Chapter 2
 An Introduction to Linear Programming

Learning Objectives

1. Obtain an overview of the kinds of problems linear programming has been used to solve.
2. Learn how to develop linear programming models for simple problems.
3. Be able to identify the special features of a model that make it a linear programming model.
4. Learn how to solve two variable linear programming models by the graphical solution procedure.
5. Understand the importance of extreme points in obtaining the optimal solution.
6. Know the use and interpretation of slack and surplus variables.
7. Be able to interpret the computer solution of a linear programming problem.
8. Understand how alternative optimal solutions, infeasibility and unboundedness can occur in linear programming problems.
9. Understand the following terms:
problem formulation
constraint function
objective function
solution
optimal solution
nonnegativity constraints
mathematical model
linear program
linear functions
feasible solution
feasible region
slack variable
standard form
redundant constraint
extreme point
surplus variable
alternative optimal solutions
infeasibility
unbounded

Solutions:

1. a, b, and e , are acceptable linear programming relationships.
c is not acceptable because of $-2 B^{2}$
d is not acceptable because of $3 \sqrt{A}$
f is not acceptable because of $1 A B$
c, d, and f could not be found in a linear programming model because they have the above nonlinear terms.
2. a.

b.

c.

3. a.

b.

c.

4. a.

b.

c.

5.

6.
$7 A+10 B=420$ is labeled (a)
$6 A+4 B=420$ is labeled (b)
$-4 A+7 B=420$ is labeled (c)

7.

8.

9.

10.

From (1), $A=6-2(15 / 7)=6-30 / 7=12 / 7$
11.

12. a.

c. There are four extreme points: $(0,0),(4,0),(3,1,5)$, and $(0,3)$.
13. a.

b. The extreme points are $(5,1)$ and $(2,4)$.
c.

14. a. Let $F=$ number of tons of fuel additive $S=$ number of tons of solvent base

Max	40F	+	305			
s.t.						
	2/5F	+	$1 / 2 \mathrm{~S}$	\leq	200	Material 1
			$1 / 5$ S	\leq	5	Material 2
$3 / 5 \mathrm{~F}$		+	$3 / 10$ S	\leq	21	Material 3
	$S \geq 0$					

b.

c. Material 2: 4 tons are used, 1 ton is unused.
d. No redundant constraints.
15. a.

b. Similar to part (a): the same feasible region with a different objective function. The optimal solution occurs at $(708,0)$ with a profit of $z=20(708)+9(0)=14,160$.
c. The sewing constraint is redundant. Such a change would not change the optimal solution to the original problem.
16. a. A variety of objective functions with a slope greater than $-4 / 10$ (slope of I \& P line) will make extreme point $(0,540)$ the optimal solution. For example, one possibility is $3 S+9 D$.
b. Optimal Solution is $S=0$ and $D=540$.
C.

Department	Hours Used	Max. Available	Slack
Cutting and Dyeing	$1(540)=540$	630	90
Sewing	$5 / 6(540)=450$	600	150
Finishing	$2 / 3(540)=360$	708	348
Inspection and Packaging	$1 / 4(540)=135$	135	0

17.

$$
\begin{array}{lcccc}
\text { Max } & 5 A+2 B+0 S_{1}+0 S_{2}+0 S_{3} & \\
\text { s.t. } & \\
& 1 A-2 B+1 S_{1} & =420 \\
& 2 A+3 B+1 S_{2} & =610 \\
& 6 A-1 B+1 S_{3} & =125
\end{array}
$$

18. a.

$$
\begin{array}{lrl}
\text { Max } & 4 A+1 B+0 S_{1}+0 S_{2}+0 S_{3} & \\
\text { s.t. } & & =30 \\
& 10 A+2 B+1 S_{1} & =12 \\
& 3 A+2 B & +1 S_{2} \\
& +2 B+1 S_{3} & =10 \\
& A, B, S_{1}, S_{2}, S_{3} \geq 0 &
\end{array}
$$

b.

c. $\quad S_{1}=0, S_{2}=0, S_{3}=4 / 7$
19. a.

$$
\begin{aligned}
& \operatorname{Max} 3 A+4 B+0 S_{1}+0 S_{2}+0 S_{3} \\
& \text { s.t. } \\
& \begin{array}{rll}
-1 A+2 B+1 S_{1} & =8 \\
1 A+2 B & =12 \\
2 A+1 B & & =16
\end{array} \\
& A, B, S_{1}, S_{2}, S_{3} \geq 0
\end{aligned}
$$

b.

c. $S_{1}=8+A-2 B=8+20 / 3-16 / 3=28 / 3$
$S_{2}=12-A-2 B=12-20 / 3-16 / 3=0$
$S_{3}=16-2 A-B=16-40 / 3-8 / 3=0$
20. a.

