
83 Chapter 2: Trees and Distance Section 2.1: Basic Properties 84

2.TREES AND DISTANCE

2.1. BASIC PROPERTIES

2.1.1. Trees with at most 6 vertices having specified maximum degree or
diameter. For maximum degree k, we start with the star K1,k and append
leaves to obtain the desired number of vertices without creating a vertex
of larger degree. For diameter k, we start with the path Pk+1 and append
leaves to obtain the desired number of vertices without creating a longer
path. Below we list all the resulting isomorphism classes.

For k = 0, the only tree is K1, and for k = 1, the only tree is K2 (diame-
ter or maximum degree k). For larger k, we list the trees in the tables. Let
Ti, j denote the tree with i + j vertices obtained by starting with one edge
and appending i − 1 leaves to one endpoint and j − 1 leaves at the other
endpoint (note that T1,k = K1,k for k ≥ 1). Let Q be the 6-vertex tree with
diameter 4 obtained by growing a leaf from a neighbor of a leaf in P5. Let
n denote the number of vertices.

maximum degree k diameter k

k 2 3 4 5
n

3 P3
4 P4 K1,3
5 P5 T2,3 K1,4
6 P6 T3,3, Q T2,4 K1,5

k 2 3 4 5
n

3 P3
4 K1,3 P4
5 K1,4 T2,3 P5
6 K1,5 T2,4, T3,3 Q P6

2.1.2. Characterization of trees.
a) A graph is tree if and only if it is connected and every edge is a cut-

edge. An edge e is a cut-edge if and only if e belongs to no cycle, so there
are no cycles if and only if every edge is a cut-edge. (To review, edge e = uv

is a cut edge if and only if G − e has no u, v-path, which is true if and only
if G has no cycle containing e.)

b) A graph is a tree if and only if for all x, y ∈ V (G), adding a copy
of xy as an edge creates exactly one cycle. The number of cycles in G + uv

containing the new (copy of) edge uv equals the number of u, v-paths in G,
and a graph is a tree if and only if for each pair u, v there is exactly one
u, v-path. Note that the specified condition must also hold for addition of
extra copies of edges already present; this excludes cliques.

2.1.3. A graph is a tree if and only if it is loopless and has exactly one
spanning tree. If G is a tree, then G is loopless, since G is acyclic. Also, G is
a spanning tree of G. If G contains another spanning tree, then G contains
another edge not in G, which is impossible.

Let G be loopless and have exactly one spanning tree T . If G has a
edge e not in T , then T + e contains exactly one cycle, because T is a tree.
Let f be another edge in this cycle. Then T + e − f contains no cycle. Also
T +e− f is connected, because deleting an edge of a cycle cannot disconnect
a graph. Hence T + e − f is a tree different from T . Since G contains no
such tree, G cannot contain an edge not in T , and G is the tree T .

2.1.4. Every graph with fewer edges than vertices has a component that is
a tree—TRUE. Since the number of vertices or edges in a graph is the sum
of the number in each component, a graph with fewer edges than vertices
must have a component with fewer edges than vertices. By the properties
of trees, such a component must be a tree.

2.1.5. A maximal acyclic subgraph of a graph G consists of a spanning tree
from each component of G. We show that if H is a component of G and
F is a maximal forest in G, then F ∩ H is a spanning tree of H . We may
assume that F contains all vertices of G; if not, throw the missing ones in
as isolated points to enlarge the forest. Note that F ∩ H contains no cycles,
since F contains no cycles and F ∩ H is a subgraph of F .

We need only show that F ∩ H is a connected subgraph of H . If not,
then it has more than one component. Since F is spanning and H is con-
nected, H contains an edge between two of these components. Add this
edge to F and F ∩ H . It cannot create a cycle, since F previously did not
contain a path between its endpoints. We have made F into a larger for-
est (more edges), which contradicts the assumption that it was maximal.
(Note: the subgraph consisting of all vertices and no edges of G is a span-
ning subgraph of G; spanning means only that all the vertices appear, and
says nothing about connectedness.

2.1.6. Every tree with average degree a has 2/(2 − a) vertices. Let the tree
have n vertices and m edges. The average degree is the degree sum divided
by n, the degree sum is twice m, and m is n − 1. Thus a =

∑

di/n =
2(n − 1)/n. Solving for n yields n = 2/(2 − a).

2.1.7. Every n-vertex graph with m edges has at least m −n +1 cycles. Let k
be the number of components in such a graph G. Choosing a spanning tree

I
n
t
r
o
d
u
c
t
i
o
n
 
t
o
 
G
r
a
p
h
 
T
h
e
o
r
y
 
2
n
d
 
E
d
i
t
i
o
n
 
W
e
s
t
 
S
o
l
u
t
i
o
n
s
 
M
a
n
u
a
l

V
i
s
i
t
 
T
e
s
t
B
a
n
k
D
e
a
l
.
c
o
m
 
t
o
 
g
e
t
 
c
o
m
p
l
e
t
e
 
f
o
r
 
a
l
l
 
c
h
a
p
t
e
r
s

https://testbankdeal.com/download/introduction-to-graph-theory-2nd-edition-west-solutions-manual/


85 Chapter 2: Trees and Distance Section 2.1: Basic Properties 86

from each component uses n − k edges. Each of the remaining m − n + k
edges completes a cycle with edges in this spanning forest. Each such cycle
has one edge not in the forest, so these cycles are distinct. Since k ≥ 1, we
have found at least m − n + 1 cycles.

2.1.8. Characterization of simple graphs that are forests.
a) A simple graph is a forest if and only if every induced subgraph has

a vertex of degree at most 1. If G is a forest and H is an induced subgraph of
G, then H is also a forest, since cycles cannot be created by deleting edges.
Every component of H is a tree, which is an isolated vertex or has a leaf (a
vertex of degree 1). If G is not a forest, then G contains a cycle. A shortest
cycle in G has no chord, since that would yield a shorter cycle, and hence a
shortest cycle is an induced subgraph. This induced subgraph is 2-regular
and has no vertex of degree at most 1.

b) A simple graph is a forest if and only if every connected subgraph
is an induced subgraph. If G has a connected subgraph H that is not an
induced subgraph, then G has an edge xy not in H with endpoints in V (H).
Since H contains an x, y-path, H +xy contains a cycle, and G is not a forest.
Conversely, if G is not a forest, then G has a cycle C , and every subgraph
of G obtained by deleting one edge from C is connected but not induced.

c) The number of components is the number of vertices minus the num-
ber of edges. In a forest, each component is a tree and has one less edge than
vertex. Hence a forest with n vertices and k components has n − k edges.

Conversely, every component with ni vertices has at least ni − 1 edges,
since it is connected. Hence the number of edges in an n-vertex is n minus
the number of components only if every component with n i vertices has
ni − 1 edges. Hence every component is a tree, and the graph is a forest.

2.1.9. For 2 ≤ k ≤ n − 1, the n-vertex graph formed by adding one vertex
adjacent to every vertex of Pn−1 has a spanning tree with diameter k. Let
v1, . . . , vn−1 be the vertices of the path in order, and let x be the vertex ad-
jacent to all of them. The spanning tree consisting of the path v1, . . . , vk−1
and the edges xvk−1, . . . , xvn−1 has diameter k.

2.1.10. If u and v are vertices in a connected n-vertex simple graph, and
d(u, v) > 2, then d(u) + d(v) ≤ n + 1 − d(u, v). Since d(u, v) > 2, we have
N (u) ∩ N (v) = ∅, and hence d(u) + d(v) = |N (u) ∪ N (v)|. Let k = d(u, v).
Between u and v on a shortest u, v-path are vertices x1, . . . , xk−1. Since this
is a shortest u, v-path, vertices u, v and x2, . . . , xk−2 are forbidden from the
neighborhoods of both u and v. Hence |N (u) ∪ N (v)| ≤ n + 1 − k.

The inequality fails when d(u, v) ≤ 2, because in this case u and v can
have many common neighbors. When d(u, v) = 2, the sum d(u) + d(v) can
be as high as 2n − 4.

2.1.11. If x and y are adjacent vertices in a graph G, then always
|dG(x, z) − dG(y, z)| ≤ 1. A z, y-path can be extended (or trimmed) to reach
x , and hence d(z, x) ≤ d(z, y) + 1. Similarly, d(z, y) ≤ d(z, x) + 1. Together,
these yield |d(z, x) − d(z, y)| ≤ 1.

2.1.12. Diameter and radius of Km,n. Every vertex has eccentricity 2 in
Km,n if m, n ≥ 2, which yields radius and diameter 2. For K1,n , the radius
is 1 and diameter is 2 if n > 1. The radius and diameter of K1,1 are 1. The
radius and diameter of K0,n are infinite if n > 1, and both are 0 for K0,1.

2.1.13. Every graph with diameter d has an independent set of size at least
d(1 + d)/2e. Let x, y be vertices with d(x, y) = d. Vertices that are non-
consecutive on a shortest x, y-path P are nonadjacent. Taking x and every
second vertex along P produces an independent set of size d(1 + d)/2e.

2.1.14. Starting a shortest path in the hypercube. The distance between
vertices in a hypercube is the number of positions in which their names
differ. From u, a shortest u, v-path starts along any edge to a neighbor
whose name differ from u in a coordinate where v also differs from u.

2.1.15. The complement of a simple graph with diameter at least 4 has
diameter at most 2. The contrapositive of the statement is that if G has
diameter at least 3, then G has diameter at most 3. Since G = G, this
statement has been proved in the text.

2.1.16. The “square” of a connected graph G has diameter ddiam (G)/2e.
The square is the simple graph G ′ with x ↔ y in G ′ if and only if dG(x, y) ≤
2. We prove the stronger result that dG ′(x, y) = ddG(x, y)/2e for every x, y ∈
V (G). Given an x, y-path P of length k, we can skip the odd vertices along
P to obtain an x, y-path of length dk/2e in G ′.

On the other hand, every x, y-path of length l in G ′ arises from a
path of length at most 2l in G. Hence the shortest x, y-path in G ′ comes
from the shortest x, y-path in G by the method described, and dG ′(x, y) =
ddG(x, y)/2e. Hence

diam (G ′) = minx,y dG ′(x, y) = minx,y

⌈

dG (x,y)

2

⌉

=
⌈

minx,y
dG (x,y)

2

⌉

=
⌈

diam (G)

2

⌉

.

2.1.17. If an n-vertex graph G has n − 1 edges and no cycles, then it is
connected. Let k be the number of components of G. If k > 1, then we
adding an edge with endpoints in two components creates no cycles and
reduces the number of components by 1. Doing this k − 1 times creates a
graph with (n −1)+ (k −1) edges that is connected and has no cycles. Such
a graph is a tree and has n − 1 edges. Therefore, k = 1, and the original
graph G was connected.



87 Chapter 2: Trees and Distance Section 2.1: Basic Properties 88

2.1.18. If G is a tree, then G has at least 1(G) leaves. Let k = 1(G). Given
n > k ≥ 2, we cannot guarantee more leaves, as shown by growing a path
of length n − k − 1 from a leaf of K1,k .

Proof 1a (maximal paths). Deleting a vertex x of degree k produces a
forest of k subtrees, and x has one neighbor wi in the ith subtree G i . Let
Pi be a maximal path starting at x along the edge xwi . The other end of Pi

must be a leaf of G and must belong to G i , so these k leaves are distinct.
Proof 1b (leaves in subtrees). Deleting a vertex x of degree k produces

a forest of k subtrees. Each subtree is a single vertex, in which case the
vertex is a leaf of G, or it has at least two leaves, of which at least one is
not a neighbor of x . In either case we obtain a leaf of the original tree in
each subtree.

Proof 2 (counting two ways). Count the degree sum by edges and by
vertices. By edges, it is 2n − 2. Let k be the maximum degree and l the
number of leaves. The remaining vertices must have degree at least two
each, so the degree sum when counted by vertices is at least k + 2(n − l −
1)+ l. The inequality 2n − 2 ≥ k + 2(n − l − 1)+ 1 simplifies to l ≥ k. (Note:
Similarly, degree 2(n − 1) − k remains for the vertices other than a vertex
of maximum degree. Since all degrees are 1 or at least 2, there must be at
least k vertices of degree 1.)

Proof 3: Induction on the number of vertices. For n ≤ 3, this follows
by inspecting the unique tree on n vertices. For n > 3, delete a leaf u. If
1(T − u) = 1(T ), then by the induction hypothesis T − u has at least k
leaves. Replacing u adds a leaf while losing at most one leaf from T − u.
Otherwise 1(T − u) = 1(T ) − 1, which happens only if the neighbor of u
is the only vertex of maximum degree in T . Now the induction hypothesis
yields at least k − 1 leaves in T − u. Replacing u adds another, since the
vertex of maximum degree in T cannot be a leaf in T − u (this is the reason
for putting n = 3 in the basis step).

2.1.19. If ni denotes the number of vertices of degree i in a tree T , then
∑

ini

depends only on the number of vertices in T . Since each vertex of degree
i contributes i to the sum, the sum is the degree-sum, which equals twice
the number of edges: 2n(T ) − 2.

2.1.20. Hydrocarbon formulas Ck Hl . The global method is the simplest
one. With cycles forbidden, there are k + l − 1 “bonds” - i.e., edges. Twice
this must equal the degree sum. Hence 2(k + l − 1) = 4k + l, or l = 2k + 2.

Alternatively, (sigh), proof by induction. Basis step (k = 1): The for-
mula holds for the only example. Induction step (k > 1): In the graph of
the molecule, each H has degree 1. Deleting these vertices destroys no cy-
cles, so the subgraph induced by the C-vertices is also a tree. Pick a leaf
x in this tree. In the molecule it neighbors one C and three Hs. Replac-

ing x and these three Hs by a single H yields a molecule with one less C
that also satisfies the conditions. Applying the induction hypothesis yields
l = [2(k − 1) + 2] − 1 + 3 = 2k + 2.

2.1.21. If a simple n-vertex graph G has a decomposition into k spanning
trees, and 1(G) = δ(G)+ 1, then 2k < n, and G has n − 2k vertices of degree
2k and 2k vertices of degree 2k −1. Since every spanning tree of G has n −1
edges, we have e(G) = k(n − 1). Since e(G) ≤ n(n − 1)/2 edges, this yields
k ≤ n/2. Equality requires G = Kn, but 1(Kn) = δ(Kn). Thus 2k < n.

To determine the degree sequence, let l be the number of vertices of
degree δ(G). By the degree-sum formula, n1(G)− l = 2kn − 2k. Both sides
are between two multiples of n. Since 0 < 2k < n and 0 < l < n, the higher
multiple of n is n1(G) = 2kn, so 1(G) = 2k. It then also follows that l = 2k.
Hence there are n −2k vertices of degree 2k and 2k vertices of degree 2k −1.

2.1.22. A tree with degree list k, k − 1, . . . , 2, 1, 1, . . . , 1 has 2 +
(k

2

)

vertices.
Since the tree has n vertices and k − 1 non-leaves, it has n − k + 1 leaves.
Since

∑k
i=1 i = k(k +1)/2, the degrees of the vertices sum to k(k +1)/2+n −

k. The degree-sum is twice the number of edges, and the number of edges
is n − 1. Thus k(k + 1)/2 + n − k = 2n − 2. Solving for n yields n = 2 +

(k
2

)

.

2.1.23. For a tree T with vertex degrees in {1, k}, the possible values of n(T )

are the positive integers that are 2 more than a multiple of k − 1.
Proof 1 (degree-sum formula). Let m be the number of vertices of

degree k. By the degree-sum formula, mk + (n(T )− m) = 2n(T )− 2, since T
has n(T ) − 1 edges. The equation simplifies to n(T ) = m(k − 1) + 2. Since
m is a nonnegative integer, n(T ) must be two more than a multiple of k − 1.

Whenever n = m(k − 1)+ 2, there is such a tree (not unique for m ≥ 4).
Such a tree is constructed by adjoining k − 2 leaves to each internal vertex
of a path of length m + 1, as illustrated below for m = 4 and k = 5.

•

•• •

•

•• •

•

•• •

•

•• •

• •

Proof 2 (induction on m, the number of vertices of degree k). We proof
that if T has m vertices of degree k, then n(T ) = m(k − 1)+ 2 If m = 0, then
the tree must have two vertices.

For the induction step, suppose that m > 0. For a tree T with m ver-
tices of degree k and the rest of degree 1, let T ′ be the tree obtained by
deleting all the leaves. The tree T ′ is a tree whose vertices all have de-
gree k in T . Let x be a leaf of T ′. In T , x is adjacent to one non-leaf and to
k − 1 leaves. Deleting the leaf neighbors of x leaves a tree T ′′ with m − 1
vertices of degree k and the rest of degree 1. By the induction hypothesis,



89 Chapter 2: Trees and Distance Section 2.1: Basic Properties 90

n(T ′′) = (m − 1)(k − 1) + 2. Since we deleted k − 1 vertices from T to obtain
T ′′, we obtain n(T ) = m(k − 1) + 2. This completes the induction step.

To prove inductively that all such values arise as the number of ver-
tices in such a tree, we start with K2 and iteratively expand a leaf into a
vertex of degree k to add k − 1 vertices.

2.1.24. Every nontrivial tree has at least two maximal independent sets,
with equality only for stars. A nontrivial tree has an edge. Each vertex
of an edge can be augmented to a maximal independent set, and these
must be different, since each contains only one vertex of the edge. A star
has exactly two maximal independent sets; the set containing the center
cannot be enlarged, and the only maximal independent set not containing
the center contains all the other vertices. If a tree is not a star, then it
contains a path a, b, c, d. No two of the three independent sets {a, c}, {b, d},
{a, d} can appear in a single independent set, so maximal independent sets
containing these three must be distinct.

2.1.25. Among trees with n vertices, the star has the most independent sets
(and is the only tree with this many).

Proof 1 (induction on n). For n = 1, there is only one tree, the star.
For n > 1, consider a tree T . Let x be a leaf, and let y be its neighbor. The
independent sets in T consist of the independent sets in T − x and all sets
formed by adding x to an independent set in T − x − y. By the induction
hypothesis, the first type is maximized (only) when T − x is a star. The
second type contributes at most 2n−2 sets, and this is achieved only when
T − x − y has no edges, which requires that T − x is a star with center at y.
Thus both contributions are maximized when (and only when) T is a star
with center y.

Proof 2 (counting). If an n-vertex tree T is not a star, then it contains
a copy H of P4. Of the 16 vertex subsets of V (H), half are independent
and half are not. If S is an independent set in T , then S ∩ V (H) is also
independent. When we group the subsets of V (T ) by their intersection
with V (T ) − V (H), we thus find that at most half the sets in each group
are independent. Summing over all groups, we find that at most half of
all subsets of V (T ), or 2n−1, are independent. However, the star K1,n−1 has
2n−1 + 1 independent sets.

2.1.26. For n ≥ 3, if G is an n-vertex graph such that every graph obtained
by deleting one vertex of G is a tree, then G = Cn. Let G i be the graph
obtained by deleting vertex vi . Since G i has n − 1 vertices and is a tree,
e(G i ) = n − 2. Thus

∑n
i=1 e(G i ) = n(n − 2). Since each edge has two end-

points, each edge of G appears in n − 2 of these graphs and thus is counted
n − 2 times in the sum. Thus e(G) = n.

Since G has n vertices and n edges, G must contain a cycle. Since G i

has no cycle, every cycle in G must contain vi . Since this is true for all i ,
every cycle in G must contain every vertex. Thus G has a spanning cycle,
and since G has n edges it has no additional edges, so G = Cn.

2.1.27. If n ≥ 2 and d1, . . . , dn are positive integers, then there exists a tree
with these as its vertex degrees if and only if dn = 1 and

∑

di = 2(n − 1).
(Some graphs with such degree lists are not trees.) Necessity: Every n-
vertex tree is connected and has n − 1 edges, so every vertex has degree at
least 1 (when n ≥ 2) and the total degree sum is 2(n − 1). Sufficiency: We
give several proofs.

