SOLUTIONS MANUAL TO ACCOMPANY INTRODUCTION TO FLIGHT $7^{\text {th }}$ Edition

By

John D. Anderson, Jr.

Chapter 2

$2.1 \quad \rho=p / R T=(1.2)\left(1.01 \times 10^{5}\right) /(287)(300)$
$\rho=1.41 \mathrm{~kg} / \mathrm{m}^{2}$
$v=1 / \rho=1 / 1.41=0.71 \mathrm{~m}^{3} / \mathrm{kg}$
2.2 Mean kinetic energy of each atom $=\frac{3}{2} k T=\frac{3}{2}\left(1.38 \times 10^{-23}\right)(500)=1.035 \times 10^{-20} \mathrm{~J}$

One kg-mole, which has a mass of 4 kg , has 6.02×10^{26} atoms. Hence 1 kg has $\frac{1}{4}\left(6.02 \times 10^{26}\right)=1.505 \times 10^{26}$ atoms.
Total internal energy $=($ energy per atom $)($ number of atoms $)$

$$
=\left(1.035 \times 10^{-20}\right)\left(1.505 \times 10^{26}\right)=1.558 \times 10^{6} \mathrm{~J}
$$

$2.3 \rho=\frac{p}{R T}=\frac{2116}{(1716)(460+59)}=0.00237 \frac{\text { slug }}{\mathrm{ft}^{3}}$
Volume of the room $=(20)(15)(8)=2400 \mathrm{ft}^{3}$
Total mass in the room $=(2400)(0.00237)=5.688$ slug

$$
\text { Weight }=(5.688)(32.2)=183 \mathrm{lb}
$$

$2.4 \quad \rho=\frac{p}{R T}=\frac{2116}{(1716)(460-10)}=0.00274 \frac{\text { slug }}{\mathrm{ft}^{3}}$
Since the volume of the room is the same, we can simply compare densities between the two problems.
$\Delta \rho=0.00274-0.00237=0.00037 \frac{\text { slug }}{\mathrm{ft}^{3}}$
$\%$ change $=\frac{\Delta \rho}{\rho}=\frac{0.00037}{0.00237} \times(100)=15.6 \%$ increase
2.5 First, calculate the density from the known mass and volume, $\rho=1500 / 900=1.67 \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3}$

In consistent units, $\rho=1.67 / 32.2=0.052$ slug $/ \mathrm{ft}^{3}$. Also, $T=70 F=70+460=530 R$.
Hence,
or

$$
\begin{aligned}
p & =\rho R T=(0.52)(1716)(530) \\
p & =47,290 \mathrm{lb} / \mathrm{ft}^{2} \\
p & =47,290 / 2116=22.3 \mathrm{~atm}
\end{aligned}
$$

$2.6 \quad p=\rho R T$
$\ell n p=\ell n p+\ell n R+\ell n T$
Differentiating with respect to time,
$\frac{1}{p} \frac{d p}{d t}=\frac{1}{\rho} \frac{d \rho}{d t}+\frac{1}{T} \frac{d T}{d t}$
or, $\quad \frac{d p}{d t}=\frac{p}{\rho} \frac{d \rho}{d t}+\frac{p}{\mathrm{~T}} \frac{d T}{d t}$
or, $\quad \frac{d p}{d t}=R T \frac{d \rho}{d t}+\rho R \frac{d T}{d t}$
At the instant there is $1000 \mathrm{lb}_{\mathrm{m}}$ of air in the tank, the density is

$$
\begin{aligned}
& \rho=1000 / 900=1.11 \mathrm{lb}_{\mathrm{m}} / \mathrm{ft}^{3} \\
& \rho=1.11 / 32.2=0.0345 \mathrm{slug} / \mathrm{ft}^{3}
\end{aligned}
$$

Also, in consistent units, is given that

$$
T=50+460=510 R
$$

and that

$$
\frac{d T}{d t}=1 F / \min =1 R / \mathrm{min}=0.016 \mathrm{R} / \mathrm{sec}
$$