Max $3 A+2 B$
s.t.

$$
\begin{aligned}
& A, B, S_{1}, S_{2}, S_{3}, S_{4} \geq 0
\end{aligned}
$$

b.

c. $S_{1}=(3.43+3.43)-4=2.86$
$S_{2}=24-[3(3.43)+4(3.43)]=0$
$S_{3}=3.43-2=1.43$
$S_{4}=0-(3.43-3.43)=0$
21. a. and b.

c. Optimal solution occurs at the intersection of constraints 1 and 2 . For constraint 2,

$$
B=10+A
$$

Substituting for B in constraint 1 we obtain

$$
\begin{aligned}
5 A+5(10+A) & =400 \\
5 A+50+5 A & =400 \\
10 A & =350 \\
A & =35
\end{aligned}
$$

$$
B=10+A=10+35=45
$$

Optimal solution is $A=35, B=45$
d. Because the optimal solution occurs at the intersection of constraints 1 and 2, these are binding constraints.
e. Constraint 3 is the nonbinding constraint. At the optimal solution $1 A+3 B=1(35)+3(45)=170$. Because 170 exceeds the right-hand side value of 90 by 80 units, there is a surplus of 80 associated with this constraint.
22. a.

b.

Extreme Point	Coordinates	Profit
1	$(0,0)$	$5(0)+4(0)=0$
2	$(1700,0)$	$5(1700)+4(0)=8500$
3	$(1400,600)$	$5(1400)+4(600)=9400$
4	$(800,1200)$	$5(800)+4(1200)=8800$
5	$(0,1680)$	$5(0)+4(1680)=6720$

Extreme point 3 generates the highest profit.
c. Optimal solution is $A=1400, C=600$
d. The optimal solution occurs at the intersection of the cutting and dyeing constraint and the inspection and packaging constraint. Therefore these two constraints are the binding constraints.
e. New optimal solution is $A=800, C=1200$

Profit $=4(800)+5(1200)=9200$
23. a. Let $E=$ number of units of the EZ-Rider produced
$L=$ number of units of the Lady-Sport produced

$$
\begin{array}{lrll}
\text { Max } & 2400 E & +1800 L & \\
\text { s.t. } & & & \\
& 6 E+3 L & \leq 2100 & \text { Engine time } \\
& L & \leq 280 & \text { Lady-Sport maximum } \\
& 2 E+2.5 L & \leq 1000 & \text { Assembly and testing } \\
& E, L \geq 0
\end{array}
$$

b.

c. The binding constraints are the manufacturing time and the assembly and testing time.
24. a. Let $R=$ number of units of regular model.
$C=$ number of units of catcher's model.
Max $5 R+8 C$
s.t.

$1 R$	$+3 / 2 C$	≤ 900	Cutting and sewing
$1 / 2 R$	$+1 / 3 C$	≤ 300	Finishing
$1 / 8 R$	$+1 / 4 C$	≤ 100	Packing and Shipping

$R, C \geq 0$
b.

c. $5(500)+8(150)=\$ 3,700$
d. $\quad C$ \& S $\quad 1(500)+3 / 2(150)=725$

F $\quad 1 / 2(500)+1 / 3(150)=300$
P \& S $\quad 1 /{ }_{8}(500)+1 / 4(150)=100$
e.

Department	Capacity	Usage	Slack
C \& S	900	725	175 hours
F	300	300	0 hours
P \&	100	100	0 hours

25. a. Let $B=$ percentage of funds invested in the bond fund
$S=$ percentage of funds invested in the stock fund

Max $\quad 0.06 B+0.10 S$
s.t.

$$
\begin{array}{rrrcl}
B & & \geq & 0.3 & \text { Bond fund minimum } \\
0.06 B+ & 0.10 S & \geq & 0.075 & \text { Minimum return } \\
B+ & S & = & 1 & \text { Percentage requirement }
\end{array}
$$

b. Optimal solution: $B=0.3, S=0.7$

Value of optimal solution is 0.088 or 8.8%
26. a. Let $N=$ amount spent on newspaper advertising $R=$ amount spent on radio advertising

Max $50 N+80 R$
s.t.

$$
\begin{array}{rlrl}
N+R & =1000 & \text { Budget } \\
N & \geq 250 & \text { Newspaper min. } \\
R & \geq 250 & \text { Radio min. } \\
N & -2 R & \geq 0 & \text { News } \geq 2 \text { Radio }
\end{array}
$$

$$
N, R \geq 0
$$

b.

27. a. Let $I=$ Internet fund investment in thousands
$B=$ Blue Chip fund investment in thousands
Max $0.12 I+0.09 B$
s.t.
$1 I+1 B \leq 50$
$1 I$
$6 I+4 B$

$I, B \geq 0$

Internet fund	$\$ 20,000$
Blue Chip fund	$\$ 30,000$
Annual return	$\$ 5,100$

b. The third constraint for the aggressive investor becomes

$$
6 I+4 B \leq 320
$$

This constraint is redundant; the available funds and the maximum Internet fund investment constraints define the feasible region. The optimal solution is:

Internet fund	$\$ 35,000$
Blue Chip fund	$\$ 15,000$
Annual return	$\$ 5,550$

The aggressive investor places as much funds as possible in the high return but high risk Internet fund.
c. The third constraint for the conservative investor becomes

$$
6 I+4 B \leq 160
$$

This constraint becomes a binding constraint. The optimal solution is

Internet fund	$\$ 0$
Blue Chip fund	$\$ 40,000$
Annual return	$\$ 3,600$

The slack for constraint 1 is $\$ 10,000$. This indicates that investing all $\$ 50,000$ in the Blue Chip fund is still too risky for the conservative investor. $\$ 40,000$ can be invested in the Blue Chip fund. The remaining $\$ 10,000$ could be invested in low-risk bonds or certificates of deposit.
28. a. Let $W=$ number of jars of Western Foods Salsa produced $M=$ number of jars of Mexico City Salsa produced

