}{(\sqrt{ })^{3}} 2 z\right]\right\} \\
& =\frac{1}{r}\left\{\frac{x}{r}-\frac{1}{r^{3}}\left(x^{3}+x y^{2}+x z^{2}\right)\right\}=\frac{1}{r}\left\{\frac{x}{r}-\frac{x}{r^{3}}\left(x^{2}+y^{2}+z^{2}\right)\right\}=\frac{1}{r}\left(\frac{x}{r}-\frac{x}{r}\right)=0 .
\end{aligned}
$$

Same goes for the other components. Hence: $(\hat{\mathbf{r}} \cdot \nabla) \hat{\mathbf{r}}=\mathbf{0}$.
(c) $\left(\mathbf{v}_{a} \cdot \nabla\right) \mathbf{v}_{b}=\left(x^{2} \frac{\partial}{\partial x}+3 x z^{2} \frac{\partial}{\partial y}-2 x z \frac{\partial}{\partial z}\right)(x y \hat{\mathbf{x}}+2 y z \hat{\mathbf{y}}+3 x z \hat{\mathbf{z}})$

$$
\begin{aligned}
& =x^{2}(y \hat{\mathbf{x}}+0 \hat{\mathbf{y}}+3 z \hat{\mathbf{z}})+3 x z^{2}(x \hat{\mathbf{x}}+2 z \hat{\mathbf{y}}+0 \hat{\mathbf{z}})-2 x z(0 \hat{\mathbf{x}}+2 y \hat{\mathbf{y}}+3 x \hat{\mathbf{z}}) \\
& =\left(x^{2} y+3 x^{2} z^{2}\right) \hat{\mathbf{x}}+\left(6 x z^{3}-4 x y z\right) \hat{\mathbf{y}}+\left(3 x^{2} z-6 x^{2} z\right) \hat{\mathbf{z}} \\
& =x^{2}\left(y+3 z^{2}\right) \hat{\mathbf{x}}+2 x z\left(3 z^{2}-2 y\right) \hat{\mathbf{y}}-3 x^{2} z \hat{\mathbf{z}}
\end{aligned}
$$

Problem 1.23

(ii) $[\boldsymbol{\nabla}(\mathbf{A} \cdot \mathbf{B})]_{x}=\frac{\partial}{\partial x}\left(A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}\right)=\frac{\partial A_{x}}{\partial x} B_{x}+A_{x} \frac{\partial B_{x}}{\partial x}+\frac{\partial A_{y}}{\partial x} B_{y}+A_{y} \frac{\partial B_{y}}{\partial x}+\frac{\partial A_{z}}{\partial x} B_{z}+A_{z} \frac{\partial B_{z}}{\partial x}$

$$
\begin{aligned}
& {[\mathbf{A} \times(\boldsymbol{\nabla} \times \mathbf{B})]_{x}=A_{y}(\boldsymbol{\nabla} \times \mathbf{B})_{z}-A_{z}(\nabla \times \mathbf{B})_{y}=A_{y}\left(\frac{\partial B_{y}}{\partial x}-\frac{\partial B_{x}}{\partial y}\right)-A_{z}\left(\frac{\partial B_{x}}{\partial z}-\frac{\partial B_{z}}{\partial x}\right)} \\
& {[\mathbf{B} \times(\boldsymbol{\nabla} \times \mathbf{A})]_{x}=B_{y}\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}\right)-B_{z}\left(\frac{\partial A_{x}}{\partial z}-\frac{\partial A_{z}}{\partial x}\right)} \\
& {[(\mathbf{A} \cdot \boldsymbol{\nabla}) \mathbf{B}]_{x}=\left(A_{x} \frac{\partial}{\partial x}+A_{y} \frac{\partial}{\partial y}+A_{z} \frac{\partial}{\partial z}\right) B_{x}=A_{x} \frac{\partial B_{x}}{\partial x}+A_{y} \frac{\partial B_{x}}{\partial y}+A_{z} \frac{\partial B_{x}}{\partial z}} \\
& {[(\mathbf{B} \cdot \boldsymbol{\nabla}) \mathbf{A}]_{x}=B_{x} \frac{\partial A_{x}}{\partial x}+B_{y} \frac{\partial A_{x}}{\partial y}+B_{z} \frac{\partial A_{x}}{\partial z}} \\
& \mathrm{So}[\mathbf{A} \times(\boldsymbol{\nabla} \times \mathbf{B})+\mathbf{B} \times(\boldsymbol{\nabla} \times \mathbf{A})+(\mathbf{A} \cdot \boldsymbol{\nabla}) \mathbf{B}+(\mathbf{B} \cdot \boldsymbol{\nabla}) \mathbf{A}]_{x} \\
& =A_{y} \frac{\partial B_{y}}{\partial x}-A_{y} \frac{\partial B_{x}}{\partial y}-A_{z} \frac{\partial B_{x}}{\partial z}+A_{z} \frac{\partial B_{z}}{\partial x}+B_{y} \frac{\partial A_{y}}{\partial x}-B_{y} \frac{\partial A_{x}}{\partial y}-B_{z} \frac{\partial A_{x}}{\partial z}+B_{z} \frac{\partial A_{z}}{\partial x} \\
& \quad+A_{x} \frac{\partial B_{x}}{\partial x}+A_{y} \frac{\partial B_{x}}{\partial y}+A_{z} \frac{\partial B_{x}}{\partial z}+B_{x} \frac{\partial A_{x}}{\partial x}+B_{y} \frac{\partial A_{x}}{\partial y}+B_{z} \frac{\partial A_{x}}{\partial z} \\
& =B_{x} \frac{\partial A_{x}}{\partial x}+A_{x} \frac{\partial B_{x}}{\partial x}+B_{y}\left(\frac{\partial A_{y}}{\partial x}-\frac{\partial \mathcal{A}_{x}}{\partial y}+\frac{\partial \mathcal{A}_{x}}{\partial y}\right)+A_{y}\left(\frac{\partial B_{y}}{\partial x}-\frac{\partial A_{x}}{\partial y}+\frac{\partial \mathcal{A}_{x}}{\partial y}\right) \\
& \quad+B_{z}\left(-\frac{\partial A_{x}}{\partial z}+\frac{\partial A_{z}}{\partial x}+\frac{\partial A_{x}}{\partial z}\right)+A_{z}\left(-\frac{\partial \phi_{x}}{\partial z}+\frac{\partial B_{z}}{\partial x}+\frac{\partial \phi_{x}}{\partial z}\right) \\
& =[\boldsymbol{\nabla}(\mathbf{A} \cdot \mathbf{B})]_{x}(\text { same for } y \text { and } z)
\end{aligned}
$$

(vi) $[\nabla \times(\mathbf{A} \times \mathbf{B})]_{x}=\frac{\partial}{\partial y}(\mathbf{A} \times \mathbf{B})_{z}-\frac{\partial}{\partial z}(\mathbf{A} \times \mathbf{B})_{y}=\frac{\partial}{\partial y}\left(A_{x} B_{y}-A_{y} B_{x}\right)-\frac{\partial}{\partial z}\left(A_{z} B_{x}-A_{x} B_{z}\right)$

$$
=\frac{\partial A_{x}}{\partial y} B_{y}+A_{x} \frac{\partial B_{y}}{\partial y}-\frac{\partial A_{y}}{\partial y} B_{x}-A_{y} \frac{\partial B_{x}}{\partial y}-\frac{\partial A_{z}}{\partial z} B_{x}-A_{z} \frac{\partial B_{x}}{\partial z}+\frac{\partial A_{x}}{\partial z} B_{z}+A_{x} \frac{\partial B_{z}}{\partial z}
$$

