Introduction to Elenentary Particle Physics 2nd Edition Bettini Sol utions Manual

Solutions

1.1. The kinetic energy of the Boeing = 8x10” J. The mass of a mosquito is, say, 1 mg. The
mosquito-antimosquito annihilation produces the energy 2x107° (3x10°)’=2 x10"' J.

1.2. s=(3E)’~0=9E’=9(p*+ m*)=88.9 GeV*; m = Vs =943 GeV.

13.T . =h/t. =(66x10"eVs)/(2.6x10™ s)= 25 neV, I =54neV, I =2.5 yeV
14.7,=h/T, =(6.6x107° eVs)/(149x 10 eV) =44 x 10 5,7=8x107s; 7=1.6x102

S; Te= 1.3x107% s; 1,,= 7x10' s; 7,=5.5x10* s.
1.5. Neglecting the recoil, the momentum transfer would be ¢g= E;sinf =2.1 GeV,
corresponding to the resolving power D= 197 (MeV fm)/2100 MeV) =0.1 fm.
1.6. Our reaction isp+ p—= p+ p+m. In the CM frame the total momentum is zero. The
lowest energy configuration of the system is when all particles in the final state are at rest.
a. Let us write down the equality between the expressions of s in the CM and L frames, i. e.
s =(Ep +mp)2 —p; =(2mp +m)2.
(2mp + m)2 -2m; m?

=m,+2m+

2mp 2mp

Recalling that E = m;, + p.,we have E, =

b. The two momenta are equal and opposite because the two particles have the same mass,

. £ . . «\2 2
hence we are in the CM frame. The threshold energy E, is given by s = (2Ep) = (2mp + m)
which gives E, =m, +m/2.
c. E,=1218 GeV; p,=0.78 GeV; T, = 280 MeV; Ep =1.007 GeV;p; =0.36 GeV .

2 2 2 2 2 2
1.7. a. s=(Ey +mp) - P, =(Ey +mp) -E =(mp +mﬂ) =1.16 GeV" , hence we have
E, =149 MeV
b. s= (Ey +E, )2 —(py + pp)2 = m; +2EE,-2p, p, . For a given proton energy, s reaches a
maximum for a head-on collision. Consequently, p, -p, = —E, p, and, taking into account that
the energies are very large, s = mz +2E, (Ep + pp) ~ mi +4E E, . In conclusion
_s=m, (1.16-0.88)x 10" eV’

E, = L= . =7x10" eV =70 EeV .
" 4E 4x10° eV

14

c. The attenuation length is A =1/(0p)=1.5x10* m =5 Mpc (1 Mpc=3.1x 10* m)

This is a short distance on the cosmological scale. The cosmic ray spectrum (Fig. 1.10) should
not go beyond the above computed energy. This is called the Greisen, Zatzepin and Kusmin
(GZK) bound. The AUGER observatory is now exploring this extreme energy region.

1.8. We call E; the incident gamma energy and E, the background gamma energy. At threshold
s=(2m,)*.

For a given E, s is a maximum for head-on collisions: s = (El. +E, )2 - (Ei -E, )2 =4EE,.
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Hence at threshold: E, = m_ / E, .
(5x10°) ev?
02eV

a. E, =%= (10° m")x(1.97x107 eV/m’)=02 eV and E, =

=1.25TeV.

52 2
(5x10°) ev
E = g =250 TeV.
107 eV

1.9. s=(Ep +mp)2 —p; =(4mp)2 =F

=7m, = 6.6 GeV .

p,min
1.10. Calling E, the beam energy at fixed target and E, the energies of the colliding beams, the
condition is 2m E, = 4E’ , hence he have E, =100 PeV . This value is well above the ‘knee’
of the cosmic ray spectrum, but it is much smaller than the GZK bound

1.11. We must consider the reaction

M—-m +m,.

The figure defines the CM variables

& £

m,, p*:/‘ E*J M ™MP .I/‘ E,
< e >
Fig.S.1

We can use equations (P1.5) and (P1.6) with Vs=M, obtaining
M?+m;-m} . M?+ml-m
7 =, Elf =
2M 2M
The corresponding momenta are
P =Pl =y =B i =\JE - m

1.12. In the A decay we have

E,

E = W =017 GeV; E =m,~E, =094 GeV; p =+[EZ —m’ =0.1 GeV
A

And in the = decay we have: E, =0.20 GeV; E, =1.12 GeV; p =0.14 GeV.

1.13. The expressions found in problem 1.11 become E, = % and E; = %

Since m,=0, the CM momentum is p = E, = % .

1.14. Let call x a coordinate along the beam. The velocity of the pions in L should not be larger
than the velocity of the muon in the CM, i. e. B=< B, <pB.". Let us use the formulae found in

problem 1.14 to calculate the Lorentz parameters for the CM-L transformation

* 2 * 2 2 2 2
* p m, — " * EM m,_+ mﬂ s o m, — mﬂ
== Y =t m——= =>/3}/ =
"OE o miem® " m 2m m S 2mom
1z 4 12 1z pom pom
2 2

* . * % m;-[ m,
The condition 8, < B, gives p, =B,y m, <y, m, = 2—} =39.35 MeV.
m

"

1.15. When dealing with a Lorentz transformation problem, the first step is the accurate



drawing of the momenta in the two frames and the definition of the kinematic variables.

Fig.S.2

Using the expressions we found in the introduction we have:
2

*=0.17 GeV; E, =095 GeV; p. = p, = JE> —m? =009 GeV .

2 2
. my—m,+m
a. E =
2m
A

b. We calculate the Lorentz factors for the transformation:

E
E,=p>+m’ =229 GeV;/BA=%=O.87; Yo =—2=205.