Proof 1 (induction on n). Basis step (n = 2): The only such list is
(1, 1), which is the degree list of the only tree on two vertices. Induction
step (n > 2): Consider d1, . . . , dn satisfying the conditions. Since

∑

di > n,
some element exceeds 1. Since

∑

di < 2n, some element is at most 1.
Let d ′ be the list obtain by subtracting 1 from the largest element of d
and deleting an element that equals 1. The total is now 2(n − 2), and all
elements are positive, so by the induction hypothesis there is a tree on n−1
vertices with d ′ as its vertex degrees. Adding a new vertex and an edge
from it to the vertex whose degree is the value that was reduced by 1 yields
a tree with the desired vertex degrees.

Proof 2 (explicit construction). Let k be the number of 1s in the list d.
Since the total degree is 2n − 2 and all elements are positive, k ≥ 2. Create
a path x, u1, . . . , un−k, y. For 1 ≤ i ≤ n − k, attach di − 2 vertices of degree 1
to ui . The resulting graph is a tree (not the only one with this degree list),
and it gives the proper degree to u i . We need only check that we have the
desired number of leaves. Counting x and y and indexing the list so that
d1, . . . , dn ≥, we compute the number of leaves as

2 +
n−k
∑

i=1

(di − 2) = 2 − 2(n − k) +
n

∑

i=1

di −
n

∑

i=n−k+1

di = 2 − 2(n − k) + 2(n − 1) − k = k.

Proof 3 (extremality). Because
∑

di = 2(n − 1), which is even, there
is a graph with n vertices and n − 1 edges that realizes d. Among such
graphs, let G (having k components) be one with the fewest components. If
k = 1, then G is a connected graph with n − 1 edges and is the desired tree.

If k > 1 and G is a forest, then G has n − k edges. Therefore, G has a
cycle. Let H be a component of G having a cycle, and let uv be an edge of
the cycle. Let H ′ be another component of G. Because each di is positive,
H ′ has an edge, xy. Replace the edges uv and xy by ux and vy (either uv

or xy could be a loop.) Because uv was in a cycle, the subgraph induced by
V (H) is still connected. The deletion of vy might disconnect H ′, but each
piece is now connected to V (H), so the new graph G ′ realizes d with fewer
components than G, contradicting the choice of G.



91 Chapter 2: Trees and Distance Section 2.1: Basic Properties 92

2.1.28. The nonnegative integers d1 ≥ · · · ≥ dn are the degree sequence of
some connected graph if and only if

∑

di is even, dn ≥ 1, and
∑

di ≥ 2n − 2.
This claim does not hold for simple graphs because the conditions

∑

di

even, dn ≥ 1, and
∑

di ≥ 2n − 2 do not prevent d1 ≥ n, which is impossible
for a simple graph. Hence we allow loops and multiple edges. Necessity fol-
lows because every graph has even degree sum and every connected graph
has a spanning tree with n−1 edges. For sufficiency, we give several proofs.

Proof 1 (extremality). Since
∑

di is even, there is a graph with de-
grees d1, . . . , dn. Consider a realization G with the fewest components;
since

∑

di ≥ 2n − 2, G has at least n − 1 edges. If G has more than one
component, then some component as many edges as vertices and thus has
a cycle. A 2-switch involving an edge on this cycle and an edge in an-
other component reduces the number of components without changing the
degrees. The choice of G thus implies that G has only one component.

Proof 2 (induction on n). For n = 1, we use loops. For n = 2, if d1 = d2,
then we use d1 parallel edges. Otherwise, we have n > 2 or d1 > d2. Form
a new list d ′

1, . . . , d ′
n−1 by deleting dn and subtracting dn units from other

values. If n ≥ 3 and dn = 1, we subtract 1 from d1, noting that
∑

di ≥ 2n−2
implies d1 > 1. If n ≥ 3 and dn > 1, we make the subtractions from any
two of the other numbers. In each case, the resulting sequence has even
sum and all entries at least 1.

Letting D =
∑

di , we have
∑

d ′
i = D − 2dn. If dn = 1, then D − 2dn ≥

2n−2−2 = 2(n−1)−2. If dn > 1, then D ≥ ndn, and so D−2dn ≥ (n−2)dn ≥
2n − 4 = 2(n − 1) − 2. Hence the new values satisfy the condition stated
for a set of n − 1 values. By the induction hypothesis, there is a connected
graph G ′ with vertex degrees d ′

1, . . . , d ′
n−1.

To obtain the desired graph G, add a vertex vn with di − d ′
i edges to the

vertex with degree di , for 1 ≤ i ≤ n −1. This graph G is connected, because
a path from vn to any other vertex v can be construct by starting from vn to
a neighbor and continuing with a path to v in G ′.

Proof 3 (induction on
∑

di and prior result). If
∑

di = 2n − 2, then
Exercise 2.1.27 applies. Otherwise,

∑

d1 ≥ 2n. If n = 1, then we use loops.
If n > 1, then we can delete 2 from d1 or delete 1 from d1 and d2 without
introducing a 0. After applying the induction hypothesis, adding one loop
at v1 or one edge from v1 to v2 restores the desired degrees.

2.1.29. Every tree has a leaf in its larger partite set (in both if they have
equal size). Let X and Y be the partite sets of a tree T , with |X | ≥ |Y |. If
there is no leaf in X , then e(T ) ≥ 2 |X | = |X | + |X | ≥ |X | + |Y | = n(T ). This
contradicts e(T ) < n(T ).

2.1.30. If T is a tree in which the neighbor of every leaf has degree at least
3, then some pair of leaves have a common neighbor.

Proof 1 (extremality). Let P a longest path in T , with endpoint v

adjacent to u. Since v is a leaf and u has only one other neighbor on P, u
must have a neighbor w off P. If w has a neighbor z 6= u, then replacing
(u, v) by (u, w, z) yields a longer path. Hence w is a leaf, and v,w are two
leaves with a common neighbor.

Proof 2 (contradiction). Suppose all leaves of T have different neigh-
bors. Deleting all leaves (and their incident edges) reduces the degree of
each neighbor by 1. Since the neighbors all had degree at least 3, every
vertex now has degree at least 2, which is impossible in an acyclic graph.

Proof 3 (counting argument). Suppose all k leaves of T have different
neighbors. The n − 2k vertices other than leaves and their neighbors have
degree at least 2, so the total degree is at least k + 3k + 2(n − 2k) = 2n,
contradicting

∑

d(v) = 2e(T ) = 2n − 2.
Proof 4 (induction on n(T )). For n = 4, the only such tree is K1,3,

which satisfies the claim. For n > 4, let v be a leaf of T , and let w be its
neighbor. If w has no other leaf as neighbor, but has degree at least 3,
then T − v is a smaller tree satisfying the hypotheses. By the induction
hypothesis, T − v has a pair of leaves with a common neighbor, and these
form such a pair in T .

2.1.31. A simple connected graph G with exactly two non-cut-vertices is a
path. Proof 1 (properties of trees). Every connected graph has a spanning
tree. Every leaf of a spanning tree is not a cut-vertex, since deleting it
leaves a tree on the remaining vertices. Hence every spanning tree of G
has only two leaves and is a path. Consider a spanning path with vertices
v1, . . . , vn in order. If G has an edge vivj with i < j − 1, then adding vivj to
the path creates a cycle, and deleting vj−1vj from the cycle yields another
spanning tree with three leaves. Hence G has no edge off the path.

Proof 2 (properties of paths and distance). Let x and y be the non-cut-
vertices, and let P be a shortest x, y-path. If V (P) 6= V (G), then let w be a
vertex with maximum distance from V (P). By the choice of w, every vertex
of V (G) − V (P) − {w} is as close to V (P) as w and hence reaches V (P) by a
path that does not use w. Hence w is a non-cut-vertex. Thus V (P) = V (G).
Now there is no other edge, because P was a shortest x, y-path.

2.1.32. Characterization of cut-edges and loops.
An edge of a connected graph is a cut-edge if and only if it belongs to

every spanning tree. If G has a spanning tree T omitting e, then e belongs
to a cycle in T + e and hence is not a cut-edge in G. If e is not a cut-edge
in G, then G − e is connected and contains a spanning tree T that is also a
spanning tree of G; thus some spanning tree omits e.

An edge of a connected graph is a loop if and only if it belongs to no
spanning tree. If e is a loop, then e is a cycle and belongs to no spanning



93 Chapter 2: Trees and Distance Section 2.1: Basic Properties 94

tree. If e is not a loop, and T is a spanning tree not containing e, then T + e
contains exactly one cycle, which contains another edge f . Now T + e − f
is a spanning tree containing e, since it has no cycle, and since deleting an
edge from a cycle of the connected graph T + e cannot disconnect it.

2.1.33. A connected graph with n vertices has exactly one cycle if and only if
it has exactly n edges. Let G be a connected graph with n vertices. If G has
exactly one cycle, then deleting an edge of the cycle produces a connected
graph with no cycle. Such a graph is a tree and therefore has n − 1 edges,
which means that G has n edges.

For the converse, suppose that G has exactly n edges. Since G is con-
nected, G has a spanning tree, which has n − 1 edges. Thus G is obtained
by adding one edge to a tree, which creates a graph with exactly one cycle.

Alternatively, we can use induction. If G has exactly n edges, then the
degree sum is 2n, and the average degree is 2. When n = 1, the graph must
be a loop, which is a cycle. When n > 2, if G is 2-regular, then G is a cycle,
since G is connected. If G is not 2-regular, then it has a vertex v of degree
1. Let G ′ = G − v. The graph G ′ is connected and has n − 1 vertices and
n − 1 edges. By the induction hypothesis, G ′ has exactly one cycle. Since a
vertex of degree 1 belongs to no cycle, G also has exactly one cycle.

2.1.34. A simple n-vertex graph G with n > k and e(G) > n(G)(k − 1) −
(k

2

)

contains a copy of each tree with k edges. We use induction on n. For the
basis step, let G be a graph with k + 1 vertices. The minimum allowed
number of edges is (k + 1)(k − 1) −

(k
2

)

+ 1, which simplifies to
(k

2

)

. Hence
G = Kk+1, and T ⊆ G.

For the induction step, consider n > k +1. If every vertex has degree at
least k, then containment of T follows from Proposition 2.1.8. Otherwise,
deleting a vertex of minimum degree (at most k − 1) yields a subgraph G ′

on n −1 vertices with more than (n −1)(k −1)−
(k

2

)

edges. By the induction
hypothesis, G ′ contains T , and hence T ⊆ G.

2.1.35. The vertices of a tree T all have odd degree if and only if for all
e ∈ E(T ), both components of T − e have odd order.

Necessity. If all vertices have odd degree, then deleting e creates two
of even degree. By the Degree-sum Formula, each component of T − e has
an even number of odd-degree vertices. Together with the vertex incident
to e, which has even degree in T −e, each component of T −e has odd order.

Sufficiency.
Proof 1 (parity). Given that both components of T − e have odd order,

n(T ) is even. Now consider v ∈ V (T ). Deleting an edge incident to v yields
a component containing v and a component not containing v, each of odd
order. Together, the components not containing v when we delete the vari-
ous edges incident to v are d(v) pairwise disjoint subgraphs that together

contain all of V (T ) − {v}. Under the given hypothesis, they all have odd
order. Together with v, they produce an even total, n(T ). Hence the num-
ber of these subgraphs is odd, which means that the number of edges in T
incident to v is odd.

Proof 2 (contradiction). Suppose that such a tree T0 has a vertex v1 of
even degree. Let e1 be the last edge on a path from a leaf to x . Let T1 be the
component of T0 − e1 containing v1. By hypothesis, T1 has odd order, and v1
is a vertex of odd degree in T1. Since the number of odd-degree vertices in
T1 must be even, there is a vertex v2 of T1 (different from v1) having even
degree (in both T1 and T ).

Repeating the argument, given vi of even degree in Ti−1, let ei be the
last edge on the vi−1, vi -path in Ti−1, and let Ti be the component of Ti−1 − ei

containing vi . Also Ti is the component of T0 − ei that contains vi , so Ti has
odd order. Since vi has odd degree in Ti , there must be another vertex vi+1
with even degree in Ti .

In this way we generate an infinite sequence v1, v2, . . . of distinct ver-
tices in T0. This contradicts the finiteness of the vertex set, so the assump-
tion that T0 has a vertex of even degree cannot hold.

2.1.36. Every tree T of even order has exactly one subgraph in which every
vertex has odd degree.

Proof 1 (Induction). For n(T ) = 2, the only such subgraph is T itself.
Suppose n(T ) > 2. Observe that every pendant edge must appear in the
subgraph to give the leaves odd degree. Let x be an endpoint of a longest
path P, with neighbor u. If u has another leaf neighbor y, add ux and uy to
the unique such subgraph found in T −{x, y}. Otherwise, d(u) = 2, since P
is a longest path. In this case, add the isolated edge ux to the unique such
subgraph found in T − {u, x}.

Proof 2 (Explicit construction). Every edge deletion breaks T into
two components. Since the total number of vertices is even, the two com-
ponents of T − e both have odd order or both have even order. We claim
that the desired subgraph G consists of all edges whose deletion leaves two
components of odd order.

First, every vertex has odd degree in this subgraph. Consider deleting
the edges incident to a vertex u. Since the total number of vertices in T
is even, the number of resulting components other than u itself that have
odd order must be odd. Hence u has odd order in G.

Furthermore, G is the only such subgraph. If e is a cut-edge of G, then
in G − e the two pieces must each have even degree sum. Given that G is
a subgraph of T with odd degree at each vertex, parity of the degree sum
forces G to e if T − e has components of odd order and omit e if T − e has
components of even order.



95 Chapter 2: Trees and Distance Section 2.1: Basic Properties 96

Comment: Uniqueness also follows easily from symmetric difference.
Given two such subgraphs G1, G2 , the degree of each vertex in the sym-
metric difference is even, since its degree is odd in each G i . This yields a
cycle in G1 ∪ G2 ⊆ T , which is impossible.

2.1.37. If T and T ′ are two spanning trees of a connected graph G, and
e ∈ E(T ) − E(T ′), then there is an edge e′ ∈ E(T ′) − E(T ) such that both
T − e + e′ and T ′ − e′ + e are spanning trees of G. Deleting e from T leaves
a graph having two components; let U, U ′ be their vertex sets. Let the
endpoints of e be u ∈ U and u ′ ∈ U ′. Being a tree, T ′ contains a unique
u, u′-path. This path must have an edge from U to U ′; choose such an edge
to be e′, and then T − e + e′ is a spanning tree. Since e is the only edge of T
between U and U ′, we have e′ ∈ E(T ′) − E(T ). Furthermore, since e′ is on
the u, u′-path in T ′, e′ is on the unique cycle formed by adding e to T ′, and
thus T ′ − e′ + e is a spanning tree. Hence e′ has all the desired properties.

2.1.38. If T and T ′ are two trees on the same vertex set such that dT (v) =
d ′

T (v) for each vertex v, then T ′ can be obtained from T ′ using 2-switches
(Definition 1.3.32) with every intermediate graph being a tree. Using induc-
tion on the number n of vertices, it suffices to show when n ≥ 4 that we can
apply (at most) one 2-switch to T to make a given leaf x be adjacent to its
neighbor w in T ′. We can then delete x from both trees and apply the in-
duction hypothesis. Since the degrees specify the tree when n is at most 3,
this argument also shows that at most n − 3 2-switches are needed.

Let y be the neighbor of x in T . Note that w is not a leaf in T , since
dT ′(w) = dT (w) and xw ∈ E(T ) and n ≥ 4. Hence we can choose a vertex z
in T that is a neighbor of w not on the x, w-path in T . Cutting xy and wz
creates three components: x alone, one containing z, and one containing
y, w. Adding the edges zy and xw to complete the 2-switch gives x its
desired neighbor and reconnects the graph to form a new tree.

2.1.39. If G is a nontrivial tree with 2k vertices of odd degree, then G de-
composes into k paths.

Proof 1 (induction and stronger result). We prove the claim for every
forest G, using induction on k. Basis step (k = 0): If k = 0, then G has no
leaf and hence no edge.

Induction step (k > 0): Suppose that each forest with 2k − 2 vertices
of odd degree has a decomposition into k − 1 paths. Since k > 0, some
component of G is a tree with at least two vertices. This component has
at least two leaves; let P be a path connecting two leaves. Deleting E(P)

changes the parity of the vertex degree only for the endpoints of P; it makes
them even. Hence G − E(P) is a forest with 2k − 2 vertices of odd degree.
By the induction hypothesis, G − E(P) is the union of k − 1 pairwise edge-
disjoint paths; together with P, these paths partition E(G).

•

•

•

•

•

• •

•

•

P

•

•

•

• •

•

Proof 2 (extremality). Since there are 2k vertices of odd degree, at
least k paths are needed. If two endpoints of paths occur at the same
vertex of the tree, then those paths can be combined to reduce the number
of paths. Hence a decomposition using the fewest paths has at most one
endpoint at each vertex. Under this condition, endpoints occur only at
vertices of odd degree. There are 2k of these. Hence there are at most 2k
endpoints of paths and at most k paths.

Proof 3 (applying previous result). A nontrivial tree has leaves, so
k > 0. By Theorem 1.2.33, G decomposes into k trails. Since G has no
cycles, all these trails are paths.

2.1.40. If G is a tree with k leaves, then G is the union of dk/2e pairwise
intersecting paths. We prove that we can express G in this way using paths
that end at leaves. First consider any way of pairing the leaves as ends of
dk/2e paths (one leaf used twice when k is odd). Suppose that two of the
paths are disjoint; let these be a u, v-path P and an x, y-path Q. Let R be
the path connecting P and Q in G. Replace P and Q by the u, x-path and
the v, y-path in G. These paths contain the same edges as P and Q, plus
they cover R twice (and intersect). Hence the total length of the new set of
paths is larger than before.

Continue this process; whenever two of the paths are disjoint, make a
switch between them that increases the total length of the paths. This pro-
cess cannot continue forever, since the total length of the paths is bounded
by the number of paths (dk/2e) times the maximum path length (at most
n − 1). The process terminates only when the set of paths is pairwise in-
tersecting. (We have not proved that some vertex belongs to all the paths.)

Finally, we show that a pairwise intersecting set of paths containing
all the leaves must have union G. If any edge e of G is missing, then G − e
has two components H, H ′, each of which contains a leaf of G. Since e
belongs to none of the paths, the paths using leaves in H do not intersect
the paths using leaves in H ′. This cannot happen, because the paths are
pairwise intersecting.

(Comment: We can phrase the proof using extremality. The pairing
with maximum total length has the desired properties; otherwise, we make
a switch as above to increase the total length.)



97 Chapter 2: Trees and Distance Section 2.1: Basic Properties 98

•

•

• •

•

•

v

u

y

x

2.1.41. For n ≥ 4, a simple n-vertex graph with at least 2n − 3 edges must
have two cycles of equal length. For such a graph, some component must
have size at least twice its order minus 3. Hence we may assume that G is
connected. A spanning tree T has n − 1 edges and diameter at most n − 1.
Each remaining edge completes a cycle with edges of T . The lengths of
these cycles belong to {3, . . . , n}.

Since there are at least n − 2 remaining edges, there are two cycles
of the same length unless there are exactly n − 2 remaining cycles and
they create cycles of distinct lengths with the edge of T . This forces T to
be a path. Now, after adding the edge e between the endpoints of T that
produces a cycle of length n, the other remaining edges each produce two
additional shorter cycles when added. These 2n − 6 additional cycles fall
into the n − 3 lengths {3, . . . , n − 1}. Since 2n − 6 > n − 3 when n ≥ 4, the
pigeonhole principle yields two cycles of equal length.

2.1.42. Extendible vertices. In a nontrivial Eulerian graph G, a vertex is
extendible if every trail beginning at v extends to an Eulerian circuit.

a) v is extendible if and only if G − v is a forest.
Necessity. We prove the contrapositive. If G − v is not a forest, then

G − v has a cycle C . In G − E(C), every vertex has even degree, so the
component of G − E(C) containing v has an Eulerian circuit. This circuit
starts and ends at v and exhausts all edges of G incident to v, so it cannot
be extended to reach C and complete an Eulerian circuit of G.

