
Chapter 1

Probability and Distributions

1.2.1 Part (c): C1 ∩ C2 = {(x, y) : 1 < x < 2, 1 < y < 2}.

1.2.3 C1 ∩ C2 = {mary,mray}.

1.2.6 limk→∞ Ck = {x : 0 < x < 3}. Note: neither the number 0 nor the number 3
is in any of the sets Ck, k = 1, 2, 3, . . .

1.2.7 Part (b): limk→∞ Ck = φ, because no point is in all the sets Ck, k = 1, 2, 3, . . .

1.2.9 Because f(x) = 0 when 1 ≤ x < 10,

Q(C3) =
∫ 10

0

f(x) dx =
∫ 1

0

6x(1 − x) dx = 1.

1.2.11 Part (c): Draw the region C carefully, noting that x < 2/3 because 3x/2 < 1.
Thus

Q(C) =
∫ 2/3

0

[∫ 3x/2

x/2

dy

]
dx =

∫ 2/3

0

x dx = 2/9.

1.2.14 Note that

25 = Q(C) = Q(C1) +Q(C2) −Q(C1 ∩ C2) = 19 + 16 −Q(C1 ∩ C2).

Hence, Q(C1 ∩ C2) = 10.

1.2.15 By studying a Venn diagram with 3 intersecting sets, it should be true that

11 ≥ 8 + 6 + 5 − 3 − 2 − 1 = 13.

It is not, and the accuracy of the report should be questioned.

1.3.3

P (C) =
1
2

+
1
4

+
1
8

+ · · · =
1/2

1 − (1/2)
= 1.

1
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2 Probability and Distributions

1.3.6

P (C) =
∫ ∞

−∞
e−|x| dx =

∫ 0

−∞
ex dx+

∫ ∞

0

e−x dx = 2 �= 1.

We must multiply by 1/2.

1.3.8
P (Cc

1 ∪ Cc
2) = P [(C1 ∩ C2)c] = P (C) = 1,

because C1 ∩ C2 = φ and φc = C.

1.3.11 The probability that he does not win a prize is(
990
5

)
/

(
1000

5

)
.

1.3.13 Part (a): We must have 3 even or one even, 2 odd to have an even sum.
Hence, the answer is (

10
3

)(
10
0

)(
20
3

) +

(
10
1

)(
10
2

)(
20
3

) .

1.3.14 There are 5 mutual exclusive ways this can happen: two “ones”, two “twos”,
two “threes”, two “reds”, two “blues.” The sum of the corresponding proba-
bilities is (

2
2

)(
6
0

)
+
(
2
2

)(
6
0

)
+
(
2
2

)(
6
0

)
+
(
5
2

)(
3
0

)
+
(
3
2

)(
5
0

)(
8
2

) .

1.3.15

(a) 1 −
(
48
5

)(
2
0

)(
50
5

)
(b) 1 −

(
48
n

)(
2
0

)(
50
n

) ≥ 1
2
, Solve for n.

1.3.20 Choose an integer n0 > max{a−1, (1−a)−1}. Then {a} = ∩∞
n=n0

(
a− 1

n , a+ 1
n

)
.

Hence by (1.3.10),

P ({a}) = lim
n→∞P

[(
a− 1

n
, a+

1
n

)]
=

2
n

= 0.

1.3.21 Choose n0 such that 0 < a − (1/n0) < a < a + (1/n0) < 1. Let An =
(a− (1/n), a+ (1/n)), for n ≥ n0. Since {a} = ∩∞

n=n0
An, we have

P ({a}) = P
(
∩∞

n=n0
An

)
= lim

n→∞P (An) = lim
n→∞

2
n

= 0.

Copyright © 2019 Pearson Education, Inc.



3

1.4.2
P [(C1 ∩ C2 ∩ C3) ∩ C4] = P [C4|C1 ∩ C2 ∩ C3]P (C1 ∩ C2 ∩ C3),

and so forth. That is, write the last factor as

P [(C1 ∩ C2) ∩ C3] = P [C3|C1 ∩ C2]P (C1 ∩ C2).

1.4.5 [(
4
3

)(
48
10

)
+
(
4
4

)(
48
9

)]
/
(
52
13

)[(
4
2

)(
48
11

)
+
(
4
3

)(
48
10

)
+
(
4
4

)(
48
9

)]
/
(
52
13

) .
1.4.10

P (C1|C) =
(2/3)(3/10)

(2/3)(3/10) + (1/3)(8/10)
=

3
7
<

2
3

= P (C1).

1.4.12 Part (c):

P (C1 ∪ Cc
2) = 1 − P [(C1 ∪ Cc

2)
c] = 1 − P (C∗

1 ∩ C2)
= 1 − (0.4)(0.3) = 0.88.