$[(\mathbf{B} \cdot \boldsymbol{\nabla}) \mathbf{A}-(\mathbf{A} \cdot \boldsymbol{\nabla}) \mathbf{B}+\mathbf{A}(\boldsymbol{\nabla} \cdot \mathbf{B})-\mathbf{B}(\boldsymbol{\nabla} \cdot \mathbf{A})]_{x}$
$=B_{x} \frac{\partial A_{x}}{\partial x}+B_{y} \frac{\partial A_{x}}{\partial y}+B_{z} \frac{\partial A_{x}}{\partial z}-A_{x} \frac{\partial B_{x}}{\partial x}-A_{y} \frac{\partial B_{x}}{\partial y}-A_{z} \frac{\partial B_{x}}{\partial z}+A_{x}\left(\frac{\partial B_{x}}{\partial x}+\frac{\partial B_{y}}{\partial y}+\frac{\partial B_{z}}{\partial z}\right)-B_{x}\left(\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}\right)$
(C)2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

```
\(=B_{y} \frac{\partial A_{x}}{\partial y}+A_{x}\left(-\frac{\partial \mathcal{F}_{x}}{\partial x}+\frac{\partial \text { म }_{x}}{\partial x}+\frac{\partial B_{y}}{\partial y}+\frac{\partial B_{z}}{\partial z}\right)+B_{x}\left(\frac{\partial f_{x}}{\partial x}-\frac{\partial f_{x}}{\partial x}-\frac{\partial A_{y}}{\partial y}-\frac{\partial A_{z}}{\partial z}\right)\)
    \(+A_{y}\left(-\frac{\partial B_{x}}{\partial y}\right)+A_{z}\left(-\frac{\partial B_{x}}{\partial z}\right)+B_{z}\left(\frac{\partial A_{x}}{\partial z}\right)\)
\(=[\boldsymbol{\nabla} \times(\mathbf{A} \times \mathbf{B})]_{x}(\) same for \(y\) and \(z)\)
```


Problem 1.24

$$
\begin{aligned}
& \nabla(f / g)= \\
& =\frac{\partial}{\partial x}(f / g) \hat{\mathbf{x}}+\frac{\partial}{\partial y}(f / g) \hat{\mathbf{y}}+\frac{\partial}{\partial z}(f / g) \hat{\mathbf{z}} \\
& = \\
& =\frac{1}{g^{2}}\left[g\left(\frac{\partial f}{\partial x}-f \frac{\partial g}{\partial x} \hat{\mathbf{x}}+\frac{g \frac{\partial f}{\partial y}-f \frac{\partial g}{\partial y}}{g^{2}} \hat{\mathbf{\mathbf { x }}}+\frac{\partial f}{\partial y} \hat{\mathbf{y}}+\frac{\partial f}{\partial z} \hat{\partial z}-f \frac{\partial g}{\partial z} \hat{\mathbf{z}}\right)-f\left(\frac{\partial g}{\partial x} \hat{\mathbf{z}}+\frac{\partial g}{\partial y} \hat{\mathbf{y}}+\frac{\partial g}{\partial z} \hat{\mathbf{z}}\right)\right]=\frac{g \nabla f-f \nabla g}{g^{2}} . \quad \text { qed } \\
& \begin{aligned}
\boldsymbol{\nabla} \cdot(\mathbf{A} / g) & =\frac{\partial}{\partial x}\left(A_{x} / g\right)+\frac{\partial}{\partial y}\left(A_{y} / g\right)+\frac{\partial}{\partial z}\left(A_{z} / g\right) \\
& =\frac{g \frac{\partial A_{x}}{\partial x}-A_{x} \frac{\partial g}{\partial x}}{g^{2}}+\frac{g \frac{\partial A_{y}}{\partial y}-A_{y} \frac{\partial g}{\partial y}}{g^{2}}+\frac{g \frac{\partial A_{z}}{\partial z}-A_{z} \frac{\partial g}{\partial x}}{g^{2}} \\
= & \frac{1}{g^{2}}\left[g\left(\frac{\partial A_{x}}{\partial x}+\frac{\partial A_{y}}{\partial y}+\frac{\partial A_{z}}{\partial z}\right)-\left(A_{x} \frac{\partial g}{\partial x}+A_{y} \frac{\partial g}{\partial y}+A_{z} \frac{\partial g}{\partial z}\right)\right]=\frac{g \nabla \cdot \mathbf{A}-\mathbf{A} \cdot \nabla g}{g^{2}} . \quad \text { qed }
\end{aligned} \\
& \begin{aligned}
{[\boldsymbol{\nabla} \times(\mathbf{A} / g)]_{x} } & =\frac{\partial}{\partial y}\left(A_{z} / g\right)-\frac{\partial}{\partial z}\left(A_{y} / g\right) \\
& =\frac{g \frac{\partial A_{z}}{\partial y}-A_{z} \frac{\partial g}{\partial y}}{g^{2}}-\frac{g \frac{\partial A_{y}}{\partial z}-A_{y} \frac{\partial g}{\partial z}}{g^{2}} \\
& =\frac{1}{g^{2}}\left[g\left(\frac{\partial A_{z}}{\partial y}-\frac{\partial A_{y}}{\partial z}\right)-\left(A_{z} \frac{\partial g}{\partial y}-A_{y} \frac{\partial g}{\partial z}\right)\right] \\
& =\frac{g(\nabla \times \mathbf{A})_{x}+(\mathbf{A} \times \nabla g)_{x}}{g^{2}}(\text { same for } y \text { and } z) . \quad \text { qed }
\end{aligned}
\end{aligned}
$$

Problem 1.25

(a) $\mathbf{A} \times \mathbf{B}=\left|\begin{array}{ccc}\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ x & 2 y & 3 z \\ 3 y & -2 x & 0\end{array}\right|=\hat{\mathbf{x}}(6 x z)+\hat{\mathbf{y}}(9 z y)+\hat{\mathbf{z}}\left(-2 x^{2}-6 y^{2}\right)$

$$
\boldsymbol{\nabla} \cdot(\mathbf{A} \times \mathbf{B})=\frac{\partial}{\partial x}(6 x z)+\frac{\partial}{\partial y}(9 z y)+\frac{\partial}{\partial z}\left(-2 x^{2}-6 y^{2}\right)=6 z+9 z+0=15 z
$$

$$
\boldsymbol{\nabla} \times \mathbf{A}=\hat{\mathbf{x}}\left(\frac{\partial}{\partial y}(3 z)-\frac{\partial}{\partial z}(2 y)\right)+\hat{\mathbf{y}}\left(\frac{\partial}{\partial z}(x)-\frac{\partial}{\partial x}(3 z)\right)+\hat{\mathbf{z}}\left(\frac{\partial}{\partial x}(2 y)-\frac{\partial}{\partial y}(x)\right)=0 ; \mathbf{B} \cdot(\boldsymbol{\nabla} \times \mathbf{A})=0
$$

