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Solutions 
1.1. The kinetic energy of the Boeing = 8×109 J. The mass of a mosquito is, say, 1 mg. The 
mosquito-antimosquito annihilation produces the energy 2×10–6 (3×108)2=2 ×1011 J. 
1.2. s=(3E)2–0=9E2=9(p2+ m2)=88.9 GeV2; m = √s = 9.43 GeV. 
1.3. Γ

π ± = h / τ
π ± = 6.6 ×10−16  eV s( ) / 2.6 ×10−8 s( ) = 25  neV , ΓK = 54 neV, ΓΛ = 2.5 µeV

1.4.τρ = h / Γρ = 6.6 ×10−16  eV s( ) / 1.49 ×1012 eV( ) = 4.4 ×10−24   s ,τω=8×10–23s; τφ=1.6×10–22 

s; τK*= 1.3×10–23 s; τJ/ψ= 7×10–21 s; τΔ=5.5×10–24 s. 
1.5. Neglecting the recoil, the momentum transfer would be q= Eesinθ =2.1 GeV, 
corresponding to the resolving power D≈ 197 (MeV fm)/2100 (MeV) = 0.1 fm. 
1.6. Our reaction is p + p→ p + p + m . In the CM frame the total momentum is zero. The 
lowest energy configuration of the system is when all particles in the final state are at rest. 
a. Let us write down the equality between the expressions of s in the CM and L frames, i. e.

s = Ep + mp( )2 − pp2 = 2mp + m( )2 .

Recalling that Ep
2 = mp

2 + pp
2 , we have Ep =

2mp + m( )2 − 2mp
2

2mp

= mp + 2m +
m2

2mp

. 

b. The two momenta are equal and opposite because the two particles have the same mass,
hence we are in the CM frame. The threshold energy Ep

* is given by s = 2Ep
*( )2 = 2mp + m( )2

which gives Ep
* = mp + m / 2 . 

c. Ep = 1.218 GeV;  pp = 0.78 GeV;  Tp = 280 MeV; Ep
*  =1.007 GeV; pp

* = 0.36 GeV . 

1.7. a. s = Eγ + mp( )2
− pγ

2 = Eγ + mp( )2
− Eγ

2 = mp + mπ( )2
= 1.16 GeV2  , hence we have 

Eγ = 149 MeV  

b. s = Eγ + Ep( )2 − pγ + p p( )2 = mp
2 + 2EγEp − 2pγ ⋅p p . For a given proton energy, s reaches a 

maximum for a head-on collision. Consequently, pγ ⋅p p = −Eγ pp  and, taking into account that 

the energies are very large, s = mp
2 + 2Eγ Ep + pp( ) ≈ mp

2 + 4EγEp . In conclusion

Ep =
s − mp

2

4Eγ

=
1.16 − 0.88( ) ×1018  eV2

4 ×10-3  eV
= 7 ×1019  eV = 70 EeV . 

c. The attenuation length is λ =1 / σρ( ) =1.5 ×1022  m = 5 Mpc  1 Mpc=3.1×1022 m( )
This is a short distance on the cosmological scale. The cosmic ray spectrum (Fig. 1.10) should 
not go beyond the above computed energy. This is called the Greisen, Zatzepin and Kusmin 
(GZK) bound. The AUGER observatory is now exploring this extreme energy region.  
1.8. We call Ei the incident gamma energy and Ef the background gamma energy. At threshold 
s=(2me)2. 
For a given Ei, s is a maximum for head-on collisions: s = Ei + Ef( )2 − Ei − Ef( )2 = 4EiE f . 
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Hence at threshold: Ei = me
2 / Ef . 

a. 
 
Ef =

1
λ
= 106  m-1( ) × 1.97 ×10−7  eV/m-1( ) ! 0.2 eV  and  Ei =

5 ×105( )2
 eV2

0.2 eV
= 1.25 TeV . 

b. Ei =
5 ×105( )2

 eV2

10-3  eV
= 250 TeV . 

1.9. s = Ep + mp( )2
− pp

2 = 4mp( )2
⇒ Ep,min = 7mp = 6.6 GeV . 

1.10. Calling Eb the beam energy at fixed target and Ep the energies of the colliding beams, the 
condition is 2mpEb = 4Ep

2 , hence he have Eb = 100 PeV . This value is well above the ‘knee’ 

of the cosmic ray spectrum, but it is much smaller than the GZK bound 
1.11. We must consider the reaction 

M → m1 + m2 . 
The figure defines the CM variables 

 
Fig. S.1 

We can use equations (P1.5) and (P1.6) with √s=M, obtaining 

 E2 f
* =

M 2 + m2
2 − m1

2

2M
; E1 f

* =
M 2 + m1

2 − m2
2

2M
. 

The corresponding momenta are 
 p f

* ≡ p1 f
* = –p2 f

* = E1 f
*2 − m1

2 = E2 f
*2 − m2

2 . 

1.12. In the Λ decay we have 

Eπ
* =

mΛ
2 − mp

2 + mπ
2

2mΛ

= 0.17  GeV;   Ep
* = mΛ − Eπ

* = 0.94  GeV;   p* = Eπ
*2 − mπ

2 = 0.1  GeV . 

And in the Ξ decay we have: Eπ
* = 0.20  GeV; EΛ

* = 1.12 GeV; p* = 0.14  GeV . 

1.13. The expressions found in problem 1.11 become E2
* =

M 2 − m1
2

2M
 and E1

* =
M 2 + m1

2

2M
. 

Since m2=0, the CM momentum is p* = E2
* =

M 2 − m1
2

2M
. 

1.14. Let call x a coordinate along the beam. The velocity of the pions in L should not be larger 
than the velocity of the muon in the CM, i. e. βπ≤ βµ

*
x≤βµ

*. Let us use the formulae found in 
problem 1.14 to calculate the Lorentz parameters for the CM-L transformation 

βµ
* =

p*

Eµ
* =

mπ
2 – mµ

2

mπ
2 + mµ

2 ; γ µ
* =

Eµ
*

mµ

=
mπ
2 + mµ

2

2mµmπ

⇒ βµ
*γ µ

* =
mπ
2 – mµ

2

2mµmπ

. 

The condition βπ < βµ
*  gives pπ = βπγ πmπ < βµ

*γ π
*mπ =

mπ
2 − mµ

2

2mµ

= 39.35  MeV . 

1.15. When dealing with a Lorentz transformation problem, the first step is the accurate 
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drawing of the momenta in the two frames and the definition of the kinematic variables. 

 
Fig. S.2 

Using the expressions we found in the introduction we have: 

a. Eπ
* =

mΛ
2 − mp

2 + mπ
2

2mΛ

= 0.17  GeV;  Ep
* = 0.95 GeV;  pπ

* = pp
* = Eπ

*2 − mπ
2 = 0.096  GeV . 

b. We calculate the Lorentz factors for the transformation: 

EΛ = pΛ
2 + mΛ

2 = 2.29  GeV ; βΛ =
pΛ
EΛ

= 0.87; γ Λ =
EΛ

mΛ

= 2.05 . 

c. We do the transformation and calculate the requested quantities 
pπ sinθπ = pπ

* sinθπ
* = 0.096 × sin210˚= −0.048  GeV  

pπ cosθπ = γ Λ pπ
* cosθπ

* + βΛEπ
*( ) = 2.05(0.096 × cos210˚+0.87 × 0.17) = 0.133  GeV . 

tanθπ =
−0.048
0.133

= −0.36 θπ = −20˚; pπ = pπ sinθπ( )2
+ pπ cosθπ( )2

= 0.141  GeV . 

pp sinθ p = pp
* sinθ p

* = 0.048  GeV

pp cosθ p = γ Λ pp
* cosθ p

* + βΛEp
*( ) = 2.05(0.096 × cos 30˚+0.87 × 0.95) = 1.86  GeV

 

tanθ p =
0.048
1.86

= 0.026 θ p = 1.5˚ . 

pp = pp sinθ p( )2
+ pp cosθ p( )2

= 1.9  GeV;θ = θ p −θπ = 21.5˚ . 