Sufficiency. If G−v is a forest, then every cycle of G contains v. Given a
trail T starting at v, extend it arbitarily at the end until it can be extended
no farther. Because every vertex has even degree, the process can end only
at v. The resulting closed trail T ′ must use every edge incident to v, else it
could extend farther. Since T ′ is closed, every vertex in G − E(T ′) has even
degree. If G − E(T ′) has any edges, then minimum degree at least two in a
component of G − E(T ′) yields a cycle in G − E(T ′); this cycle avoids v, since
T ′ exhausted the edges incident to v. Since we have assumed that G − v

has no cycles, we conclude that G − E(T ′) has no edges, so T ′ is an Eulerian
circuit that extends T . (Sufficiency can also be proved by contrapositive.)

b) If v is extendible, then d(v) = 1(G). An Eulerian graph decomposes
into cycles. If this uses m cycles, then each vertex has degree at most

2m. By part (a) each cycle contains v, and thus d(v) ≥ 2m. Hence v has
maximum degree.

Alternatively, since each cycle contains v, an Eulerian circuit must
visit v between any two visits to another vertex u. Hence d(v) ≥ d(u).

c) For n(G) > 2, all vertices are extendible if and only if G is a cycle. If
G is a cycle, then every trail from a vertex extends to become the complete
cycle. Conversely, suppose that all vertices are extendible. By part (a),
every vertex lies on every cycle. Let C be a cycle in G; it must contain all
vertices. If G has any additional edge e, then following the shorter part of
C between the endpoints of e completes a cycle with e that does not contain
all the vertices. Hence there cannot be an additional edge and G = C .

d) If G is not a cycle, then G has at most two extendible vertices. From
part (c), we may assume that G is Eulerian but not a cycle. If v is ex-
tendible, then G − v is a forest. This forest cannot be a path, since then G
is a cycle or has a vertex of odd degree. Since G − v is a forest and not a
path, G − v has more than 1(G − v) leaves unless G − v is a tree with ex-
actly one vertex of degree greater than two. If G −v has more than 1(G −v)

leaves, all in N (v), then no vertex of G − v has degree as large as v in G,
and by part (b) no other vertex is extendible. In the latter case, the one
other vertex of degree d(v) may also be extendible, but all vertices except
those two have degree 2.

2.1.43. Given a vertex u in a connected graph G, there is a spanning tree of
G that is the union of shortest paths from u to the other vertices.

Proof 1 (induction on n(G)). When n(G) = 1, the vertex u is the entire
tree. For n(G) > 1, let v be a vertex at maximum distance from u. Apply
the induction hypothesis to G − v to obtain a tree T in G − v. Shortest
paths in G from u to vertices other than v do not use v, since v is farthest
from u. Therefore, T consists of shortest paths in G from u to the vertices
other than v. A shortest u, v-path in G arrives at v from some vertex of T .
Adding the final edge of that path to T completes the desired tree in G.

Proof 2 (explicit construction). For each vertex other than u, choose an
incident edge that starts a shortest path to u. No cycle is created, since as
we follow any path of chosen edges, the distance from u strictly decreases.
Also n(G) − 1 edges are chosen, and an acyclic subgraph with n(G) − 1
edges is a spanning tree. Since distance from u decreases with each step,
the v, u-path in the chosen tree is a shortest v, u-path.

Comment: The claim can also be proved using BFS to grow the tree.
Proof 1 is a short inductive proof that the BFS algorithm works. Proof 2 is
an explicit description of the edge set produced by Proof 1.

2.1.44. If a simple graph with diameter 2 has a cut-vertex, then its com-
plement has an isolated vertex—TRUE. Let v be a cut-vertex of a simple



99 Chapter 2: Trees and Distance Section 2.1: Basic Properties 100

graph G with diameter 2. In order to have distance at most 2 to each ver-
tex in the other component(s) of G − v, a vertex of G − v must be adjacent
to v. Hence v has degree n(G) − 1 in G and is isolated in G.

2.1.45. If a graph G has spanning trees with diameters 2 and l, then G has
spanning trees with all diameters between 2 and l.

Proof 1 (local change). The only trees with diameter 2 are stars, so G
has a vertex v adjacent to all others. Given a spanning tree T with leaf u,
replacing the edge incident to u with uv yields another spanning tree T ′.
For every destroyed path, a path shorter by 1 remains. For every created
path, a path shorter by 1 was already present. Hence diam T ′ differs from
diam T by at most 1. Continuing this procedure reaches a spanning tree of
diameter 2 without skipping any values along the way, so all the desired
values are obtained.

Proof 2 (explicit construction). Since G has a tree with diameter 2, it
has a vertex v adjacent to all others. Every path in G that does not contain
v extends to v and to an additional vertex if it does not already contain all
vertices. Hence for k < l there is a path P of length k in G that contains v as
an internal vertex. Adding edges from v to all vertices not in P completes
a spanning tree of diameter k.

2.1.46. For n ≥ 2, the number of isomorphism classes of n-vertex trees with
diameter at most 3 is bn/2c. If n ≤ 3, there is only one tree, and its diameter
is n − 1. If n ≥ 4, every tree has diameter at least 2. There is one having
diameter 2, the star. Every tree with diameter 3 has two centers, x, y,
and every non-central vertex is adjacent to exactly one of x, y, so d(x) +
d(y) = n. By symmetry, we may assume d(x) ≤ d(y). The unlabeled tree is
now completely specified by d(x), which can take any value from 2 through
bn/2c. Together with the star, the number of trees is bn/2c.

2.1.47. Diameter and radius.
a) The distance function d(u, v) satisfies the triangle inequality:

d(u, v) + d(v,w) ≥ d(u, w). A u, v-path of length d(u, v) and a v, w-path
of length d(v, w) together form a u, w-walk of length l = d(u, v) + d(v,w).
Every u, w-walk contains a u, w-path among its edges, so there is a u, w-
path of length at most l. Hence the shortest u, w-path has length at most l.

b) d ≤ 2r , where d is the diameter of G and r is the radius of G. Let
u, v be two vertices such that d(u, v) = d. Let w be a vertex in the center
of G; it has eccentricity r . Thus d(u, w) ≤ r and d(w, v) ≤ r . By part (a),
d = d(u, v) ≤ d(u, w) + d(w, v) ≤ 2r .

c) Given integers r, d with 0 < r ≤ d ≤ 2r , there is a simple graph with
radius r and diameter d. Let G = C2r ∪ H , where H ∼= Pd−r+1 and the
cycle shares with H exactly one vertex x that is an endpoint of H . The
distance from the other end of H to the vertex z opposite x on the cycle is

d, and this is the maximum distance between vertices. Every vertex of H
has distance at least r from z, and every vertex of the cycle has distance r
from the vertex opposite it on the cycle. Hence the radius is at least r . The
eccentricity of x equals r , so the radius equals r , and x is in the center.

• •z x

2.1.48. For n ≥ 4, the minimum number of edges in an n-vertex graph with
diameter 2 and maximum degree n − 2 is 2n − 4. The graph K2,n−2 shows
that 2n −4 edges are enough. We show that at least 2n −4 are needed. Let
G be an n-vertex graph with diameter 2 and maximum degree n − 2. Let x
be a vertex of degree n − 2, and let y be the vertex not adjacent to x .

Proof 1. Every path from y through x to another vertex has length at
least 3, so diameter 2 requires paths from y to all of V (G) − {x, y} in G − x .
Hence G − x is connected and therefore has at least n − 2 edges. With the
n − 2 edges incident to x , this yields at least 2n − 4 edges in G.

Proof 2. Let A = N (y). Each vertex of N (x) − A must have an edge
to a vertex of A in order to reach y in two steps. These are distinct and
distinct from the edges incident to y, so we have at least |A| + |N (x) − A|
edges in addition to those incident to x . The total is again at least 2n − 4.

(Comment: The answer remains the same whenever (2n − 2)/3 ≤
1(G) ≤ n − 5 but is 2n − 5 when n − 4 ≤ 1(G) ≤ n − 3.)

2.1.49. If G is a simple graph with rad G ≥ 3, then rad G ≤ 2. The radius
is the minimum eccentricity. For x ∈ V (G), there is a vertex y such that
dG(x, y) ≥ 3. Let w be the third vertex from x along a shortest x, y-path
(possibly w = y). For v ∈ V (G) − {x}, if xv /∈ E(G), then xv ∈ E(G). Now
vw /∈ E(G), since otherwise there is a shorter x, y-path. Thus x, w, v is an
x, v-path of length 2 in G. Hence for all v ∈ V (G)−{x}, there is an x, v-path
of length at most 2 in G, and we have εG(x) ≤ 2 and rad (G) ≤ 2.

2.1.50. Radius and eccentricity.
a) The eccentricities of adjacent vertices differ by at most 1. Suppose

that x ↔ y. For each vertex z, d(x, z) and d(y, z) differ by at most 1 (Exer-
cise 2.1.11). Hence

ε(y) = maxz d(y, z) ≤ maxz(d(x, z) + 1) = (maxz d(x, z)) + 1 = ε(x) + 1.

Similarly, ε(x) ≤ ε(y) + 1. The statement can be made more general:
|ε(x) − ε(y)| ≤ d(x, y) for all x, y ∈ V (G).

b) In a graph with radius r , the maximum possible distance from a
vertex of eccentricity r + 1 to the center of G is r . The distance is at most
r , since every vertex is within distance at most r of every vertex in the



101 Chapter 2: Trees and Distance Section 2.1: Basic Properties 102

center, by the definitions of center and radius. The graph consisting of a
cycle of length 2r plus a pendant edge at all but one vertex of the cycle
achieves equality. All vertices of the cycle have eccentricity r +1 except the
vertex opposite the one with no leaf neighbor, which is the unique vertex
with eccentricity r . The leaves have eccentricity r + 2, except for the one
adjacent to the center.

•

•

••

•

•
•

•

••

•

2.1.51. If x and y are distinct neighbors of a vertex v in a tree G, then
2ε(v) ≤ ε(x) + ε(y). Let w be a vertex at distance ε(v) from v. The ver-
tex w cannot be both in the component of G − xv containing x and in the
component of G − yv containing y, since this would create a cycle. Hence
we may assume that w is in the component of G − xv containing v. Hence
ε(x) ≥ d(x, w) = ε(v) + 1. Also ε(y) ≥ d(y, w) ≥ d(v, w) − 1 = ε(v) − 1.
Summing these inequalities yields ε(x) + ε(y) ≥ ε(v) + ε(v).

The smallest graph where this inequality can fail is the kite K4 − e. Let
v be a vertex of degree 2; it has eccentricity 2. Its neighbors x and y has
degree 3 and hence eccentricity 1.

2.1.52. Eccentricity of vertices outside the center.
a) If G is a tree, then every vertex x outside the center of G has a neighbor

with eccentricity ε(x) − 1. Let y be a vertex in the center, and let w be a
vertex with distance at least ε(x) − 1 from x . Let v be the vertex where
the unique x, w- and y, w-paths meet; note that v is on the x, y-path in G.
Since d(y, w) ≤ ε(y) ≤ ε(x) − 1 ≤ d(x, w), we have d(y, v) ≤ d(x, v). This
implies that v 6= x . Hence x has a neighbor z on the x, v-path in G.

This argument holds for every such w, and the x, v-path in G is always
part of the x, y-path in G. Hence the same neighbor of x is always chosen
as z. We have proved that d(z, w) = d(x, w)−1 whenever d(x, w) ≥ ε(x)−1.
On the other hand, since z is a neighbor of x , we have d(z, w) ≤ d(x, w)+1 ≤
ε(x) − 1 for every vertex w with d(x, w) < ε(x) − 1. Hence ε(z) = ε(x) − 1.

b) For all r and k with 2 ≤ r ≤ k < 2r , there is a graph with radius r in
which some vertex and its neighbors all have eccentricity k. Let G consist of
a 2r -cycle C and paths of length k−r appended to three consecutive vertices
on C . Below is an example with r = 5 and k = 9. The desired vertex is the
one opposite the middle vertex of degree 3; vertices are labeled with their
eccentricities.

• • • • • • • •

• • • • • •

• • • • • • • •

k

k

k

r

2.1.53. The center of a graph can be disconnected and can have components
arbitrarily far apart. We construct graphs center consists of two (marked)
vertices separated by distance k. There are various natural constructions.

The graph G consists of a cycle of length 2k plus a pendant edge at all
but two opposite vertices. These two are the center; other vertices of the
cycle have eccentricity k + 1, and the leaves have eccentricity k + 2.

For even k, the graph H below consists of a cycle of length 2k plus
pendant paths of length k/2 at two opposite vertices. For odd k, the graph
H ′ consists of a cycle of length 2k plus paths of length bk/2c attached at
one end to two opposite pairs of consecutive vertices.

• •
•

•••
•
•

G

•

•

••

•

• • •
•

•••
•
•

• ••• H

•
•

•
•

•

•
H ′ • •••

2.1.54. Centers in trees.
a) A tree has exactly one center or has two adjacent centers.
Proof 1 (direct properties of trees). We prove that in a tree T any two

centers are adjacent; since T has no triangles, this means it has at most
two centers. Suppose u and v are distinct nonadjacent centers, with ec-
centricity k. There is a unique path R between them containing a vertex
x /∈ {u, v}. Given z ∈ V (T ), let P, Q be the unique u, z-path and unique
v, z-path, respectively. At least one of P, Q contains x else P ∪ Q is a
u, v-walk and contains a (u, v)-path other than R. If P passes through x ,
we have d(x, z) < d(u, z); if Q, we have d(x, z) < d(v, z). Hence d(x, z)
< max{d(u, z), d(v, z)} ≤ k. Since z is arbitrary, we conclude that x has
smaller eccentricity than u and v. The contradiction implies u ↔ v.

Proof 2 (construction of the center). Let P = x1, . . . , x2 be a longest
path in T , so that D = diam T = d(x1, x2). Let r = dD/2e. Let {u1, u2} be
the middle of P, with u1 = u2 if D is even. Label u1, u2 along P so that
d(xi , ui ) = r . Note that d(v, ui ) ≤ r for all v ∈ T , else the (v, u i )-path can be
combined with the (u i , xi )-path or the (ui , x3−i )-path to form a path longer
than P. To show that no vertex outside {u1, u2} can be a center, it suffices
to show that every other vertex v has distance greater than r from x1 or x2.



103 Chapter 2: Trees and Distance Section 2.1: Basic Properties 104

The unique path from v to either x1 or x2 meets P at some point w (which
may equal v). If w is in the u1, x2-portion of P, then d(v, x1) > r . If w is in
the u2, x1-portion of P, then d(v, x2) > r .

b) A tree has exactly one center if and only if its diameter is twice its
radius. Proof 3 above observes that the center or pair of centers is the
middle of a longest path. The diameter of a tree is the length of its longest
path. The radius is the eccentricity of any center. If the diameter is even,
then there is one center, and its eccentricity is half the length of the longest
path. If the diameter is odd, say 2k − 1, then there are two centers, and
the eccentricity of each is k, which exceeds (2k − 1)/2.

c) Every automorphism of a tree with an odd number of vertices maps at
least one vertex to itself. The maximum distance from a vertex must be pre-
served under any automorphism, so any automorphism of any graph maps
the center into itself. A central tree has only one vertex in the center, so it
is fixed by any automorphism. A bicentral tree has two such vertices; they
are fixed or exchange. If they exchange, then the two subtrees obtained by
deleting the edge between the centers are exchanged by the automorphism.
However, if the total number of vertices is odd, then the parity of the num-
ber of vertices in the two branches is different, so no automorphism can
exchange the centers.

2.1.55. Given x ∈ V (G), let s(x) =
∑

v∈V (G) d(x, v). The barycenter of G is
the subgraph induced by the set of vertices minimizing s(x).

a) The barycenter of a tree is a single vertex or an edge. Let uv be
an edge in a tree G, and let T (u) and T (v) be the components of G − uv

containing u and v, respectively. Note that d(u, x) − d(v, x) = 1 if x ∈
V (T (v)) and d(u, x) − d(v, x) = −1 if x ∈ V (T (u)). Summing the difference
over x ∈ V (G) yields s(u) − s(v) = n(T (v)) − n(T (u)).

As a result, s(ui ) − s(ui+1) strictly decreases along any path u1, u2, . . .;
each step leaves more vertices behind. Considering two consecutive steps
on a path x, y, z yields s(x) − s(y) < s(y) − s(z), or 2s(y) < s(x) + s(z)
whenever x, z ∈ N (y). Thus the minimum of s cannot be achieved at two
nonadjacent vertices, because it would be smaller at a vertex between them.

b) The maximum distance between the center and the barycenter in a
tree of diameter d is bd/2c − 1. By part (a), s is not minimized at a leaf
when n ≥ 2. Since every vertex is distance at most bd/2c from the center,
we obtain an upper bound of bd/2c − 1.

Part (a) implies that to achieve the bound of bd/2c − 1 we need a tree
having adjacent vertices u, v such that u is the neighbor of a leaf with ec-
centricity d, and the number of leaves adjacent to u is at least as large as
n(T (v)). Since uv lies along a path of length d, we have at least d − 1 ver-
tices in T (v). Thus we need at least d vertices in T (u) and at least 2d − 1

vertices altogether. We obtain the smallest tree achieving the bound by
merging an endpoint of Pd with the center of the star K1,d−1. In the result-
ing tree, the barycenter u is the vertex of degree d − 1, and the distance
between it and the center is bd/2c − 1.

• • • • •
v

u

• •

••

2.1.56. Every tree T has a vertex v such that for all e ∈ E(T ), the component
of T − e containing v has at least dn(T )/2e vertices.

Proof 1 (orientations). For each edge xy ∈ E(T ), we orient it from x to
y if in T −xy the component containing y contains at least dn(T )/2e vertices
(there might be an edge which could be oriented either way). Denote the
resulting digraph by D(T ).

If D(T ) has a vertex x with outdegree at least 2, then T − x has two
disjoint subtrees each having at least dn(T )/2e vertices, which is impossi-
ble. Now, since T does not contain a cycle, D(T ) does not contain a directed
cycle. Hence D(T ) has a vertex v with outdegree 0. Since D(T ) has no
vertex with outdegree at least two, every path in T with endpoint v is an
oriented path to v in D(T ). Thus every edge xy points towards v, meaning
that v is in a component of T − xy with at least dn(T )/2e vertices.

The only flexibility in the choice of v is that an edge whose deletion
leaves two components of equal order can be oriented either way, which
yields two adjacent choices for v.

Proof 2 (algorithm). Instead of the existence proof using digraphs,
one can march to the desired vertex. For each v ∈ V (T ), let f (v) denote the
minimum over e ∈ E(T ) of the order of the component of T − e containing
v. Note that f (v) is achieved at some edge e incident to v.

Select a vertex v. If f (v) < dn(T )/2e, then consider an edge e incident
to v such that the order of the component of T − e containing v is f (v). Let
u be the other endpoint of e. The component of T − e containing u has more
than half the vertices. For any other edge e′ incident to u, the component of
T −e′ containing u is strictly larger than the component of T −e containing
v. Hence f (u) > f (v).

If f (u) < dn(T )/2e, then we repeat the argument. Since f cannot
increase indefinitely, we reach a vertex w with f (v) ≥ dn(T )/2e.

Uniqueness is as before; if two nonadjacent vertices have this property,
then deleting edges on the path joining them yields a contradiction.



105 Chapter 2: Trees and Distance Section 2.1: Basic Properties 106

2.1.57. a) If n1, . . . , nk are positive integers with sum n − 1, then
∑k

i=1
(ni

2

)

≤
(n−1

2

)

. The graph having pairwise disjoint cliques of sizes n1, . . . , nk has
∑k

i=1
(ni

2

)

edges and is a subgraph of Kn−1.
b)

∑

v∈V (T ) d(u, v) ≤
(n

2

)

when u is a vertex of a tree T . We use induction
on n; the result holds trivially for n = 2. Consider n > 2. The graph T −u is
a forest with components T1, . . . , Tk , where k ≥ 1. Because T is connected,
u has a neighbor in each Ti ; because T has no cycles, u has exactly one
neighbor vi in each Ti . If v ∈ V (Ti ), then the unique u, v-path in T passes
through vi , and we have dT (u, v) = 1 + dTi (vi , v). Letting ni = n(Ti ), we
obtain

∑

v∈V (Ti )
dT (u, v) = ni +

∑

v∈V (Ti )
dTi (vi , v).