A my
c. We do the transformation and calculate the requested quantities
p.sinf_= p.sinf, =0.096 x sin210°= -0.048 GeV

p,cosf_ = yA(p; cos 6, + /J)AE:;) =2.05(0.096 x c0s210°+0.87 x 0.17) = 0.133 GeV .

-0.048 2 2
=-0.36 0_=-20° = sinf_) + cosf_) =0.141 GeV.
133 ; P, =\(p.sin6, ) +(p, coso, )
p,sinf, = p: sint9: =0.048 GeV

p,cosf, = }/A(p; cost, + ﬁAE;) =2.05(0.096 x cos 30°+0.87 x 0.95) = 1.86 GeV

04
tan6 =M=O.026 0 =15".
P 1.86

tanf_ =

p

2 2
pp=\/(ppsin9p) +(p,cos,) =19 Gev:6 =6, -6, =21.5".

1.16. Remember to start by drawing the momentum vectors in the two reference frames, as in
problem 1.15. We now have, being in non-relativistic conditions,

2 2 2
P_ P, Pi

E =E, +E, =
2m  2m 2m

= pi=pitp;.

Pi=P;+P, = P =pi+pi+2P5 Py =D5 4D, = p;'p,=0.

0,, =0, +0,, =m/2: at non-relativistic speeds the angle between the final directions is 90°.
1.17. We continue to refer to the figure of problem 1.15. We shall solve our problem in two
ways: by performing a Lorentz transformation and by using the Lorentz invariants.

We start with the first method. We calculate the Lorentz factors. The energy of the incident
proton is E, = /p; + m, = 3.143 GeV . Firstly, let us calculate the CM energy squared of the

two-proton system (i. . its mass squared).
p,=p=3GeV; E,=E +m, =4081GeV.Hence s=2m, +2Em,=7.656 GeV>.

The Lorentz factors are 8, =p,, /E, =0.735and vy, =E, /[s, =147.



Since all the particles are equal, we have
E =E,=E,=E, == 1385 GeV; p = ps=p. =p, =JE -m, =1019 GeV.

We now perform the transformation. To calculate the angle we must calculate firstly the
components of the momenta
p,sinf,, = p,sinf, =1.019 x sin10°= 0.177 GeV .
pycos6y, =7 (picos], + BE; ) = 1473 x (1.019 x cos10°+0.735 x 1.385) = 2.978 GeV .
0.177

an6), =2 =00594  6,=3".

-p,sinf,, = -p,sinf,, = -1.019 x sin170°= -0.1769 GeV .
pycosB,, = y(p; cosh], + BE, ) = 1473 x (1019 x cos170°+0.735 x 1.385) = 0.0213 GeV .
tan6,, = -0.1769/0.0213 = -8.305 0,, =-83 = 0, =6,-0,=86".
In relativistic conditions the angle between the final momenta in a collision between two equal
particles is always, as in this example, smaller than 90°.
We now solve the problem using the invariants and the expressions in the introduction. We
want the angle between the final particles in L. We then write down the expression of s in L in
the initial state, which have already calculated, i. e.
s=(E;+ E4)2 _(p3 "‘p4)2 = m? + mi +2EE, -2p,-p,
mlz) +EE, —5/2

PsD, .
We need E; and E, (and their momenta); we can use (P.1.13) if we have ¢. With the data of the

that gives p,-p, = m, + E,E, - s /2 and hence cos,, =

problem we can calculate ¢ in the CM:
t=2m> +2p; cosb;, - 2E* = 2p*(cosb;, — 1) = 2 x 1.019* (cos 10°-1) = ~0.0316 GeV> .

We then obtain

+1-2m>  7.656-0.0316-2x0.938>
E =" X093 3126 Gev;  p,=2982 GeV.
2m 2x0.938

p

From energy conservation we have
E,=E +m,-E;=3.143+0938-3.126 =0.955 GeV; p,=0.179 GeV.

Finally we obtain

09382 + 3.126 x 0.955 — 7.656 /2
cosf,, = 2938 *3:.126x0955 2765672 _ ) 159 =0, =86°.
: 2.982 x 0.179

1.18. We must take into account that 3, is close to 1. We write

E ) -1 >
yo=E 161 p, = |12 =,/1_y,32z1—”70=0.998.

2
mp Vb

d
In the L reference frame the D life was t=/3—=10 ps long. In its rest-frame was
c

ty=t/y,=0.62ps.



From p, =p,=p; Eq+E, =mp; my, =/ p2 +m2 ++p> +m’ we obtain

2
oo (MmN g Mev .
AW 2w, )T

1.19. The distance travelled by a pion in a lifetime in the L frame is [, = yBct, . If the initial

number of pions is N,, their number at the distance [ is N(I) = N, exp ( - 5 ) . Hence
YTPC
l 20
= = = 24.3
P N, 26x10°x3x10° xIn(1/09)
7.cln
N(I)

and p=myB=0.14x243=34GeV; E=yp>+m’ =34>+0.14% =342 GeV.

1.20. In this case the reference frames L and CM coincide. We have
pn0+pn=0 = pﬂ0=pn=p*'
The total energy is E=E , + E, =m__ +m, =1079 MeV .

Subtracting the members of the two relationships E’

n = 19*2 + mf and Ejo = p*2 + mjo we obtain
E’-E=m -m’
From E, = E - E,. we have E, = E* + E_, - 2EE , ; and finally
E*+E -E E+m’, -m
E, = ~ = = =1388 MeV;T, =E-E, -m, =0.6 MeV.
" 2E 2E x

The Lorentz factors are Yo = Eﬂ0 / m, = 1.028 nd ﬁno = 1/1 -1/ yio =0.23.

The distance travelled in a lifetime is then
[ = V”ofﬂoﬁ”oc =1.028x84x10"" x023x3x10* =6 nm .