1.16. Remember to start by drawing the momentum vectors in the two reference frames, as in 
problem 1.15.  We now have, being in non-relativistic conditions,  

E1 = E3 + E4         ⇒       p1
2

2m
=
p3

2

2m
+
p4

2

2m
       ⇒        p1

2 = p3
2 + p4

2 . 

p1 = p3 + p4   ⇒      p1
2 = p3

2 + p4
2 + 2p3 ⋅p4 = p3

2 + p4
2 ⇒      p3 ⋅p4 = 0 . 

θ34 = θ13 +θ14 = π / 2 : at non-relativistic speeds the angle between the final directions is 90˚. 
1.17. We continue to refer to the figure of problem 1.15. We shall solve our problem in two 
ways: by performing a Lorentz transformation and by using the Lorentz invariants. 
We start with the first method. We calculate the Lorentz factors. The energy of the incident 
proton isE1 = p1

2 + mp
2 = 3.143 GeV . Firstly, let us calculate the CM energy squared of the 

two-proton system (i. e. its mass squared). 
ppp = p1 = 3 GeV;  Epp = E1 + mp = 4.081 GeV . Hence s = 2mp

2 + 2E1mp = 7.656 GeV2 .  

The Lorentz factors are β pp = ppp / Epp = 0.735 and  γ pp = Epp / spp = 1.47 . 
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Since all the particles are equal, we have 

E1
* = E2

* = E3
* = E4

* =
s

2
= 1.385  GeV;  p1

* = p2
* = p3

* = p4
* = E1

*2 − mp
2 = 1.019  GeV . 

We now perform the transformation. To calculate the angle we must calculate firstly the 
components of the momenta  
p3 sinθ13 = p3

* sinθ13
* = 1.019 × sin10˚= 0.177  GeV . 

p3 cosθ13 = γ p3
* cosθ13

* + βE3
*( ) = 1.473× (1.019 × cos10˚+0.735 ×1.385) = 2.978  GeV . 

tanθ13 =
0.177
2.978

= 0.0594; θ13 = 3˚ . 

− p4 sinθ14 = − p4
* sinθ14

* = −1.019 × sin170˚= −0.1769  GeV . 
p4 cosθ14 = γ p4

* cosθ14
* + βE4

*( ) = 1.473× (1.019 × cos170˚+0.735 ×1.385) = 0.0213  GeV . 
tanθ14 = −0.1769 / 0.0213 = −8.305 θ14 = −83˚ ⇒ θ34 = θ13 −θ14 = 86˚ . 
In relativistic conditions the angle between the final momenta in a collision between two equal 
particles is always, as in this example, smaller than 90˚. 
We now solve the problem using the invariants and the expressions in the introduction. We 
want the angle between the final particles in L. We then write down the expression of s in L in 
the initial state, which have already calculated, i. e.  
s = (E3 + E4 )

2 − p3 + p4( )2 = m3
2 + m4

2 + 2E3E4 − 2p3 ⋅p4  

that gives p3 ⋅p4 = mp
2 + E3E4 − s / 2  and hence cosθ34 =

mp
2 + E3E4 − s / 2

p3p4
. 

We need E3 and E4 (and their momenta); we can use (P.1.13) if we have t. With the data of the 
problem we can calculate t in the CM: 
t = 2mp

2 + 2pi
*2 cosθ13

* − 2Ei
*2 = 2pi

*2 cosθ13
* −1( ) = 2 ×1.0192 cos10˚−1( ) = −0.0316 GeV2 . 

We then obtain 

E3 =
s + t − 2mp

2

2mp

=
7.656 − 0.0316 − 2 × 0.9382

2 × 0.938
= 3.126 GeV; p3 = 2.982 GeV . 

From energy conservation we have 
E4 = E1 + mp − E3 = 3.143+ 0.938 − 3.126 = 0.955 GeV; p4 = 0.179 GeV . 

Finally we obtain 

cosθ34 =
0.9382 + 3.126 × 0.955 − 7.656 / 2

2.982 × 0.179
= 0.0696 ⇒θ34 = 86˚ . 

1.18. We must take into account that βD is close to 1. We write   

γ D =
E
mD

= 16.1;   βD =
γ D

2 −1
γ D

2 = 1− γ D
−2 ≈ 1− γ D

−2

2
= 0.998 . 

In the L reference frame the D life was t = d
βc

= 10 ps  long. In its rest-frame was 

t0 = t / γ D = 0.62 ps . 
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From pK = pπ = p*; EK + Eπ = mD; mD = pK
2 + mK

2 + pπ
2 + mπ

2  we obtain 

pπ =
mD

2 + mπ
2 − mK

2

2mD

⎛

⎝⎜
⎞

⎠⎟

2

− mπ
2 = 860  MeV . 

1.19. The distance travelled by a pion in a lifetime in the L frame is l0 = γβcτπ . If the initial 

number of pions is N0, their number at the distance l is N l( ) = N0 exp −
l

γτπβc
⎛

⎝⎜
⎞

⎠⎟
. Hence 

γβ =
l

τπc ln
N0

N l( )

=
20

2.6 ×10–8 × 3×10–8 × ln 1 / 0.9( )
= 24.3  

and p = mγβ = 0.14 × 24.3 = 3.4 GeV; E = p2 + mπ
2 = 3.42 + 0.142 = 3.42 GeV . 

1.20. In this case the reference frames L and CM coincide. We have 
p
π 0
+ pn = 0 ⇒ p

π 0
= pn = p* . 

The total energy is E = E
π 0 + En = mπ−

+ mn = 1079 MeV . 
Subtracting the members of the two relationships En

2 = p*2 + mn
2  and E

π 0
2 = p*2 + m

π 0
2 we obtain 

En
2 − E

π 0
2 = mn

2 − m
π 0
2  

From En = E − Eπ ˚  we have En
2 = E2 + E

π 0
2 − 2EE

π 0
; and finally 

E
π 0 =

E2 + E
π 0
2 − En

2

2E
=
E2 + m

π 0
2 − mn

2

2E
= 138.8 MeV;Tn = E − Eπ 0 − mn = 0.6 MeV . 

The Lorentz factors are γ
π 0
= E

π 0
/ m

π 0
= 1.028  nd β

π 0
= 1−1 / γ

π 0
2 = 0.23 . 

The distance travelled in a lifetime is then 
l = γ

π 0τπ 0βπ 0 c = 1.028 × 8.4 ×10−17 × 0.23× 3×108 = 6 nm . 