By the induction hypothesis,
∑

v∈V (Ti )
dTi (vi , v) ≤

(ni

2

)

. If we sum the
formula for distances from u over all the components of T − u, we obtain
∑

v∈V (T ) dT (u, v) ≤ (n−1)+
∑

i

(ni

2

)

. Now observe that
∑

(ni

2

)

≤
(m

2

)

whenever
∑

ni = m, because the right side counts the edges in Km and the left side
counts the edges in a subgraph of Km (a disjoint union of cliques). Hence
we have

∑

v∈V (T ) dT (u, v) ≤ (n − 1) +
(n−1

2

)

=
(n

2

)

.

• •

• •

• •

•

•

•

•

•

• •

••

•

• •

v1

v2

v3
u

T1

T2

T3

2.1.58. If S and T are trees with leaf sets {x1, . . . , xk} and {y1, . . . , yk}, re-
spectively, then dS(xi , x j ) = dT (yi , yj ) for all 1 ≤ i ≤ j ≤ k implies that S
and T are isomorphic. It suffices to show that the numbers dS(xi , x j ) deter-
mine S uniquely. That is, if S is a tree, then no other tree has the same leaf
distances.

Proof 1 (induction on k). If k = 2, then S is a path of length d(x1, x2). If
k > 2, then a tree S with leaf distance set D has a shortest path P from xk to
a junction w. Since P has no internal vertices on paths joining other leaves,
deleting V (P) − {w} leaves a subtree with leaf set {x1, . . . , xk−1} realizing
the distances not involving xk . By the induction hypothesis, this distance
set is uniquely realizable; call that tree S ′. It remains only to show that
the vertex w in V (S′) and dS(xk, w) are uniquely determined.

Let t = dS(xk, w). The vertex w must belong to the path Q joining
some leaves xi and x j in S′. The paths from xi and x j to xk in S together
use the edges of Q, and each uses the path P from w to xk . Thus t =
(dS(xi , xk) + dS(x j , xk) − dS(xi , x j ))/2.

For arbitrary xi and x j , this formula gives the distance in S from xk

to the junction with the xi , x j -path. If w is not on the xi , x j -path, then the
value of the formula exceeds t , since w is the closest vertex of S ′ to xk . Hence
t = mini, j<k(dS(xi , xk) + dS(x j , xk) − dS(xi , x j ))/2. For any i, j that achieves
the minimum, dS′(xi , w) = dS(xi , xk) − t , which identifies the vertex w in S ′.

Thus there is only one w where the path can be attached and only one
length of path that can be put there to form a tree realizing D.

Proof 2 (induction on n(S)). When n(S) = 2, there is no other tree with
adjacent leaves. For n(S) > 2, let xk be a leaf of maximum eccentricity; the
eccentricity of a leaf is the maximum among its distances to other leaves.

If some leaf x j has distance 2 from xk , then they have a common neigh-
bor. Deleting xk yields a smaller tree S′ with k −1 leaves, since the neighbor
of xk is not a leaf in S. The deletion does not change the distances among
other leaves. By the induction hypothesis, there is only one way to assem-
ble S′ from the distance information, and to form S we must add xk adjacent
to the neighbor of x j .

If no leaf has distance 2 from xk , then the neighbor of xk in S must
have degree 2, because having two non-leaf neighbors would contradict the
choice of xk as a leaf of maximum eccentricity. Now S − xk has the same
number of leaves but fewer vertices. The leaf xk is replaced by x ′

k , and the
distances from the kth leaf to other leaves are all reduced by 1. By the
induction hypothesis, there is only one way to assemble S − xk from the
distance information, and to form S we must add xk adjacent to x ′

k .

2.1.59. If G is a tree with n vertices, k leaves, and maximum degree k, then
2 d(n − 1)/ke ≤ diam G ≤ n − k + 1, and the bounds are achievable, except
that the lower bound is 2 d(n − 1)/ke − 1 when n ≡ 2 (mod k). Let x be a
vertex of degree k. Consider k maximal paths that start at x ; these end
at distinct leaves. If G has any other edge, it creates a cycle or leads to
an additional leaf. Hence G is the union of k edge-disjoint paths with a
common endpoint. The diameter of G is the sum of the lengths of two
longest such paths.

Upper bound: Since the paths other than the two longest absorb at
least k − 2 edges, at most n − k + 1 edges remain for the two longest paths;
this is achieved by giving one path length n − k and the others length 1.

Lower bound: If the longest and shortest of the k paths differ in length
by more than 1, then shortening the longest while lengthening the shortest
does not increase the sum of the two longest lengths. Hence the diameter
is minimized by the tree G in which the lengths of any pair of the k paths
differ by at most 1, meaning they all equal b(n − 1)/kc or d(n − 1)/ke. There
must be two of length d(n − 1)/ke unless n ≡ 2 (mod k).



107 Chapter 2: Trees and Distance Section 2.1: Basic Properties 108

2.1.60. If G has diameter d and maximum degree k, then n(G) ≤ 1 + [(k −
1)d − 1]k/(k − 2). A single vertex x has at most k neighbors. Each of these
has at most k other incident edges, and hence there are at most k(k − 1)

vertices at distance 2 from x . Assuming that new vertices always get gen-
erated, the tree of paths from x has at most k(k − 1)i−1 vertices at distance
i from x . Hence n(G) ≤ 1 +

∑d
i=1 k(k − 1)i−1 = 1 + k (k−1)d−1

k−1−1 . (Comment: C5
and the Petersen graph are among the very few that achieve equality.)

2.1.61. Every (k, g)-cage has diameter at most g. (A (k, g)-cage is a graph
with smallest order among k-regular graphs with girth at least g; Exercise
1.3.16 establishes the existence of such graphs).

Let G be a (k, g)-cage having two vertices x and y such that dG(x, y) >

g. We modify G to obtain a k-regular graph with girth at least g that has
fewer vertices. This contradicts the choice of G, so there is no such pair of
vertices in a cage G.

The modification is to delete x and y and add a matching from N (x) to
N (y). Since d(x, y) > g ≥ 3, the resulting smaller graph G ′ is simple. Since
we have “replaced” edges to deleted vertices, G ′ is k-regular. It suffices to
show that cycles in G ′ have length at least g. We need only consider cycles
using at least one new edge.

Since dG(x, y) > g, every path from N (x) to N (y) has length at least
g − 1. Also every path whose endpoints are within N (x) has length at least
g − 2; otherwise, G has a short cycle through x . Every cycle through a new
edge uses one new edge and a path from N (x) to N (y) or at least two new
edges and at least two paths of length at least g −2. Hence every new cycle
has length at least g.

2.1.62. Connectedness and diameter of the 2-switch graph on spanning
trees of G. Let G be a connected graph with n vertices. The graph G ′ has
one vertex for each spanning tree of G, with vertices adjacent in G ′ when
the corresponding trees have exactly n(G) − 2 common edges.

a) G ′ is connected.
Proof 1 (construction of path). For distinct spanning trees T and T ′

in G, choose e ∈ E(T ) − E(T ′). By Proposition 2.1.6, there exists e′ ∈
E(T ′)− E(T ) such that T −e+e′ is a spanning tree of G. Let T1 = T −e+e′.
The trees T and T1 are adjacent in G ′. The trees T1 and T ′ share more
edges than T and T ′ share. Repeating the argument produces a T, T ′-path
in G ′ via vertices T, T1, T2, . . . , Tk, T ′.

Formally, this uses induction on the number m of edges in E(T )−E(T ′).
When m = 0, there is a T, T ′-path of length 0. When m > 0, we generate
T1 as above and apply the induction hypothesis to the pair T1, T ′.

Proof 2 (induction on e(G)). If e(G) = n −1, then G is a tree, and G ′ =
K1. For the induction step, consider e(G) > n − 1. A connected n-vertex

graph with at least n edges has a cycle C . Choose e ∈ E(C). The graph G−e
is connected, and by the induction hypothesis (G − e)′ is connected. Every
spanning tree of G − e is a spanning tree of G, so (G − e)′ is the induced
subgraph of T (G) whose vertices are the spanning trees of G that omit e.

Since (G − e)′ is connected, it suffices to show that every spanning tree
of G containing e is adjacent in G ′ to a spanning tree not containing e. If
T contains e and T ′ does not, then there exists e′ ∈ E(T ′) − E(T ) such that
T − e + e′ is a spanning tree of G omitting e. Thus T − e + e′ is the desired
tree in G − e adjacent to T in G ′.

b) The diameter of G ′ is at most n − 1, with equality when G has two
spanning trees that share no edges. It suffices to show that dG ′(T, T ′) =
∣

∣E(T ) − E(T ′)
∣

∣. Each edge on a path from T to T ′ in G ′ discards at most
one edge of T , so the distance is at least

∣

∣E(T ) − E(T ′)
∣

∣. Since for each
e ∈ E(T )− E(T ′) there exists e′ ∈ E(T ′)− E(T ) such that T −e +e′ ∈ V (G ′),
the path built in Proof 1 of part (a) has precisely this length.

Since trees in n-vertex graphs have at most n − 1 edges, always
∣

∣E(T ) − E(T ′)
∣

∣ ≤ n − 1, so diam G ′ ≤ n − 1 when G has n vertices. When G
has two edge-disjoint spanning trees, the diameter of G ′ equals n − 1.

2.1.63. Every n-vertex graph with n + 1 edges has a cycle of length at most
b(2n + 2)/3c. The bound is best possible, as seen by the example of three
paths with common endpoints that have total length n+1 and nearly-equal
lengths. Note that b(2n + 2)/3c = d2n/3e.

Proof 1. Since an n-vertex forest with k components has only n − k
edges, an n-vertex graph with n + 1 edges has at least two cycles. Let C be
a shortest cycle. Suppose that e(C) > d2n/3e. If G − E(C) contains a path
connecting two vertices of C , then it forms a cycle with the shorter path on
C connecting these two vertices. The length of this cycle is at most

1
2 e(C) + (e(G) − e(C) = e(G) − 1

2 e(C) < n + 1 − n/3 = (2n + 3)/3.

If the length of this cycle is less than (2n+3)/3, then it is at most (2n+2)/3,
and since it is an integer it is at most b(2n + 2)/3c.

If there is no such path, then no cycle shares an edge with C . Hence
the additional cycle is restricted to a set of fewer than n +1− d2n/3e edges,
and again its length is less than (2n + 3)/3.

Proof 2. We may assume that the graph is connected, since otherwise
we apply the same argument to some component in which the number of
edges exceeds the number of vertices by at least two. Consider a spanning
tree T , using n − 1 of the edges. Each of the two remaining edges forms
a cycle when added to T . If these cycles share no edges, then the shortest
has length at most (n + 1)/2.

Hence we may assume that the two resulting cycles have at least one
common edge; let x, y be the endpoints of their common path in T . Deleting



109 Chapter 2: Trees and Distance Section 2.1: Basic Properties 110

the x, y-path in T from the union of the two cycles yields a third cycle. (The
uniqueness of cycles formed when an edge is added to a tree implies that
this edge set is in fact a single cycle.) Thus we have three cycles, and each
edge in the union of the three cycles appears in exactly two of them. Thus
the shortest of the three lengths is at most 2(n + 1)/3.

2.1.64. If G is a connected graph that is not a tree, then G has a cycle of
length at most 2diam G + 1, and this is best possible. We use extremality
for the upper bound; let C be a shortest cycle in G. If its length exceeds
2diam G + 1, then there are vertices x, y on C that have no path of length
at most diam G connecting them along C . Following a shortest x, y-path P
from its first edge off C until its return to C completes a shorter cycle. This
holds because P has length at most k, and we use a portion of P in place
of a path along C that has length more than k. We have proved that every
shortest cycle in G has length at most 2diam G + 1.

The odd cycle C2k+1 shows that the bound is best possible. It is con-
nected, is not a tree, and has diameter k. Its only cycle has length 2k + 1,
so we cannot guarantee girth less than 2k + 1.

2.1.65. If G is a connected simple graph of order n and minimum degree
k, with n − 3 ≥ k ≥ 2, then diam G ≤ 3(n − 2)/(k + 1) − 1, with equality
when n − 2 is a multiple of k + 1. To interpret the desired inequality on
diam G, we let d = diam G and solve for n. Thus it suffices to prove that
n ≥ (1+bd/3c)(k +1)+ j , where j is the remainder of d upon division by 3.
Note that the inequality n − 3 ≥ k is equivalent to 3(n − 2)/(k + 1) − 1 ≥ 2.
Under this constraint, the result is immediate when d ≤ 2, so we may
assume that d ≥ 3.

Let 〈v0, . . . , vd〉 be a path joining vertices at distance d. For a ver-
tex x , let N [x] = N (x) ∪ {x}. Let Si = N [v3i ] for 0 ≤ i < bd/3c, and let
Sbd/3c = N [vd ]. Since d ≥ 3, there are 1 + bd/3c such sets, pairwise disjoint
(since we have a shortest v0, vd -path), and each has at least k + 1 vertices.
Furthermore, vd−2 does not appear in any of these sets if j = 1, and both
vd−2 and vd−3 do not appear if j = 2. Hence n is as large as claimed.

To obtain an upper bound on d in terms of n, we write bd/3c as (d− j)/3.
Solving for d in terms of n, we find in each case that d ≤ 3(n − 2)/(k + 1) −
1 − j [1 − 3/(k + 1)]. Since k ≥ 2, the bound d ≤ 3(n − 2)/(k + 1) − 1 is valid
for every congruence class of d modulo 3.

When n − 2 is a multiple of k + 1, the bound is sharp. If n − 2 = k + 1,
then deleting two edges incident to one vertex of Kn yields a graph with
the desired diameter and minimum degree (also C n suffices). For larger
multiples, let m = (n − 2)/(k + 1); note that m ≥ 2. Begin with cliques
Q1, . . . , Qm such that Q1 and Qm have order k + 2 and the others have
order k + 1. For 1 ≤ i ≤ m, choose xi , yi ∈ Qi , and delete the edge xi yi .

For 1 ≤ i ≤ m − 1, add the edge yi xi+1. The resulting graph has minimum
degree k and diameter 3m −1. The figure below illustrates the construction
when m = 3; the ith ellipse represents Qm − {xi , yi }. (There also exist
regular graphs attaining the bound.)

• • • • • •k k−1 k

2.1.66. If F1, . . . , Fm are forests whose union is G, then m ≥ maxH⊆G

⌈

e(H)

n(H)−1

⌉

.
From a subgraph H , each forest uses at most n(H)− 1 edges. Thus at least
e(H)/(n(H) − 1) forests are needed just to cover the edges of H , and the
choice of H that gives the largest value of this is a lower bound on m.

2.1.67. If a graph G has k pairwise edge-disjoint spanning trees in G, then
for any partition of V (G) into r parts, there are at least k(r − 1) edges of G
whose endpoints are in different parts. Deleting the edges of a spanning
tree T that have endpoints in different parts leaves a forest with at least r
components and hence at most n(G) − r edges. Since T has n(G) − 1 edges,
T must have at least r − 1 edges between the parts. The argument holds
separately for each spanning tree, yielding k(r − 1) distinct edges.

2.1.68. A decomposition into two isomorphic spanning trees. One tree turns
into the other in the decomposition below upon rotation by 180 degrees.

•
•

•
•

•
•

•
•

•

2.1.69. An instance of playing Bridg-it. Indexing the 9 vertical edges as
gi, j and the 16 horizontal/slanted edges as h i, j , where i is the “row” index
and j is the “column” index, we are given these moves:

Player 1: h1,1 h2,3 h4,2
Player 2: g2,2 h3,2 g2,1

After the third move of Player 1, the situation is as shown below. The
bold edges are those seized by Player 1 and belong to both spanning trees.
The two moves by Player 2 have cut the two edges that are missing.



111 Chapter 2: Trees and Distance Section 2.1: Basic Properties 112

•

•

•

•

•

•

•

•

•

•

•

•

• •

The third move by Player 2 cuts the marked vertical edge. This cuts
off three vertices from the rest of the solid tree. Player 1 must respond by
choosing a dotted edge that can reconnect it. The choices are h1,2, h2,1, h2,2,
h3,1, and h4,1.

2.1.70. Bridg-it cannot end in a tie. That is, when no further moves can be
made, one player must have a path connecting his/her goals.

Consider the graph for Player 1 formed in Theorem 2.1.17. At the end
of the game, Player 1 has bridges on some of these edges, retaining them as
a subgraph H , and the other edges have been cut by Player 2’s bridges. Let
C be the component of H containing the left goal for Player 1. The edges
incident to V (C) that have been cut correspond to a walk built by Player 2
that connects the goals for Player 2. This holds because successive edges
around the outside of C are incident to the same “square” in the graph for
Player 1, which corresponds to a vertex for Player 2. This can be described
more precisely using the language of duality in planar graphs (Chapter 6).

2.1.71. Player 2 has a winning strategy in Reverse Bridg-it. A player build-
ing a path joining friendly ends is the loser, and it is forbidden to stall by
building a bridge joining posts on the same end.

We use the same graph as in Theorem 2.1.17, keeping the auxiliary
edge so that we start with two edge-disjoint spanning trees T and T ′. An
edge e that Player 1 can use belongs to only one of the trees, say T . The
play by Player 1 will add e to T ′. Since e ∈ E(T ) − E(T ′), Proposition 2.1.7
guarantees an edge e′ ∈ E(T ′)− E(T ) such that T ′+e−e′ is a spanning tree.
Player 2 makes a bridge to delete the edge e′, and the strategy continues
with the modified T ′ sharing the edge e with T . If the only edge of E(T ′) −
E(T ) available to break the cycle in T ′ +e is the auxiliary edge, then Player
1 has already built a path joining the goals and lost the game. The game
continues always with two spanning trees available for Player 1, and it can
only end with Player 1 completing the required path.

2.1.72. If G1, . . . , Gk are pairwise intersecting subtrees of a tree G, then G
has a vertex in all of G1, . . . , Gk . (A special case is the “Helly property” of
the real line: pairwise intersecting intervals have a common point.)

Lemma: For vertices u, v, w in a tree G, the u, v-path P, the v,w-path
Q, and the u, w-path R in G have a common vertex. Let z be the last vertex
shared by P and R. They share all vertices up to z, since distinct paths
cannot have the same endpoints. Therefore, the z, v-portion of P and the
z, w-portion of R together form a v,w-path. Since G has only one v,w-path,
this is Q. Hence z belongs to P, Q, and R.

Main result.
Proof 1 (induction on k). For k = 2, the hypothesis is the conclu-

sion. For larger k, apply the inductive hypothesis to both {G1, . . . , Gk−1}
and {G2, . . . , Gk}. This yields a vertex u in all of {G1, . . . , Gk−1} and a ver-
tex v in all of {G2, . . . , Gk}. Because G is a tree, it has a unique u, v-path.
This path belongs to all of G2, . . . , Gk−1. Let w be a vertex in G1 ∩ Gk . By
the Lemma, the paths in G joining pairs in {u, v, w} have a common ver-
tex. Since the u, v-path is in G2, . . . , Gk−1, the w, u-path is in G1, and the
w, v-path is in Gk , the common vertex of these paths is in G1, . . . , Gk .

Proof 2 (induction on k). For k = 3, we let u, v, w be vertices of G1 ∩G2,
G2 ∩ G3, and G3 ∩ G1, respectively. By the Lemma, the three paths joining
these vertices have a common vertex, and this vertex belongs to all three
subtrees. For k > 3, define the k − 1 subtrees G1 ∩ Gk, . . . , Gk−1 ∩ Gk . By
the case k = 3, these subtrees are pairwise intersecting. There are k − 1
of them, so by the induction hypothesis they have a common vertex. This
vertex belongs to all of the original k trees.

2.1.73. A simple graph G is a forest if and only if pairwise intersecting
paths in G always have a common vertex.

Sufficiency. We prove by contradiction that G is acyclic. If G has a
cycle, then choosing any three vertices on the cycle cuts it into three paths
that pairwise intersect at their endpoints. However, the three paths do not
all have a common vertex. Hence G can have no cycle and is a tree.