Max	$1 W+1.25 M$			
s.t.				
	$5 W$	$7 M$	≤ 4480	Whole tomatoes
	$3 W+$	$1 M$	≤ 2080	Tomato sauce
	$2 W+2 M$	≤ 1600	Tomato paste	

Note: units for constraints are ounces
b. Optimal solution: $W=560, M=240$

Value of optimal solution is 860
29. a. Let $B=$ proportion of Buffalo's time used to produce component 1
$D=$ proportion of Dayton's time used to produce component 1

	Maximum Daily Production	
Component 1	Component 2	
Buffalo	2000	1000
Dayton	600	1400

Number of units of component 1 produced: $2000 B+600 D$
Number of units of component 2 produced: $1000(1-B)+600(1-D)$
For assembly of the ignition systems, the number of units of component 1 produced must equal the number of units of component 2 produced.

Therefore,

$$
\begin{aligned}
& 2000 B+600 D=1000(1-B)+1400(1-D) \\
& 2000 B+600 D=1000-1000 B+1400-1400 D \\
& 3000 B+2000 D=2400
\end{aligned}
$$

Note: Because every ignition system uses 1 unit of component 1 and 1 unit of component 2 , we can maximize the number of electronic ignition systems produced by maximizing the number of units of subassembly 1 produced.

Max 2000B $+600 D$
In addition, $B \leq 1$ and $D \leq 1$.

The linear programming model is:

Max	$2000 B+600 D$	
s.t.		
	$3000 B+2000 D$	$=2400$
	B	≤ 1
		B

b. The graphical solution is shown below.

Optimal Solution: $B=.8, D=0$
Optimal Production Plan

$$
\begin{array}{ll}
\text { Buffalo - Component } 1 & .8(2000)=1600 \\
\text { Buffalo - Component } 2 & .2(1000)=200 \\
\text { Dayton - Component } 1 & 0(600)=0 \\
\text { Dayton - Component } 2 & 1(1400)=1400
\end{array}
$$

Total units of electronic ignition system $=1600$ per day.
30. a. Let $E=$ number of shares of Eastern Cable
$C=$ number of shares of ComSwitch

Max	$15 E+18 C$		
s.t.			
	$40 E+25 C$	$\leq 50,000$	Maximum Investment
	$40 E$	$\geq 15,000$	Eastern Cable Minimum
	$25 C$	$\geq 10,000$	ComSwitch Minimum
	$E, C \geq 0$		

b.

c. There are four extreme points: $(375,400)$; $(1000,400) ;(625,1000) ;(375,1000)$
d. Optimal solution is $E=625, C=1000$ Total return $=\$ 27,375$
31.

Objective Function Value $=13$
32.

	Objective Extreme Points	Surplus Function Value	Surplus Demand	Slack Total Production
$(A=250, B=100)$	800	125	-	-
$(A=125, B=225)$	925	-	-	125
$(A=125, B=350)$	1300	-	125	-

33. a.

Optimal Solution: $A=3, B=1$, value $=5$
b.
(1) $3+4(1)=7$
Slack $=21-7=14$
(2) $2(3)+1=7$
Surplus = 7-7=0
(3) $3(3)+1.5=10.5$
Slack $=21-10.5=10.5$
(4) $-2(3)+6(1)=0$
Surplus = 0-0 = 0
c.

Optimal Solution: $A=6, B=2$, value $=34$
34. a.

b. There are two extreme points: $(A=4, B=1)$ and $(A=21 / 4, B=9 / 4)$
c. The optimal solution is $A=4, B=1$
35. a.

Min	6 A	+	$4 B$	+	S_{1}	+	S_{2}	+	S_{3}		
	2A	+	$1 B$	-	S_{1}					$=$	12
	1 A	+	$1 B$			-	S_{2}			=	10
			$1 B$					+	S_{3}	$=$	4

A, $B, S_{1}, S_{2}, S_{3} \geq 0$
b. The optimal solution is $A=6, B=4$.
c. $S_{1}=4, S_{2}=0, S_{3}=0$.
36. a. Let $T=$ number of training programs on teaming $P=$ number of training programs on problem solving

Max $10,000 T+8,000 P$
s.t.

$$
\begin{array}{rlll}
T & & \geq 8 & \text { Minimum Teaming } \\
& P & \geq 10 & \text { Minimum Problem Solving } \\
T+ & P & \geq 25 & \text { Minimum Total } \\
3 T+ & 2 P & \leq 84 & \text { Days Available } \\
T, P \geq 0 & & & \\
& &
\end{array}
$$

b.

c. There are four extreme points: $(15,10)$; $(21.33,10) ;(8,30) ;(8,17)$
d. The minimum cost solution is $T=8, P=17$

Total cost $=\$ 216,000$
37.