1.21. The maximum momentum transfer is at background scattering. Eq. (6.25) gives in these
conditions Q*=4EE’, where E’ is the energy of the scattered electron. Using Eq. (6.11) we have
0’ =4E2M=4><4><56
"™ M +2E 56 +4
1.22. Having  the a  particle  charge z=2, the cross section @ is
do  Z ‘o’ _ Z'a’ 1

@ g ? B (e

=15 GeV~.

Integrating on the angles we have
27 6, 2.2 6, 2.2

d Z 1 Z 0
fd(pfdcosB—G: (j 2Jrf 2dcost9={ (Z 2;1\ ’
() aQ E 5 (1-cosb) k E ,J 0,

Hence (d—(’) /(d—o) ~0.0074 .
ds2 6>90° 7® 0>10°

1.23. The requested rate is given by R, =

1
cosf-1"

o(6>0.1)RtpN

3 4 'We calculate the cross section
197 x (107kg)
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y d Z’a’ 1 1 Z’a’ 1 1
a(0>61)=fdc050 9 =( (Z 27{” - \=( (: Zﬂ\(———\
% dcosf l\ E; JLCOSJ‘L’—l cosé)l—lJ l\ E; JLI—COSBI 2J
=4.5x10’ barn. The requested rate is
R - 45%x10PmM*) x10°(s™")x 107°(m) x 1.93 x 104(kg m~)x6.02x10” _96 5!

' 197 x (10 kg)

1.24. At any angle the scattered electron energy reaches its maximum if the scattering is elastic

and we have E'= 5 E = 0 10 =43GeV.
1+ﬁ(1—cost9) 1+T(1—0.87)

E/E'-1 25-1

125.cos=1-——=1-—-—=0925 0=22".
E/M 20
1.26.0.5.
d :
1.27. The equation of motion is gv x B = d_p . Since in this case the Lorentz factor y is constant,
t

d . . . d B
we can write gvxB= ym—v . The centripetal acceleration is then: ay_ave v

dt tf ym p

Simplifying we obtain p = gBp. We now want pc in GeV, B in tesla and p in metres. Starting
from pc = gcBp we have

pc[GeV]x1.6x107°[1/GeV]=1.6 x10™"°[C]x 3x 10*[m/s|x B[ T]x p[m].
Finally in N.U.: p[GeV]=0.3x B[T]x p[m].

=3.6x10® m>;

] N
1.28. The number of protons in the unit volume of the target is n,= {oxl 0_/‘3
<10

N, and N, are linked by the relationship N,, = N e”™' . Consequently, we have

-29
o=iln&=10 nE=23.2 mb.
nl N, 036 69

p

The statistical uncertainty about the incoming particles number is AN, = \/N, and similarly for

the outgoing number. The statistical error on the cross section is
1

- 1
2 2
=L L+L =0.6 mb.
nl|N, Ny

2

2
po=|(29) Ny (29
lav,) 7" lan, )
The final resultis 0 =23.2+0.6 mb.

1.29. The Lorentz factor of the antiproton is y =+p° +m’ /m=1.62 and its velocity

B=41-y7 =0.787. The condition in order to have the antiproton above the Cherenkov
threshold is that the indexis n=1/£=1.27.
If the index is n=1.5, the Cherenkov angle is given by cosf =1/nf = 0.85. Hence 6 = 32°.




2\—1/2 2

1.30. The speed of a particle of momentum p=myf is p = (1 + p_ ) ~1- zm—pz, that is a

good approximation for speeds close to c. The difference between the flight times is
2 2

At = L% in N.U. In order to have Ar>600 ps, we need a base-length L>26 m.

p
1.31. The threshold condition is n>B". Consequently, the index must satisfy the condition
1-B,. <n-1<1-p,;. Since the speeds are very near to 1, we calculate the differences 1-f
2 2
we have p-1=

E
directly. From B'=—=1+ Hence 1-8,=245x10" and

p
1- B, =3.05x107". Consequently the condition on the pressure is 8.2 kPa<I1<102 kPa.

2 2

1.32. Superman saw the light blue shifted due to Doppler effect. Taking for the wavelengths
Ax=650 nm and A,=520 nm, we have v, /v, =1.25. Solving for 8 the Doppler shift expression

Vg = Vg /% , we obtain f=0.22.

1.33
1. The minimum velocity is S, = l =0.75; 2.The minimum kinetic energy for a proton is
n
(1 ) ,
km’mm =m,| =——=—==-1|=938x0.51=480 MeV and of the pion:
1 ﬁmm
(1 ) .
i () = mﬂL 7 1) =139.6x0.51=712 MeV; 3. the Lorentz factor is
1 min
E 400
y=—%= 396" 287 and PB=+1-y7=094. The Cherenkov angle is then

1.34.

a. The Cherenkov threshold is ;. = n . For a generic mass m
E 2 2 1 2

plo1==-1= (B2 o2
p p 2p

Threshold condition for pions is given by
B -1=n-1=3x10"T1=3x10"x52x10°=1.56x10"

and p = e =25 GeV

J2x156x107

2
m

T

. m , (0.494\° )
b. TI(K)=52x10° ZE=52x10° 0140 =6:5%10" Pa=650 mbar

2

m 0.938)°
c.(p)=52x10° —£=52x10° (9—) =2.33x10° Pa=2330 mbar
m 0.140

T
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1.35.
1.E=p=03xBxR=03x10" x10" =3 TeV
2.E=p=03xBxR=03x5x10"x3x10" =5x10" GeV

1.36
1. The total energy of the deuterons is E, =m, +7T,=1875.7 MeV . The motion of the

deuterons is not relativistic. Their momentum is
p, = \/Zded =2 x1875.6x0.13 = 61.25 MeV . This is also the total momentum, which is so

small that in this case the L frame is also in practice the CM frame.