Necessity. Let G be a forest. Pairwise intersecting paths lie in a sin-
gle component of G, so we may assume that G is a tree. We use induction
on the number of paths. By definition, two intersecting paths have a com-
mon vertex. For k > 2, let P1, . . . , Pk be pairwise intersecting paths. Also
P1, . . . , Pk−1 are pairwise intersecting, as are P2, . . . , Pk ; each consists of
k − 1 paths. The induction hypothesis guarantees a vertex u belonging to
all of P1, . . . , Pk−1 and a vertex v belonging to all of P2, . . . , Pk . Since each
of P2, . . . , Pk−1 contains both u and v and G has exactly one u, v-path Q,
this path Q belongs to all of P2, . . . , Pk−1.

By hypothesis, P1 and Pk also have a common vertex z. The unique z, u-
path R lies in P1, and the unique z, v-path S lies in Pk . Starting from z, let
w be the last common vertex of R and S. It suffices to show that w ∈ V (Q).
Otherwise, consider the portion of R from w until it first reaches Q, the



113 Chapter 2: Trees and Distance Section 2.1: Basic Properties 114

portion of S from w until it first reaches Q, and the portion of Q between
these two points. Together, these form a closed trail and contain a cycle, but
this cannot exist in the tree G. The contradiction implies that w belongs
to Q and is the desired vertex.

2.1.74. Every simple n-vertex graph G with n − 2 edges is a subgraph of its
complement. (We need e(G) < n − 1, since K1,n−1 6⊆ K1,n−1.)

We use induction on n. We will delete two vertices in the induction
step, we so we must include n = 2 and n = 3 in the basis. When n = 2, we
have G = K 2 ⊆ K2 = G. When n = 3, we have G = K2 + K1 ⊆ P3 = G.

For n > 3, let G be an n-vertex graph with n − 2 edges. Suppose first
that G has an isolated vertex x . Since e(G) = n − 2, the Degree-Sum
Formula yields a vertex y of degree at least 2. Let G ′ = G − {x, y}; this
is a graph with n − 2 vertices and at most n − 4 edges. By the induction
hypotheses, every graph with n − 2 vertices and n − 4 edges appears in its
complement, so the same holds for smaller graphs (since they are contained
in graphs with n − 4 edges). A copy of G ′ contained in G − {x, y} extends to
a copy of G in G by letting x represent y and letting y represent x .

Hence we may assume that G has no isolated vertices. Every non-
tree component of G has at least as many edges as vertices, and trees have
one less. Hence at least two components of G are trees. We may therefore
choose vertices x and y of degree 1 with distinct neighbors. Let N (x) = {x ′}
and N (y) = {y ′} with x ′ 6= y′. Let G ′ = G − {x, y}; this graph has n − 2
vertices and n − 4 edges. By the induction hypothesis, G ′ ⊆ G ′ = G − x − y.
Let H be a copy of G ′ in G − x − y. If x ′ or y′ represents itself in H , then
we let x and y switch identities to add their incident edges. Otherwise, we
let x and y represent themselves to add their incident edges.

2.1.75. Every non-star tree is (isomorphic to) a subgraph of its complement.
Proof 1 (loaded induction on n). We prove the stronger statement that,

given an n-vertex tree T other than K1,n−1, the graph Kn with vertex set
{v1, . . . , vn} contains two edge-disjoint copies of T in which the two copies
of each non-leaf vertex of T appear at distinct vertices. The only non-star
tree with at most 4 vertices is the path P4, which is self-complementary via
a map that moves each vertex.

Now consider n > 4. We show first that T has a leaf x such that T − x
is not a star. If T is a path, let x be either leaf. Otherwise, T has at least
three leaves; let P be a longest path in T , and let x be a leaf other than the
endpoints of P. In either case, T − x has a path of length at least 3.

Let T ′ = T − x , and let y be the neighbor of x in T . If y is not a leaf
in T ′, then the induction hypothesis yields embeddings of T ′ in Kn−1 in
which y occurs at distinct vertices. We can extend both embeddings to Kn

by placing x at vn in each and adding the distinct edges to the images of y.

In this case the non-leaves of T are the same as the non-leaves of T ′, and
the loaded claim holds for T .

If y is a leaf in T , we use the same argument unless f (y) = g(y),
where f, g are the mappings from V (T ′) to V (Kn−1) for the two embeddings
of T ′ guaranteed by the induction hypothesis. In this case, let z be the
other neighbor of y; we have z as a non-leaf of T ′, and hence f (z) 6= g(z).
We cannot have both g(z) = f (w) for some w ∈ N (z) and f (z) = g(u) for
some u ∈ N (z), because then the edge between f (z) and g(z) is used in
both embeddings of T ′. By symmetry, we may assume f (z) 6= g(w) for all
w ∈ N (z). For T , we define f ′, g′ : V (T ) → V (Kn) for the edge-disjoint
embeddings of T as follows: If w /∈ {x, y, z}, let f ′(w) = f (w) and g′(w) =
g(w). For the other vertices, let f ′(z) = f (z), f ′(y) = f (y), f ′(x) = vn,
g′(z) = vn, g′(y) = g(z), g′(x) = g(y), as illustrated below. By construction
the non-leaves of T have pairs of distinct images. The edges not involving
x, y, z are mapped as before and hence become edge-disjoint subgraphs of
Kn − {vn, f (y), f (z), g(z)}. The path x, y, z is explicitly given edge-disjoint
images under f ′, g′. This leaves only the edges involving z. Those under
f are the same as under f ′. The shift of z from g(z) to g′(z) = vn does not
produce a common edge because f ′(z) = f (z) is not the image under g of
any neighbor of z.

• •
•

•
vn g(y)

g(z)

f (y)

f (z)

→ • •
•

•

g′(z) g′(x)

g′(y)

f ′(x) f ′(y)

f ′(z)

Proof 2. (induction on n(T ) by deleting two leaves—proof due to Fred
Galvin). To cover the basis step, we prove first that the claim is true when
T has a path P of length at least 3 that includes a endpoint of every edge
(see “caterpillars” in Section 2.2). First we embed P in its complement
so that every vertex moves. If n(P) is even, say n(P) = 2k, then we ap-
ply the vertex permutation

( 1,2,...,k,k+1,...,2k
2,4,...,2k,1,...,2k−1

)

. When n(P) = 2k − 1, we use
( 1,2,...,k,k+1,...,2k−1

2k−1,2k−3,...,1,2k,...,2

)

. Now, since every vertex on P has moved, we can place
the remaining leaves at their original positions and add incident edges
from T to make them adjacent to their desired neighbors.

All non-star trees with at most six vertices have such a path P. For the
induction step, consider a tree T with n(T ) > 6. Let u and v be endpoints
of a longest path in T , so d(u, v) = diam T , and let T ′ = T − u − v. Let x
and y be the neighbors of u and v, respectively. If T is not a star and T ′ is a
star, then T is embeddable in its complement using the construction above.



115 Chapter 2: Trees and Distance Section 2.2: Spanning Trees and Enumeration 116

If T ′ is not a star, then by the induction hypothesis T ′ embeds in T ′.
If the embedding puts x or y at itself, then adding the edges xv and yu
yields a copy of T in T . Otherwise, make u adjacent to the image of x and
v adjacent to the image of y to complete the copy of T in T .

2.1.76. If A1, . . . , An are distinct subsets of [n], then there exists x ∈ [n]
such that A1 ∪ {x}, . . . , An ∪ {x} are distinct. We need to find an element x
such that no pair of sets differ by x . Consider the graph G with V (G) =
{A1, . . . , An} and Ai ↔ Aj if only if Ai and A j differ by the addition or
deletion of a single element. Color (label) an edge Ai Aj by the element in
which the endpoints differ. Any color that appears in a cycle of G must
appear an even number of times in that cycle, because as we traverse the
cycle we return to the original set. Hence a subgraph F formed by selecting
one edge having each edge-label that appears in G will contain no cycles
and must be a forest. Since a forest has at most n − 1 edges, there must be
an element that does not appear on any edge and can serve as x .

2.2. SPANNING TREES & ENUMERATION
2.2.1. Description of trees by Prüfer codes. We use the fact that the degree
of a vertex in the tree is one more than the number of times it appears in
the corresponding code.

a) The trees with constant Prüfer codes are the stars. The n − 1 la-
bels that don’t appear in the code have degree 1 in the tree; the label that
appears n − 2 times has degree n − 1.

b) The trees whose codes contain two values are the double-stars. Since
n − 2 labels don’t appear in the code, there are n − 2 leaves in the tree.

c) The trees whose codes have no repeated entries are the paths. Since
n − 2 labels appear once and two are missing, n − 2 vertices have degree 2,
and two are leaves. All trees with this degree sequence are paths.

2.2.2. The graph K1 ∨ C4 has 45 spanning trees. For each graph G in the
computation below, we mean τ(G).

• •

••
•

• •

••
•

• •

•
•

• •

••
•

• •

•
•

•
•

•
= + = + 2 +

=
• •

•
•

• •

•

•
•

•
• •3 + 2 + +

= 3 · 8 + 2 · 5 + 3 · 2 + 5 = 45

2.2.3. Application of the Matrix Tree Theorem. The matrix Q = D − A
for this graph appears on the right below. All rows and columns sum to 0.
If we delete any row and column and take the determinant, the result is
106, which is the number of spanning trees. Alternatively, we could apply
the recurrence. The number of trees not containing the diagonal edge is
2 · 3 · 4 + 3 · 4 · 2 + 4 · 2 · 2 + 2 · 2 · 3, which is 76. The number of trees
containing the diagonal edge is 5 · 6, which is 30.

•

• •

•

v1v2

v3 v4







5 −2 −3 0
−2 5 −1 −2
−3 −1 8 −1
0 −2 −4 6







2.2.4. If a graph G with m edges has a graceful labeling, then K2m+1 decom-
poses into copies of G. As in the proof of Theorem 2.2.16, view the vertices
modulo 2m + 1. Let a1, . . . , an be the vertex labels on in a graceful labeling
of G. By definition, 0 ≤ aj ≤ m for each j . For 0 ≤ i ≤ 2m, the ith copy of
G uses vertices i + a1, . . . , i + an. Each copy uses one edge from each dif-
ference class, and the successive copies use distinct edges from a class, so
each edge of K2m+1 appears in exactly one of these copies of G.

2.2.5. The graph below has 2000 spanning trees. The graph has 16 vertices
and 20 edges; we must delete five edges to form a spanning tree. The
5-cycles are pairwise edge-disjoint; we group the deleted edges by the 5-
cycles. Each 5-cycle must lose an edge; one 5-cycle will lose two. To avoid
disconnecting the graph, one edge lost from the 5-cycle that loses two must
be on the 4-cycle, and thus the 4-cycle is also broken.

Every subgraph satisfying these rules is connected with 15 edges, since
every vertex has a path to the central 4-cycle, and there is a path from one
vertex to the next on the 4-cycle via the 5-cycles that lose just one edge).
Hence these are the spanning trees. We can pick the 5-cycle that loses two
edges in 4 ways, pick its second lost edge in 4 ways, and pick the edge lost
from each remaining 5-cycle in five ways, yielding a total of 4 · 4 · 5 · 5 · 5
spanning trees. The product is 2000.

•
••

•
•

•

•

•

•

•
••

•

•
• •



117 Chapter 2: Trees and Distance Section 2.2: Spanning Trees and Enumeration 118

2.2.6. The 3-regular graph that is a ring of m kites (shown below for m = 6)
has 2m8m spanning trees. Call the edges joining kites the “link edges”.
Deleting two link edges disconnects the graph, so each spanning tree omits
at most one link edge.

If a spanning tree uses m − 1 link edges, then it also contains a span-
ning tree from each kite. By Example 2.2.6, each kite has eight spanning
trees. (Each such spanning tree has three edges; each choice of three edges
works except the two forming triangles, and 8 =

(5
2

)

− 2.)
To form a spanning tree of this type, we pick one of the m link edges to

delete and pick a spanning tree from each kite in 8k ways. Thus there are
m8k−1 spanning trees of this sort.

The other possibility is to use all m link edges. Now we must have
exactly one kite where the vertices of degree 2 in the kite are not connected
by a path within the kite. Since we avoid cycles and spanning trees but
must connect the two 3-valent vertices of the kite out to the rest of the
graph, we retain exactly two edge from the kite that is cut. Each way of
choosing two edges to retain works exept the two that form a path between
the 2-valent vertex through one 3-valent vertex: 8 =

(5
2

)

− 2.
Since we pick one kite to cut in m ways, pick one of 8 ways to cut it,

and pick one of 8 spanning trees in each other kite, there are m8m spanning
trees of this type, for 2m8m spannning trees altogether.

•

•

••

•

•
•

•

••

•

•

•
•

• •
•

•

•
•

••
•

•

2.2.7. Kn − e has (n − 2)nn−3 spanning trees.
Proof 1 (symmetry and Cayley’s Formula—easiest!). By Cayley’s For-

mula, there are nn−2 spanning trees in Kn. Since each has n − 1 edges,
there are (n − 1)nn−2 pairs (e, T ) such that T is a spanning tree in Kn and
e ∈ E(T ). When we group these pairs according to the

(n
2

)

edges in Kn, we
divide by

(n
2

)

to obtain 2nn−3 as the number of trees containing any given
edge, since by symmetry each edge of Kn appears in the same number of
spanning trees.

To count the spanning trees in Kn − e, we subtract from the total num-
ber of spanning trees in Kn the number that contain the particular edge
e. Subtracting t = 2nn−3 from nn−2 leaves (n − 2)nn−3 spanning trees in Kn

that do not contain e.

Proof 2 (Prüfer correspondence). Given vertex set [n], we count the
trees not containing the edge between n − 1 and n. In the algorithm to
generating the Prüfer code of a tree with vertex set [n], we never delete
vertex n. Also, we do not delete vertex n − 1 unless n − 1 and n are the only
leaves, in which case the remaining tree at that stage is a path (because it
is a tree with only two leaves).

If the tree contains the edge (n − 1, n), then (n − 1, n) will be the final
edge, and the label last written down is n − 1 or n. If not, then the path
between n − 1 and n has at least two edges, and we will peel off vertices
from one end until only the edge containing n remains. The label n is never
recorded during this process, and neither is n − 1. Thus a Prüfer code
corresponds to a tree not containing (n − 1, n) if and only if the last term of
the list is not n − 1 or n, and there are (n − 2)nn−3 such lists.

Proof 3 (Matrix Tree Theorem). For Kn − e, the matrix D − A has
diagonal n − 1, . . . , n − 1, n − 2, n − 2, with positions n − 1, n and n, n − 1
equal to 0 and all else −1. Delete the last row and column and take the
determinant to obtain the number of spanning trees. To compute the de-
terminant, apply row and column operations as follows: 1) add the n − 2
other columns to the first so the first column becomes 1, . . . , 1, 0. 2) sub-
tract the first row from all but the last, so the first row is 1,−1, . . . ,−1, the
last is 0, −1, . . . ,−1, n − 2, and the others are 0 except for n on the diago-
nal. The interior rows can then be used to reduce this to a diagonal matrix
with entries 1, n, . . . , n, n − 2, whose determinant is (n − 2)nn−3.

2.2.8. With vertex set [n], there are
(n

2

)

(2n−2 − 2) trees with n − 2 leaves and
n!/2 trees with 2 leaves. Every tree with two leaves is a path (paths along
distinct edges incident to a vertex of degree k leads to k distinct leaves, so
having only two leaves in a tree implies maximum degree 2). Every tree
with n − 2 leaves has exactly two non-leaves. Each leaf is adjacent to one
of these two vertices, with at least one leaf neighbor for each of the two
vertices. These trees are the “double-stars”.

To count paths directly, the vertices of a path in order form a permu-
tation of the vertex set. Following the path from the other end produces
another permutation. On the other hand, every permutation arises in this
way. Hence there are two permutations for every path, and the number of
paths is n!/2.

To count double-stars directly, we pick the two central vertices in one
of

(n
2

)

ways and then pick the set of leaves adjacent to the lower of the two
central vertices. This set is a subset of the n − 2 remaining vertex labels,
and it can be any subset other than the full set and the empty set. The
number of ways to do this is the same no matter how the central vertices
is chosen, so the number of double-stars is

(n
2

)

(2n−2 − 2).



119 Chapter 2: Trees and Distance Section 2.2: Spanning Trees and Enumeration 120

To solve this using the Prüfer correspondence, we count Prüfer codes
for paths and for double-stars. In the Prüfer code corresponding to a tree,
the labels of the leaves are the labels that do not appear.

For paths (two leaves), the other n − 2 labels must each appear in the
Prüfer code, so they must appear once each. Having chosen the leaf labels
in

(n
2

)

ways, there are (n − 2)! ways to form a Prüfer code in which all the
other labels appear. The product is n!/2.

For double-stars (n − 2 leaves), exactly two labels appear in the Prüfer
code. We can choose these two labels in

(n
2

)

ways. To form a Prüfer code (and
thus a tree) with these two labels as non-leaves, we choose an arbitrary
nonempty proper subset of the positions 1, . . . , n − 2 for the appearances
of the first label. There are 2n−2 − 2 ways to do this step. Hence there are
(n

2

)

(2n−2 − 2) ways to form the Prüfer code.

2.2.9. There are (n!/k!)S(n −2, n − k) trees on a fixed vertex set of size n that
have exactly k leaves. Consider the Prüfer sequences of trees. The leaves of
a tree are the labels that do not appear in the sequence. We can choose the
labels of the leaves in

(n
k

)

ways. Given a fixed set of leaves, we must count
the sequences of length n −2 in which the remaining n −k labels all appear.
Each label occupies some set of positions in the sequence. We partition the
set of positions into n − k nonempty parts, and then we can assign these
parts to the labels in (n − k)! ways to complete the sequence. The number
of ways to perform the partition, by definition, is S(n −2, n −k). Since these
operations are independent, the total number of legal Prüfer sequences is
(n

k

)

(n − k)!S(n − 2, n − k).

2.2.10. K2,m has m2m−1 spanning trees. Let X, Y be the partite sets, with
|X | = 2. Each spanning tree has one vertex of Y as a common neighbor
of the vertices in X ; it can be chosen in m ways. The remaining vertices
are leaves; for each, we choose its neighbor in X in one of two ways. Every
spanning tree is formed this way, so there are m2m−1 trees.

Alternatively, note that K2,m is obtained from the two-vertex multi-
graph H with m edges by replacing each edge with a path of 2 edges. Since
H itself has m spanning trees, Exercise 2.2.12 allows the spanning trees of
K2,m to be counted by multiplying m by a factor of 2e(H)−n(H)+1 = 2m−1.

K2,m has b(m + 1)/2c isomorphism classes of spanning trees. The ver-
tices in X have one common neighbor, and the isomorphism class is deter-
mined by splitting the remaining m − 1 vertices between them as leaves.
We attach k leaves to one neighbor and m − 1 − k to the other, where
0 ≤ k ≤ b(m − 1)/2c. Hence there are b(m + 1)/2c isomorphism classes.

2.2.11. τ(K3,m) = m23m−1. Let X, Y be the partite sets, with |X | = 3. A
spanning tree must have a single vertex in Y adjacent to all of X or two
vertices in Y forming P5 with X . In each case, the remaining vertices of Y

are distributed as leaf neighbors arbitrarily to the three vertices of X ; each
has a choice among the three vertices of X for its neighbor. Hence there
are m3m−1 spanning trees of the first type and [3m2(m − 1)/2]3m−2 trees of
the second type. and then the remaining vertices in the other

2.2.12. The effect of graph transformations on the number τ of spanning
trees. Let G be a graph with n vertices and m edges.

a) If H is obtained from G by replacing every edge with k parallel edges,
then τ(H) = kn−1τ(G).

Proof 1 (direct combinatorial argument). Each spanning tree T of G
yields kn−1 distinct spanning trees of H by choosing any one of the k copies
of each edge in T . This implies τ(H) ≥ kn−1τ(G). Also, every tree arises in
this way. A tree T in H uses at most one edge between each pair of vertices.
Since T is connected and acyclic, the edges in G whose copies are used in
T form a spanning tree of G that generates T . Hence τ(H) ≤ kn−1τ(G).