1.21. The maximum momentum transfer is at background scattering.  Eq. (6.25) gives in these 
conditions Q2=4EE’, where E’ is the energy of the scattered electron. Using Eq. (6.11) we have 

Qmax
2 =

4E2M
M + 2E

=
4 × 4 × 56

56 + 4
= 15 GeV2 . 

1.22. Having the α particle charge z=2, the cross section is 
dσ
dΩ

=
Z 2α 2

4Ek
2 sin4 θ

2

=
Z 2α 2

Ek
2

1
1− cosθ( )2

.  

Integrating on the angles we have 

dφ
0

2π

∫ d cosθ dσ
dΩθ1

θ2

∫ =
Z 2α 2

E2 2π 1
1− cosθ( )2

d cosθ =
θ1

θ2

∫
Z 2α 2

E2 2π
⎛

⎝⎜
⎞

⎠⎟
θ2
θ1

1
cosθ −1

.  

Hence dσ
dΩ

⎛
⎝⎜

⎞
⎠⎟
θ>900

/ dσ
dΩ

⎛
⎝⎜

⎞
⎠⎟
θ>100

= 0.0074 . 

1.23. The requested rate is given by Rs =
σ θ > 0.1( )RitρNA

197 × 10–3kg( )
. We calculate the cross section 
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σ θ > θ1( ) = d cosθ dσ
d cosθθ1

π

∫ =
Z 2α 2

Ek
2 2π

⎛

⎝⎜
⎞

⎠⎟
1

cosπ −1
−

1
cosθ1 −1

⎛

⎝⎜
⎞

⎠⎟
=

Z 2α 2

Ek
2 2π

⎛

⎝⎜
⎞

⎠⎟
1

1− cosθ1
−
1
2

⎛

⎝⎜
⎞

⎠⎟

=4.5×103 barn. The requested rate is 

Rs =
4.5 ×10−25 (m2 ) ×103(s–1) ×10−6 (m) ×1.93×104 (kg m–3) × 6.02 ×1023

197 × 10–3kg( )
= 26 s–1 . 

1.24. At any angle the scattered electron energy reaches its maximum if the scattering is elastic 

and we have E ' = E

1+ E
M

(1 – cosθ)
=

10

1+ 10
1

(1− 0.87)
= 4.3 GeV . 

1.25. cosθ = 1− E / E '−1
E /M

= 1− 2.5 −1
20

= 0.925 θ = 22˚ . 

1.26. 0.5. 

1.27. The equation of motion is qv × B = dp
dt

. Since in this case the Lorentz factor γ is constant, 

we can write qv × B = γm dv
dt

. The centripetal acceleration is then: dv
dt

=
qvB
γm

=
v2

ρ
. 

Simplifying we obtain p = qBρ . We now want pc in GeV, B in tesla and ρ in metres. Starting 
from pc = qcBρ  we have 

pc GeV[ ]×1.6 ×10−10 J/GeV[ ] = 1.6 ×10−19 C[ ]× 3×108 m/s[ ]× B T[ ]× ρ m[ ] . 
Finally in N.U.: p GeV[ ] = 0.3× B T[ ]× ρ m[ ] . 

1.28. The number of protons in the unit volume of the target is np =
ρ × NA

1×10−3 = 3.6 ×1028  m–3 ; 

NH and N0 are linked by the relationship NH = Noe
−nbσ l . Consequently, we have 

σ =
1
npl

ln No

NH

=
10−29

0.36
ln 7.5

6.9
= 23.2 mb . 

The statistical uncertainty about the incoming particles number is ΔNi = Ni  and similarly for 

the outgoing number. The statistical error on the cross section is  

Δσ =
∂σ
∂No

⎛

⎝⎜
⎞

⎠⎟

2

No +
∂σ
∂NH

⎛

⎝⎜
⎞

⎠⎟

2

NH

⎡

⎣
⎢
⎢

⎤

⎦
⎥
⎥

1
2

=
1
npl

1
No

+
1
NH

⎡

⎣
⎢

⎤

⎦
⎥

1
2
= 0.6 mb . 

The final result is σ = 23.2 ± 0.6 mb . 
1.29. The Lorentz factor of the antiproton is γ = p2 + m2 / m = 1.62  and its velocity 

β = 1− γ −2 = 0.787 . The condition in order to have the antiproton above the Cherenkov 
threshold is that the index is n ≥ 1 / β = 1.27 . 
If the index is n=1.5, the Cherenkov angle is given by cosθ = 1 / nβ = 0.85 . Hence θ = 32˚ . 
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1.30. The speed of a particle of momentum p=mγβ  is β = 1+ m
2

p2
⎛

⎝⎜
⎞

⎠⎟

−1/2

≈ 1− m2

2p2
, that is a 

good approximation for speeds close to c. The difference between the flight times is 

Δt = L m2
2 − m1

2

2p2
 in N.U. In order to have Δt>600 ps, we need a base-length L>26 m. 

1.31. The threshold condition is n>β–1. Consequently, the index must satisfy the condition 
1− βπ < n −1 < 1− βK . Since the speeds are very near to 1, we calculate the differences 1–β 

directly. From 
 
β−1 =

E
p
! 1+ m2

2p2
 we have 

 
β −1 ! m2

2p2
. Hence 1− βπ = 2.45 ×10

−5  and 

1− βK = 3.05 ×10
−4 . Consequently the condition on the pressure is 8.2 kPa<Π<102 kPa. 

1.32. Superman saw the light blue shifted due to Doppler effect. Taking for the wavelengths 
λR=650 nm and λG=520 nm, we have νG /νR = 1.25 . Solving for β the Doppler shift expression 

νG = νR
1+ β
1− β

, we obtain β=0.22. 

1.33  

1. The minimum velocity is βmin =
1
n
= 0.75 ; 2.The minimum kinetic energy for a proton is 

Ekin,min p( ) = mp
1

1− βmin
2

−1
⎛

⎝
⎜

⎞

⎠
⎟ = 938 × 0.51 = 480  MeV  and of the pion:  

Ekin,min π( ) = mπ

1
1− βmin

2
−1

⎛

⎝
⎜

⎞

⎠
⎟ = 139.6 × 0.51 = 71.2  MeV ; 3. the Lorentz factor is 

γ =
Eπ

mπ

=
400
139.6

= 2.87  and β = 1− γ −2 = 0.94 . The Cherenkov angle is then 

θ = cos−1 1
βn

⎛

⎝⎜
⎞

⎠⎟
= 36.90  

1.34.  
a. The Cherenkov threshold is βthr

−1 = n . For a generic mass m 

 
β−1 −1 = E

p
−1 = p2 + m2

p2
−1 ! 1

2
m2

p2
 

Threshold condition for pions is given by 
β−1 −1 = n −1 = 3×10−9Π = 3×10−9 × 5.2 ×103 = 1.56 ×10−5  

and p = mπ

2 ×1.56 ×10−5
= 25 GeV  

b.  Π K( ) = 5.2 ×103  mK
2

mπ
2 =5.2 ×103  0.494

0.140
⎛
⎝⎜

⎞
⎠⎟

2

=6.5 ×104  Pa=650 mbar  

c. Π p( ) = 5.2 ×103  
mp

2

mπ
2 =5.2 ×103  0.938

0.140
⎛
⎝⎜

⎞
⎠⎟

2

=2.33×105  Pa=2330 mbar  
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1.35. 