The CM energy squared is Js = \/(Ed +m, )2 —p: =E,+m, =4684.6. The result could be

obtained by simply summing the two masses and the deuteron kinetic energy. This because the

situation is non relativistic. The total kinetic energy available after the reaction is
E,, =E,+m —m,—m, =176 MeV, which is mainly taken by the lighter particle, the

kin t
neutron. To be precise

2 2
_s+m, —m,

i 4684.6° +939.6> — 3727.4°

T -939.6 =953.6 - 939.6 =14.0 MeV

" 2/s " 2 x 4684.6
and
2 2 2 2 2
pooSHmLomy | AGBKO 4 3TTA 9396 L oy
2/s 2 x 4684.6
1 3x10"
2. The flux is ® = —— = X — =24 x10’ nutrons/(m’s).
4R 4 x 1

3. We can calculate the momentum of the neutron non relativistically
P, =+2m,T, =~2x939.6 x 14 =162.2 MeV , and its velocity

B, = Lo 2222 _ 017 v, =5.1x10" m/s . We need 1 ns time resolution

_ 197 MeV fm

1.37. The minimum momentum to resolve the structure is p_. = =50 MeV . The

A

momentum of the neutron of (non relativistic) kinetic energy E,, is p, = \2m,E, ; .

=0.7 MeV .

2 2
oL P 50
The coherence condition is ,/2m E . <p. . ork <=
2Ek0 < Prmin ko =g T 4x940

Call p, the initial neutron momentum, corresponding to the kinetic energy E,,, p, and E,, the
momentum and kinetic energy of the final neutron, p, and E,, those of the recoiling Ar nucleus.
Momentum and kinetic energy conservation in the non-relativistic kinematics of the elastic

background scattering give



P _ P, P
2m, 2m, 2m,

n

Po =P, — D

. . m
From the first equation we have p; = p; + —~ p
mAr

And from the second p; = p; + p; - 2p,p,
[ m,)

) . 1
Equating the second members we obtain (provided p,#0) p, = 5 D, l\l - /I .
mAr

We substitute this expression in the momentum conservation equation, obtaining

2p, 2x50 100

P, = = = =97.6 MeV .
LT 094 1.025
m,, 37.2
) 7.6°
The recoil kinetic energy is E,, = P __9 =130 keV
2m, 2% 37200
1.38.
h 1240 eV
(@) E, =+ =T _ 179 ¢V
A 694 nm
The CM energy for the head-on geometry is s = (E1 +E, )2 - (p] +Pp, )2 =2EE, +2EE,.
2 . (0.5)2
At threshold s = 4EE, = (2me) ,thatis £, = —=——"—-=140 GeV
, 1.79x10
E -E 1-E,/E E
O 1-p=1-2TP 4 278 7% A 55 56x10
E +E, E +E, 1+E,/E E,

(c) s= (E1 +E, )2 - (p1 +Pp, )2 =2EE, -2EE, =0 . The mass is zero for any values of the two

energies.

2 2

* * mn m .
2.1. From the result of the Problem 11.13 we have p =E = 2—” =29.8 MeV . From this
m

we obtain E, =m,_ - p =110 MeV .
22.a) p,=E, = p; =236 MeV ; Eﬂ =259 MeV
E
b) px=5 GeV, hence E, =/ ps + m; =5.02 GeV; y=—%=102; yﬁ:p—K =10.1.
K mK
The muons with maximum energy in L are those that are emitted backwards by the kaon. Their
momentum is p, =y p, + ByE, =10.2x0.236 +10.1x 0.259 = 5.02 GeV .

2.3. The second gamma moves backwards. The total energy is E =E, +E,; the total
momentum is P = p, — p, = E, — E, . The square of the mass of the two-gamma system is equal

9



to the square of the pion mass: mio = (E1 +E, )2 - (E1 -E, )2 =4EE,, from which we obtain

> 4E, 4x150 E E +E,
2.4. The Lorentz factor for £,=5 GeV is y = E, /m, =47 . In its rest frame the distance of the

Earth surface is [, =//y=630m. For E=5 TeV, the distance of the Earth is

l,=1/y =0.63 m. The first muon travels in a lifetime yfct = yct = 28 km , the second would

travel 28 000 km if it did not hit the surface first.
2.5. The Lorentz factor for £ =5 GeV is y = E_/m_=36.In its rest frame it sees the Earth’s

surface at the distance [, =//y =830 m. In a lifetime it travels yct =280 m . We see that

only a few such pions survive. To find them we must go to high altitude.
2.6. The momenta of the electrons are p = 0.3Bp=12 MeV . The gamma energy is £=24 MeV.

2.8. Since the decay is isotropic, the probability of observing a photon is a constant
P (cos 0*,¢*) = K . We determine K by imposing that the probability of observing a photon at

any angle is 2, i. e. the number of photons.
We have 2= stine*de*d¢= fozndqb de(cose*)= K4mw. Hence K=1/27 and
0

P(cos6',¢')=1/2x.

The distribution is isotropic in azimuth in L too. To have the dependence of 6, that is given

dN dN dcos6’ . dcosf’
= - , we must calculate the ‘Jacobian’ J =
dcos dcosO dcosO

Calling fand y the Lorentz factors of the transformation and taking into account that p* = E*,

by P 0)= .
y (COS ) dcosf

we have

pcosf = y(p*cose* + ﬁE*) = yp*(cose* + /3)

E=p=y (E* +Bp cosH*) = )/p*(l + /J’cosé)*).