Proof 2 (induction on m using the recurrence for τ ). If m = 0, then
τ(G) = τ(H) = 0, unless n = 1, in which case 1 = k0 · 1. If m > 0, choose
e ∈ E(G). Let H ′ be the graph obtained from H by contracting all k copies
of e. Let H ′′ be the graph obtained from H by deleting all k copies of e. The
spanning trees of H can be grouped by whether they use a copy of e (they
cannot use more than one copy). There are k × τ(H ′) of these trees that use
a copy of e and τ(H ′′) that do not. We can apply the induction hypothesis
to H ′ and H ′′, since each arises from a graph with fewer than m edges by
having k copies of each edge: H ′ from G · e and H ′′ from G − e. Thus

τ(H) = k × τ(H ′) + τ(H ′′) = k · kn−2τ(G · e) + kn−1τ(G − e)

= kn−1[τ(G · e) + τ(G − e)] = kn−1τ(G).

Proof 3 (matrix tree theorem). Let Q, Q ′ be the matrices obtained
from G, G ′, from which we delete one row and column before taking the
determinant. By construction, Q ′ = k Q. When we take the determinant of
a submatrix of order n − 1, we thus obtain τ(G ′) = kn−1τ(G).

b) If H is obtained from G by replacing each e ∈ E(G) with a path P(e)
of k edges, then τ(H) = km−n+1τ(G).

Proof 1 (combinatorial argument). A spanning tree T of G yields
km−n+1 spanning trees of H as follows. If e ∈ E(T ), include all of P(e). If
e /∈ E(T ), use all but one edge of P(e). Choosing one of the k edges of P(e)
to omit for each e ∈ E(G)− E(T ) yields km−n+1 distinct trees (connected and
acyclic) in H . Again we must show that all spanning trees have been gen-
erated. A tree T ′ in H omits at most one edge from each path P(e), else
some vertex in P(e) would be separated from the remainder of H . Let T
be the spanning subgraph of G with E(T ) = {e ∈ E(G): P(e) ⊆ T ′}. If T ′



121 Chapter 2: Trees and Distance Section 2.2: Spanning Trees and Enumeration 122

is connected and has no cycles, then the same is true of T , and T ′ is one of
the trees generated from T as described above.

Proof 2 (induction on m). The basis step m = 0 is as in (a). For m > 0,
select an edge e ∈ E(G). The spanning trees of H use k or k − 1 edges
of P(e). These two types are counted by τ(H ′) and τ(H ′′), where H ′ is the
graph obtained from H by contracting all edges in P(e), and H ′′ is the graph
obtained from H by deleting P(e) (except for its end-vertices). Since these
graphs arise from G · e and G − e (each with m − 1 edges) by replacing each
edge with a path of length k, applying the induction hypothesis yields

τ(H) = τ(H ′) + k · τ(H ′′) = k(m−1)−(n−1)+1τ(G · e) + k[k(m−1)−n+1τ(G − e)]

= km−n+1[τ(G · e) + τ(G − e)] = km−n+1τ(G).

2.2.13. Spanning trees in Kn,n . For each spanning tree T of Kn,n , a list f (T )

of pairs of integers (written vertically) is formed as follows: Let u, v be the
least-indexed leaves of the remaining subtree that occur in X and Y . Add
the pair

(a
b

)

to the sequence, where a is the index of the neighbor of u and b
is the index of the neighbor of v. Delete {u, v} and iterate until n − 2 pairs
are generated and one edge remains.

a) Every spanning tree of Kn,n has a leaf in each partite set, and hence
f is well-defined. If each vertex of one partite set has degree at least 2,
then at least 2n edges are incident to this partite set, which are too many
to have in a spanning tree of a graph with 2n vertices.

b) f is a bijection from the set of spanning trees of Kn,n to the set of
n − 1-element lists of pairs of elements from [n], and hence Kn,n has n2n−2

spanning trees. We use an analogue of Prüfer codes. Consider Kn,n with
partite sets X = {x1, . . . , xn} and Y = {y1, . . . , yn}. For each spanning tree
T , we form a sequence f (T ) of n − 1 pairs of integers chosen from [n] by
recording at each step the ordered pair of subscripts of the neighbors of the
least-indexed leaves of T remaining in X and Y , and then deleting these
leaves. What remains is a spanning tree in a smaller balanced biclique, so
by part (a) the process is well-defined.

Since there n2n−2 such lists, it suffices to show that f establishes a
bijection from the set of spanning trees of Kn,n to the set of lists.

From a list L of n − 1 pairs of integers chosen from [n], we generate a
tree g(L) with vertex set X ∪ Y . We begin with X ∪ Y , no edges, and each
vertex unmarked. At the ith step, when the ith ordered pair is

(a(i)
b(i)

)

, let
u be the least index of an unmarked vertex in Y that does not appear in
first coordinates of L at or after position i , and let v be the least index of an
unmarked vertex in X that does not appear in second coordinates of L at
or after position i . We add the edges xa(i)yu and yb(i)xv, and then we mark

xv and yu to eliminate them from further consideration. After n − 1 pairs,
we add one edge joining the two remaining unmarked vertices.

After the ith step, we have 2n − 2i components, each containing one
unmarked vertex. This follows by induction on i ; it holds when i = 0.
Since indices cannot be marked until after they no longer appear in the list,
the two edges created in the ith step join pairs of unmarked vertices. By
the induction hypothesis, these come from four different components, and
the two added edges combine these into two, each keeping one unmarked
vertex. Thus adding the last edge completes the construction of a tree.

In computing f (T ), a label no longer appears in the sequence after it
is deleted as a leaf. Hence the vertices marked at the ith step in computing
g(L) are precisely the leaves deleted at the ith step in computing f (g(L)),
which also records

(a(i)
b(i)

)

. Thus L = f (g(L)). Similarly, the leaves deleting
at the ith step in computing f (T ) are the vertices marked at the ith step
in computing g( f (T )), which yields T = g( f (T )). Hence each maps inverts
the other, and both are bijections.

2.2.14. The number of trees with vertices 1, . . . , r + s that have partite sets
of sizes r and s is

(r+s
s

)

sr−1r s−1 if r 6= s. It suffices to count the Prüfer
codes for such trees. The factor

(r+s
r

)

counts the assignments of labels to
the two partite sets (half that amount if r = s). When deleting a vertex
in computing the Prüfer code, we record a vertex of the other partite set.
Since an edge remains at the end of the construction, the final code has
s − 1 entries from the r -set and r − 1 entries from the s-set.

It suffices to show that the sublists formed from each partite set de-
termine the full list, because there are sr−1r s−1 such pairs of sublists. In
reconstructing the code and tree from the pair of lists, the next leaf to be
“finished” by receiving its last edge is the least label that is unfinished and
doesn’t appear in the remainder of the list. The remainder of the list is the
remainder of the two sublists. We know which set contains the next leaf
to be finished. Its neighbor comes from the other set. This tells us which
sublist contributes the next element of the full list. Iterating this merges
the two sublists into the full Prüfer code.

When r = s, the given formula counts the lists twice.

2.2.15. For n ≥ 1, the number of spanning trees in the graph Gn with 2n
vertices and 3n −2 edges pictured below satisfies the recurrence tn = 4tn−1 −
tn−2 for n ≥ 3, with t1 = 1 and t2 = 4.

•

•

•

•

•

•

•

•

•

•

•

•

· · ·

· · ·
e



123 Chapter 2: Trees and Distance Section 2.2: Spanning Trees and Enumeration 124

(Comment: The solution to the recurrence is tn = 1
2
√

3
[(2 +

√
3)n − (2 −

√
3)n].) Using the recurrence, this follows by induction on n.) We derive

the recurrence. Let tn = τ(Gn).
Proof 1 (direct argument for recurrence). Each spanning tree in Gn

uses two or three of the three rightmost edges. Those with two of the right-
most edges are obtained by adding any two of those edges to any spanning
tree of Gn−1. Thus there are 3tn−1 such trees. To prove the recurrence
tn = 4tn−1 − tn−2, it suffices to show that there are tn−1 − tn−2 spanning trees
that contain the three rightmost edges.

Such trees cannot contain the second-to-last vertical edge e. Therefore,
deleting the three rightmost edges and adding e yields a spanning tree
of Gn−1. Furthermore, each spanning tree of Gn−1 using e arises exactly
once in this way, because we can invert this operation. Hence the number
of spanning trees of Gn containing the three rightmost edges equals the
number of spanning trees of Gn−1 containing e. The number of spanning
trees of Gn−1 that don’t contain e is tn−2, so the number of spanning trees
of Gn−1 that do contain e is tn−1 − tn−2.

Proof 2 (deletion/contraction recurrence). Applying the recurrence in-
troduces graphs of other types. Let Hn be the graph obtained by contracting
the rightmost edge of Gn, and let Fn−1 be the graph obtained by contracting
one of the rightmost edges of Hn. Below we show G4, H4, and F3.

• • • •

• • • •

• • •
•

• • •

• • •

• • •

By using τ(G) = τ(G −e)+τ(G ·e) on a rightmost edge e and observing
that a pendant edge appears in all spanning trees while a loop appears in
none, we obtain

τ(Gn) = τ(Gn−1) + τ(Hn)

τ (Hn) = τ(Gn−1) + τ(Fn−1)

τ (Fn) = τ(Gn) + τ(Hn−1)

Substituting in for τ(Hn) and then for τ(Fn−1) and then for τ(Hn−1)

yields the desired recurrence:

τ(Gn) = τ(Gn−1) + τ(Gn−1) + τ(Fn−1) = 2τ(Gn−1) + τ(Gn−1) + τ(Hn−2)

= 3τ(Gn−1) + τ(Gn−1) − τ(Gn−2) = 4τ(Gn−1) − τ(Gn−2).

2.2.16. Spanning trees in K1 ∨ Pn. The number an of spanning trees sat-
isfies an = an−1 + 1 +

∑n−1
i=1 ai for n > 1, with a1 = 1. Let x1, . . . , xn be the

vertices of the path in order, and let z be the vertex off the path. There are
an−1 spanning trees not using the edge zxn; they combine the edge xn−1xn

with a spanning tree of K1 ∨ Pn−1. Among trees containing zxn, let i be the
highest index such that all of the path xi+1, . . . , xn appears in the tree. For
each i , there are ai such trees, since the specified edges are combined with
a spanning tree of K1 ∨ Pi . The term 1 corresponds to i = 0; here the entire
tree is Pn ∪ zxn. This exhausts all possible spanning trees.

2.2.17. Cayley’s formula from the Matrix Tree Theorem. The number of
labeled n-vertex trees is the number of spanning trees in Kn. Using the
Matrix Tree Theorem, we compute this by subtracting the adjacency ma-
trix from the diagonal matrix of degrees, deleting one row and column, and
taking the determinant. All degrees are n − 1, so the initial matrix is n − 1
on the diagonal and −1 elsewhere. Delete the last row and column. We
compute the determinant of the resulting matrix.

Proof 1 (row operations). Add every row to the first row does not
change the determinant but makes every entry in the first row 1. Now add
the first row to every other row. The determinant remains unchanged, but
every row below the first is now 0 everywhere except on the diagonal, where
the value is n. The matrix is now upper triangular, so the determinant is
the product of the diagonal entries, which are one 1 and n − 2 copies of n.
Hence the determinant is nn−2, as desired.

Proof 2 (eigenvalues). The determinant of a matrix is the product of
its eigenvalues. The eigenvalues of a matrix are shifted by λ when λI is
added to the matrix. The matrix in question is nIn−1 − Jn−1, where In−1 is
the n −1-by-n −1 identity matrix and Jn−1 is the n −1-by-n −1 matrix with
every entry 1. The eigenvalues of −Jn−1 are −(n−1) with multiplicity 1 and
0 with multiplicity n − 2. Hence the eigenvalues of the desired matrix are
1 with multiplicity 1 and n with multiplicity n − 2. Hence the determinant
is nn−2, as desired.

2.2.18. Proof that τ(Kr,s) = sr−1r s−1 using the Matrix Tree Theorem. The
adjacency matrix of Kr,s is

(0 1
1 0

)

, where 0 and 1 denote matrices of all 0s and
all 1s, and both the row partition and the column partition consist of r in
the first block and s in the second block. The diagonal matrix of degrees is
(s Ir 0

0 r Is

)

, where In is the identity matrix of order n. Hence we may delete the
first row and column to obtain Q∗ =

(s Ir−1 −1
−1 r Is

)

.
We apply row and column operations that do not change the determi-

nant. We subtract column r − 1 (last of the first block) from the earlier
columns and subtract column r (first of the second block) from the later
columns. This yields the matrix on the left below, where the values outside
the matrix indicate the number of rows or columns in the blocks. Now, we
add to row r − 1 the earlier rows and add to row r the later rows, yielding
the matrix on the right below.



125 Chapter 2: Trees and Distance Section 2.2: Spanning Trees and Enumeration 126









r − 2 1 1 s − 1
r − 2 s Ir−2 0 −1 0
1 −s1 s −1 0
1 0 −1 r −r1
s − 1 0 −1 0 r Is−1

















r − 2 1 1 s − 1
r − 2 s Ir−2 0 −1 0
1 0 s −r + 1 0
1 0 −s r 0
s − 1 0 −1 0 r Is−1









Adding row r − 1 to row r now makes row r all zero except for a single
1 in position r (on the diagonal). Adding row r to the first r − 2 rows (and
r −1 times row r to row r −1) now leaves the 1 in row r as the only nonzero
entry in column r . Also, the s in column r − 1 of row r − 1 is now the only
nonzero entry in row r −1. Hence we can add 1/s times row r −1 to each of
the last s − 1 rows to eliminate the other nonzero entries in column r − 1.

The resulting matrix is diagonal, with diagonal entries consisting of
r − 1 copies of s, one copy of 1, and s − 1 copies of r . Since adding a mul-
tiple of a row or column to another does not change the determinant, the
determinant of our original matrix equals the determinant of this diagonal
matrix. The determinant of a diagonal matrix is the product of its diagonal
entries, so the determinant is sr−1r s−1.

2.2.19. The number tn of labeled trees on n vertices satisfies the recurrence
tn =

∑n−1
k=1 k

(n−2
k−1

)

tk tn−k . For an arbitrary labeled tree on n vertices, delete the
edge incident to v2 on the path from v2 to v1. This yields labeled trees on k
and n − k vertices for some k, where v1 belongs to the tree on k vertices and
v2 to the tree on n − k vertices. Each such pair arises from exactly k

(n−2
k−1

)

labeled trees on n vertices. To see this, reverse the process. First choose
the k − 1 other vertices to be in the subtree containing v1. Next, choose
a tree on k labeled vertices and a tree on n − k labeled vertices (any such
choice could arise by deleting the specified edge of a tree on n vertices).
Finally, reconnect the tree by adding an edge from v2 to any one of the
k vertices in the tree containing v1. This counts the trees such that the
subtree containing v1 has k vertices, and summing this over k yields tn.

2.2.20. A d-regular graph G has a decomposition into copies of K1,d if and
only if G is bipartite. If G has bipartition X, Y , then for each x ∈ X we
include the copy of K1,d obtained by taking all d edges incident to x . Since
every edge has exactly one endpoint in X , and every vertex in X has degree
d, this puts every edge of G into exactly one star in our list.

If G has a K1,d -decomposition, then we let X be the set of centers of the
copies of K1,d in the decomposition. Since G is d-regular, each copy of K1,d

uses all edges incident to its center. Since the list is a decomposition, each
edge is in exactly one such star, so X is an independent set. Since every
edge belongs to some K1,d centered in X , there is no edge with both end-
points outside X . Thus the remaining vertices also form an independent
set, and G has bipartition X, X .

Alternative proof of sufficiency. If G is not bipartite, then G contains
an odd cycle. When decomposing a d-regular graph into copies of K1,d , each
subgraph used consists of all d edges incident to a single vertex. Hence
each vertex occurs only as a center or only as a leaf in these subgraphs.
Also, every edge joins the center and the leaf in the star containing it.
These statements require that centers and leaves alternate along a cycle,
but this cannot be done in an odd cycle.

2.2.21. Decomposition of K2m−1,2m into m spanning paths. We add a vertex
to the smaller partite set and decomposition K2m,2m into m spanning cycles.
Deleting the added vertex from each cycle yields pairwise edge-disjoint
spanning paths of K2m−1,2m .

Let the partite sets of K2m,2m be x1, . . . , x2m and y1, . . . , y2m . Let the kth
cycle consist of the edges of the forms xi yi+2k−1 and xi yi+2k , where subscripts
above 2m are reduced by 2m. These sets are pairwise disjoint and form
spanning cycles.

2.2.22. If G is an n-vertex simple graph having a decomposition into k span-
ning trees, and 1(G) = δ(G) + 1, then G has n − 2k vertices of degree 2k
and 2k vertices of degree 2k − 1. Each spanning tree has n − 1 edges, so
e(G) = k(n − 1). Note that k < n/2, since G is simple and is not Kn (since
it is not regular). If G has r vertices of minimum degree and n − r of maxi-
mum degree, then the Degree-Sum Formula yields 2k(n − 1) = n1(G) − r .
Since 1 ≤ r ≤ n, we conclude that 1(G) = 2k = r .

2.2.23. If the Graceful Tree Conjecture holds and e(T ) = m, then K2m de-
composes into 2m −1 copies of T . Let T ′ = T − u, where u is a leaf of T with
neighbor v. Let w be a vertex of K2m . Construct a cyclic T ′-decomposition
of K2m −w using a graceful labeling of T ′ as in the proof of Theorem 2.2.16.
Each vertex serves as v in exactly one copy of T ′. Extend each copy of T ′

to a copy of T by adding the edge to w from the vertex serving as v. This
exhausts the edges to w and completes the T -decomposition of G.

• • • •
•

0 4 2 3

1

•
•

•

•
••

•

•

•
0

1

2

3
45

6

7

8

• • • •
• •

0 4 2 3

1 v

•
•

•

•
••

•

•

•
0

1

2

3
45

6

7

8

•v

2.2.24. Of the nn−2 trees with vertex set {0, . . . , n − 1}, how many are grace-
fully labeled by their vertex names? This question was incorrectly posed. It



127 Chapter 2: Trees and Distance Section 2.2: Spanning Trees and Enumeration 128

should be of the graphs with vertex set {0, . . . , n − 1} that have n − 1 edges,
how many are gracefully labeled by their vertex names? Such a graph has k
choices for the placement of the edge with difference n − k, since the lower
endpoint can be any of {0, . . . , k−1}. Hence the number of graphs is (n−1)!.

2.2.25. If a graph G is graceful and Eulerian, then e(G) is congruent to 0
or 3 mod 4. Let f be a graceful labeling. The parity of the sum of the labels
on an edge is the same as the parity of their difference. Hence the sum
∑

v∈V (G) d(v) f (v) has the same parity as the sum of the edge differences.
The first sum is even, since G is Eulerian. The second has the same parity
as the number of odd numbers in the range from 1 to e(G). This is even if
and only if e(G) is congruent to 0 or 3 mod 4, which completes the proof.

2.2.26. The cycle Cn is graceful if and only if 4 divides n or n + 1. The ne-
cessity of the condition is a special case of Exercise 2.2.25. For sufficiency,
we provide a construction for each congruence class. We show an explicit
construction (n = 16 and n = 15) and a general construction for each class.
In the class where n + 1 is divisible by 4, we let n ′ denote n + 1. When n is
divisible by 4, let n′ = n.

The labeling uses a base edge joining 0 and n ′/2, plus two paths. The
bottom path, starting from 0, alternates labels from the top and bottom to
give the large differences: n, n−1, and so on down to n ′/2+1. The top path,
starting from n′/2, uses labels working from the center to give the small
differences: 1, 2, and so on up to n ′/2 − 1. The label next to n′/2 is n′/2 − 1
when 4 divides n, otherwise n ′/2 + 1. When chosen this way, the two paths
reach the same label at their other ends to complete the cycle: n/4 in the
even case, 3n′/4 in the odd case. Checking this ensures that the intervals
of labels used do not overlap. Note that the value 3n/4 is not used in the
even case, and n′/4 is not used in the odd case.