1. E = p = 0.3× B × R = 0.3×10−9 ×1013 = 3 TeV  
2. E = p = 0.3× B × R = 0.3× 5 ×10−11 × 3×1020 = 5 ×109  GeV  
1.36  
1. The total energy of the deuterons is Ed = md + Td = 1875.7 MeV . The motion of the 
deuterons is not relativistic. Their momentum is  
pd = 2mdTd = 2 ×1875.6 × 0.13 = 61.25 MeV . This is also the total momentum, which is so 

small that in this case the L frame is also in practice the CM frame.  

The CM energy squared is  s = Ed + mt( )2 − pd2 ! Ed + mt = 4684.6 . The result could be 

obtained by simply summing the two masses and the deuteron kinetic energy. This because the 
situation is non relativistic. The total kinetic energy available after the reaction is 
Ekin,t = Ed + mt − mα − mn = 17.6 MeV , which is mainly taken by the lighter particle, the 

neutron. To be precise 

Tn =
s + mn

2 − mα
2

2 s
− mn =

4684.62 + 939.62 − 3727.42

2 × 4684.6
− 939.6 = 953.6 − 939.6 = 14.0 MeV  

 and 

Tα =
s + mα

2 − mn
2

2 s
− mn =

4684.62 + 3727.42 − 939.62

2 × 4684.6
− 3727.4 = 3.6 MeV  

2. The flux is Φ =
In

4πR2 =
3×1010  
4π ×12 = 2.4 ×109  nutrons/(m2s) . 

3. We can calculate the momentum of the neutron non relativistically 
pn = 2mnTn = 2 × 939.6 ×14 = 162.2 MeV , and its velocity 

βn =
pn
En

=
162.2
953.6

= 0.17 υn = 5.1×107  m/s . We need 1 ns time resolution 

1.37. The minimum momentum to resolve the structure is pmin =
197 MeV fm

RA

= 50 MeV . The 

momentum of the neutron of (non relativistic) kinetic energy Ek,0 is pn = 2mnEk ,0 .  

The coherence condition is 2mnEk ,0 < pmin  or Ek ,0 <
pmin

2

8mn

=
502

4 × 940
= 0.7 MeV . 

Call p0 the initial neutron momentum, corresponding to the kinetic energy Ek0, p1 and Ek1 the 

momentum and kinetic energy of the final neutron, p2 and Ek2 those of the recoiling Ar nucleus. 

Momentum and kinetic energy conservation in the non-relativistic kinematics of the elastic 

background scattering give 
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p0
2

2mn

=
p1
2

2mn

+
p2
2

2mAr

p0 = p2 − p1

 

From the first equation we have p0
2 = p1

2 +
mn

mAr

p2
2  

And from the second p0
2 = p1

2 + p2
2 − 2p1p2  

Equating the second members we obtain (provided p2≠0) p1 =
1
2
p2 1−

mn

mAr

⎛

⎝⎜
⎞

⎠⎟
.  

We substitute this expression in the momentum conservation equation, obtaining 

p2 =
2po

1+ mn

mAr

=
2 × 50

1+ 0.94
37.2

=
100

1.025
= 97.6 MeV . 

The recoil kinetic energy is Ek2 =
p2

2

2mAr

=
97.62

2 × 37200
= 130 keV  

1.38.  

(a) E2 =
h
λ
=

1240 eV nm
694 nm

= 1.79 eV . 

The CM energy for the head-on geometry is s = E1 + E2( )2 − p1 + p2( )2 = 2E1E2 + 2E1E2 . 

At threshold s = 4E1E2 = 2me( )2 , that is E1 =
me

2

E2

=
0.5( )2

1.79 ×10−6 = 140 GeV  

 (b) 
 
1− β = 1− p1 + p2

E1 + E2
= 1− E1 − E2

E1 + E2
= 1− 1− E2 / E1

1+ E2 / E1
! 2 E2

E1
= 2.6 ×10−11  

 (c) s = E1 + E2( )2 − p1 + p2( )2 = 2E1E2 − 2E1E2 = 0 . The mass is zero for any values of the two 

energies.  
 

2.1. From the result of the Problem 11.13 we have p* = Eν
* =

mπ
2 – mµ

2

2mπ

= 29.8 MeV . From this 

we obtain Eµ
* = mπ − p

* = 110 MeV . 
2.2. a) pν

* = Eν
* = pµ

* = 236 MeV ; Eµ
* = 259 MeV  

b) pK=5 GeV, hence EK = pK
2 + mK

2 = 5.02 GeV; γ = EK

mK

= 10.2; γβ= pK
mK

= 10.1 . 

The muons with maximum energy in L are those that are emitted backwards by the kaon. Their 
momentum is pµ = γ pµ

* + βγ Eµ
* = 10.2 × 0.236 +10.1× 0.259 = 5.02 GeV . 

2.3. The second gamma moves backwards. The total energy is E = E1 + E2 ; the total 
momentum is P = p1 − p2 = E1 − E2 . The square of the mass of the two-gamma system is equal 



10 

to the square of the pion mass: m
π 0
2 = E1 + E2( )2 − E1 − E2( )2 = 4E1E2 , from which we obtain 

E2 =
m

π 0
2

4E1

=
1352

4 ×150
= 30.4  MeV . The speed of the π0 is β = P

E
=
E1 – E2
E1 + E2

= 0.662 . 

2.4. The Lorentz factor for Eµ=5 GeV is γ = Eµ / mµ = 47 . In its rest frame the distance of the 
Earth surface is l0 = l / γ = 630 m . For Eµ=5 TeV, the distance of the Earth is 
l0 = l / γ = 0.63 m . The first muon travels in a lifetime  γβcτ ! γ cτ = 28 km , the second would 
travel 28 000 km if it did not hit the surface first. 
2.5. The Lorentz factor for Eπ=5 GeV is γ = Eπ / mπ = 36 . In its rest frame it sees the Earth’s 
surface at the distance l0 = l / γ = 830 m . In a lifetime it travels γ cτ = 280 m . We see that 
only a few such pions survive. To find them we must go to high altitude. 
2.6. The momenta of the electrons are p = 0.3Bρ=12 MeV . The gamma energy is Eγ=24 MeV. 
2.8. Since the decay is isotropic, the probability of observing a photon is a constant 
P cosθ*,φ*( ) = K . We determine K by imposing that the probability of observing a photon at 

any angle is 2, i. e. the number of photons. 

We have 2 = K sinθ*∫ dθ*dφ = dφ
0

2π

∫ Kd(cosθ*)
0

π

∫ = K4π . Hence K = 1 / 2π  and 

P cosθ*,φ*( ) = 1 / 2π . 

The distribution is isotropic in azimuth in L too. To have the dependence of θ, that is given 

byP cosθ( ) ≡ dN
d cosθ

=
dN

d cosθ*
d cosθ*

d cosθ
, we must calculate the ‘Jacobian’ J = d cosθ

*

d cosθ
. 

Calling β and γ    the Lorentz factors of the transformation and taking into account that p* = E*, 
we have 
pcosθ = γ p* cosθ* + βE*( ) = γ p* cosθ* + β( )
E = p = γ E* + β p* cosθ*( ) = γ p* 1+ β cosθ*( ).