	Regular	Zesty	
Mild	80%	60%	8100
Extra Sharp	20%	40%	3000

Let $R=$ number of containers of Regular
$Z=$ number of containers of Zesty
Each container holds $12 / 16$ or 0.75 pounds of cheese

$$
\begin{aligned}
\text { Pounds of mild cheese used } & =0.80(0.75) R+0.60(0.75) \mathrm{Z} \\
& =0.60 R+0.45 \mathrm{Z} \\
\text { Pounds of extra sharp cheese used } & =0.20(0.75) R+0.40(0.75) \mathrm{Z} \\
& =0.15 R+0.30 \mathrm{Z}
\end{aligned}
$$

Optimal Solution: $R=9600, Z=5200$, profit $=0.82(9600)+1.04(5200)=\$ 13,280$
38. a. Let $S=$ yards of the standard grade material per frame
$P=$ yards of the professional grade material per frame
Min 7.50S $+9.00 P$
s.t.

$$
\begin{array}{rlrl}
0.10 S & +0.30 P & \geq 6 & \text { carbon fiber (at least } 20 \% \text { of } 30 \text { yards) } \\
0.06 S & +0.12 P & \leq 3 & \text { kevlar (no more than } 10 \% \text { of } 30 \text { yards) } \\
S+P & =30 & \text { total (30 yards) } \\
S, P \geq 0 & &
\end{array}
$$

b.

c.

Extreme Point	Cost
$(15,15)$	$7.50(15)+9.00(15)=247.50$
$(10,20)$	$7.50(10)+9.00(20)=255.00$

The optimal solution is $S=15, P=15$
d. Optimal solution does not change: $S=15$ and $P=15$. However, the value of the optimal solution is reduced to $7.50(15)+8(15)=\$ 232.50$.
e. At $\$ 7.40$ per yard, the optimal solution is $S=10, P=20$. The value of the optimal solution is reduced to $7.50(10)+7.40(20)=\$ 223.00$. A lower price for the professional grade will not change the $S=10, P=20$ solution because of the requirement for the maximum percentage of kevlar (10\%).
39. a. Let $S=$ number of units purchased in the stock fund
$M=$ number of units purchased in the money market fund
Min $8 S+3 M$
s.t.

$50 S$	+	$100 M$	\leq	$1,200,000$
$5 S$	+	$4 M$	\geq	60,000
	Annual income			
		\geq	3,000	Minimum units in money market

$$
S, M, \geq 0
$$

Optimal Solution: $S=4000, M=10000$, value $=62000$
b. Annual income $=5(4000)+4(10000)=60,000$
c. Invest everything in the stock fund.
40. Let $P_{1}=$ gallons of product 1
$P_{2}=$ gallons of product 2

Min	$1 P_{1}$	$+1 P_{2}$			
s.t.					
	$1 P_{1}$	+		\geq	30
			Product 1 minimum		
	$1 P_{1}$	+	$2 P_{2}$	\geq	20
	Product 2 minimum				
		$P_{1}, P_{2} \geq 0$			Raw material

Optimal Solution: $P_{1}=30, P_{2}=25$ Cost $=\$ 55$
41. a. Let $R=$ number of gallons of regular gasoline produced
$P=$ number of gallons of premium gasoline produced
Max $0.30 R+0.50 P$
s.t.

$$
\begin{array}{rlrll}
0.30 R & + & 0.60 P & \leq 18,000 & \text { Grade A crude oil available } \\
1 R & + & 1 P & \leq 50,000 & \text { Production capacity } \\
& 1 P & \leq 20,000 & \text { Demand for premium } \\
R, P \geq 0 & & & &
\end{array}
$$

b.

Gallons of Regular Gasoline
Optimal Solution:
40,000 gallons of regular gasoline
10,000 gallons of premium gasoline
Total profit contribution $=\$ 17,000$
c.

Constraint	Value of Slack Variable	Interpretation
1	0	All available grade A crude oil is used
2	0	Total production capacity is used
3	10,000	Premium gasoline production is 10,000 gallons less than the maximum demand

d. Grade A crude oil and production capacity are the binding constraints.
42.

43.

44. a.

b. New optimal solution is $A=0, B=3$, value $=6$.

$$
2-35
$$

45. a.

b. Feasible region is unbounded.
c. Optimal Solution: $A=3, B=0, z=3$.
d. An unbounded feasible region does not imply the problem is unbounded. This will only be the case when it is unbounded in the direction of improvement for the objective function.
46. Let $N=$ number of sq. ft. for national brands $G=$ number of sq. ft . for generic brands

Problem Constraints:

N	+	G	200	Space available
N		\geq	120	National brands
G	\geq	20	Generic	

a. Optimal solution is extreme point 2 ; 180 sq . ft. for the national brand and 20 sq . ft . for the generic brand.
b. Alternative optimal solutions. Any point on the line segment joining extreme point 2 and extreme point 3 is optimal.
c. Optimal solution is extreme point 3 ; 120 sq . ft. for the national brand and 80 sq . ft. for the generic brand.
47.