• • • •

• • • •

0 16 1 15

8 7 9 6

• • • •

• • • •

2 14 3 13

10 5 11 4

• • • •

• • • •

0
n

1
n − 1

n
2

n
2 − 1

n
2 + 1

n
2 − 2

· · ·

· · ·

• • • •

• • • •

n
4 − 2

3n
4 + 2

n
4 − 1

3n
4 + 1

3n
4 − 2

n
4 + 1

3n
4 − 1

n
4

• • • •

• • • •

0 15 1 14

8 9 7 10

• • •
•

• • •

2 13 3

12

6 11 5

• • • •

• • • •

0
n

1
n − 1

n′

2

n′

2 + 1
n′

2 − 1

n′

2 + 2

· · ·

· · ·

• • •
•

• • •

n′

4 − 2
3n′

4 + 1

n′

4 − 1

3n′

4

n′

4 + 2

3n′

4 − 1
n′

4 + 1

2.2.27. The graph consisting of k copies of C4 with one common vertex is
graceful. The construction is illustrated below for k = 4. Let x be the

central vertex. Let the neighbors of x be y0, . . . , y2k−1, and let the remaining
vertices be z0, . . . , zk−1, such that N (zi ) = {y2i , y2i+1}.

Define a labeling f by f (x) = 0, f (yi ) = 4k − 2i , and f (zi ) = 4i +
1. The labels on y1, . . . , y2k are distinct positive even numbers, and those
on z1, . . . , zk are distinct odd numbers, so f is injective, as desired. The
differences on the edges from x are the desired distinct even numbers.

The differences on the remaining edges are odd and less than 2k; it
suffices to show that their values are distinct. Involving z i , the differences
are 4k −1−8i and 4k −3−8i . Starting from z0 through increasing i , these
are 4k −1, 4k −3, 4k −9, 4k −11, . . .. Starting from zk−1 through decreasing
i , these are −4k + 5, −4k + 7,−4k + 13, −4k + 15, . . .. The absolute values
are distinct, as needed.

•

• • • • • • • •

0

16 14 12 10 8 6 4 2

• • • •
1 5 9 13

2.2.28. Given positive integers d1, . . . , dn, there exists a caterpillar with
vertex degrees d1, . . . , dn if and only if

∑

di = 2n − 2. If there is such a
caterpillar, it is a tree and has n − 1 edges, and hence the vertex degrees
sum to n − 2. Hence the condition is necessary. There are various proofs of
sufficiency, which construct a caterpillar with these degrees given only the
list d1, . . . , dn of positive numbers with sum 2n − 2.

Proof 1 (explicit construction). We may assume that d1 ≥ · · · ≥ dk >

1 = dk+1 = · · · = dn. Begin with a path of length k + 1 with vertices
v0, . . . , vk+1. Augment these vertices to their desired degrees by adding
di − 2 edges (and leaf neighbors) at vi , for 1 ≤ i ≤ k. This creates a cater-
pillar with vertex degrees d1, . . . , dk for the nonleaves. We must prove that
it has n − k leaves, which is the number of 1s in the list.

Including v0 and vk+1, the actual number of leaves in the caterpillar we
constructed is 2 +

∑k
i=1(di − 2). This equals 2 − 2k + (

∑n
i=1 di ) −

∑n
i=k+1 di .

Since
∑n

i=1 di = 2n − 2, the number of leaves is (2 − 2k) + (2n − 2) − (n −
k) = n − k, as desired. We have created an n-vertex caterpillar with vertex
degrees d1, . . . , dn.

Proof 2 (induction on n). Basis step (n = 2): the only list is 1, 1, and
the one graph realizing this is a caterpillar. Induction step (n > 2): n pos-
itive numbers summing to 2n − 2 must include at least two 1s; otherwise,
the sum is at least 2n − 1. If the remaining numbers are all 2s, then Pn

is a caterpillar with the desired degrees. Otherwise, some di exceeds 2; by



129 Chapter 2: Trees and Distance Section 2.2: Spanning Trees and Enumeration 130

symmetry, we may assume that this is d1. Let d ′ be the list obtained by re-
ducing d1 by one and deleting one of the 1s. The list d ′ has n − 1 entries, all
positive, and it sums to 2n − 4 = 2(n − 1) − 2. By the induction hypothesis,
there is a caterpillar G ′ with degree list d ′.

Let x be a vertex of G ′ with degree d ′
1. Since d1 > 2, we have d ′

1 ≥ 2,
and hence x is on the spinal path. Growing a leaf at x yields obtain a larger
caterpillar G with degree list d. This completes the induction step.

2.2.29. Every tree transforms to a caterpillar with the same degree list by
operations that delete an edge and add another rejoining the two compo-
nents. Let P be a longest path in the current tree T . If P is incident to
every edge, then T is a caterpillar. Otherwise a path P ′ of length at least
two leaves P at some vertex x . Let uv be an edge of P ′, with u between x
and v, and let y be a neighbor of x on P.

Cut xy and add yu. Now cut uv and add vx . Each operation has the
specified type, and together they form a 2-switch preserving the vertex de-
grees. Also, the new tree has a path whose length is that of P plus dT (x, u).

Since the length of a path cannot exceed the number of vertices, this
process terminates. It can only terminate when the longest path is incident
to all edges and the tree is a caterpillar.

2.2.30. A connected graph is a caterpillar if and only if it can be drawn on
a channel without edge crossings.

Necessity. If G is a caterpillar, let P be the spine of G. Draw P on
a channel by alternating between the two sides of the channel. The re-
maining edges of G consist of a leaf and a vertex of P. If u, v, w are three
consecutive vertices on P, then v has an “unobstructed view” of the other
side of the channel between the edges vu and vw. Each leaf x adjacent to
v can be placed in that portion of the other bank, and the edge vx can then
be drawn straight across the channel without crossing another edge.

Sufficiency. Suppose that G is drawn on a channel. The endpoints
of an edge e cannot both have neighbors in the same direction along the
channel, since that would create a crossing. Hence G has no cycle, since a
cycle would leave an edge and return to it via the same direction along the
channel. We conclude that G is a tree.

If G contains the 7-vertex tree that is not a caterpillar, then let v be its
central vertex. The three neighbors of v occur on the other side of the chan-
nel in some order; let u be the middle neighbor. The other edge incident to
u must lie in one direction or the other from uv, contradicting the preceding
paragraph. Hence G avoids the forbidden subtree and is a caterpillar.

(Alternatively, we can prove this directly by moving along the channel
to extract the spine, observing that the remainder of the tree must be leaves
attached to the spine.)

2.2.31. Every caterpillar has an up/down labeling. Constructive proof.
Let P = v0, . . . , vk be a longest path in a caterpillar G with m edges; by the
argument above P is the spine of G. We iteratively construct a graceful
labeling f for G. Define two parameters l, u that denote the biggest low
label and smallest high label used; after each stage the unused labels are
{l + 1, . . . , u − 1}. Let r denote the lowest edge difference achieved; after
each stage r, . . . , m have been achieved.

Begin by setting f (v0) = 0 and f (v1) = m; hence l = 0, u = m, r =
m. Before stage i , we will have { f (vi ), f (vi−1)} = {l, u}; this is true by
construction before stage 1. Suppose this is true before stage i , along with
the other claims made for l, u, d. Let d = dG(vi ). In stage i , label the d − 1
remaining neighbors of vi with the d −1 numbers nearest f (vi−1) that have
not been used, ending with vi+1. Since we start with | f (vi ) − f (vi−1)| =
u − l = r , the new differences are r − 1, . . . , r − d + 1, which have not yet
been achieved. To finish stage i , reset r to r − d + 1; also, if f (xi−1) = l
reset l to l + d − 1, but if f (xi−1) = u reset u to u − d + 1. Now stage i is
complete, and the claims about l, u, r are satisfied as we are ready to start
stage i +1: { f (vi+1), f (vi )} = {l, u}, r = u − l, and the edge differences so far
are r, . . . , m. After stage k −1, we have assigned distinct labels in {0, . . . , m}
to all m + 1 vertices, and the differences of labels of adjacent vertices are
all distinct, so we have constructed a graceful labeling.

The 7-vertex tree that is not a caterpillar has no up/down labeling. In
an up/down labeling of a connected bipartite graph, one partite set must
have all labels above the threshold and the other have all labels below
the threshold. Also, we can interchange the high side and the low side
by subtracting all labels from n − 1. Hence for this 7-vertex tree we may
assume the labels on the vertices of degree 2 are the high labels 4,5,6.
Since 0,6 must be adjacent, this leaves two cases: 0 on the center or 0 on
the leaf next to 6. In the first case, putting 1 or 2 next to 6 gives a difference
already present, but with 3 next to 6 we can no longer obtain a difference
of 1 on any edge. In the second case, we can only obtain a difference of 5 by
putting 1 on the center, but now putting 2 next to 5 gives two edges with
difference 3, while putting 2 next to 4 and 3 next to 5 give two edges with
difference 2. Hence there is no way to complete an up/down labeling.

2.2.32. There are 2n−4 + 2b(n−4)/2c isomorphism classes of n-vertex caterpil-
lars. We describe caterpillars by binary lists. Each 1 represents an edge on
the spine. Each 0 represents a pendant edge at the spine vertex between
the edges corresponding to the nearest 1s on each side. Thus n-vertex cater-
pillars correspond to binary lists of length n − 1 with both end bits being 1.

We can generate the lists for caterpillars from either end of the spine;
reversing the list yields a caterpillar in the same isomorphism class. Hence



131 Chapter 2: Trees and Distance Section 2.3: Optimization and Trees 132

we count the lists, add the symmetric lists, and divide by 2. There are 2n−3

lists of the specified type. To make a symmetric list, we specify d(n − 3)/2e
bits. Thus the result is (2n−3 + 2d(n−3)/2e)/2.

2.2.33. If T is an orientation of a tree such that the heads of the edges are
all distinct, then T is a union of paths from the root (the one vertex that is
not a head), and each each vertex is reached by one path from the root. We
use induction on n, the number of vertices. For n = 1, the tree with one
vertex satisfies all the conditions. Consider n > 1. Since there are n − 1
edges, some vertex is not a tail. This vertex v is not the root, since the root
is the tail of all its incident edges. Since the heads are distinct, v is incident
to only one edge and is its head. Hence T − v is an orientation of a smaller
tree where the heads of the edges are distinct. By the induction hypothesis,
it is a tree of paths from the root (one to each vertex), and replacing the
edge to v preserves this desired conclusion for the full tree.

2.2.34. An explicit de Bruijn cycle of length 2n is generated by starting
with n 0’s and subsequently appending a 1 when doing so does not repeat
a previous string of length n (otherwise append a 0). A de Bruijn cycle is
formed by recording the successive edge labels along an Eulerian circuit in
the de Bruijn digraph. The vertices of the de Bruijn digraph are the 2n−1

binary strings of length n − 1. From each vertex two edges depart, labeled
0 and 1. The edge 0 leaving v goes to the vertex obtained by dropping the
first bit of v and appending 0 at the end. The edge 1 leaving v goes to the
vertex obtained by dropping the first bit of v and appending 1 at the end.

Let v0 denote the all-zero vertex, and let e be the loop at v0 labeled
0. The 2n−1 − 1 edges labeled 0 other than e form a tree of paths in to v0.
(Since a path along these edges never reintroduces a 1, it cannot return to a
vertex with a 1 after leaving it.) Starting at v0 along edge e means starting
with n 0’s. Algorithm 2.4.7 now tells us to follow the edge labeled 1 at every
subsequent step unless it has already been used; that is, unless appending
a 1 to the current list creates a previous string of length n. Theorem 2.4.9
guarantees that the result is an Eulerian circuit.

2.2.35. Tarry’s Algorithm (The Robot in the Castle). The rules of motion
are: 1) After entering a corridor, traverse it and enter the room at the other
end. 2) After entering a room whose doors are all unmarked, mark I on
the door of entry. 3) When in a room having an unmarked door, mark O
on some unmarked door and exit through it. 4) When in a room having all
doors marked, find one not marked O (if one exists), and exit through it. 5)
When in a room having all doors marked O, STOP.

When in a room other than the original room u, the number of entering
edges that have been used exceeds the number of exiting edges. Thus an

exiting door has not yet been marked O. This implies that the robot can
only terminate in the original room u.

The edges marked I grow from u a tree of paths that can be followed
back to u. The rules for motion establish an ordering of the edges leaving
each room so that the edge labeled I (for a room other than u) is last.

In order to terminate in u or to leave a room v by the door marked I,
every edge entering the room must have been used to enter it, including
all edges marked I at the other end. Therefore, for every room actually
entered, the robot follows all its incident corridors in both directions.

Thus it suffices to show that every room is reached. Let V be the set of
all rooms, and let S be the set of rooms reached in a particular robot tour. If
S 6= V , then since the castle is connected there is a corridor joining rooms
s ∈ S and r /∈ S (the shortest path between S and S. Since every reached
vertex has its incidence corridors followed in both directions, the corridor
sr is followed, and r is also reached. The contradiction yields S = V .

Comment. Consider a digraph in which each corridor becomes a pair
of oppositely-directed edges. Thus indegree equals outdegree at each ver-
tex. The digraph is Eulerian, and the edges marked I form an intree to the
initial vertex. The rules for the robot produce an Eulerian circuit by the
method in Algorithm 2.4.7.

The portion of the original tour after the initial edge e = uv is not a
tour formed according to the rules for a tour in G−e, because in the original
tour no door of u is ever marked I. If e is not a cut-edge, then tours that
follow e, follow G − e from v, and return along e do not include tours that
do not start and end with e. There may be such tours, as illustrated below,
so such a proof falls into the induction trap.

•

•

•

•

•
u

v
e

2.3. OPTIMIZATION AND TREES

2.3.1. In an edge-weighting of Kn, the total weight on every cycle is even if
and only if the total weight on every triangle is even. Necessity is trivial,
since triangles are cycles. For sufficiency, suppose that every triangle has
even weight. We use induction on the length to prove that every cycle C
has even weight. The basis step, length 3, is given by hypothesis. For the



133 Chapter 2: Trees and Distance Section 2.3: Optimization and Trees 134

induction step, consider a cycle C and a chord e. The chord creates two
shorter cycles C1, C2 with C . By the induction hypothesis, C1 and C2 have
even weight. The weight of C is the sum of their weights minus twice the
weight of e, so it is still even.

2.3.2. If T is a minimum-weight spanning tree of a weighted graph G, then
the u, v-path in T need not be a minimum-weight u, v-path in G. If G is a
cycle of length of length at least 3 with all edge weights 1, then the cheapest
path between the endpoints of the edge omitted by T has cost 1, but the
cheapest path between them in T costs n(G) − 1.

2.3.3. Computation of minimum spanning tree. The matrix on the left
below corresponds to the weighted graph on the right. Using Kruskal’s
algorithm, we iteratively select the cheapest edge not creating a cycle.
Starting with the two edges of weight 3, the edge of weight 5 is forbidden,
but the edge of weight 7 is available. The edge of weight 8 completes the
minimum spanning tree, total weight 21. Note that if the edge of weight
8 had weight 10, then either of the edges of weight 9 could be chosen to
complete the tree; in this case there would be two spanning trees with the
minimum value.











0 3 5 11 9
3 0 3 9 8
5 3 0 ∞ 10

11 9 ∞ 0 7
9 8 10 7 0











•

•

••

•

1

2

34

5
3

511

9

39

8

107

2.3.4. Weighted trees in K1 ∨ C4. On the left, the spanning tree is unique,
using all edges of weights 1 and 2. On the right it can use either edge of
weight 2 and either edge of weight 3 plus the edges of weight 1.

• •

••

•1
1 2

2
33

4

4

• •

••

•1
4 3

1
34

2

2

2.3.5. Shortest paths in a digraph. The direct i to j travel time is the entry
ai, j in the first matrix below. The second matrix recordes the least i to j
travel time for each pair i, j . These numbers were determined for each i
by iteratively updating candidate distances from i and then selecting the
closest of the unreached set (Dijkstra’s Algorithm). To do this by hand,

make an extra copy of the matrix and use crossouts to update candidate
distances in each row, using the original numbers when updating candidate
distances. The answer can be presented with more information by drawing
the tree of shortest paths that grows from each vertex.











0 10 20 ∞ 17
7 0 5 22 33
14 13 0 15 27
30 ∞ 17 0 10
∞ 15 12 8 0











→











0 10 15 25 17
7 0 5 20 24

14 13 0 15 25
30 25 17 0 10
22 15 12 8 0











2.3.6. In an integer weighting of the edges of Kn, the total weight is even
on every cycle if and only if the subgraph consisting of the edges with odd
weight is a spanning complete bipartite subgraph.

Sufficiency. Every cycle contains an even number of edges from a
spanning complete bipartite subgraph.

Necessity. Suppose that the total weight on every cycle is even. We
claim that every component of the spanning subgraph consisting of edges
with even weight is a complete graph. Otherwise, it has two vertices x, y
at distance 2, which induce P3 with their common neighbor z. Since xy has
odd weight, x, y, z would form a cycle with odd total weight.

If the spanning subgraph of edges with even weight has at least three
components, then selecting one vertex from each of three components yields
a triangle with odd weight. Hence there are at most two components. This
implies that the complement (the graph of edges with odd weight) is a
spanning complete bipartite subgraph of G.

2.3.7. A weighted graph with distinct edge weights has a unique minimum-
weight spanning tree (MST).

Proof 1 (properties of spanning trees). If G has two minimum-weight
spanning trees, then let e be the lightest edge of the symmetric difference.
Since the edge weights are distinct, this weight appears in only one of the
two trees. Let T be this tree, and let T ′ be the other. Since e ∈ E(T )− E(T ′),
there exists e′ ∈ E(T ′) − E(T ) such that T ′ + e − e′ is a spanning tree. By
the choice of e, w(e′) > w(e). Now w(T ′ + e − e′) < w(T ′), contradicting the
assumption that T ′ is an MST. Hence there cannot be two MSTs.

Proof 2 (induction on k = e(G) − n(G) + 1). If k = 0, then G is a
tree and has only one spanning tree. If k > 0, then G is not a tree; let e
be the heaviest edge of G that appears in a cycle, and let C be the cycle
containing e. We claim that e appears in no MST of G. If T is a spanning
tree containing e, then T omits some edge e′ of C , and T −e+e′ is a cheaper
spanning tree than T . Since e appears in no MST of G, every MST of G is
an MST of G − e. By the induction hypothesis, there is only one such tree.



135 Chapter 2: Trees and Distance Section 2.3: Optimization and Trees 136

Proof 3 (Kruskal’s Algorithm). In Kruskal’s Algorithm, there is no
choice if there are no ties between edge weights. Thus the algorithm can
produce only one tree. We also need to show that Kruskal’s Algorithm can
produce every MST. The proof in the text can be modified to show this; if e
is the first edge of the algorithm’s tree that is not in an MST T ′, then we
obtain an edge e′ with the same weight as e such that e′ ∈ E(T ′) − E(T )

and e′ is available when e is chosen. The algorithm can choose e′ instead.
Continuing to modify the choices in this way turns T into T ′.

2.3.8. No matter how ties are broken in choosing the next edge for Kruskal’s
Algorithm, the list of weights of a minimum spanning tree (in nondecreas-
ing order) is unique. We consider edges in nondecreasing order of cost. We
prove that after considering all edges of a particular cost, the vertex sets of
the components of the forest built so far is the same independent of the or-
der of consideration of the edges of that cost. We prove this by induction on
the number of different cost values that have been considered. At the start,
none have been considered and the forest consists of isolated vertices.

Before considering the edges of cost x , the induction hypothesis tells
us that the vertex sets of the components of the forest are fixed. Let H be a
graph with a vertex for each such component, and put two vertices adjacent
in H if G has an edge of cost x joining the corresponding two components.
Suppose that H has k vertices and l components. Independent of the order
in which the algorithm consider the edges of cost x , it must select some
k − l edges of cost x in G, and it cannot select more, since this would create
a cycle among the chosen edges.