 

We differentiate the first and third members of these relationships, taking into account that p* 
is a constant. We obtain 

dp × cosθ + p × d cosθ( ) = γ p*d cosθ*( ) ⇒
dp

d cosθ*
cosθ + p d cosθ

d cosθ*
= γ p* . 

dp = γβ p*d cosθ*( ) ⇒
dp

d cosθ*
= γβ p*  

and J −1 = d cosθ
d cosθ*

= γ
p*

p
1− β cosθ( ) . 

The inverse transformation is E* = γ E − β pcosθ( ) , i. e. p* = γ p 1− β cosθ( ) , giving 

J −1 = d cosθ
d cosθ*

= γ 2 1− β cosθ( )2 . 

Finally we obtain  P cosθ( ) ≡ dN
d cosθ

=
1
2π

γ −2 1− β cosθ( )−2  
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2.10.  µe / µµ = mµ / me = 207; µe / µτ = mτ / me = 3477 . 

2.11. The energy needed to produce an antiproton is minimum when the Fermi motion is 
opposite to the beam direction. If Ef is the total energy of the target proton and pf its 
momentum, the threshold condition is (Ep+Ef)2–(pp–pf)2=(4mp)2. From this we have 
EpEf + pp pf = 7mp

2 . We simplify by setting  pp ! Ep  obtaining 

 
Ep =

7mp
2

Ef + pf
!

7mp
2

mp + pf
! 7mp 1−

pf
mp

⎛

⎝
⎜

⎞

⎠
⎟ = 5.5 GeV .  

This value should be compared to Ep=6.6 GeV on free protons. 
2.12. By differentiating (1.79) we obtain Δθ = 0.3BLΔp / p2 . The slit of opening d at the 
distance l defines the angle within Δθ = d / l . The requested distance is then 

l = d × p
0.3BLΔp / p

= 3.3 m . 

2.13. Considering the beam energy and the event topology, the event is probably an associate 
production of a K0 and a Λ. Consequently the V0 may be one of these two particles. The 
negative track is in both cases a π, while the positive track may be a π or a proton. We need to 
measure the mass of the V. With the given data we start by calculating the Cartesian 
components of the momenta 
px
− = 121× sin −18.2˚( )cos15˚= −36.5 MeV; py

− = 121× sin −18.2˚( )sin15˚= −9.8 MeV;

pz
− = 121× cos −18.2˚( ) = 115 MeV.

 

px
+ = 1900 × sin 20.2˚( )cos −15˚( ) = 633.7 MeV; py

− = 1900 × sin 20.2˚( )sin −15˚( ) = −169.8 MeV;

pz
− = 1900 × cos 20.2˚( ) = 1783.1 MeV.

Summing the components, we obtain the momentum of the V, i. e. p = 1998 MeV . 

The energy of the negative pion is E− = p−( )2
+ mπ

2 = 185 MeV . If the positive track is a π its 

energy is Eπ
+ = p+( )2

+ mπ
2 = 1905 MeV , while if it is a proton its energy is Ep

+ = 2119 MeV . 

The energy of the V is Eπ
V = 2090 MeV in the first case, Ep

V = 2304 MeV  in the second case. 

The mass of the V is consequently mπ
V = Eπ

V 2 − p2 = 620 MeV  in the first hypothesis, 
mp

V = 1150 MeV  in the second. Within the ±4% uncertainty, the first hypothesis is 

incompatible with any known particle, while the second is compatible with the particle being a 
Λ. 
2.14. 

1. The CM energy squared is s = Eν + mn( )2 − pν2 = mn
2 + 2mnEν . The threshold condition is 

s = me + mp( )2 = mp
2 + me

2 + 2memp .  

Hence, the threshold condition is Eν =
me + mp( )2 − mn

2

2mn

< 0 , meaning that there is no 
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threshold, the reaction proceeds also at zero neutrino energy.  
2. The threshold condition is s = mµ + mp( )2 = mp

2 + mµ
2 + 2mµmp . The threshold energy is  

Eν =
mµ + mp( )2

− mn
2

2mn

=
105.7 + 938.3( )2

− 939.62

2 × 939.6
= 110 MeV  

3. The threshold energy is  

Eν =
mτ + mp( )2

− mn
2

2mn

=
1777 + 938.3( )2

− 939.62

2 × 939.6
= 3.45 GeV . 

2.15. We first find an expression valid in both cases. Call Eγ1 and pγ1= Eγ1 the energy and 
momentum of the initial photon and Eγ2 and pγ2= Eγ2 those of the final one. Similarly Ee1, pp1 and 
Ee2, pp2 for the electron.  
The initial values of energies and momenta are given; hence the total energy and momentum 
and CM energy squared 
ET = Ee1 + Eγ 1 pT = pe1 − Eγ 1 s = ET

2 − pT
2 . 

Energy conservation gives ET = Ee2 + Eγ 2 pT = pe2 − Eγ 2 . 
We can eliminate the final energy and momentum of the electron by imposing Ee2

2 − pe2
2 = me

2 . 

Ee2 = ET − Eγ 2 pe2 = pT + Eγ 2 . Hence: ET − Eγ 2( )2 − pT + Eγ 2( )2 = me
2 . Solving for Eγ2 

we have Eγ 2 =
s − me

2

2 ET + pT( )
. 

1. We have, in MeV: Eγ 1 = 0.511, Ee1=0.511, pe1=0.  

ET=1.02, pT=0.511, s=0.78 and Eγ 2 =
s − me

2

2 ET + pT( )
=

0.78 − 0.5112

2 1.02 + 0.511( )
= 0.170 MeV . 

2. We have Eγ 1 = 0.511, Ee1=1.02, pe1 = 1.022 − 0.5112 = 0.88 . 

ET=1.53, pT=0.511, s=2.08 and Eγ 2 =
s − me

2

2 ET + pT( )
=

2.08 − 0.5112

2 1.53+ 0.511( )
= 0.446 MeV . 

2.16. The LASER photon energy is Eγ i =
h
λ
=

1240 eV nm
694 nm

= 1.79 eV . 

The electron initial momentum (we shall need its difference from energy) is 

 
pei = Eei

2 − me
2 ! Eei −

me
2

2Eei

   

The total energy and momentum are ET = Eei + Eγ i pT = pei − Eγ i  
Energy conservation gives ET = Eef + Eγ f pT = Eγ f − pef  
We can eliminate the final energy and momentum of the electron by imposing Eef

2 − pef
2 = me

2 . 

Eef = ET − Eγ f pef = Eγ f − pT . Hence: ET − Eγ f( )2 − Eγ f − pT( )2 = me
2 . Solving for Eγf 

we have Eγ f =
s − me

2

2 ET − pT( )
. 
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ET − pT = Eei + Eγ i( ) − pei − Eγ i( ) ! me
2

2Eei

+ 2Eγ i =

=
0.52 ×10−6

2 × 20
+ 2 ×1.79 ×10−9 = 6.25 + 3.58( )10−9  GeV = 9.83 eV

  

s = Eγ i + Eei( )2 − Eγ i − pei( )2 = me
2 + 4Eγ iEei . Hence 

s − me
2 = 4Eγ iEei = 4 ×1.79 × 20 ×109  eV2 = 14.3×1010  eV2 , and 

Eγ f =
s − me

2

2 ET − pT( )
=

14.3×1010

2 × 9.83
= 7.3 GeV  

2.17. The kinetic energy is T = p2 + m2 − m  

For a proton we have T = 232 + 938.32 − 938.3 = 280 keV  
For a positron we have T = 232 + 0.512 − 0.51 = 22.5 MeV  
2.18.  E ! p = 0.3BR = 0.3× 0.3× 0.14 = 12.6 MeV . 