Alternative optimal solutions exist at extreme points $(A=125, B=225)$ and $(A=250, B=100)$.

$$
\begin{aligned}
& \text { Cost }=3(125)+3(225)=1050 \\
& \text { Cost }=3(250)+3(100)=1050
\end{aligned}
$$

or

The solution $(A=250, B=100)$ uses all available processing time. However, the solution $(A=125, B=225)$ uses only $2(125)+1(225)=475$ hours.

Thus, $(A=125, B=225)$ provides $600-475=125$ hours of slack processing time which may be used for other products.
48.

Possible Actions:
i. Reduce total production to $A=125, B=350$ on 475 gallons.
ii. Make solution $A=125, B=375$ which would require $2(125)+1(375)=625$ hours of processing time. This would involve 25 hours of overtime or extra processing time.
iii. Reduce minimum A production to 100 , making $A=100, B=400$ the desired solution.
49. a. Let $\mathrm{P}=$ number of full-time equivalent pharmacists
$\mathrm{T}=$ number of full-time equivalent physicians
The model and the optimal solution obtained using The Management Scientist is shown below:
MIN 40P+10T
S.T.

1) $1 P+1 T>250$
2) $2 \mathrm{P}-1 \mathrm{~T}>0$
3) $1 P>90$

OPTIMAL SOLUTION
Objective Function Value $=\quad 5200.000$

Variable	Value	Reduced Costs
P	90.000	0.000
T	160.000	0.000

Constraint	Slack/Surplus	Dual Prices
1	0.000	-10.000
2	20.000	0.000
3	0.000	-30.000

The optimal solution requires 90 full-time equivalent pharmacists and 160 full-time equivalent technicians. The total cost is $\$ 5200$ per hour.
b.

	Current Levels	Attrition	Optimal Values	New Hires Required
Pharmacists	85	10	90	15
Technicians	175	30	160	15

The payroll cost using the current levels of 85 pharmacists and 175 technicians is $40(85)+10(175)$ $=\$ 5150$ per hour.

The payroll cost using the optimal solution in part (a) is \$5200 per hour.
Thus, the payroll cost will go up by $\$ 50$
50. Let $M=$ number of Mount Everest Parkas
$R=$ number of Rocky Mountain Parkas

Max	$100 M+150 R$				
s.t.					
	$30 M$	$+20 R$	\leq	7200	Cutting time
	$45 M$	$+15 R$	\leq	7200	Sewing time
	$0.8 M$	-	$0.2 R$	\geq	0

Note: Students often have difficulty formulating constraints such as the \% requirement constraint. We encourage our students to proceed in a systematic step-by-step fashion when formulating these types of constraints. For example:
M must be at least 20\% of total production
$M \geq 0.2$ (total production)
$M \geq 0.2(M+R)$
$M \geq 0.2 M+0.2 R$
$0.8 M-0.2 R \geq 0$

The optimal solution is $M=65.45$ and $R=261.82$; the value of this solution is $z=100(65.45)+$ $150(261.82)=\$ 45,818$. If we think of this situation as an on-going continuous production process, the fractional values simply represent partially completed products. If this is not the case, we can approximate the optimal solution by rounding down; this yields the solution $M=65$ and $R=261$ with a corresponding profit of $\$ 45,650$.
51. Let $C=$ number sent to current customers
$N=$ number sent to new customers

Note:
Number of current customers that test drive $=.25 C$
Number of new customers that test drive $=.20 \mathrm{~N}$

$$
\begin{aligned}
& \text { Number sold }=.12(.25 C)+.20(.20 N) \\
& =.03 \mathrm{C}+.04 \mathrm{~N} \\
& \text { Max } .03 C+.04 N \\
& \text { s.t. } \\
& \begin{array}{rllrl}
.25 C & & \geq & 30,000 & \text { Current Min } \\
& .20 N & \geq & 10,000 & \text { New Min } \\
.25 C-.40 N & \geq & 0 & \text { Current vs. New } \\
4 C+ & &
\end{array} \\
& 4 C+6 N \leq 1,200,000 \text { Budget } \\
& C, N, \geq 0
\end{aligned}
$$

52. Let $S=$ number of standard size rackets $O=$ number of oversize size rackets

Max	$10 S$	+	150			
s.t.						
	0.8S	-	$0.2 O$	\geq	0	\% standard
	10S	+	120	\leq	4800	Time
	$0.125 S$	+	0.40	\leq	80	Alloy
		,				

53. a. Let $R=$ time allocated to regular customer service $N=$ time allocated to new customer service

Max	$1.2 R$	+	N	
s.t.				
	R	+	N	\leq
	$25 R$	+	$8 N$	\geq
	$-0.6 R$	+	N	\geq

b.

Optimal solution: $R=50, N=30$, value $=90$

HTS should allocate 50 hours to service for regular customers and 30 hours to calling on new customers.
54. a. Let $M_{1}=$ number of hours spent on the $\mathrm{M}-100$ machine
$M_{2}=$ number of hours spent on the M-200 machine

Total Cost

$$
6(40) M_{1}+6(50) M_{2}+50 M_{1}+75 M_{2}=290 M_{1}+375 M_{2}
$$

Total Revenue

$$
25(18) M_{1}+40(18) M_{2}=450 M_{1}+720 M_{2}
$$

Profit Contribution

$$
(450-290) M_{1}+(720-375) M_{2}=160 M_{1}+345 M_{2}
$$

Max	$160 M_{1}$	+	$345 M_{2}$			
s.t.						
	M_{1}			\leq	15	M-100 maximum
			M_{2}	\leq	10	M-200 maximum
	M_{1}			\geq	5	M-100 minimum
			M_{2}	\geq	5	M-200 minimum
	$40 M_{1}$	+	$50 M_{2}$	\leq	1000	Raw material available

b.