$$
\boldsymbol{\nabla} \times \mathbf{B}=\hat{\mathbf{x}}\left(\frac{\partial}{\partial y}(0)-\frac{\partial}{\partial z}(-2 x)\right)+\hat{\mathbf{y}}\left(\frac{\partial}{\partial z}(3 y)-\frac{\partial}{\partial x}(0)\right)+\hat{\mathbf{z}}\left(\frac{\partial}{\partial x}(-2 x)-\frac{\partial}{\partial y}(3 y)\right)=-5 \hat{\mathbf{z}} ; \mathbf{A} \cdot(\boldsymbol{\nabla} \times \mathbf{B})=-15 z
$$

$$
\boldsymbol{\nabla} \cdot(\mathbf{A} \times \mathbf{B}) \stackrel{?}{=} \mathbf{B} \cdot(\boldsymbol{\nabla} \times \mathbf{A})-\mathbf{A} \cdot(\boldsymbol{\nabla} \times \mathbf{B})=0-(-15 z)=15 z . \checkmark
$$

(b) $\mathbf{A} \cdot \mathbf{B}=3 x y-4 x y=-x y ; \boldsymbol{\nabla}(\mathbf{A} \cdot \mathbf{B})=\boldsymbol{\nabla}(-x y)=\hat{\mathbf{x}} \frac{\partial}{\partial x}(-x y)+\hat{\mathbf{y}} \frac{\partial}{\partial y}(-x y)=-y \hat{\mathbf{x}}-x \hat{\mathbf{y}}$

$$
\mathbf{A} \times(\boldsymbol{\nabla} \times \mathbf{B})=\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
x & 2 y & 3 z \\
0 & 0 & -5
\end{array}\right|=\hat{\mathbf{x}}(-10 y)+\hat{\mathbf{y}}(5 x) ; \mathbf{B} \times(\boldsymbol{\nabla} \times \mathbf{A})=\mathbf{0}
$$

$(\mathbf{A} \cdot \boldsymbol{\nabla}) \mathbf{B}=\left(x \frac{\partial}{\partial x}+2 y \frac{\partial}{\partial y}+3 z \frac{\partial}{\partial z}\right)(3 y \hat{\mathbf{x}}-2 x \hat{\mathbf{y}})=\hat{\mathbf{x}}(6 y)+\hat{\mathbf{y}}(-2 x)$
$(\mathbf{B} \cdot \boldsymbol{\nabla}) \mathbf{A}=\left(3 y \frac{\partial}{\partial x}-2 x \frac{\partial}{\partial y}\right)(x \hat{\mathbf{x}}+2 y \hat{\mathbf{y}}+3 z \hat{\mathbf{z}})=\hat{\mathbf{x}}(3 y)+\hat{\mathbf{y}}(-4 x)$

$$
\begin{aligned}
& \mathbf{A} \times(\boldsymbol{\nabla} \times \mathbf{B})+\mathbf{B} \times(\boldsymbol{\nabla} \times \mathbf{A})+(\mathbf{A} \cdot \boldsymbol{\nabla}) \mathbf{B}+(\mathbf{B} \cdot \boldsymbol{\nabla}) \mathbf{A} \\
& \quad=-10 y \hat{\mathbf{x}}+5 x \hat{\mathbf{y}}+6 y \hat{\mathbf{x}}-2 x \hat{\mathbf{y}}+3 y \hat{\mathbf{x}}-4 x \hat{\mathbf{y}}=-y \hat{\mathbf{x}}-x \hat{\mathbf{y}}=\boldsymbol{\nabla} \cdot(\mathbf{A} \cdot \mathbf{B}) .
\end{aligned}
$$

(c) $\boldsymbol{\nabla} \times(\mathbf{A} \times \mathbf{B})=\hat{\mathbf{x}}\left(\frac{\partial}{\partial y}\left(-2 x^{2}-6 y^{2}\right)-\frac{\partial}{\partial z}(9 z y)\right)+\hat{\mathbf{y}}\left(\frac{\partial}{\partial z}(6 x z)-\frac{\partial}{\partial x}\left(-2 x^{2}-6 y^{2}\right)\right)+\hat{\mathbf{z}}\left(\frac{\partial}{\partial x}(9 z y)-\frac{\partial}{\partial y}(6 x z)\right)$

$$
=\hat{\mathbf{x}}(-12 y-9 y)+\hat{\mathbf{y}}(6 x+4 x)+\hat{\mathbf{z}}(0)=-21 y \hat{\mathbf{x}}+10 x \hat{\mathbf{y}}
$$

$\boldsymbol{\nabla} \cdot \mathbf{A}=\frac{\partial}{\partial x}(x)+\frac{\partial}{\partial y}(2 y)+\frac{\partial}{\partial z}(3 z)=1+2+3=6 ; \boldsymbol{\nabla} \cdot \mathbf{B}=\frac{\partial}{\partial x}(3 y)+\frac{\partial}{\partial y}(-2 x)=0$
$(\mathbf{B} \cdot \boldsymbol{\nabla}) \mathbf{A}-(\mathbf{A} \cdot \boldsymbol{\nabla}) \mathbf{B}+\mathbf{A}(\boldsymbol{\nabla} \cdot \mathbf{B})-\mathbf{B}(\boldsymbol{\nabla} \cdot \mathbf{A})=3 y \hat{\mathbf{x}}-4 x \hat{\mathbf{y}}-6 y \hat{\mathbf{x}}+2 x \hat{\mathbf{y}}-18 y \hat{\mathbf{x}}+12 x \hat{\mathbf{y}}=-21 y \hat{\mathbf{x}}+10 x \hat{\mathbf{y}}$ $=\nabla \times(\mathbf{A} \times \mathbf{B}) . \checkmark$