2.19. In problem 2.1 we already calculated the CM momentum p* =
mπ

2 – mµ
2

2mπ

= 29.8 MeV . 

The CM muon energy is Eµ
* = p*2 + mµ

2 = 110 MeV . For the Lorentz transformation to the L 

frame we have  β ! 1  and γ = Eπ

mπ

=
200
0.14

== 1400 . The maximum and minimum muon 

energies are 
Eµmin

max = γ Eµ
* ± β p*( ) = 1400 0.110 ± 0.030( ) = 112 −196 GeV . 

3.2. Strangeness conservation requires that a K+ or a K0 is produced together with the K–. The 
third component of the isospin in the initial state is –1/2. Let us check if it is conserved in the 
two reactions. The answer is yes for π – + p→ K – + K + + n  because in the final state we have 

Iz = −
1
2
+
1
2
+
1
2
= +

1
2

, and yes also for π – + p→ K – + K 0 + p  because in the final state we 

have Iz = −
1
2
−
1
2
+
1
2
= −

1
2

. The threshold of the first reaction is just a little smaller of that of 

the second reaction because mn + mK + < mp + mK 0  (1433 MeV < 1436 MeV). For the former 

we have 

Eπ =
2mK + mn( )2

− mπ
2 − mp

2

2mp

= 1.5  GeV . 

3.3. To conserve both strangeness and baryonic number a pair of ΛΛ     must be produced. The 
reaction is  π − + p→ Λ + Λ + n . On free protons, we obtain Eπ

0 = 4.9 GeV . The threshold 

energy on bound protons, having Fermi momentum pf, following Problem 2.11, is found to be 
Eπ = Eπ

0 1− pf / mp( ) = 4.1 GeV .  

In the first case pions in the beam have γ=35 and β≈1. The flux at the emulsion stack is N= 0.97 
106 π/cm2. 
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3.4. 1. OK, S; 2. OK, W; 3. Violates Lµ; 4. OK, EM; 5. Violates C; 6. Cannot conserve both 
energy and momentum; 7. violates B and S; 8. violates B and S; 9. violates J and Le; 10. 
violates energy conservation. 
3.5. 1. Violates Le and Lµ; 2. Violates charge conservation; 3. Violates B, I and Iz; 4. Violates 
the charge; 5. Violates B, I and Iz; 6. Violates charge and S; 7. Violates S and Iz; 8.Violates S 
and Iz; 9. Violates energy conservation; 10. Violates Le and L. 
3.6. a) J and L, b) B and L , c) energy conservation ; d) electric charge. 
3.7. a)  0 + 0→ −1+ 0 , NO; b)  0 + 0→ 1−1 , YES; c)  −1+ 0→ 1− 2 + 0 , YES; 
d)  1+ 0→ −1− 2 + 0 , NO; e)  −1+ 0→ −3+1+1 , YES.  
 3.8. a) NO for J and L; b) NO for J and L; c) YES; d) NO for L; e) YES; f) NO for Le and Lµ; 
g) NO for L; h) YES. 

 3.9. π − p = 1,−1 1
2
,+ 1
2

=
1
3
3
2
,− 1
2

−
2
3
1
2
,− 1
2

 

π + p = 1,+1 1
2
,+ 1
2

=
3
2
,+ 3
2

 

Σ0K 0 = 1,0 1
2
,− 1
2

=
2
3
3
2
,− 1
2

+
1
3
1
2
,− 1
2

 

Σ−K + = 1,−1 1
2
,+ 1
2

=
1
3
3
2
,− 1
2

−
2
3
1
2
,− 1
2

 

Σ+K + = 1,+1 1
2
,+ 1
2

=
3
2
,+ 3
2

 

K +Σ+ π + p = A3/2 ; Σ−K + π − p =
1
3
1
3
A3/2 =

1
3
A3/2 ; Σ0K 0 π − p =

2
3
1
3
A3/2 =

2
3
A3/2  

Hence: σ π + p→ Σ+K +( ) :σ π − p→ Σ−K +( ) :σ π − p→ Σ0K 0( ) = 9 :1 : 2  

3.10. From the expressions found in the solution of problem 3.9, we have 
σ 1( ) :σ 2( ) :σ 3( ) = 2 A3/2 − A1/2

2 : A3/2 + 2A1/2
2 : 9 A3/2

2   
3.11. σ 1( ) /σ 2( ) = 1  

 3.12. We can proceed as in the previous solutions or also as follows. 

p,d =
1
2
, 1
2
0,0 =

1
2
,+ 1
2

 

1
2
,+ 1
2

= −
1
3
1,0 1

2
,+ 1
2

+
2
3
1,1 1

2
,− 1
2

= −
1
3
π 0 He3 +

2
3
π + H3  

σ p + d→ He3 + π 0( ) /σ p + d→ H3 + π +( ) = 1 / 2  

3.13.From p, p =
1
2
,+ 1
2

1
2
,+ 1
2

= 1,+1  and d,π + = 0,0 1,+1 = 1,+1  we have 

d,π + p, p = A1.  



15 

From p,n =
1
2
,+ 1
2

1
2
,− 1
2

=
1
2
0,0 +

1
2
1,0  and d,π 0 = 0,0 1,0 = 1,0 we 

have d,π 0 p,n =
1
2
A1.  Finally we obtain σ pp→ dπ +( ) /σ pn→ dπ 0( ) = 2 . 

3.14. K − ,He4 =
1
2
,− 1
2
0,0 =

1
2
,− 1
2

. 

 Σ0 ,H3 = 1,0 1
2

,− 1
2

=
2
3

3
2

,− 1
2

+
1
3

1
2

,− 1
2

⇒ K − ,He4 Σ0 ,H3 =
1
3
A1/2

Σ− ,He3 = 1,−1 1
2
,+ 1
2

=
1
3
3
2
,− 1
2

−
2
3
1
2
,− 1
2

⇒ K − ,He4 Σ− ,He3 = −
2
3
A1/2  

σ K – + He4 → Σ0H3( ) /σ K – + He4 → Σ−He3( ) = 1 / 2 . 

 3.15. σ 1( ) :σ 2( ) :σ 3( ) = −
1
6
A0 +

1
2
A1

2

: 1
6
A0

2

: 1
6
A0 +

1
2
A1

2

. 

3.16. σ π − p→π− p( ) /σ π − p→π 0n( ) = 2
3
A1/2 +

1
3
A3/2

2

/ − 2
3
A1/2 +

2
3
A3/2

2

. 