OPTIMAL SOLUTION

Constraint	Slack/Surplus
----------------2.500	
1	0.000
2	7.500
3	5.000
4	0.000

Dual Prices
0.000
145.000
0.000
0.000
4.000

The optimal decision is to schedule 12.5 hours on the $\mathrm{M}-100$ and 10 hours on the $\mathrm{M}-200$.

Chapter 1
 Introduction

Case Problem: Scheduling a Golf League

Note to Instructor: This case problem illustrates the value of the rational management science approach. The problem is easy to understand and, at first glance, appears simple. But, most students will have trouble finding a solution. The solution procedure suggested involves decomposing a larger problem into a series of smaller problems that are easier to solve. The case provides students with a good first look at the kinds of problems where management science is applied in practice. The problem is a real one that one of the authors was asked by the Head Professional at Royal Oak Country Club for help with.

Solution: Scheduling problems such as this occur frequently, and are often difficult to solve. The typical approach is to use trial and error. An alternative approach involves breaking the larger problem into a series of smaller problems. We show how this can be done here using what we call the Red, White, and Blue algorithm.

Suppose we break the 18 couples up into 3 divisions, referred to as the Red, White, and Blue divisions. The six couples in the Red division can then be identified as R1, R2, R3, R4, R5, R6; the six couples in the White division can be identified as W1, W2,..., W6; and the six couples in the Blue division can be identified as B1, B2,..., B6. We begin by developing a schedule for the first 5 weeks of the season so that each couple plays every other couple in its own division. This can be done fairly easily by trial and error. Shown below is the first 5-week schedule for the Red division.

Week 1	Week 2	Week 3	Week 4	Week 5
R1 vs. R2	R1 vs. R3	R1 vs. R4	R1 vs. R5	R1 vs. R6
R3 vs. R4	R2 vs. R5	R2 vs. R6	R2 vs. R4	R2 vs. R3
R5 vs. R6	R4 vs. R6	R3 vs. R5	R3 vs. R6	R4 vs. R5

Similar 5-week schedules can be developed for the White and Blue divisions by replacing the R in the above table with a W or a B.

To develop the schedule for the next 3 weeks, we create 3 new six-couple divisions by pairing 3 of the teams in each division with 3 of the teams in another division; for example, (R1, R2, R3, W1, W2, W3), (B1, B2, B3, R4, R5, R6), and (W4, W5, W6, B4, B5, B6). Within each of these new divisions, matches can be scheduled for 3 weeks without any couples playing a couple they have played before. For instance, a 3-week schedule for the first of these divisions is shown below:

Week 6	Week 7	Week 8
R1 vs. W1	R1 vs. W2	R1 vs. W3
R2 vs. W2	R2 vs. W3	R2 vs. W1
R3 vs. W3	R3 vs. W1	R3 vs. W2

A similar 3-week schedule can be easily set up for the other two new divisions. This will provide us with a schedule for the first 8 weeks of the season.

For the final 9 weeks, we continue to create new divisions by pairing 3 teams from the original Red, White and Blue divisions with 3 teams from the other divisions that they have not yet been paired with. Then a 3week schedule is developed as above. Shown below is a set of divisions for the next 9 weeks.

Weeks 9-11

(R1, R2, R3, W4, W5, W6) (W1, W2, W3, B1, B2, B3) (R4, R5, R6, B4, B5, B6)

Weeks 12-14

(R1, R2, R3, B1, B2, B3) (W1, W2, W3, B4, B5, B6) (W4, W5, W6, R4, R5, R6)

Weeks 15-17

(R1, R2, R3, B4, B5, B6)
(W1, W2, W3, R4, R5, R6)
(W4, W5, W6, B1, B2, B3)

This Red, White and Blue scheduling procedure provides a schedule with every couple playing every other couple over the 17-week season. If one of the couples should cancel, the schedule can be modified easily. Designate the couple that cancels, say R4, as the Bye couple. Then whichever couple is scheduled to play couple R4 will receive a Bye in that week. With only 17 couples a Bye must be scheduled for one team each week.

This same scheduling procedure can obviously be used for scheduling sports teams and or any other kinds of matches involving 17 or 18 teams. Modifications of the Red, White and Blue algorithm can be employed for 15 or 16 team leagues and other numbers of teams.

Chapter 2
 An Introduction to Linear Programming

Case Problem 1: Workload Balancing

1.