Problem 1.26

(a) $\frac{\partial^{2} T_{a}}{\partial x^{2}}=2 ; \quad \frac{\partial^{2} T_{a}}{\partial y^{2}}=\frac{\partial^{2} T_{a}}{\partial z^{2}}=0 \Rightarrow \nabla^{2} T_{a}=2$.
(b) $\frac{\partial^{2} T_{b}}{\partial x^{2}}=\frac{\partial^{2} T_{b}}{\partial y^{2}}=\frac{\partial^{2} T_{b}}{\partial z^{2}}=-T_{b} \Rightarrow \nabla^{2} T_{b}=-3 T_{b}=-3 \sin x \sin y \sin z$.
(c) $\frac{\partial^{2} T_{c}}{\partial x^{2}}=25 T_{c} ; \frac{\partial^{2} T_{c}}{\partial y^{2}}=-16 T_{c} ; \frac{\partial^{2} T_{c}}{\partial z^{2}}=-9 T_{c} \Rightarrow \nabla^{2} T_{c}=0$.
(d) $\frac{\partial^{2} v_{x}}{\partial x^{2}}=2 ; \frac{\partial^{2} v_{x}}{\partial y^{2}}=\frac{\partial^{2} v_{x}}{\partial z^{2}}=0 \Rightarrow \nabla^{2} v_{x}=2$
$\left.\begin{array}{l}\frac{\partial^{2} v_{y}}{\partial x^{2}}=\frac{\partial^{2} v_{y}}{\partial y^{2}}=0 ; \frac{\partial^{2} v_{y}}{\partial z^{2}}=6 x \Rightarrow \nabla^{2} v_{y}=6 x \\ \frac{\partial^{2} v_{z}}{\partial x^{2}}=\frac{\partial^{2} v_{z}}{\partial y^{2}}=\frac{\partial^{2} v_{z}}{\partial z^{2}}=0 \Rightarrow \nabla^{2} v_{z}=0\end{array}\right\} \nabla^{2} \mathbf{v}=2 \hat{\mathbf{x}}+6 x \hat{\mathbf{y}}$.
Problem 1.27
$\boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} \times \mathbf{v})=\frac{\partial}{\partial x}\left(\frac{\partial v_{z}}{\partial y}-\frac{\partial v_{y}}{\partial z}\right)+\frac{\partial}{\partial y}\left(\frac{\partial v_{x}}{\partial z}-\frac{\partial v_{z}}{\partial x}\right)+\frac{\partial}{\partial z}\left(\frac{\partial v_{y}}{\partial x}-\frac{\partial v_{x}}{\partial y}\right)$ $=\left(\frac{\partial^{2} v_{z}}{\partial x \partial y}-\frac{\partial^{2} v_{z}}{\partial y \partial x}\right)+\left(\frac{\partial^{2} v_{x}}{\partial y \partial z}-\frac{\partial^{2} v_{x}}{\partial z \partial y}\right)+\left(\frac{\partial^{2} v_{y}}{\partial z \partial x}-\frac{\partial^{2} v_{y}}{\partial x \partial z}\right)=0$, by equality of cross-derivatives.
From Prob. 1.18: $\boldsymbol{\nabla} \times \mathbf{v}_{a}=-6 x z \hat{\mathbf{x}}+2 z \hat{\mathbf{y}}+3 z^{2} \hat{\mathbf{z}} \Rightarrow \boldsymbol{\nabla} \cdot\left(\boldsymbol{\nabla} \times \mathbf{v}_{a}\right)=\frac{\partial}{\partial x}(-6 x z)+\frac{\partial}{\partial y}(2 z)+\frac{\partial}{\partial z}\left(3 z^{2}\right)=-6 z+6 z=0$.

Problem 1.28

$$
\begin{aligned}
& \nabla \times(\nabla t)=\left|\begin{array}{ccc}
\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\
\frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\
\frac{\partial t}{\partial x} & \frac{\partial t}{\partial y} & \frac{\partial t}{\partial z}
\end{array}\right|=\hat{\mathbf{x}}\left(\frac{\partial^{2} t}{\partial y \partial z}-\frac{\partial^{2} t}{\partial z \partial y}\right)+\hat{\mathbf{y}}\left(\frac{\partial^{2} t}{\partial z \partial x}-\frac{\partial^{2} t}{\partial x \partial z}\right)+\hat{\mathbf{z}}\left(\frac{\partial^{2} t}{\partial x \partial y}-\frac{\partial^{2} t}{\partial y \partial x}\right) \\
& \quad=0, \text { by equality of cross-derivatives. }
\end{aligned}
$$

In Prob. 1.11(b), $\boldsymbol{\nabla} f=2 x y^{3} z^{4} \hat{\mathbf{x}}+3 x^{2} y^{2} z^{4} \hat{\mathbf{y}}+4 x^{2} y^{3} z^{3} \hat{\mathbf{z}}$, so
$\boldsymbol{\nabla} \times(\boldsymbol{\nabla} f)=\left|\begin{array}{ccc}\hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 2 x y^{3} z^{4} & 3 x^{2} y^{2} z^{4} & 4 x^{2} y^{3} z^{3}\end{array}\right|$
$=\hat{\mathbf{x}}\left(3 \cdot 4 x^{2} y^{2} z^{3}-4 \cdot 3 x^{2} y^{2} z^{3}\right)+\hat{\mathbf{y}}\left(4 \cdot 2 x y^{3} z^{3}-2 \cdot 4 x y^{3} z^{3}\right)+\hat{\mathbf{z}}\left(2 \cdot 3 x y^{2} z^{4}-3 \cdot 2 x y^{2} z^{4}\right)=0 . \checkmark$

Problem 1.29

(a) $(0,0,0) \longrightarrow(1,0,0) . x: 0 \rightarrow 1, y=z=0 ; d \mathbf{l}=d x \hat{\mathbf{x}} ; \mathbf{v} \cdot d \mathbf{l}=x^{2} d x ; \int \mathbf{v} \cdot d \mathbf{l}=\int_{0}^{1} x^{2} d x=\left.\left(x^{3} / 3\right)\right|_{0} ^{1}=1 / 3$.
$(1,0,0) \longrightarrow(1,1,0) . x=1, y: 0 \rightarrow 1, z=0 ; d \mathbf{l}=d y \hat{\mathbf{y}} ; \mathbf{v} \cdot d \mathbf{l}=2 y z d y=0 ; \int \mathbf{v} \cdot d \mathbf{l}=0$.
$(1,1,0) \longrightarrow(1,1,1) . x=y=1, z: 0 \rightarrow 1 ; d \mathbf{l}=d z \hat{\mathbf{z}} ; \mathbf{v} \cdot d \mathbf{l}=y^{2} d z=d z ; \int \mathbf{v} \cdot d \mathbf{l}=\int_{0}^{1} d z=\left.z\right|_{0} ^{1}=1$.
Total: $\int \mathbf{v} \cdot d \mathbf{l}=(1 / 3)+0+1=4 / 3$.
(b) $(0,0,0) \longrightarrow(0,0,1) \cdot x=y=0, z: 0 \rightarrow 1 ; d \mathbf{l}=d z \hat{\mathbf{z}} ; \mathbf{v} \cdot d \mathbf{l}=y^{2} d z=0 ; \int \mathbf{v} \cdot d \mathbf{l}=0$.
$(0,0,1) \longrightarrow(0,1,1) . x=0, y: 0 \rightarrow 1, z=1 ; d \mathbf{l}=d y \hat{\mathbf{y}} ; \mathbf{v} \cdot d \mathbf{l}=2 y z d y=2 y d y ; \int \mathbf{v} \cdot d \mathbf{l}=\int_{0}^{1} 2 y d y=\left.y^{2}\right|_{0} ^{1}=1$.
$(0,1,1) \longrightarrow(1,1,1) \cdot x: 0 \rightarrow 1, y=z=1 ; d \mathbf{l}=d x \hat{\mathbf{x}} ; \mathbf{v} \cdot d \mathbf{l}=x^{2} d x ; \int \mathbf{v} \cdot d \mathbf{l}=\int_{0}^{1} x^{2} d x=\left.\left(x^{3} / 3\right)\right|_{0} ^{1}=1 / 3$.
Total: $\int \mathbf{v} \cdot d \mathbf{l}=0+1+(1 / 3)=4 / 3$.
(c) $x=y=z: 0 \rightarrow 1 ; d x=d y=d z ; \mathbf{v} \cdot d \mathbf{l}=x^{2} d x+2 y z d y+y^{2} d z=x^{2} d x+2 x^{2} d x+x^{2} d x=4 x^{2} d x$;
$\int \mathbf{v} \cdot d \mathbf{l}=\int_{0}^{1} 4 x^{2} d x=\left.\left(4 x^{3} / 3\right)\right|_{0} ^{1}=4 / 3$.
(d) $\oint \mathbf{v} \cdot d \mathbf{l}=(4 / 3)-(4 / 3)=0$.