From the given pumping rate, and the fact that the volume of the tank is $900 \mathrm{ft}^{3}$, we also have

$$
\begin{aligned}
& \frac{d \rho}{d t}=\frac{0.5 \mathrm{lb}_{\mathrm{m}} / \mathrm{sec}}{900 \mathrm{ft}^{3}}=0.000556 \mathrm{lb}_{\mathrm{m}} /\left(\mathrm{ft}^{3}\right)(\mathrm{sec}) \\
& \frac{d \rho}{d t}=\frac{0.000556}{32.2}=1.73 \times 10^{-5} \mathrm{slug} /\left(\mathrm{ft}^{3}\right)(\mathrm{sec})
\end{aligned}
$$

Thus, from equation (1) above,

$$
\begin{aligned}
\frac{d \rho}{d t} & =(1716)(510)\left(1.73 \times 10^{-5}\right)+(0.0345)(1716)(0.0167) \\
& =15.1+0.99=16.1 \mathrm{lb} /\left(\mathrm{ft}^{2}\right)(\mathrm{sec})=\frac{16.1}{2116} \\
& =0.0076 \mathrm{~atm} / \mathrm{sec}
\end{aligned}
$$

2.7 In consistent units,

$$
T=-10+273=263 \mathrm{~K}
$$

Thus,

$$
\begin{aligned}
& \rho=p / R T=\left(1.7 \times 10^{4}\right) /(287)(263) \\
& \rho=0.225 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

$2.8 \quad \rho=p / R T=0.5 \times 10^{5} /(287)(240)=0.726 \mathrm{~kg} / \mathrm{m}^{3}$
$v=1 / \rho=1 / 0.726=1.38 \mathrm{~m}^{3} / \mathrm{kg}$
2.9

$F_{p}=$ Force due to pressure $=\int_{0}^{3} p d x=\int_{0}^{3}(2116-10 x) d x$
$=\left[2116 x-5 x^{2}\right]_{0}^{3}=6303 \mathrm{lb}$ perpendicular to wall.
$F_{\tau}=$ Force due to shear stress $=\int_{0}^{3} \tau d x=\int_{0}^{3} \frac{90}{(x+9)^{\frac{1}{2}}} d x$
$=\left[180(x+9)^{\frac{1}{2}}\right]_{0}^{3}=623.5-540=83.5 \mathrm{lb}$ tangential to wall.

Magnitude of the resultant aerodynamic force $=$
$R=\sqrt{(6303)^{2}+(835)^{2}}=6303.6 \mathrm{lb}$
$\theta=\operatorname{ArcTan}\left(\frac{83.5}{6303}\right)=0.76^{\circ}$
$2.10 \quad V=\frac{3}{2} V_{\infty} \sin \theta$
Minimum velocity occurs when $\sin \theta=0$, i.e., when $\theta=0^{\circ}$ and 180°.

$$
V_{\min }=0 \text { at } \theta=0^{\circ} \text { and } 180^{\circ} \text {, i.e., at its most forward and rearward points. }
$$

Maximum velocity occurs when $\sin \theta=1$, i.e., when $\theta=90^{\circ}$. Hence,

$$
V_{\max }=\frac{3}{2}(85)(1)=127.5 \mathrm{mph} \text { at } \theta=90^{\circ}
$$

i.e., the entire rim of the sphere in a plane perpendicular to the freestream direction.
2.11 The mass of air displaced is

$$
M=(2.2)(0.002377)=5.23 \times 10^{-3} \text { slug }
$$

The weight of this air is

$$
W_{\mathrm{air}}=\left(5.23 \times 10^{-3}\right)(32.2)=0.168 \mathrm{lb}
$$

This is the lifting force on the balloon due to the outside air. However, the helium inside the balloon has weight, acting in the downward direction. The weight of the helium is less than that of air by the ratio of the molecular weights