 3.17. a) The initial parity is Pi = P π( )P d( ) −1( )li = −( ) +( ) +( ) = −  and the final one is 
Pf = P n( )P n( ) −1( )l f = −1( )l f . Parity conservation requires lf=1,3,5… Angular momentum 

conservation requires that lf<3. Only lf=1 remains. The two-neutron wave function must be 
completely antisymmetric. Since the spatial part is antisymmetric, the spin part must be 
symmetric.  In conclusion the state is 3S1, with total spin S=1. 
b) Since Pi=+, lf is even. The spin function is antisymmetric. Hence the state is 1S0 and its total 
spin is S=0. 
3.18. From (3.18) the initial charge conjugation is C=(–1)l+s. The final one is C(nγ )=(–1)n. The 
charge conjugation is conserved if l+S+n=even. 
In the ortho-positronium l+s=1, consequently n= odd. The minimum number of photons is n=3 
(n=1 forbidden by energy-momentum conservation). 
In the para-positronium l+s=0, hence n= even and the minimum number of photons is n=2. 
 3.19. 
1. C( pp )=(–1)l+s=C(nπ0)=+. Then l+s=even. The possible states are 1S0, 3P1, 3P2, 3P3, 1D2. 
2. The orbital momentum is even, because the wave function of the 2π0 state must be 
symmetric. Since the total angular momentum is just orbital momentum, only the states 1S0, 3P2, 
1D2 are left. Parity conservation gives P(2π0)=+ = P( pp )=(–1)l+1. Hence,  l=odd, leaving only 
3P2. 
3.20. The G-parity is positive, because it is conserved and is such in the final state. As G=C(–
1)I, if I=0 then C=+, i. e. C=(–1)l=+1. Then l=even. If I=1, then C=–, i.e. (–1)l=–1. We have 
l=odd. 
3.21. It is convenient to prepare a table with the possible values of the initial JPC and of the final 



16 

lCP with l=J to satisfy angular momentum conservation. Only the cases with the same parity and 
charge conjugation are allowed. Recall that P pp( ) = −1( )l+1  and C pp( ) = −1( )l+ s . 

 
 1S0 3S1 1P0 3P0 3P1 3P2 1D2 3D1 3D2 3D3 

JPC 0– + 1– – 1+ – 0+ + 1+ + 2+ + 2– + 1– – 2– – 3– – 
lPC 0+ + 1– – 1– – 0+ + 1– – 2+ + 2+ + 1– – 2+ + 3– – 

  Y  Y  Y  Y  Y 
In conclusion 1. 1S0; 2. 3S1, 3D1 e 3. 3P2. 
3.22. Given the quark content, Λc  has electric charge +1.  Since the processes is strong, a) and 
c) are forbidden by charm conservation, while b) is allowed. d) is violates charge conservation.  
3.23. Λb is neutral. a) violates charm and beauty, b) and c) are allowed, d) violates beauty, e) 
violates baryon number. 
3.26. 

1. The minimum velocity is βmin =
1
n
= 0.75 . 

2. The minimum kinetic energy for electrons is 

 Ekin,min e( ) = me
1

1− βmin
2

−1
⎛

⎝
⎜

⎞

⎠
⎟ = 0.511× 0.51 = 0.26  MeV  

and for K+:   Ekin,min K +( ) = mK
1

1− βmin
2

−1
⎛

⎝
⎜

⎞

⎠
⎟ = 497.6 × 0.51 = 254  MeV  

3. In the decay p→ e+ + π 0 , the CM kinetic energy of the e+ is  

Ekin e+( ) = mp
2 + me

2 − m
π 0
2

2mp

− me =
938.32 + 0.512 − 0.1352

2 × 938.3
− 0.51 = 469  MeV , above threshold 

In the decay p→ K + + ν , the CM kinetic energy of the K is 

Ekin K +( ) = mp
2 + mK

2 − mν
2

2mp

− mK =
938.32 + 497.62

2 × 938.3
− 497.6 = 104  MeV  , below threshold 

3.27. (a) forbidden by lepton number, (b) forbidden by angular momentum and lepton number, 
(c) forbidden by charge conjugation, (e) allowed, (f) forbidden by baryon and lepton numbers,  
(g) forbidden by angular momentum and lepton number. 
3.28. (a) X must have charge Q=0 and strangeness S=+1; it is a K0; (b) X must have charge Q=0 
and lepton number Le =–1, it is a νe ; (c) X must have Q=0; the reaction being weak, 
strangeness does not need to be conserved; it is a π0.  

3.29. The third component of the initial isospin is Iz,initial = 1+
1
2
=
3
2

, hence the total isospin 

must be I = 3
2

. For the K+K+ we have I=1, Iz=1. Hence for the Ξ0 may have IΞ =
1
2

 or IΞ =
3
2

. 
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The third component is IΞ,z = +
1
2

. 

3.30. The total energy and its square are: s = mp + mπ – = 0.9383+ 0.1396 = 1.08 GeV  and 

s = 1.162 GeV2 . 

The energy of the photon is Eγ =
s − mn

2

2 s
=

1.162 − 0.883
2 ×1.08

= 0.129 GeV . 

The kinetic energy of the neutron is Tn = s − Eγ − mn = mp − mn + mπ − Eγ , which is a very 

small quantity, expressed as a difference between large quantities. It is then convenient to 
consider the nonrelativistic expression of the kinetic energy:  

Tn =
pn

2

2mn

=
Eγ

2

2mn

=
1302

2 × 939.6
= 9 MeV . 

3.31. The beam energy is enough to produce strange particles but not for heavier flavours. In 
order to conserve strangeness the V0s must be a K0 and a Λ. The simplest reaction is 
π + + p→π + + π + + K 0 + Λ . 
We calculate the mass of each V0 assuming in turn it to be the K0 or the a Λ. 
If 1 is a Λ,  
M 2 = mp

2 + mπ
2 + 2 p1+

2 + mp
2 p1−

2 + mπ
2 − 2p1+ p1− cosθ1 =

= 0.9382 + 0.1392 + 2 ×1.02 ×1.905 − 2 × 0.4 ×1.9 × cos24.5˚= 3.38 GeV2
 

or M=1.83 GeV not compatible with being a Λ. 
If 1 is a K0  
M 2 = 2mπ

2 + 2 p1+
2 + mπ

2 p1−
2 + mπ

2 − 2p1+ p1− cosθ1 =

= 0.04 + 2 × 0.424 ×1.905 − 2 × 0.4 ×1.9 × cos24.5˚= 0.246 GeV2
 

or M=0.495 GeV compatible, within the errors, with the mass of the K0 
If 2 is a Λ,  
M 2 = mp

2 + mπ
2 + 2 p2+

2 + mp
2 p2−

2 + mπ
2 − 2p2+ p2− cosθ2 =

= 0.9382 + 0.1392 + 2 ×1.20 × 0.29 − 2 × 0.75 × 0.25 × cos22˚= 1.59 − 0.35 = 1.24 GeV2
 

or M=1.11 GeV compatible, within the errors, with the mass of the Λ. 
If 2 is a K0  
M 2 = 2mπ