Problem 1.30

$x, y: 0 \rightarrow 1, z=0 ; d \mathbf{a}=d x d y \hat{\mathbf{z}} ; \mathbf{v} \cdot d \mathbf{a}=y\left(z^{2}-3\right) d x d y=-3 y d x d y ; \int \mathbf{v} \cdot d \mathbf{a}=-3 \int_{0}^{2} d x \int_{0}^{2} y d y=$ $-3\left(\left.x\right|_{0} ^{2}\right)\left(\left.\frac{y^{2}}{2}\right|_{0} ^{2}\right)=-3(2)(2)=-12$. In Ex. 1.7 we got 20 , for the same boundary line (the square in the $x y$-plane), so the answer is no: the surface integral does not depend only on the boundary line. The total flux for the cube is $20+12=32$.

Problem 1.31

$\int T d \tau=\int z^{2} d x d y d z$. You can do the integrals in any order-here it is simplest to save z for last:

$$
\int z^{2}\left[\int\left(\int d x\right) d y\right] d z
$$

The sloping surface is $x+y+z=1$, so the x integral is $\int_{0}^{(1-y-z)} d x=1-y-z$. For a given z, y ranges from 0 to $1-z$, so the y integral is $\int_{0}^{(1-z)}(1-y-z) d y=\left.\left[(1-z) y-\left(y^{2} / 2\right)\right]\right|_{0} ^{(1-z)}=(1-z)^{2}-\left[(1-z)^{2} / 2\right]=(1-z)^{2} / 2=$ $(1 / 2)-z+\left(z^{2} / 2\right)$. Finally, the z integral is $\int_{0}^{1} z^{2}\left(\frac{1}{2}-z+\frac{z^{2}}{2}\right) d z=\int_{0}^{1}\left(\frac{z^{2}}{2}-z^{3}+\frac{z^{4}}{2}\right) d z=\left.\left(\frac{z^{3}}{6}-\frac{z^{4}}{4}+\frac{z^{5}}{10}\right)\right|_{0} ^{1}=$ $\frac{1}{6}-\frac{1}{4}+\frac{1}{10}=1 / 60$.

Problem 1.32

$$
\begin{aligned}
& T(\mathbf{b})=1+4+2=7 ; T(\mathbf{a})=0 . \Rightarrow T(\mathbf{b})-T(\mathbf{a})=7 . \\
& \boldsymbol{\nabla} T=(2 x+4 y) \hat{\mathbf{x}}+\left(4 x+2 z^{3}\right) \hat{\mathbf{y}}+\left(6 y z^{2}\right) \hat{\mathbf{z}} ; \boldsymbol{\nabla} T \cdot d \mathbf{l}=(2 x+4 y) d x+\left(4 x+2 z^{3}\right) d y+\left(6 y z^{2}\right) d z
\end{aligned}
$$

$\left.\begin{array}{l}\text { (a) Segment 1: } x: 0 \rightarrow 1, y=z=d y=d z=0 . \int \nabla T \cdot d \mathbf{l}=\int_{0}^{1}(2 x) d x=\left.x^{2}\right|_{0} ^{1}=1 . \\ \quad \text { Segment 2: } y: 0 \rightarrow 1, x=1, z=0, d x=d z=0 . \int \nabla T \cdot d \mathbf{l}=\int_{0}^{1}(4) d y=\left.4 y\right|_{0} ^{1}=4 .\end{array}\right\} \int_{\mathbf{a}}^{\mathbf{b}} \boldsymbol{\nabla} T \cdot d \mathbf{l}=7 . \checkmark$
Segment 3: $z: 0 \rightarrow 1, x=y=1, d x=d y=0 . \int \boldsymbol{\nabla} T \cdot d \mathbf{l}=\int_{0}^{1}\left(6 z^{2}\right) d z=\left.2 z^{3}\right|_{0} ^{1}=2$.
(b) Segment 1: $z: 0 \rightarrow 1, x=y=d x=d y=0 . \int \nabla T \cdot d \mathbf{l}=\int_{0}^{1}(0) d z=0$.

Segment 2: $y: 0 \rightarrow 1, x=0, z=1, d x=d z=0 . \int \nabla T \cdot d \mathbf{l}=\int_{0}^{1}(2) d y=\left.2 y\right|_{0} ^{1}=2$.
Segment 3: $x: 0 \rightarrow 1, y=z=1, d y=d z=0 . \int \boldsymbol{\nabla} T \cdot d \mathbf{l}=\int_{0}^{1}(2 x+4) d x$

$$
=\left.\left(x^{2}+4 x\right)\right|_{0} ^{1}=1+4=5 .
$$

(c) $x: 0 \rightarrow 1, y=x, z=x^{2}, d y=d x, d z=2 x d x$.
$\boldsymbol{\nabla} T \cdot d \mathbf{l}=(2 x+4 x) d x+\left(4 x+2 x^{6}\right) d x+\left(6 x x^{4}\right) 2 x d x=\left(10 x+14 x^{6}\right) d x$.
$\int_{\mathbf{a}}^{\mathbf{b}} \boldsymbol{\nabla} T \cdot d \mathbf{l}=\int_{0}^{1}\left(10 x+14 x^{6}\right) d x=\left.\left(5 x^{2}+2 x^{7}\right)\right|_{0} ^{1}=5+2=7 . \checkmark$

Problem 1.33

$$
\begin{aligned}
& \boldsymbol{\nabla} \cdot \mathbf{v}=y+2 z+3 x \\
& \begin{aligned}
& \int(\boldsymbol{\nabla} \cdot \mathbf{v}) d \tau=\int(y+2 z+3 x) d x d y d z=\iint\left\{\int_{0}^{2}(y+2 z+3 x) d x\right\} d y d z \\
&=\int\left\{\int_{0}^{2}(2 y+4 z+6) d y\right\} d z \\
& \longleftrightarrow\left[(y+2 z) x+\frac{3}{2} x^{2}\right]_{0}^{2}=2(y+2 z)+6 \\
&=\int_{0}^{2}(8 z+16) d z=\left.\left(4 z^{2}+16 z\right)\right|_{0} ^{2}=16+32=48 .
\end{aligned}
\end{aligned}
$$