2.3.9. Among the cheapest spanning trees containing a spanning forest F is
one containing the cheapest edge joining components of F . Let T be a cheap-
est spanning tree containing F . If e /∈ E(T ), then T +e contains exactly one
cycle, since T has exactly one u, v-path. Since u, v belong to distinct com-
ponents of F , the u, v-path in T contains another edge e′ between distinct
components of F . If e′ costs more than e, then T ′ = T − e′ + e is a cheaper
spanning tree containing F , which contradicts the choice of T . Hence e′

costs the same as e, and T ′ contains e and is a cheapest spanning tree con-
taining F . Applying this statement at every step of Kruskal’s algorithm
proves that Kruskal’s algorithm finds a minimum weight spanning tree.

2.3.10. Prim’s algorithm produces a minimum-weight spanning tree. Let
v1 be the initial vertex, let T be the tree produced, and let T ∗ be an optimal
tree that agrees with T for the most steps. Let e be the first edge chosen for
T that does not appear in T ∗, and let U be the set of vertices in the subtree
of T that has been grown before e is added. Adding e to T ∗ creates a cycle
C ; since e links U to U , C must contain another edge e′ from U to U .

Since T ∗ + e − e′ is another spanning tree, the optimality of T ∗ yields

w(e′) ≤ w(e). Since e′ is incident to U , e′ is available for consideration
when e is chosen by the algorithm; since the algorithm chose e, we have
w(e) ≤ w(e′). Hence w(e) = w(e′), and T ∗ + e − e′ is a spanning tree with
the same weight as T ∗. It is thus an optimal spanning tree that agrees
with T longer than T ∗, which contradicts the choice of T ∗.

•

•

•

•

U U

e′

e

2.3.11. Every minimum-weight spanning tree achieves the minimum of the
maximum weight edge over all spanning trees. Let T be a minimum-weight
spanning tree, and let T ∗ be one that minimizes the maximum weight edge.
If T does not, then T has an edge e whose weight is greater than the weight
of every edge in T ∗. If we delete e from T , Then we can find an edge e∗ ∈
E(T ∗) that joins the components of T − e, since T ∗ is connected. Since
w(e) > w(e∗), the weight of T − e + e′ is less than the weight of T , which
contradicts the minimality of T . Thus T has the desired property.

2.3.12. The greedy algorithm cannot guarantee minimum weight span-
ning paths. This fails even on four vertices with only three distinct vertex
weights. If two incident edges have the minimum weight a, such as a = 1,
the algorithm begins by choosing them. If the two edges completing a 4-
cycle with them have maximum weight c, such as c = 10, then one of those
must be chosen to complete a path of weight 2a + c. However, if the other
two edges have intermediate weight b, such as b = 2, there is a path of
weight 2b + a, which will be cheaper whenever b < (a + c)/2. For n > 4,
the construction generalizes in many possible ways using three weights
a < b < c. A path of length n − 2 having weight a for each edge and weight
c for the two edges completing the cycle yields a path of weight (n − 2)a + c
by the greedy algorithm, but if all other weights equal b there is a path of
weight 2b + (n − 3)a, which is cheaper whenever b < (a + c)/2.

2.3.13. If T and T ′ are spanning trees in a weighted graph G, with T having
minimum weight, then T ′ can be changed into T by steps that exchange one
edge of T ′ for one edge of T so that the edge set is always a spanning tree and
the total weight never increases. It suffices to find one such step whenever
T ′ is different from T ; the sequence then exists by using induction on the
number of edges in which the two trees differ.



137 Chapter 2: Trees and Distance Section 2.3: Optimization and Trees 138

Choose any e′ ∈ E(T ′) − E(T ). Deleting e′ from T ′ creates two com-
ponents with vertex sets U, U ′. The path in T between the endpoints of e′

must have an edge e from U to U ′; thus T ′ − e′ + e is a spanning tree. We
want to show that w(T ′ − e′ + e) ≤ w(T ′).

Since e is an edge of the path in T between the endpoints of e′, the edge
e belongs to the unique cycle in T created by adding e′ to T . Thus T + e′ − e
is also a spanning tree. Because T − e + e′ is a spanning tree and T has
minimum weight, w(e) ≤ w(e′). Thus T ′ − e′ + e moves from T ′ toward T
without increasing the weight.

2.3.14. When e is a heaviest edge on a cycle G in a connected weighted
graph G, there is a minimum spanning tree not containing e. Let T be a
minimum spanning tree in G. If e ∈ E(T ), then T − e has two components
with vertex sets U and U ′. The subgraph C − e is a path with endpoints in
U and U ′; hence it contains an edge e′ joining U and U ′. Since w(e′) ≤ w(e)
by hypothesis, T − e + e′ is a tree as cheap as T that avoids e.

Given a weighted graph, iteratively deleting a heaviest non-cut-edge
produces a minimum spanning tree. A non-cut-edge is an edge on a cycle.
A heaviest such edge is a heaviest edge on that cycle. We have shown
that some minimum spanning tree avoids it, so deleting it does not change
the minimum weight of a spanning tree. This remains true as we delete
edges. When no cycles remain, we have a connected acyclic subgraph. It
is the only remaining spanning tree and has the minimum weight among
spanning trees of the original graph.

2.3.15. If T is a minimum spanning tree of a connected weighted graph G,
then T omits some heaviest edge from every cycle of G.

Proof 1 (edge exchange). Suppose e is a heaviest edge on cycle C . If
e ∈ E(T ), then T − e is disconnected, but C − e must contain an edge e′

joining the two components of T −e. Since T has minimum weight, T −e+e′

has weight as large as T , so w(e′) ≥ w(e). Since e has maximum weight on
C , equality holds, and T does not contain all the heaviest edges from C .

Proof 2 (Kruskal’s algorithm). List the edges in order of increasing
weight, breaking ties by putting the edges of a given weight that belong
to T before those that don’t belong to T . The greedy algorithm (Kruskal’s
algorithm) applied to this ordering L yields a minimum spanning tree, and
it is precisely T . Now let C be an arbitrary cycle in G, and let e1, . . . , ek be
the edges of C in order of appearance in L; ek = uv is a heaviest edge of C .
It suffices to show that ek does not appear in T . For each earlier edge ei of
C , either ei appears in T or ei is rejected by the greedy algorithm because it
completes a cycle. In either case, T contains a path between the endpoints
of ei . Hence when the algorithm considers ek , it has already selected edges
that form paths joining the endpoints of each other edge of C . Together,

these paths form a u, v-walk, which contains a u, v-path. Hence adding ek

would complete a cycle, and the algorithm rejects ek .

2.3.16. Four people crossing a bridge. Name the people 10, 5, 2, 1, respec-
tively, according to the number of minutes they take to cross when walking
alone. To get across before the flood, they can first send {1, 2} in time 2.
Next 1 returns with the flashlight in time 1, and now {5, 10} cross in time
10. Finally, 2 carries the flashlight back, and {1, 2} cross together again.
The time used is 2 + 1 + 10 + 2 + 2 = 17. The key is to send 5 and 10
together to avoid a charge of 5.

To solve the problem with graph theory, make a vertex for each possible
state. A state consists of a partition of the people into the two banks, along
with the location of the flashlight. There is an edge from state A to state
B if state A is obtained from state B by moving one or two people (and the
flashlight) from the side of A that has the flashlight to the other side. The
problem is to find a shortest path from the initial state (10, 5, 2, 1, F |∅) to
the final state (∅|10, 5, 2, 1, F). Dijkstra’s algorithm finds such a path.

There are many vertices and edges in the graph of states. The path
corresponding to the solution in the first paragraph passes through the ver-
tices (10, 5|2, 1, F), (10, 5, 1, F |2), (1|10, 5, 2, F), (2, 1, F |10, 5), (10, 5, 2, 1).

2.3.17. The BFS algorithm computes d(u, z) for every z ∈ V (G). The algo-
rithm declares vertices to have distance k when searching vertices declared
to have distance k − 1. Since vertices are searched in the order in which
they are found, all vertices declared to have distance less than k − 1 are
searched before any vertices declared to have distance k − 1.

We use induction on d(u, z). When d(u, z) = 0, we have u = z, and
initial declaration is correct. When d(u, z) > 0, let W be the set of all
neighbors of z along shortest z, u-paths. Since d(u, W ) = d(u, z) − 1, the
induction hypothesis implies that the algorithm computes d(u, v) correctly
for all v ∈ W . Also, the preceding paragraph ensures that z will not be
found before any vertices of W are searched. Hence when a vertex of W is
searched, z will be found and assigned the correct distance.

2.3.18. Use of Breadth-First Search to compute the girth of a graph. When
running BFS, reaching a vertex that is already in the list of vertices already
reached creates a second path from the root to that vertex. Following one
path and back the other is a closed path in which the edges reaching the
new vertex occur only once, so they lie on a cycle.

When the root is a vertex of a shortest cycle, the sum of the two lengths
to the reached vertex is the length of that cycle. The sum can never be
smaller. Thus we run BFS from each vertex as root until we find a vertex
repeatedly, record the sum of the lengths of the two paths, and take the
smallest value of this over all choices of the root.



139 Chapter 2: Trees and Distance Section 2.3: Optimization and Trees 140

2.3.19. Computing diameter of trees. From a arbitrary vertex w, we find
a maximally distant vertex u (via BFS), and then we find a vertex v maxi-
mally distant from u (via BFS). We show that d(y, z) ≤ d(u, v) for all y, z ∈
V (T ). Because v is at maximum distance from u, this holds if u ∈ {y, z}, so
we may assume that u /∈ {y, z}.

We use that each vertex pair in a tree is connected by a unique path.
Let r be the vertex at which the w, y-path separates from the w, u-path.
Let s be the vertex at which the w, z-path separates from the w, u-path.
By symmetry, we may assume that r is between w and s. Since d(w, u) ≥
d(w, z), we have d(s, u) ≥ d(s, z). Now

d(y, z) = d(y, r)+d(r, s)+d(s, z) ≤ d(y, r)+d(r, s)+d(s, u) = d(y, u) ≤ d(v, u).

• •

••

y u

zw r

s

2.3.20. Minimum diameter spanning tree. An MDST is a spanning tree
in which the maximum length of a path is as small as possible. Intuition
suggests that running Dijkstra’s algorithm from a vertex of minimum ec-
centricity (a center) will produce an MDST, but this may fail.

a) Construct a 5-vertex example of an unweighted graph (edge weights
all equal 1) in which Dijkstra’s algorithm can be run from some vertex of
minimum eccentricity and produce a spanning tree that does not have min-
imum diameter. Answer: the chin of the bull.

(Note: when there are multiple candidates with the same distance
from the root, or multiple ways to reach the new vertex with minimum dis-
tance, the choice in Dijkstra’s algorithm can be made arbitrarily.)

b) Construct a 4-vertex example of a weighted graph such that Dijk-
stra’s algorithm cannot produce an MDST when run from any vertex.

2.3.21. Algorithm to test for bipartiteness. In each component, run the BFS
search algorithm from a given vertex x , recording for each newly found
vertex a distance one more than the distance for the vertex from which
it is found. By the properties of distance, searching from a vertex v to
find a vertex w may discover d(x, w) = d(x, v) − 1 or d(x, w) = d(x, v) or
d(x, w) = d(x, v) + 1 (if w is not yet in the set found).

If the second case ever arises, then we have adjacent vertices at the
same distance from x , and there is an odd cycle in the graph. Otherwise,
at the end we form a bipartition that partions the vertices according to the
parity of their distance from x .

2.3.22. The Chinese Postman Problem in the k-dimensional cube Qk , with
every edge having weight 1. If k is even, then no duplicate edges are needed,
since Qk is k-regular; total cost is k2k−1. If k is odd, then a duplicated edge
is needed at every vertex. It suffices to duplicate the matching across the
last coordinate. Thus the total cost in this case is (k + 1)2k−1.

2.3.23. The Lazy Postman. The postman’s trail must cover every edge and
contribute even degree to each vertex except the start P and end H. In
the example given, C,D,G,H have the wrong parity. Hence the duplicated
edges must consist of two paths that pair these vertices (with least total
distance), since this will change the degree parity only for the ends of the
paths. If we pair them as DG and CH, then the shortest paths are DEIFG
and CBEIH, totaling 18 extra (obviously not optimal since both use EI). If
CG and DH, then the paths are (CBEIFG or CPAFG) and DEIH, totaling
18 in either case. If CD and GH, then the paths are CBED and GFIH,
totaling 15. Hence the edges in the paths CBED and GFIH are traveled
twice; all others are traveled once.

2.3.24. Chinese Postman Problem. Solving the Chinese Postman problem
on a weighted graph with 2k vertices of odd degree requires duplicating
the edges in a set of k trails that pair up the vertices of odd degree as
endpoints. The only vertices of a trail that have odd degree in the trail are
its endpoints. If some u, v-trail T in the optimal solution is not a path, then
it contains a u, v-path P. In P, every vertex degree is even, except for the
endpoints. Hence using P instead of T to join u and v does not change the
parity on any vertex and yields smaller total weight.

Since no edge need be used thrice, the duplicated trails in an optimal
solution are pairwise edge-disjoint. As in the example below, they need not
be vertex-disjoint. With four vertices of odd degree, two paths are required,
and the cheapest way is to send both through the central vertex.

••

•

•

•

1 1 1

1

3 3

33

2.3.25. If G is an n-vertex rooted plane tree in which every vertex has 0 or
k children, then n = tk + 1 for some integer t .

Proof 1 (Induction). We use induction on the number of non-leaf ver-
tices. When there are no such vertices, the root is the only vertex, and the
formula works with t = 0. When the tree T is bigger, find a leaf at maxi-
mum distance from the root, and let x be its parent. By the choice of x , all



141 Chapter 2: Trees and Distance Section 2.3: Optimization and Trees 142

children of x are leaves. Deleting the children of x yields a tree T ′ with one
less non-leaf vertex and k fewer total vertices. By the induction hypothesis,
n(T ′) = tk + 1 for some t , and thus n(T ) = (t + 1)k + 1.

Proof 2 (Degree counting). If T has n vertices, then it has n − 1 edges,
and the degree-sum is 2n −2. If n > 1, then the root has degree l, the other
t − 1 non-leaf vertices each have degree k + 1, and the n − t leaves each
have degree 1. Thus 2n − 2 = k + (t − 1)(k + 1) + (n − t). This simplifies to
n = tk + 1.

2.3.26. A recurrence relation to count the binary trees with n +1 leaves. Let
an be the desired number of trees. When n = 0, the root is the only leaf.
When n > 0, each tree has some number of leaves, k, in the subtree rooted
at the left child of the root, where 1 ≤ k ≤ n. We can root any binary tree
with k leaves at the left child and any binary tree with n−k+1 leaves at the
right child. Summing over k counts all the trees. Thus an =

∑n
k=1 ak−1an−k

for n > 0, with a0 = 1. (Comment: These are the Catalan numbers.)

2.3.27. A recurrence relation for the number of rooted plane trees with n
vertices. Let an be the desired number of trees. When n = 1, there is one
tree. When n > 1, the root has a child. The subtree rooted at the leftmost
child has some number of vertices, k, where 1 ≤ k ≤ n − 1. The remainder
of the tree is a rooted subtree with the same root as the original tree; it has
n −k vertices. We can combine any tree of the first type with any tree of the
second type. Summing over k counts all the trees. Thus an =

∑n−1
1=k akan−k

for n > 1, with a1 = 1. (Comment: This is the same sequence as in the
previous problem, with index shifted by 1.)

2.3.28. A code with minimum expected length for messages with relative
frequencies 1,2,3,4,5,5,6,7,8,9. Iteratively combining least-frequent items
and reading paths from the resulting tree yields the codes below. Some
variation in the codes is possible, but not in their lengths. The average
length (weighted by frequency!) is 3.48.

frequency 1 2 3 4 5 5 6 7 8 9
code 00000 00001 0001 100 101 110 111 001 010 011

length 5 5 4 3 3 3 3 3 3 3

2.3.29. Computation of an optimal code. Successive combination of the
cheapest pairs leads to a tree. For each letter, we list the frequency and
the depth of the corresponding leaf, which is the length of the associated
codeword. The assignment of codewords is not unique, but the set (with
multiplicities) of depths for each frequency is. Given frequencies f i , with
associated lengths li and total frequency T , the expected length per char-
acter is

∑

fi li/T . For the given frequencies, this produces expected length

of (7 · 4 + 6 · 19 + 5 · 21 + 4 · 26 + 3 · 30)/100 = 4.41 bits per character, which
is less than the 5 bits of ASCII.
A B C D E F G H I J K L M N O P Q R S T U V W X Y Z ∅

9 2 2 4 12 2 3 2 9 1 1 4 2 6 8 2 1 6 4 6 4 2 2 1 2 1 2
3 6 6 5 3 6 5 6 3 7 7 5 6 4 4 6 7 4 5 4 5 6 6 7 6 6 5

2.3.30. Optimal code for powers of 1/2.
a) the two smallest probabilities are equal. Let pn, pn−1 be smallest

and second smallest probabilities in the distribution. Each probability
other than pn is a multiple of pn−1. If pn < pn−1, then the sum of all the
probabilities is not a multiple of pn−1. This contradicts

∑n
i=1 pi = 1, since

1 is a multiple of pn−1.
b) The expected message length of the optimal (Huffman) code for such

a distribu tion is −
∑

pi lg pi . We use induction on n to prove that each
item with probability (1/2)k is assign to a leaf at length k from the root; this
yields the stated formula. For n = 1 and p1 = 1, the one item has message
length 0, as desired. For larger n, the Huffman tree is obtained by finding
the optimal tree for the smaller set q1, . . . , qn−1 (where qn−1 = pn + pn−1
and qi = pi for 1 ≤ i ≤ n) and extending the tree at the leaf for qn−1 to
leaves one deeper for pn−1 and pn. By part (a), qn−1 = 2pn−1 = 2pn. By
the induction hypothesis, the depth of the leaf for qn−1 is − lg qn−1, and
for p1, . . . , pn−2 it is as desired. The new leaves for pn−1, pn have depth
+1 − lg qn−1 = − lg pn−1 = − lg pn, as desired.

2.3.31. For every probability distribution {pi } on n messages and every bi-
nary code for these messages, the expected length of a code word is at least
−

∑

pi lg pi . Proof by induction on n. For n = 1 = p1, the entropy and the
expected length for the optimal code both equal 0; there is no need to use
any digits. For n > 1, let W be the words in an optimal code, with W0, W1
denoting the sets of code words starting with 0,1, respectively. If all words
start with the same bit, then the code is not optimal, because the code ob-
tained by deleting the first bit of each word has smaller expected length.
Hence W0, W1 are codes for smaller sets of messages. Let q0, q1 be the sum
of the probabilities for the messages in W0, W1. Normalizing the pi ’s by q0
or q1 gives the probability distributions for the smaller codes. Because the
words within W0 or W1 all start with the same bit, their expected length is
at least 1 more than the optimal expected length for those distributions.

Applying the induction hypothesis to both W0 and W1, we find that the
expected length for W is at least q0[1−

∑

i∈W0

pi

q0
lg pi

q0
] + q1[1−

∑

i∈W1

pi

q1
lg pi

q1
]

= 1 −
∑

i∈W0
pi (lg pi − lg q0) −

∑

i∈W1
pi (lg pi − lg q1) = 1 + q0 lg q0 + q1 lg q1 −

∑

pi lg pi . It suffices to prove that 1+q0 lg q0 +q1 lg q1 ≥ 0 when q0 +q1 = 1.
Because f (x) = x lg x is convex for 0 < x < 1 (since f ′′(x) = 1/x > 0), we
have 1 + f (x) + f (1 − x) ≥ 1 + 2 f (.5) = 0.

I
n
t
r
o
d
u
c
t
i
o
n
 
t
o
 
G
r
a
p
h
 
T
h
e
o
r
y
 
2
n
d
 
E
d
i
t
i
o
n
 
W
e
s
t
 
S
o
l
u
t
i
o
n
s
 
M
a
n
u
a
l

V
i
s
i
t
 
T
e
s
t
B
a
n
k
D
e
a
l
.
c
o
m
 
t
o
 
g
e
t
 
c
o
m
p
l
e
t
e
 
f
o
r
 
a
l
l
 
c
h
a
p
t
e
r
s

https://testbankdeal.com/download/introduction-to-graph-theory-2nd-edition-west-solutions-manual/