2 + 2 p2+
2 + mπ

2 p2−
2 + mπ

2 − 2p2+ p2− cosθ2 =

= 0.04 + 2 × 0.76 × 0.29 − 0.35 = 0.138 GeV2
 

or M=0.371 GeV incompatible, within the errors, with the mass of the K0. 
4.2. For the ω ,  G = C(–1)I=(–1)(–1)0 =–1 . For the φ, G = C(–1)I=(–1)(–1)0=–1 . The K is not 
an eigenstate of G. For the η, G = C(–1)I=(+1)(–1)0=+1. 
4.3. The ρ decays strongly into 2π, hence G=+. The possible values of its isospin are 0, 1 and 2. 
In the three cases the Clebsch-Gordan coefficients are 1,0 1,0;1,0 = 0 , 0,0 1,0;1,0 ≠ 0  and 
2,0 1,0;1,0 ≠ 0 . Hence I=1. 
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Since I=1, the isospin wave function is antisymmetric. The spatial wave function must 
consequently be antisymmetric, i. e. the orbital momentum of the two π must be l=odd. The ρ 
spin is equal to l. C=(–1)l=–1. P=(–1)l=–1. 
4.4. τK* = 1.3×10−23  s ,  γ = E / m ! p / m = 10.1 , d = γ cτ = 39 fm .  
4.5. a. From the size of the resonance width Γ we infer that it decays by strong interaction. As a 
consequence, S, I, Iz and Y are conserved. Therefore S(Σ)= S(Λ)+ S(π)=1+0=+ 1  and 
 Y(Σ)= Y(Λ)+ Y(π)=0+0=0.   I(Σ)= I(Λ)⊗Ι  (π)=0⊗1=1  and  Iz(Σ)= Iz(Λ)+ Iz(π+)=0+0=0. 
b. J(Σ)= J(Λ)⊗J (π)⊗L=1/2⊗0⊗1 ⇒ J=1/2 or J=3/2. P(Σ)= P(Λ) P(π) (–1)L=(+)(–)(–)=+. 
4.6. a. The decay is strong b. The initial strangeness in the reaction K − + p→π− + Σ+ (1385)  is 
S=–1. The strangeness of the Σ (1385)  is S=–1. Since the isospin is conserved in the strong 
decay, the isospin of the Σ (1385)  is equal to the isospin of the π +Λ  system, i. e. is 1. 
4.7. 1. Two equal bosons cannot be in an antisymmetric state; 2. C(2π0)=+1; 3. the Clebsch 
Gordan coefficient 1,0;1,0 1,0 = 0 . 

4.8. The charge conjugation of the final state π+π– is C=(–1)l=(–1)J, i.e. ρ0 has C=–; the f0 has 
C=+. The system π0γ has C=(+)(–)=–. Hence f0→π0γ  is forbidden. 
4.9. R=Γ K *+ → K 0 + π +( ) / Γ K *+ → K + + π 0( ) = 1 / 2  if IK*=3/2. R =2 if IK*=1/2. 

4.10. Γ K − p( ) / Γ K 0n( ) = 1. Γ π −π +( ) / Γ K 0n( ) = 0 , because the decay into π+π– would violate 

baryon number and strangeness.  
4.11. It is useful to prepare a table with the quantum numbers of the relevant states 

 pp3S1  pp3S1  pp1S0  pp1S0  pn3S1  pn1S0  

JP 1– 1– 0– 0– 1– 0– 
C – – + + X X 
I 0 1 0 1 1 1 
G – + + – + – 

 
pn→π−π −π + . Since G=–1 in the final state, there is only one possible initial state, i.e. 1S0 

p,n = 1,−1 =
1
2
1,0;1,–1 −

1
2
1,−1;1,0 =

1
2
ρ0;π – −

1
2
ρ−;π 0  

hence R pn→ ρ0π −( ) / R pn→ ρ−π 0( ) = 1. 

p, p = 1,0 =
1
2
ρ−;π + + 0 1

2
ρ0;π 0 −

1
2
ρ+;π −  

hence R pp I = 1( )→ ρ+π −( ) :R pp I = 1( )→ ρ0π 0( ) :R pp I = 1( )→ ρ−π +( ) = 1 : 0 :1. 

p, p = 0,0 =
1
3
ρ−;π + −

1
3
ρ0;π 0 +

1
3
ρ+;π −  

hence R pp I = 0( )→ ρ+π −( ) :R pp I = 0( )→ ρ0π 0( ) :R pp I = 0( )→ ρ−π +( ) = 1 :1 :1 . 

4.12. The isospin wave function must be symmetrical, because the spatial wave function is 
such. Hence I = 0 or 2. 
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4.13. The matrix element  M  must be symmetric under the exchange of each pair of pions. 
Consequently: 
1. if JP = 0–,  M = constant. There are no zeros. 
2. if JP = 1–,  M ∝ q E1 – E2( ) E2 – E3( ) E3 – E1( ) ; zeros on the diagonals and on the 

border. 
3. if JP = 1+,M ∝ p1E1 + p2E2 + p3E3  ; zero in the centre, where E1=E2=E3; zero at T3=0, 

where p3=0, p2=– p1; E2=E1. 
4.14. Since the parity is positive, the orbital momentum l of the two nucleons must be even. 
The total angular momentum is J=1, the sum of the two spins can be s=0 or s=1. Hence we can 
have l=0 or l=2. The two possible states are 3S1 and 3D1. 
4.15. A baryon can contain between 0 and 3 c valence quarks; therefore the charm of a baryon 
can be C=0, 1, 2, 3. Since the charge of c is equal to 2/3, the baryons with Q=+1 can have 
charm C=2 (ccd, ccs, ccb), C=1 (e.g. cud) or C=0 (e.g. uud). If Q=0, one c can be present, as in 
cdd, or none as in udd. Hence C=1 or C=0. 
4.16. Since B=1 the particle is a baryon. Therefore the valence quarks are three. Since the 
charge Q=+1, two quarks are up-type, one is down-type. Since C=1, one up-type quark is c. 
Since S=0, B=0,  T=0, the other two quarks are u and d. The state is udc. 
4.17.  sss, uuc, usc, ssc, udb. 
4.18. cd ,  cu,  ub ,  cb . 

4.22. τ J /ψ =
1
Γ
==

1
0.091×1.52 ×1021s–1

= 7.2 ×10–21s . 

The distance travelled in a lifetime is llab = γτ J /ψβc = τ J /ψ
p
M
c = 3.5 ×10–12m . 

Let Ee be the energy and pe≈Ee the momentum of the electron. From EJ = 2Ee  and 

pJ = 2pe cosθe , we have Ee =
EJ

2
=

1
2

pJ
2 + mJ

2 = 2.94  GeV . 

From me
2 =

EJ

2
⎛
⎝⎜

⎞
⎠⎟

2

−
pJ

2cosθe

⎛

⎝⎜
⎞

⎠⎟

2

, we have cosθe =
pJ

EJ
2 − 4me

2
≈
pJ
EJ

= 0.85 ; i. e. θe = 31.8˚ . 

For pj=50 GeV, θe = 3.6˚ . 

4.23. γ = E / m = 20 /1.86 = 10.7 . The condition I = I0e
−
t
γτ > 0.9I0  gives t < γτ ln 1

0.9
⎛
⎝⎜

⎞
⎠⎟

. We 

need to resolve distances d = ct < 139 µm . 
Possible instruments: bubble chambers, emulsions, Silicon microstrips. 

4.24. We start from σ E( ) = 3π
E2

ΓeΓ f

E − MR( )2 + Γ / 2( )2
=
12πΓeΓ f

Γ2
1
E2

1
2 E − MR( ) / Γ⎡⎣ ⎤⎦

2
+1

. 

In the neighbourhood of the resonance peak the factor 1/E2 varies only slowly, compared to the 
resonant factor, and we can approximate it with the constant 1 /MR

2 , i.e.  
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