Numbering the surfaces as in Fig. 1.29:
(i) $d \mathbf{a}=d y d z \hat{\mathbf{x}}, x=2 . \mathbf{v} \cdot d \mathbf{a}=2 y d y d z . \int \mathbf{v} \cdot d \mathbf{a}=\iint 2 y d y d z=\left.2 y^{2}\right|_{0} ^{2}=8$.
(ii) $d \mathbf{a}=-d y d z \hat{\mathbf{x}}, x=0 . \mathbf{v} \cdot d \mathbf{a}=0 . \int \mathbf{v} \cdot d \mathbf{a}=0$.
(iii) $d \mathbf{a}=d x d z \hat{\mathbf{y}}, y=2 . \mathbf{v} \cdot d \mathbf{a}=4 z d x d z \cdot \int \mathbf{v} \cdot d \mathbf{a}=\iint 4 z d x d z=16$.
(iv) $d \mathbf{a}=-d x d z \hat{\mathbf{y}}, y=0 . \mathbf{v} \cdot d \mathbf{a}=0 \cdot \int \mathbf{v} \cdot d \mathbf{a}=0$.
(v) $d \mathbf{a}=d x d y \hat{\mathbf{z}}, z=2 \cdot \mathbf{v} \cdot d \mathbf{a}=6 x d x d y \cdot \int \mathbf{v} \cdot d \mathbf{a}=24$.
(vi) $d \mathbf{a}=-d x d y \hat{\mathbf{z}}, z=0 . \mathbf{v} \cdot d \mathbf{a}=0 . \int \mathbf{v} \cdot d \mathbf{a}=0$.
$\Rightarrow \int \mathbf{v} \cdot d \mathbf{a}=8+16+24=48 \checkmark$

Problem 1.34

$\boldsymbol{\nabla} \times \mathbf{v}=\hat{\mathbf{x}}(0-2 y)+\hat{\mathbf{y}}(0-3 z)+\hat{\mathbf{z}}(0-x)=-2 y \hat{\mathbf{x}}-3 z \hat{\mathbf{y}}-x \hat{\mathbf{z}}$.
$d \mathbf{a}=d y d z \hat{\mathbf{x}}$, if we agree that the path integral shall run counterclockwise. So $(\boldsymbol{\nabla} \times \mathbf{v}) \cdot d \mathbf{a}=-2 y d y d z$.

$$
\begin{aligned}
\int(\boldsymbol{\nabla} \times \mathbf{v}) \cdot d \mathbf{a} & =\int\left\{\int_{0}^{2-z}(-2 y) d y\right\} d z \\
& \left.\hookrightarrow y^{2}\right|_{0} ^{2-z}=-(2-z)^{2} \\
& =-\int_{0}^{2}\left(4-4 z+z^{2}\right) d z=-\left.\left(4 z-2 z^{2}+\frac{z^{3}}{3}\right)\right|_{0} ^{2} \\
& =-\left(8-8+\frac{8}{3}\right)=-\frac{8}{3}
\end{aligned}
$$

Meanwhile, $\mathbf{v} \cdot d \mathbf{l}=(x y) d x+(2 y z) d y+(3 z x) d z$. There are three segments.

(1) $x=z=0 ; d x=d z=0 . y: 0 \rightarrow 2 . \int \mathbf{v} \cdot d \mathbf{l}=0$.
(2) $x=0 ; z=2-y ; d x=0, d z=-d y, y: 2 \rightarrow 0 . \mathbf{v} \cdot d \mathbf{l}=2 y z d y$.

$$
\int \mathbf{v} \cdot d \mathbf{l}=\int_{2}^{0} 2 y(2-y) d y=-\int_{0}^{2}\left(4 y-2 y^{2}\right) d y=-\left.\left(2 y^{2}-\frac{2}{3} y^{3}\right)\right|_{0} ^{2}=-\left(8-\frac{2}{3} \cdot 8\right)=-\frac{8}{3}
$$

(3) $x=y=0 ; d x=d y=0 ; z: 2 \rightarrow 0 . \mathbf{v} \cdot d \mathbf{l}=0 . \int \mathbf{v} \cdot d \mathbf{l}=0$. So $\oint \mathbf{v} \cdot d \mathbf{l}=-\frac{8}{3} . \checkmark$

Problem 1.35

By Corollary $1, \int(\boldsymbol{\nabla} \times \mathbf{v}) \cdot d \mathbf{a}$ should equal $\frac{4}{3} \cdot \boldsymbol{\nabla} \times \mathbf{v}=\left(4 z^{2}-2 x\right) \hat{\mathbf{x}}+2 z \hat{\mathbf{z}}$.
(i) $d \mathbf{a}=d y d z \hat{\mathbf{x}}, x=1 ; y, z: 0 \rightarrow 1 .(\boldsymbol{\nabla} \times \mathbf{v}) \cdot d \mathbf{a}=\left(4 z^{2}-2\right) d y d z ; \int(\boldsymbol{\nabla} \times \mathbf{v}) \cdot d \mathbf{a}=\int_{0}^{1}\left(4 z^{2}-2\right) d z$ $=\left.\left(\frac{4}{3} z^{3}-2 z\right)\right|_{0} ^{1}=\frac{4}{3}-2=-\frac{2}{3}$.
(ii) $d \mathbf{a}=-d x d y \hat{\mathbf{z}}, z=0 ; x, y: 0 \rightarrow 1$. $(\boldsymbol{\nabla} \times \mathbf{v}) \cdot d \mathbf{a}=0 ; \int(\boldsymbol{\nabla} \times \mathbf{v}) \cdot d \mathbf{a}=0$.
(iii) $d \mathbf{a}=d x d z \hat{\mathbf{y}}, y=1 ; x, z: 0 \rightarrow 1$. $(\boldsymbol{\nabla} \times \mathbf{v}) \cdot d \mathbf{a}=0 ; \int(\boldsymbol{\nabla} \times \mathbf{v}) \cdot d \mathbf{a}=0$.
(iv) $d \mathbf{a}=-d x d z \hat{\mathbf{y}}, y=0 ; x, z: 0 \rightarrow 1 .(\boldsymbol{\nabla} \times \mathbf{v}) \cdot d \mathbf{a}=0 ; \int(\boldsymbol{\nabla} \times \mathbf{v}) \cdot d \mathbf{a}=0$.
(v) $d \mathbf{a}=d x d y \hat{\mathbf{z}}, z=1 ; x, y: 0 \rightarrow 1$. $(\boldsymbol{\nabla} \times \mathbf{v}) \cdot d \mathbf{a}=2 d x d y ; \int(\nabla \times \mathbf{v}) \cdot d \mathbf{a}=2$.
$\Rightarrow \int(\boldsymbol{\nabla} \times \mathbf{v}) \cdot d \mathbf{a}=-\frac{2}{3}+2=\frac{4}{3}$. \checkmark

Problem 1.36

(a) Use the product rule $\boldsymbol{\nabla} \times(f \mathbf{A})=f(\boldsymbol{\nabla} \times \mathbf{A})-\mathbf{A} \times(\boldsymbol{\nabla} f)$:

$$
\int_{\mathcal{S}} f(\boldsymbol{\nabla} \times \mathbf{A}) \cdot d \mathbf{a}=\int_{\mathcal{S}} \boldsymbol{\nabla} \times(f \mathbf{A}) \cdot d \mathbf{a}+\int_{\mathcal{S}}[\mathbf{A} \times(\boldsymbol{\nabla} f)] \cdot d \mathbf{a}=\oint_{\mathcal{P}} f \mathbf{A} \cdot d \mathbf{l}+\int_{\mathcal{S}}[\mathbf{A} \times(\boldsymbol{\nabla} f)] \cdot d \mathbf{a} . \quad \text { qed }
$$