$$
W_{H_{c}}=(0.168) \frac{4}{28.8}=0.0233 \mathrm{lb}
$$

Hence, the maximum weight that can be lifted by the balloon is

$$
0.168-0.0233=0.145 \mathrm{lb}
$$

2.12 Let p_{3}, ρ_{3}, and T_{3} denote the conditions at the beginning of combustion, and p_{4}, ρ_{4}, and T_{4} denote conditions at the end of combustion. Since the volume is constant, and the mass of the gas is constant, then $p_{4}=\rho_{3}=11.3 \mathrm{~kg} / \mathrm{m}^{3}$. Thus, from the equation of state,

$$
p_{4}=\rho_{4} R T_{4}=(11.3)(287)(4000)=1.3 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}
$$

or,

$$
p_{4}=\frac{1.3 \times 10^{7}}{1.01 \times 10^{5}}=129 \mathrm{~atm}
$$

2.13 The area of the piston face, where the diameter is $9 \mathrm{~cm}=0.09 \mathrm{~m}$, is

$$
A=\frac{\pi(0.09)^{2}}{4}=6.36 \times 10^{-3} \mathrm{~m}^{2}
$$

(a) The pressure of the gas mixture at the beginning of combustion is

$$
p_{3}=\rho_{3} R T_{3}=11.3(287)(625)=2.02 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}
$$

The force on the piston is

$$
F_{3}=p_{3} A=\left(2.02 \times 10^{6}\right)\left(6.36 \times 10^{-3}\right)=1.28 \times 10^{4} \mathrm{~N}
$$

Since $4.45 \mathrm{~N}=1 \mathrm{lb} f$,

$$
F_{3}=\frac{1.28 \times 10^{4}}{4.45}=2876 \mathrm{lb}
$$

(b) $\quad p_{4}=\rho_{4} R T_{4}=(11.3)(287)(4000)=1.3 \times 10^{7} \mathrm{~N} / \mathrm{m}^{2}$

The force on the piston is

$$
\begin{aligned}
& F_{4}=p_{4} A=\left(1 / 3 \times 10^{7}\right)\left(6.36 \times 10^{-3}\right)=8.27 \times 10^{4} \mathrm{~N} \\
& F_{4}=\frac{8.27 \times 10^{4}}{4.45}=18,579 \mathrm{lb}
\end{aligned}
$$

2.14 Let p_{3} and T_{3} denote conditions at the inlet to the combustor, and T_{4} denote the temperature at the exit. Note: $p_{3}=p_{4}=4 \times 10^{6} \mathrm{~N} / \mathrm{m}^{2}$
(a) $\quad \rho_{3}=\frac{p_{3}}{R T_{3}}=\frac{4 \times 10^{6}}{(287)(900)}=15.49 \mathrm{~kg} / \mathrm{m}^{3}$
(b) $\quad \rho_{4}=\frac{p_{4}}{R T_{4}}=\frac{4 \times 10^{6}}{(287)(1500)}=9.29 \mathrm{~kg} / \mathrm{m}^{3}$
2.15 1 mile $=5280 \mathrm{ft}$, and 1 hour $=3600 \mathrm{sec}$.

So:

$$
\left(60 \frac{\text { miles }}{\text { hour }}\right)\left(\frac{5280 \mathrm{ft}}{\text { mile }}\right)\left(\frac{1 \text { hour }}{3600 \mathrm{sec}}\right)=88 \mathrm{ft} / \mathrm{sec}
$$

A very useful conversion to remember is that

$$
60 \mathrm{mph}=88 \mathrm{ft} / \mathrm{sec}
$$

also,

$$
1 \mathrm{ft}=0.3048 \mathrm{~m}
$$

$$
\left(88 \frac{\mathrm{ft}}{\mathrm{sec}}\right)\left(\frac{0.3048 \mathrm{~m}}{1 \mathrm{ft}}\right)=26.82 \frac{\mathrm{~m}}{\mathrm{sec}}
$$