We differentiate the first and third members of these relationships, taking into account that p*

1s a constant. We obtain

. . dp dcosf .
dp x cosO + pxdlcosO)= dlcosO = ———cosf0 + — =
P p ( ) rp ( ) dcosf pdcos@ rp
. . dp .
dp = dlcosO = — =
p =vBp ( ) J00s0 YBp

sk

dcosb =y p—(l - /J’COSB).

and J' = :
dcosf p

The inverse transformation is E =y (E - Bpcos@),i.e. p" =y p(1 - Bcos@), giving

. dcosf 2
b= —=y*(1-Bcosh) .
dcos6 4 ( & )
dN 1 _
Finally we obtain P(cos)= =— "z(l—b’cose)z
dcosf 2m

10



210. u,/w,=m,/m, =207, w,/u, =m_/m,=3477.

2.11. The energy needed to produce an antiproton is minimum when the Fermi motion is
opposite to the beam direction. If E; is the total energy of the target proton and p; its

momentum, the threshold condition is (E+E)—(p,—p)’=(4m,)’. From this we have
EE, +p,p, = Tm’ . We simplify by setting p, = E, obtaining

Tm? Tm?
E =——t = =7m,,( )55 Gev.
E +p, m,+p, L mpJ

This value should be compared to E,=6.6 GeV on free protons.
2.12. By differentiating (1.79) we obtain AO=0.3BLAp/ p>. The slit of opening d at the

distance [ defines the angle within Af=d/l. The requested distance is then

d
-——*P _ _33m.
03BLAp/ p

2.13. Considering the beam energy and the event topology, the event is probably an associate
production of a K’ and a A. Consequently the V’ may be one of these two particles. The
negative track is in both cases a s, while the positive track may be a 7 or a proton. We need to
measure the mass of the V. With the given data we start by calculating the Cartesian

components of the momenta
p; =121xsin(-18.2°)cos15°= -36.5 MeV; p; = 121 x sin(-18.2°)sin15°= 9.8 MeV;

po =121xcos(-18.2°) = 115 MeV.
p: =1900 x sin(20.2°)cos(~15°) = 633.7 MeV; p; = 1900 x sin(20.2°)sin(~15") = ~169.8 MeV;
p> =1900 x cos(20.2°) = 1783.1 MeV.

Summing the components, we obtain the momentum of the V,i.e. p =1998 MeV .

The energy of the negative pionis E~ = ,[( p- )2 +m. =185 MeV . If the positive track is a 7 its
energy is E; = ,[(p* )2 +m. =1905 MeV , while if it is a proton its energy is E; =2119 MeV .
The energy of the V is E, =2090 MeV in the first case, E, =2304 MeV in the second case.

The mass of the V is consequently m' = E'> - p* =620 MeV in the first hypothesis,
mZ =1150 MeV in the second. Within the #4% uncertainty, the first hypothesis is

incompatible with any known particle, while the second is compatible with the particle being a

A.
2.14.

1. The CM energy squared is s = (E, +m, )’ = p? = m> + 2m,E, . The threshold condition is

2
2 2
s=(me+mp) =m, +m, +2mm,.

2 2
(me +mp) -m,

Hence, the threshold condition is E, = <0, meaning that there is no

2m

n
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threshold, the reaction proceeds also at zero neutrino energy.

2. The threshold condition is s = (mM +m, )2 = m +m;, +2m,m, . The threshold energy is

2 2 2 ’
m,+m | —m, 105.7 +938.3)" —939.6
Ev=(‘ ) _(1057+9383) ~9396* _ |\ \rey
2m 2x939.6

n

3. The threshold energy is

2 2 2 ’
m,+m,| —m? (1777 +938.3) - 939.6
Ev=( ) _(777+9383) ~9396° _ ;s ey
2m 2x939.6

n

2.15. We first find an expression valid in both cases. Call E, and p,= E, the energy and
momentum of the initial photon and E, and p,= E, those of the final one. Similarly E,,, p,, and
E,,, p,, for the electron.

e

The initial values of energies and momenta are given; hence the total energy and momentum

and CM energy squared

E, =E,+E, pr=pa-E, s=E; -p;.

Energy conservation gives E, =E,, + E , Pr=Pn-E, .

We can eliminate the final energy and momentum of the electron by imposing E, — p2, = m_ .

E,=E -E, P =DPr+E,, . Hence: (ET - Eyz)2 —(pT + Eyz)2 = m_ . Solving for E,
s—m’

e

we have £, = ———.
vz 2(ET + pT)
1. We have,in MeV: E  =0511, E,=0.511, p,,=0.

—m? 0.78-0.5112
E=102,p,=0511,5=0.78 and E,, = ———*— = ~0.170 MeV .
2(E, +p,) 2(1.02+0511)

2.We have E, =0.511,E,=1.02, p, =~1.02° -0.511> = 0.88 .
s—m’ 2.08-0511°

E,=153,p,=0.511,5=2.08 and E,, = e - — 0.446 MeV .
=P 27 2(E +p,) 2(153+0511)
ho 1240 eV
2.16. The LASER photon energy is E,, = — = ——— "% _179 eV
"oA 694 nm

The electron initial momentum (we shall need its difference from energy) is

2Eei
The total energy and momentum are E; = E, + E,, Pr=pP.-E,
Energy conservation gives E, = E, + E pr=E -p,

We can eliminate the final energy and momentum of the electron by imposing Eff - pff =m’.

2 2 .
E,=E. -E, Py =E,; — pr . Hence: (ET - Eyf) —(Eyf - pT) =m_ . Solving for E,

2
s—m,

we have Eyf = W
T T

12



2

E. - p; =(Eei +Eyi)_(pei _Eyi): 2n[1; +2Eyi =

el

05 %107
C2x20
5= (Eyi + Eel.)2 —(EW. - .. )2 =m’ +4E E, . Hence

yiei

s—m.=4E E =4x179x20x10° eV’ =143x10" eV?, and

yi™ei

-m?  143x10"
E, =T 7%~ _73GevV
2(ET - pT) 2x9.83

+2x1.79x107 =(6.25 + 3.58)10” GeV = 9.83 eV

2.17. The kinetic energy is T = +/p” + m*> —m
For a proton we have T = /23" + 938.3° — 938.3 = 280 keV

For a positron we have T =+/23° +0.51> = 0.51=22.5 MeV
218. E=p=03BR=03x03%x0.14=12.6 MeV .