(I used Stokes' theorem in the last step.)
(b) Use the product rule $\boldsymbol{\nabla} \cdot(\mathbf{A} \times \mathbf{B})=\mathbf{B} \cdot(\boldsymbol{\nabla} \times \mathbf{A})-\mathbf{A} \cdot(\boldsymbol{\nabla} \times \mathbf{B})$:

$$
\int_{\mathcal{V}} \mathbf{B} \cdot(\boldsymbol{\nabla} \times \mathbf{A}) d \tau=\int_{\mathcal{V}} \boldsymbol{\nabla} \cdot(\mathbf{A} \times \mathbf{B}) d \tau+\int_{\mathcal{V}} \mathbf{A} \cdot(\boldsymbol{\nabla} \times \mathbf{B}) d \tau=\oint_{\mathcal{S}}(\mathbf{A} \times \mathbf{B}) \cdot d \mathbf{a}+\int_{\mathcal{V}} \mathbf{A} \cdot(\boldsymbol{\nabla} \times \mathbf{B}) d \tau . \quad \text { qed }
$$

(I used the divergence theorem in the last step.)
Problem $1.37 \quad r=\sqrt{x^{2}+y^{2}+z^{2}} ; \quad \theta=\cos ^{-1}\left(\frac{z}{\sqrt{x^{2}+y^{2}+z^{2}}}\right) ; \quad \phi=\tan ^{-1}\left(\frac{y}{x}\right)$.

Problem 1.38

There are many ways to do this one - probably the most illuminating way is to work it out by trigonometry from Fig. 1.36. The most systematic approach is to study the expression:

$$
\mathbf{r}=x \hat{\mathbf{x}}+y \hat{\mathbf{y}}+z \hat{\mathbf{z}}=r \sin \theta \cos \phi \hat{\mathbf{x}}+r \sin \theta \sin \phi \hat{\mathbf{y}}+r \cos \theta \hat{\mathbf{z}}
$$

If I only vary r slightly, then $d \mathbf{r}=\frac{\partial}{\partial r}(\mathbf{r}) d r$ is a short vector pointing in the direction of increase in r. To make it a unit vector, I must divide by its length. Thus:

$$
\hat{\mathbf{r}}=\frac{\frac{\partial \mathbf{r}}{\partial r}}{\left|\frac{\partial \mathbf{r}}{\partial r}\right|} ; \hat{\boldsymbol{\theta}}=\frac{\frac{\partial \mathbf{r}}{\partial \theta}}{\left|\frac{\partial \mathbf{r}}{\partial \theta}\right|} ; \hat{\boldsymbol{\phi}}=\frac{\frac{\partial \mathbf{r}}{\partial \phi}}{\left|\frac{\partial \mathbf{r}}{\partial \phi}\right|} .
$$

$$
\begin{aligned}
& \frac{\partial \mathbf{r}}{\partial r}=\sin \theta \cos \phi \hat{\mathbf{x}}+\sin \theta \sin \phi \hat{\mathbf{y}}+\cos \theta \hat{\mathbf{z}} ;\left|\frac{\partial \mathbf{r}}{\partial r}\right|^{2}=\sin ^{2} \theta \cos ^{2} \phi+\sin ^{2} \theta \sin ^{2} \phi+\cos ^{2} \theta=1 \text {. } \\
& \frac{\partial \mathbf{r}}{\partial \theta}=r \cos \theta \cos \phi \hat{\mathbf{x}}+r \cos \theta \sin \phi \hat{\mathbf{y}}-r \sin \theta \hat{\mathbf{z}} ;\left|\frac{\partial \mathbf{r}}{\partial \theta}\right|^{2}=r^{2} \cos ^{2} \theta \cos ^{2} \phi+r^{2} \cos ^{2} \theta \sin ^{2} \phi+r^{2} \sin ^{2} \theta=r^{2} \text {. } \\
& \frac{\partial \mathbf{r}}{\partial \phi}=-r \sin \theta \sin \phi \hat{\mathbf{x}}+r \sin \theta \cos \phi \hat{\mathbf{y}} ;\left|\frac{\partial \mathbf{r}}{\partial \phi}\right|^{2}=r^{2} \sin ^{2} \theta \sin ^{2} \phi+r^{2} \sin ^{2} \theta \cos ^{2} \phi=r^{2} \sin ^{2} \theta \text {. } \\
& \hat{\mathbf{r}}=\sin \theta \cos \phi \hat{\mathbf{x}}+\sin \theta \sin \phi \hat{\mathbf{y}}+\cos \theta \hat{\mathbf{z}} . \\
& \Rightarrow \begin{array}{l}
\hat{\boldsymbol{\theta}}=\cos \theta \cos \phi \hat{\mathbf{x}}+\cos \theta \sin \phi \hat{\mathbf{y}}-\sin \theta \hat{\mathbf{z}} . \\
\hat{\boldsymbol{\phi}}=-\sin \phi \hat{\mathbf{x}}+\cos \phi \hat{\mathbf{y}} .
\end{array} \\
& \text { Check: } \hat{\mathbf{r}} \cdot \hat{\mathbf{r}}=\sin ^{2} \theta\left(\cos ^{2} \phi+\sin ^{2} \phi\right)+\cos ^{2} \theta=\sin ^{2} \theta+\cos ^{2} \theta=1, \\
& \hat{\boldsymbol{\theta}} \cdot \hat{\boldsymbol{\phi}}=-\cos \theta \sin \phi \cos \phi+\cos \theta \sin \phi \cos \phi=0, \checkmark \quad \text { etc. }
\end{aligned}
$$

$\sin \theta \hat{\mathbf{r}}=\sin ^{2} \theta \cos \phi \hat{\mathbf{x}}+\sin ^{2} \theta \sin \phi \hat{\mathbf{y}}+\sin \theta \cos \theta \hat{\mathbf{z}}$.
$\cos \theta \hat{\boldsymbol{\theta}}=\cos ^{2} \theta \cos \phi \hat{\mathbf{x}}+\cos ^{2} \theta \sin \phi \hat{\mathbf{y}}-\sin \theta \cos \theta \hat{\mathbf{z}}$.
Add these:
(1) $\sin \theta \hat{\mathbf{r}}+\cos \theta \hat{\boldsymbol{\theta}}=+\cos \phi \hat{\mathbf{x}}+\sin \phi \hat{\mathbf{y}}$;
(2) $\hat{\boldsymbol{\phi}}=-\sin \phi \hat{\mathbf{x}}+\cos \phi \hat{\mathbf{y}}$.