Thus

$$
88 \frac{\mathrm{ft}}{\mathrm{sec}}=26.82 \frac{\mathrm{~m}}{\mathrm{sec}}
$$

$2.16692 \frac{\text { miles }}{\text { hour }}\left(\frac{88 \mathrm{ft} / \mathrm{sec}}{60 \mathrm{mph}}\right)=1015 \mathrm{ft} / \mathrm{sec}$
$692 \frac{\mathrm{miles}}{\text { hour }}\left(\frac{26.82 \mathrm{~m} / \mathrm{sec}}{60 \mathrm{mph}}\right)=309.3 \mathrm{~m} / \mathrm{sec}$
2.17 On the front face

$$
F_{f}=p_{f} A=\left(1.0715 \times 10^{5}\right)(2)=2.143 \times 10^{5} \mathrm{~N}
$$

On the back face

$$
F_{b}=p_{b} A=\left(1.01 \times 10^{5}\right)(2)=2.02 \times 10^{5} \mathrm{~N}
$$

The net force on the plate is

$$
F=F_{f}-F_{b}=(2.143-2.02) \times 10^{5}=0.123 \times 10^{5} \mathrm{~N}
$$

From Appendix C,

$$
1 l b_{f}=4.448 \mathrm{~N}
$$

So,

$$
F=\frac{0.123 \times 10^{5}}{4.448}=2765 \mathrm{lb}
$$

This force acts in the same direction as the flow (i.e., it is aerodynamic drag.)
2.18 Wing loading $=\frac{W}{s}=\frac{10,100}{233}=43.35 \mathrm{lb} / \mathrm{ft}^{2}$

In SI units:

$$
\begin{aligned}
\frac{W}{s} & =\left(43.35 \frac{\mathrm{lb}}{\mathrm{ft}^{2}}\right)\left(\frac{4.448 \mathrm{~N}}{1 \mathrm{lb}}\right)\left(\frac{1 \mathrm{ft}}{0.3048 \mathrm{~m}}\right)^{2} \\
\frac{W}{s} & =2075.5 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}
\end{aligned}
$$

In terms of kilogram force,

$$
\frac{W}{s}=\left(2075.5 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}\right)\left(\frac{1 \mathrm{k}_{f}}{9.8 \mathrm{~N}}\right)=211.8 \frac{\mathrm{~kg}_{f}}{\mathrm{~m}^{2}}
$$

$2.19 \quad V=\left(437 \frac{\text { miles }}{\mathrm{hr}}\right)\left(\frac{5280 \mathrm{ft}}{\text { mile }}\right)\left(\frac{0.3048 \mathrm{~m}}{1 \mathrm{ft}}\right)=7.033 \times 10^{5} \frac{\mathrm{~m}}{\mathrm{hr}}=703.3 \frac{\mathrm{~km}}{\mathrm{hr}}$
Altitude $=(25,000 \mathrm{ft})\left(\frac{0.3048 \mathrm{~m}}{1 \mathrm{ft}}\right)=7620 \mathrm{~m}=7.62 \mathrm{~km}$
$2.20 \quad V=\left(26,000 \frac{\mathrm{ft}}{\mathrm{sec}}\right)\left(\frac{0.3048 \mathrm{~m}}{1 \mathrm{ft}}\right)=7.925 \times 10^{3} \frac{\mathrm{~m}}{\mathrm{sec}}=7.925 \frac{\mathrm{~km}}{\mathrm{sec}}$
2.21 From Fig. 2.16,
length of fuselage $=33 \mathrm{ft}, 4.125$ inches $=33.34 \mathrm{ft}$

$$
=33.34 \mathrm{ft}\left(\frac{0.3048 \mathrm{~m}}{\mathrm{ft}}\right)=10.16 \mathrm{~m}
$$

wing span $=40 \mathrm{ft}, 11.726$ inches $=40.98 \mathrm{ft}$

$$
=40.98 \mathrm{ft}\left(\frac{0.3048 \mathrm{~m}}{\mathrm{ft}}\right)=12.49 \mathrm{~m}
$$