2 2

. m,—m
2.19. In problem 2.1 we already calculated the CM momentum p = 2—" =29.8 MeV.
m

T

The CM muon energy is E, =/p’ +m; =110 MeV . For the Lorentz transformation to the L

energies are
E =y(E, = Bp’)=1400(0.110 £ 0.030) = 112 - 196 GeV .

umin
3.2. Strangeness conservation requires that a K" or a K° is produced together with the K. The
third component of the isospin in the initial state is —1/2. Let us check if it is conserved in the

two reactions. The answer is yes for 7~ + p— K~ + K* + n because in the final state we have

1 1 1 .
I =——+—+—=+—,and yes also for 7~ + p— K~ + K" + p because in the final state we
: 2 2 2 2
1 1 1 1
have I, = 273 + 5= The threshold of the first reaction is just a little smaller of that of

the second reaction because m, + m, <m,+nm., (1433 MeV < 1436 MeV). For the former

we have

2 2 2
E _ (e m, ) —mg—m ~15 GeV.

T
2mp

3.3. To conserve both strangeness and baryonic number a pair of AA must be produced. The
reaction is 7~ + p—> A+ A +n. On free protons, we obtain E? =49 GeV . The threshold

energy on bound protons, having Fermi momentum p,, following Problem 2.11, is found to be
E, =E'(1-p,/m,)=41GeV.

In the first case pions in the beam have y=35 and f=1. The flux at the emulsion stack is N=0.97

10° ;/ecm?.
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34.1. 0K, S; 2. OK, W; 3. Violates [M; 4. OK, EM; 5. Violates C; 6. Cannot conserve both

energy and momentum; 7. violates 2 and S; 8. violates % and S; 9. violates J and £; 10.

violates energy conservation.

3.5. 1. Violates £, and £; 2. Violates charge conservation; 3. Violates %, I and I ; 4. Violates

the charge; 5. Violates 2, I and I ; 6. Violates charge and S; 7. Violates S and 7 ; 8.Violates S

and I; 9. Violates energy conservation; 10. Violates £, and £.

3.6.a) J and £,b) Fand L, c) energy conservation ; d) electric charge.

37.a) 0+0—--1+0,NO; b) 0+0—=1-1,YES;¢) -1+0—1-2+0,YES;
d)1+0—--1-2+0,NO;e) -1+0—-3+1+1, YES.

3.8. a) NO for J and L; b) NO for J and L; ¢) YES; d) NO for £L; e) YES; f) NO for £, and L,;
2) NO for £; h) YES.

ety
7'p) - &%HE 2>
bl 241
eyl
wi)-ndfye)-fe3)
(K'=*|w'p) = A,ys (SK* |77 p) = \f\f Ay, ==Ay,s (2K |7 p) = \E\EAMf%Am

Hence: o(n'p = K" ):0(n"p—>2K") ( p—>z "K°)=9:1:2
3.10. From the expressions found in the solution of problem 3.9, we have
G(l) . 0(2) . 0(3) = 2|A3/2 - A1/2|2 :|A3/2 + 2A1/2|2 :9|A3/2|2

3.11. o(1)/0(2) =1
3.12. We can proceed as in the previous solutions or also as follows.
A==~
pad)=| 53100
1,0) l,+l> + 2
22 3
a(p+d—>He3+n°)/a(p+deH3+n+)=1/2
1 1>
—_— +_
27 2

n*>

)

11 ‘ 1>

_+_

2
1 1 1 1 1 1 2
‘2 2>——\/; 1,1)5,—5>=— E‘EO>‘H63>+\/;

3.13.From |p p> ‘1 l>

2772
(d.[p

01,

) we have

) and

+>=

,p>=A1.

14



,0) +

,0) and

0>=

have (d,7°|p.n) = —= A,. Finally we obtain o(pp — d* )/ o(pn — dn*) = 2.

V2

.0)

0) =

From |p,n)=‘l,+l>‘l,—l>=L ,0)  we

2 2/12 2/ N2

3.14. |k~ He') = ‘l —l> o,o>_‘l —l>
2" 2
o B3l -
2
|27 He’) =1 > NIIER -§> 3l -%> =><K‘,He4‘2",He3>=—\/;Al,2

oK +He' e2°H3) oK™ +He' — = He')=1/2.

3.15. o(1):0(2) 03)——L i 2 LA0+1A2
15. o(1): -4 1
_ _ _ 2 V2 V2
3.16. o(:r p—m p)/o(n p—>ﬂ°n) ‘3A1/2+ 3A3/2 /— 3 A, +— 3 AB/2

3.17. a) The initial parity is P, =P(n)P(d)(—1)l" =(—)(+)(+)=— and the final one is
P, =P(n)P(n)(—1)lf =(—1)l/. Parity conservation requires [=1,3,5... Angular momentum

conservation requires that /<3. Only /=1 remains. The two-neutron wave function must be
completely antisymmetric. Since the spatial part is antisymmetric, the spin part must be
symmetric. In conclusion the state is °S,, with total spin S=1.

b) Since P=+, [, is even. The spin function is antisymmetric. Hence the state is 'S, and its total
spin is $=0.

3.18. From (3.18) the initial charge conjugation is C=(—1)""". The final one is C(ny )=(-1)". The
charge conjugation is conserved if /+S+n=even.

In the ortho-positronium /+s=1, consequently n= odd. The minimum number of photons is n=3
(n=1 forbidden by energy-momentum conservation).

In the para-positronium /+s=0, hence n= even and the minimum number of photons is n=2.
3.19.