Multiply (1) by $\cos \phi$, (2) by $\sin \phi$, and subtract:

$$
\hat{\mathbf{x}}=\sin \theta \cos \phi \hat{\mathbf{r}}+\cos \theta \cos \phi \hat{\boldsymbol{\theta}}-\sin \phi \hat{\boldsymbol{\phi}} .
$$

Multiply (1) by $\sin \phi,(2)$ by $\cos \phi$, and add:

$$
\hat{\mathbf{y}}=\sin \theta \sin \phi \hat{\mathbf{r}}+\cos \theta \sin \phi \hat{\boldsymbol{\theta}}+\cos \phi \hat{\boldsymbol{\phi}}
$$

$\cos \theta \hat{\mathbf{r}}=\sin \theta \cos \theta \cos \phi \hat{\mathbf{x}}+\sin \theta \cos \theta \sin \phi \hat{\mathbf{y}}+\cos ^{2} \theta \hat{\mathbf{z}}$.
$\sin \theta \hat{\boldsymbol{\theta}}=\sin \theta \cos \theta \cos \phi \hat{\mathbf{x}}+\sin \theta \cos \theta \sin \phi \hat{\mathbf{y}}-\sin ^{2} \theta \hat{\mathbf{z}}$.
Subtract these:

$$
\hat{\mathbf{z}}=\cos \theta \hat{\mathbf{r}}-\sin \theta \hat{\boldsymbol{\theta}}
$$

Problem 1.39

(a) $\boldsymbol{\nabla} \cdot \mathbf{v}_{1}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} r^{2}\right)=\frac{1}{r^{2}} 4 r^{3}=4 r$
$\int\left(\boldsymbol{\nabla} \cdot \mathbf{v}_{1}\right) d \tau=\int(4 r)\left(r^{2} \sin \theta d r d \theta d \phi\right)=(4) \int_{0}^{R} r^{3} d r \int_{0}^{\pi} \sin \theta d \theta \int_{0}^{2 \pi} d \phi=(4)\left(\frac{R^{4}}{4}\right)(2)(2 \pi)=4 \pi R^{4}$
$\int \mathbf{v}_{\mathbf{1}} \cdot d \mathbf{a}=\int\left(r^{2} \hat{\mathbf{r}}\right) \cdot\left(r^{2} \sin \theta d \theta d \phi \hat{\mathbf{r}}\right)=r^{4} \int_{0}^{\pi} \sin \theta d \theta \int_{0}^{2 \pi} d \phi=4 \pi R^{4} \checkmark$ (Note: at surface of sphere $r=R$.)
(b) $\boldsymbol{\nabla} \cdot \mathbf{v}_{2}=\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} \frac{1}{r^{2}}\right)=0 \Rightarrow \int\left(\boldsymbol{\nabla} \cdot \mathbf{v}_{2}\right) d \tau=0$
$\int \mathbf{v}_{2} \cdot d \mathbf{a}=\int\left(\frac{1}{r^{2}} \hat{\mathbf{r}}\right)\left(r^{2} \sin \theta d \theta d \phi \hat{\mathbf{r}}\right)=\int \sin \theta d \theta d \phi=4 \pi$.
They don't agree! The point is that this divergence is zero except at the origin, where it blows up, so our calculation of $\int\left(\boldsymbol{\nabla} \cdot \mathbf{v}_{2}\right)$ is incorrect. The right answer is 4π.

Problem 1.40

$$
\begin{aligned}
\boldsymbol{\nabla} \cdot \mathbf{v} & =\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2} r \cos \theta\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}(\sin \theta r \sin \theta)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \phi}(r \sin \theta \cos \phi) \\
& =\frac{1}{r^{2}} 3 r^{2} \cos \theta+\frac{1}{r \sin \theta} r 2 \sin \theta \cos \theta+\frac{1}{r \sin \theta} r \sin \theta(-\sin \phi) \\
& =3 \cos \theta+2 \cos \theta-\sin \phi=5 \cos \theta-\sin \phi
\end{aligned}
$$

$\int(\boldsymbol{\nabla} \cdot \mathbf{v}) d \tau=\int(5 \cos \theta-\sin \phi) r^{2} \sin \theta d r d \theta d \phi=\int_{0}^{R} r^{2} d r \int_{0}^{\frac{\theta}{2}}\left[\int_{0}^{2 \pi}(5 \cos \theta-\sin \phi) d \phi\right] d \theta \sin \theta$ $\longrightarrow 2 \pi(5 \cos \theta)$

$$
=\left(\frac{R^{3}}{3}\right)(10 \pi) \int_{0}^{\frac{\pi}{2}} \sin \theta \cos \theta d \theta
$$

$$
\left.\hookrightarrow \frac{\sin ^{2} \theta}{2}\right|_{0} ^{\frac{\pi}{2}}=\frac{1}{2}
$$

$=\frac{5 \pi}{3} R^{3}$.
Two surfaces-one the hemisphere: $d \mathbf{a}=R^{2} \sin \theta d \theta d \phi \hat{\mathbf{r}} ; r=R ; \phi: 0 \rightarrow 2 \pi, \theta: 0 \rightarrow \frac{\pi}{2}$.
$\int \mathbf{v} \cdot d \mathbf{a}=\int(r \cos \theta) R^{2} \sin \theta d \theta d \phi=R^{3} \int_{0}^{\frac{\pi}{2}} \sin \theta \cos \theta d \theta \int_{0}^{2 \pi} d \phi=R^{3}\left(\frac{1}{2}\right)(2 \pi)=\pi R^{3}$.
other the flat bottom: $d \mathbf{a}=(d r)(r \sin \theta d \phi)(+\hat{\boldsymbol{\theta}})=r d r d \phi \hat{\boldsymbol{\theta}}$ (here $\left.\theta=\frac{\pi}{2}\right) . r: 0 \rightarrow R, \phi: 0 \rightarrow 2 \pi$.
$\int \mathbf{v} \cdot d \mathbf{a}=\int(r \sin \theta)(r d r d \phi)=\int_{0}^{R} r^{2} d r \int_{0}^{2 \pi} d \phi=2 \pi \frac{R^{3}}{3}$.
Total: $\int \mathbf{v} \cdot d \mathbf{a}=\pi R^{3}+\frac{2}{3} \pi R^{3}=\frac{5}{3} \pi R^{3} . \checkmark$
Problem 1.41

$$
\boldsymbol{\nabla} t=(\cos \theta+\sin \theta \cos \phi) \hat{\mathbf{r}}+(-\sin \theta+\cos \theta \cos \phi) \hat{\boldsymbol{\theta}}+\frac{1}{\operatorname{siph} \theta}(-\operatorname{siph} \theta \sin \phi) \hat{\boldsymbol{\phi}}
$$

$$
\begin{aligned}
\nabla^{2} t & =\nabla \cdot(\nabla t) \\
& =\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(r^{2}(\cos \theta+\sin \theta \cos \phi)\right)+\frac{1}{r \sin \theta} \frac{\partial}{\partial \theta}(\sin \theta(-\sin \theta+\cos \theta \cos \phi))+\frac{1}{r \sin \theta} \frac{\partial}{\partial \phi}(-\sin \phi) \\
& =\frac{1}{r^{2}} 2 r(\cos \theta+\sin \theta \cos \phi)+\frac{1}{r \sin \theta}\left(-2 \sin \theta \cos \theta+\cos ^{2} \theta \cos \phi-\sin ^{2} \theta \cos \phi\right)-\frac{1}{r \sin \theta} \cos \phi \\
& =\frac{1}{r \sin \theta}\left[2 \sin \theta \cos \theta+2 \sin ^{2} \theta \cos \phi-2 \sin \theta \cos \theta+\cos ^{2} \theta \cos \phi-\sin ^{2} \theta \cos \phi-\cos \phi\right] \\
& =\frac{1}{r \sin \theta}\left[\left(\sin ^{2} \theta+\cos ^{2} \theta\right) \cos \phi-\cos \phi\right]=0 .
\end{aligned}
$$

[^1]
[^0]: (c)2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

[^1]: (c)2012 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is protected under all copyright laws as they currently exist. No portion of this material may be reproduced, in any form or by any means, without permission in writing from the publisher.