	Production Rate (minutes per printer)		
Model	Line 1	Line 2	Profit Contribution (\$)
DI-910	3	4	42
DI-950	6	2	87

Capacity: 8 hours $\times 60$ minutes/hour $=480$ minutes per day
Let $\quad D_{1}=$ number of units of the DI-910 produced $D_{2}=$ number of units of the DI-950 produced

Max $42 D_{1}+87 D_{2}$
s.t.

$$
\begin{array}{cll}
3 D_{1}+6 D_{2} \leq 480 & \text { Line } 1 \text { Capacity } \\
4 D_{1}+2 D_{2} \leq 480 & \text { Line } 2 \text { Capacity } \\
D_{1}, D_{2} \geq 0 & &
\end{array}
$$

Using The Management Scientist, the optimal solution is $D_{1}=0, D_{2}=80$. The value of the optimal solution is $\$ 6960$.

Management would not implement this solution because no units of the DI-910 would be produced.
2. Adding the constraint $D_{1} \geq D_{2}$ and resolving the linear program results in the optimal solution $D_{1}=$ $53.333, D_{2}=53.333$. The value of the optimal solution is $\$ 6880$.
3. Time spent on Line $1: 3(53.333)+6(53.333)=480$ minutes

Time spent on Line 2: $4(53.333)+2(53.333)=320$ minutes
Thus, the solution does not balance the total time spent on Line 1 and the total time spent on Line 2. This might be a concern to management if no other work assignments were available for the employees on Line 2.
4. Let $T_{1}=$ total time spent on Line 1
$T_{2}=$ total time spent on Line 2
Whatever the value of T_{2} is,
$T_{1} \leq T_{2}+30$
$T_{1} \geq T_{2}-30$
Thus, with $T_{1}=3 D_{1}+6 D_{2}$ and $T_{2}=4 D_{1}+2 D_{2}$

$$
\begin{aligned}
& 3 D_{1}+6 D_{2} \leq 4 D_{1}+2 D_{2}+30 \\
& 3 D_{1}+6 D_{2} \geq 4 D_{1}+2 D_{2}-30
\end{aligned}
$$

Hence,

$$
\begin{aligned}
& -1 D_{1}+4 D_{2} \leq 30 \\
& -1 D_{1}+4 D_{2} \geq-30
\end{aligned}
$$

Rewriting the second constraint by multiplying both sides by -1 , we obtain

$$
\begin{gathered}
-1 D_{1}+4 D_{2} \leq 30 \\
1 D_{1}-4 D_{2} \leq 30
\end{gathered}
$$

Adding these two constraints to the linear program formulated in part (2) and resolving using The Management Scientist, we obtain the optimal solution $D_{1}=96.667, D_{2}=31.667$. The value of the optimal solution is $\$ 6815$. Line 1 is scheduled for 480 minutes and Line 2 for 450 minutes. The effect of workload balancing is to reduce the total contribution to profit by $\$ 6880-\$ 6815=\$ 65$ per shift.
5. The optimal solution is $D_{1}=106.667, D_{2}=26.667$. The total profit contribution is

$$
42(106.667)+87(26.667)=\$ 6800
$$

Comparing the solutions to part (4) and part (5), maximizing the number of printers produced $(106.667+26.667=133.33)$ has increased the production by $133.33-(96.667+31.667)=5$ printers but has reduced profit contribution by $\$ 6815-\$ 6800=\$ 15$. But, this solution results in perfect workload balancing because the total time spent on each line is 480 minutes.

Case Problem 2: Production Strategy

1. Let $B P 100=$ the number of BodyPlus 100 machines produced BP200 = the number of BodyPlus 200 machines produced

Max	$371 B P 100$	$+$	461BP200			
s.t.						
	8BP100	$+$	12 BP 200	\leq	600	Machining and Welding
	5BP100	$+$	10 BP 200	\leq	450	Painting and Finishing
	2BP100	$+$	2BP200	\leq	140	Assembly, Test, and Packaging
	-0.25BP100	$+$	$0.75 B P 200$	\geq	0	BodyPlus 200 Requirement

$B P 100, B P 200 \geq 0$

Optimal solution: $B P 100=50, B P 200=50 / 3$, profit $=\$ 26,233.33$. Note: If the optimal solution is rounded to $B P 100=50, B P 200=16.67$, the value of the optimal solution will differ from the value shown. The value we show for the optimal solution is the same as the value that will be obtained if the problem is solved using a linear programming software package such as The Management Scientist.
2. In the short run the requirement reduces profits. For instance, if the requirement were reduced to at least 24% of total production, the new optimal solution is BP100 $=1425 / 28, B P 200=$ $225 / 14$, with a total profit of $\$ 26,290.18$; thus, total profits would increase by $\$ 56.85$. Note: If the optimal solution is rounded to $B P 100=50.89, B P 200=16.07$, the value of the optimal solution will differ from the value shown. The value we show for the optimal solution is the same as the value that will be obtained if the problem is solved using a linear programming software package such as The Management Scientist.
3. If management really believes that the BodyPlus 200 can help position BFI as one of the leader's in high-end exercise equipment, the constraint requiring that the number of units of the BodyPlus 200 produced be at least 25% of total production should not be changed. Since the optimal solution uses all of the available machining and welding time, management should try to obtain additional hours of this resource.