1. C(pp)=(-1)""=C(n7’)=+. Then l+s=even. The possible states are 'S, °P,, °P,, ’P;, 'D,.

2. The orbital momentum is even, because the wave function of the 27’ state must be
symmetric. Since the total angular momentum is just orbital momentum, only the states 'S,, °P,,
'D, are left. Parity conservation gives P(2i")=+ = P( pp )=(—1)"'
°P,.

3.20. The G-parity is positive, because it is conserved and is such in the final state. As G=C(—
1)!, if I=0 then C=+, i. e. C=(—1)'=+1. Then /=even. If I=1, then C=—, i.e. (-1)'=—1. We have
[=o0dd.

3.21.1t is convenient to prepare a table with the possible values of the initial J°“ and of the final

. Hence, /=0dd, leaving only
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" with [=J to satisfy angular momentum conservation. Only the cases with the same parity and
charge conjugation are allowed. Recall that P(pp)=(-1)"" and C(pp)=(-1)"".

: S, ’S, lPO 3P0 P, | °P, | 'D, | °D, | °D, 3D3
Jlo+ 111 1o+ | 172t 2=+ | 1| 2 | 3
Felo | 111 lo* | 12t | 27+ | 1— | 2+ | 3
Y Y Y Y Y
In conclusion 1.'Sy; 2.°S,,”’D, e 3.°P,.

3.22. Given the quark content, A, has electric charge +1. Since the processes is strong, a) and

c) are forbidden by charm conservation, while b) is allowed. d) is violates charge conservation.
3.23. A, is neutral. a) violates charm and beauty, b) and c) are allowed, d) violates beauty, )
violates baryon number.

3.26.

1. The minimum velocity is 8

min

=l=0.75.
n

2. The minimum kinetic energy for electrons is

(1 )
Epmin(e)=m, kT - 1) =0.511x0.51=026 MeV
1_ min

N \

and for K’ E,, . (K*)=m, L—z - 1) = 497.6x0.51 =254 MeV

’ 1 - ﬁmin
3. In the decay p — e* + ", the CM kinetic energy of the e is

m, +m; —m, 938.3” +0.51* - 0.135

E,, (e+) =t m, = ! -0.51=469 MeV , above threshold

2m, 2x938.3
In the decay p — K" + v, the CM kinetic energy of the K is

m’ +my —m; 38.3% +497.6°

Ekm(K+) ——r K v m, = 0 + 49 -497.6 =104 MeV , below threshold

2m 2x938.3

p

3.27. (a) forbidden by lepton number, (b) forbidden by angular momentum and lepton number,
(c) forbidden by charge conjugation, (e) allowed, (f) forbidden by baryon and lepton numbers,
(g) forbidden by angular momentum and lepton number.

3.28. (a) X must have charge Q=0 and strangeness S=+1; it is a K’; (b) X must have charge Q=0
and lepton number £, =-1, it is a v,; (¢) X must have Q=0; the reaction being weak,

strangeness does not need to be conserved; it is a 7°.
. T I 1 3 ) .
3.29. The third component of the initial isospin is / =1+ 5"72 hence the total isospin

z.initial —

3 1 3
must be [ = 5 For the K*K* we have I=1, I=1. Hence for the =’ may have I_ = 5 or I = 5

16



1
The third component is I, = + 5

3.30. The total energy and its square are: Vs =m,+m_ =0.9383+0.1396=1.08 GeV and
s=1.162 GeV* .

s—m. _ 1,162 -0.883
24s 2x1.08

The kinetic energy of the neutron is 7, = Vs - E -m,=m,-m,+m_-E , which is a very

=0.129 GeV .

The energy of the photon is E, =

small quantity, expressed as a difference between large quantities. It is then convenient to

consider the nonrelativistic expression of the kinetic energy:

;D _E 1307
" 2m 2m 2x9396

n n

=9 MeV.

3.31. The beam energy is enough to produce strange particles but not for heavier flavours. In
order to conserve strangeness the Vs must be a K° and a A. The simplest reaction is
atepoat+at+ K+ AL

We calculate the mass of each V° assuming in turn it to be the K° or the a A.

Iflisa A,

M? =m} +m. + 2\/p12+ + mi\/pf_ +m’ —2p,, p,.cosO, =

=0.938"+0.139° +2x1.02x1.905-2x 0.4 x 1.9 x cos24.5°= 3.38 GeV*

or M=1.83 GeV not compatible with being a A.

Iflisak®

M? =2m’ + 2\/p12+ + mi\/pf_ +m. =2p,,p,.cosH, =

=004 +2x0424x1.905-2x0.4 x1.9 x cos24.5°= 0.246 GeV>

or M=0.495 GeV compatible, within the errors, with the mass of the K’

If2isa A,

M? =m; +m. + 2\/p§+ + mi\/pj_ +m’ -=2p,. p,_cosB, =

=0.938% +0.139 +2x1.20 x 0.29 - 2 x 0.75 x 0.25 x c0s22°= 1.59 - 0.35 = 1.24 GeV’
or M=1.11 GeV compatible, within the errors, with the mass of the A.

If2isa Kk’

M? =2m + 2|}, +m2\[pi_+m’ ~2p,,p, cosO, =

=004 +2x0.76x0.29 - 0.35 = 0.138 GeV">

or M=0.371 GeV incompatible, within the errors, with the mass of the K.

4.2. For the w, G = C(-1)'=(-1)(-1)" =—1 . For the ¢, G = C(-1)'=(-1)(-1)’=—1 . The K is not
an eigenstate of G. For the 17, G = C(=1)'=(+1)(—1)"=+1.

4.3. The p decays strongly into 277, hence G=+. The possible values of its isospin are 0, 1 and 2.
In the three cases the Clebsch-Gordan coefficients are (1,0]1,0;1,0) =0, (0,0[1,0;1,0) = 0 and

(2,01,0;1,0) = 0 . Hence I=1.
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Since I=1, the isospin wave function is antisymmetric. The spatial wave function must
consequently be antisymmetric, i. e. the orbital momentum of the two s must be /=odd. The p
spin is equal to [. C=(—1)'=—1. P=(-1)'=-1.

44.7,.=13x10%" s,y =E/m=p/m=10.1,d =yct =39 fm .

4.5. a. From the size of the resonance width I"we infer that it decays by strong interaction. As a
consequence, S, I, I, and Y are conserved. Therefore S(2)=S(A)+ S(m)=1+0=+1 and
Y(2)= Y(A)+ Y(7)=0+0=0. I(2)= [(A)XI (m)=0®1=1 and I(2)=I(A)+ I (7)=0+0=0.

b. J(2)= J(N®J (m)®L=1/2800®1 = J=1/2 or J=3/2. P(X)= P(A) P() (=1)"=(+)(=)(—)=+.

4.6. a. The decay is strong b. The initial strangeness in the reaction K™ + p — 1~ + 2" (1385) is
S=—1. The strangeness of the X (1385) is S=—1. Since the isospin is conserved in the strong
decay, the isospin of the X (1385) is equal to the isospin of the 7*A system,i.e.is 1.

4.7. 1. Two equal bosons cannot be in an antisymmetric state; 2. C(2n")=+1; 3. the Clebsch
Gordan coefficient (1,0;1,0[1,0) = 0.

4.8. The charge conjugation of the final state 7' is C=(-1)'=(-1)’, i.e. o’ has C=—; the f° has
C=+. The system 7'y has C=(+)(—)=—. Hence f*—n"y is forbidden.

49.R=T(K* = K"+ )/T(K* = K* +7°)=1/2 if [,=3/2. R =2 if I,.=1/2.

4.10. F(K‘p)/l“([?on) =1. F(n‘n*)/l“(l?on) =0, because the decay into 7' would violate

baryon number and strangeness.

4.11. It is useful to prepare a table with the quantum numbers of the relevant states

pp’S, | pP’S, | PP'S, | PP'S, | P’S, | pn'S,
J 1 1 0 0 1 0
C — — + + X X
1 0 1 0 1 1 1
G — + + - + -

pn— " . Since G=—1 in the final state, there is only one possible initial state, i.e. 'S,
1 1 1 1
1,-1) = —=[1,0:1,-1) - —=|1,-1;1,0) = —=| p"s7" ) - —=| p 37"
hence R(_n—>p°n)/R( n—>pn) 1.

|P.n) =

|13’P>= 1

)
hence R(PP(I=1)%/OJI ): ( p(I=1)— ) ( p(1=1)—>p‘n+)=1;0:1_
P.p)= 00>=%‘p_;”+>‘ﬁ‘00;n°>+— )

hence R(pp(1=0)— p*n”):R(pp(1=0)— p"z°):R(pp(I1 =0)— p'*)=1:1:1.

4.12. The isospin wave function must be symmetrical, because the spatial wave function is

‘p 4 >+0—‘p Jr>

such. Hence I =0 or 2.
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4.13. The matrix element /M must be symmetric under the exchange of each pair of pions.
Consequently:
1. if J/ =07, M = constant. There are no zeros.
2. ifJ =1, M ocq(El—Ez)(EZ—E3)(E3—El); zeros on the diagonals and on the
border.
3. if S/ = 1",M xp,E, +p,E, + p,E, ; zero in the centre, where E,=E,=E;; zero at T,=0,
where p;=0, p,=— p,; E,=E,.
4.14. Since the parity is positive, the orbital momentum / of the two nucleons must be even.
The total angular momentum is J=1, the sum of the two spins can be s=0 or s=1. Hence we can
have /=0 or /[=2. The two possible states are S, and °D,.
4.15. A baryon can contain between 0 and 3 ¢ valence quarks; therefore the charm of a baryon
can be C=0, 1, 2, 3. Since the charge of c is equal to 2/3, the baryons with O=+1 can have
charm C=2 (ccd, ccs, ccb), C=1 (e.g. cud) or C=0 (e.g. uud). If Q=0, one ¢ can be present, as in
cdd, or none as in udd. Hence C=1 or C=0.
4.16. Since B=1 the particle is a baryon. Therefore the valence quarks are three. Since the
charge Q=+1, two quarks are up-type, one is down-type. Since C=1, one up-type quark is c.
Since §=0, B=0, T=0, the other two quarks are u and d. The state is udc.
4.17. sss, uuc, usc, ssc, udb.

4.18. cc?, cu, ub, cb .

1 1
422. 1, =—== =72x102s.
T 0.091x1.52x10%s!

The distance travelled in a lifetime is [, = yt,, c=1,,, ﬁc =35%x10"m.

Let E, be the energy and p~E, the momentum of the electron. From E, =2FE, and
E, 1
p, =2p,cos6,,we have E, = 7J = EN/pi +m; =294 GeV.

E) ( p Y p,

From m_ = (— - , we have cos6, =
2} "l 2cos8, ) B 4m’

For p=50 GeV, 0, =3.6".

~Pr_085;i.e.0 =318,
EJ

t

- 1
423. y=E/m=20/1.86=10.7. The condition I =1 ™ >091], gives t < yrln(ﬁ) . We

need to resolve distances d = ¢t <139 ym ..

Possible instruments: bubble chambers, emulsions, Silicon microstrips.
3 B 12AT,T, 1 1

4.24. We start from o(E) = —jz — —= . / — S—
E*(E-M,) +(T'/2) " B 2(E-M,)/T] +1

In the neighbourhood of the resonance peak the factor 1/E* varies only slowly, compared to the
resonant factor, and we can approximate it with the constant 1/ M ,i.e.
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