Case Problem 3: Hart Venture Capital

1. Let S = fraction of the Security Systems project funded by HVC $M=$ fraction of the Market Analysis project funded by HVC

$\begin{gathered} \text { Max } \\ \text { s.t. } \end{gathered}$	1,800,000S	+	1,600,000M			
	600,000S	+	500,000M	\leq	800,000	Year 1
	600,000S	+	350,000M	\leq	700,000	Year 2
	250,000S	+	400,000M	\leq	500,000	Year 3
	S			\leq	1	Maximum for S
			M	\leq	1	Maximum for M
	S,M	\geq	0			

The solution obtained using The Management Scientist software package is shown below:
OPTIMAL SOLUTION

OBJECTIVE COEFFICIENT RANGES

Variable	Lower Limit	Current Value	Upper Limit
S	No Lower Limit	1800000.000	No Upper Limit
M	No Lower Limit	1600000.000	No Upper Limit

RIGHT HAND SIDE RANGES

Constraint	Lower Limit	Current Value	Upper Limit
1	No Lower Limit	800000.000	822950.820
2	669565.217	700000.000	No Upper Limit
3	461111.111	500000.000	No Upper Limit
4	0.609	1.000	No Upper Limit
5	0.870	1.000	No Upper Limit

Thus, the optimal solution is $S=0.609$ and $M=0.870$. In other words, approximately 61% of the Security Systems project should be funded by HVC and 87% of the Market Analysis project should be funded by HVC.

The net present value of the investment is approximately $\$ 2,486,957$.
2.

	Year 1	Year 2	Year 3
Security Systems	$\$ 365,400$	$\$ 365,400$	$\$ 152,250$
Market Analysis	$\$ 435,000$	$\$ 304,500$	$\$ 348,000$
Total	$\$ 800,400$	$\$ 669,900$	$\$ 500,250$

Note: The totals for Year 1 and Year 3 are greater than the amounts available. The reason for this is that rounded values for the decision variables were used to compute the amount required in each year. To see why this situation occurs here, first note that each of the problem coefficients is an integer value. Thus, by default, when The Management Scientist prints the optimal solution, values of the decision variables are rounded and printed with three decimal places. To increase the number of decimal places shown in the output, one or more of the problem coefficients can be entered with additional digits to the right of the decimal point. For instance, if we enter the coefficient of 1 for S in constraint 4 as 1.000000 and resolve the problem, the new optimal values for S and D will be rounded and printed with six decimal places. If we use the new values in the computation of the amount required in each year, the differences observed for year 1 and year 3 will be much smaller than we obtained using the values of $S=0.609$ and $M=0.870$.
3. If up to $\$ 900,000$ is available in year 1 we obtain a new optimal solution with $S=0.689$ and $M=$ 0.820. In other words, approximately 69% of the Security Systems project should be funded by HVC and 82% of the Market Analysis project should be funded by HVC.

The net present value of the investment is approximately $\$ 2,550,820$.
The solution obtained using The Management Scientist software package follows:
OPTIMAL SOLUTION

Objective Function Value $=$ 2550819.672		
Variable	Value	Reduced Costs
S	0.689	0.000
M	0.820	0.000
Constraint	Slack/Surplus	Dual Prices
1	77049.180	0.000
2	0.000	2.098
3	0.000	2.164
4	0.311	0.000
5	0.180	0.000

OBJECTIVE COEFFICIENT RANGES

Variable	Lower Limit			Current Value	Upper Limit		
S	No	Lower	r Limit	1800000.000		Upper	r Limit
M	No	Lower	r Limit	1600000.000		Upper	r Limit

RIGHT HAND SIDE RANGES

Constraint	Lower Limit	Current Value	Upper Limit
1	822950.820	900000.000	No Upper Limit
2	No Lower Limit	700000.000	802173.913
3	No Lower Limit	500000.000	630555.556
4	0.689	1.000	No Upper Limit
5	0.820	1.000	No Upper Limit

4. If an additional $\$ 100,000$ is made available, the allocation plan would change as follows:

	Year 1	Year 2	Year 3
Security Systems	$\$ 413,400$	$\$ 413,400$	$\$ 172,250$
Market Analysis	$\$ 410,000$	$\$ 287,000$	$\$ 328,000$
Total	$\$ 823,400$	$\$ 700,400$	$\$ 500,250$

5. Having additional funds available in year 1 will increase the total net present value. The value of the objective function increases from $\$ 2,486,957$ to $\$ 2,550,820$, a difference of $\$ 63,863$. But, since the allocation plan shows that $\$ 823,400$ is required in year 1 , only $\$ 23,400$ of the additional $\$ 100,00$ is required. We can also determine this by looking at the slack variable for constraint 1 in the new solution. This value, 77049.180, shows that at the optimal solution approximately $\$ 77,049$ of the $\$ 900,000$ available is not used. Thus, the amount of funds required in year 1 is $\$ 900,000-\$ 77,049=$ $\$ 822,951$. In other words, only $\$ 22,951$ of the additional $\$ 100,000$ is required. The differences between the two values, $\$ 23,400$ and $\$ 22,951$, is simply due to the fact that the value of $\$ 23,400$ was computed using rounded values for the decision variables. The value of $\$ 22,951$ is computed internally in The Management Scientist output and is not subject to this rounding. Thus, the most accurate value is $\$ 22,951$.