1.4.14 Part (d):
1 − (0.3)2(0.1)(0.6).

1.4.16 1 − P (TT ) = 1 − (1/2)(1/2) = 3/4, assuming independence and that H and
T are equilikely.

1.4.19 Let C be the complement of the event; i.e., C equals at most 3 draws to get
the first spade.

(a) P (C) = 1
4 + 3

4
1
4 +

(
3
4

)2 1
4 .

(b) P (C) = 1
4 + 13

51
39
52 + 13

50
38
51

39
52 .

1.4.22 The probability that A wins is: 1/6+5/6×4/6×3/6+5/6×4/6×3/6×2/6×5/6.

1.4.26 Let Y denote the bulb is yellow and let T1 and T2 denote bags of the first and
second types, respectively.

(a)

P (Y ) = P (Y |T1)P (T1) + P (Y |T2)P (T2) =
20
25
.6 +

10
25
.4.

(b)

P (T1|Y ) =
P (Y |T1)P (T1)

P (Y )
.

1.4.30 Suppose without loss of generality that the prize is behind curtain 1. Con-
dition on the event that the contestant switches. If the contestant chooses
curtain 2 then she wins, (In this case Monte cannot choose curtain 1, so he
must choose curtain 3 and, hence, the contestant switches to curtain 1). Like-
wise, in the case the contestant chooses curtain 3. If the contestant chooses
curtain 1, she loses. Therefore the conditional probability that she wins is 2

3 .
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4 Probability and Distributions

1.4.31 (1) The probability is 1 −
(

5
6

)4.
(2) The probability is 1 −

[(
5
6

)2 + 10
36

]24
.

1.5.2 Part (a):

c[(2/3) + (2/3)2 + (2/3)3 + · · · ] =
c(2/3)

1 − (2/3)
= 2c = 1,

so c = 1/2.

1.5.5 Part (a):

p(x) =

{ (13
x )( 39

5−x)
(52

5 ) x = 0, 1, . . . , 5

0 elsewhere.

1.5.9 Part (b):
50∑

x=1

x/5050 =
50(51)
2(5050)

=
51
202

.

1.5.10 For Part (c): Let Cn = {X ≤ n}. Then Cn ⊂ Cn+1 and ∪nCn = R. Hence,
limn→∞ F (n) = 1. Let ε > 0 be given. Choose n0 such that n ≥ n0 implies
1 − F (n) < ε. Then if x ≥ n0, 1 − F (x) ≤ 1 − F (n0) < ε.

1.6.2 Part (a):

p(x) =

(
9

x−1

)(
10

x−1

) 1
11 − x

=
1
10
, x = 1, 2, . . . 10.

1.6.3

(a) p(x) =
(

5
6

)x−1(1
6

)
, x = 1, 2, 3, . . .

(b)
∞∑

x=1

(
5
6

)x−1(1
6

)
=

1/6
1 − (25/36)

=
6
11
.

1.6.5 Here are R functions which compute the pmf and the cdf:

p165 <- function(){
x = 0:5
p165 = choose(20,x)*choose(80,5-x)/choose(100,5)
return(p165)

}
cdf165 <- function(){

pm <- p165(); dm = -1:6; dx = c(dm,dm); dy = c(rep(0,8),rep(1,8))
plot(dy~dx,pch=" ",xlab="x",ylab=expression(F(x)));segments(-1,0,0,0)

ct = 0; cx = -1

Copyright © 2019 Pearson Education, Inc.
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for(j in 1:6){
ct = ct + pm[j]; cx = cx + 1
segments(cx,ct,cx+1,ct)

}
}

1.6.8 Dy = {1, 23, 33, . . .}. The pmf of Y is

p(y) =
(

1
2

)y1/3

, y ∈ Dy.

1.7.1 If
√
x < 10 then

F (x) = P [X(c) = c2 ≤ x] = P (c ≤
√
x) =

∫ √
x

0

1
10
dz =

√
x

10
.

Thus

f(x) = F ′(x) =
{ 1

20
√

x
0 < x < 100

0 elsewhere.

1.7.2
C2 ⊂ Cc

1 ⇒ P (C2) ≤ P (Cc
1) = 1 − (3/8) = 5/8.

1.7.4 Among other characteristics,∫ ∞

−∞

1
π(1 + x2)

dx =
1
π

arctanx
∣∣∣∣∞
−∞

=
1
π

[π
2
−
(
−π

2

)]
= 1.

1.7.6 Part (b):

P (X2 < 9) = P (−3 < X < 3) =
∫ 3

−2

x+ 2
19

dx

=
1
18

[
x2

2
+ 2x

]3

−2

=
1
18

[
21
2

− (−2)
]

=
25
36
.

1.7.8 Part (c):

f ′(x) = xe−x − 1
2
x2e−x =

1
2
xe−x(2 − x) = 0;

hence, x = 2 is the mode because it maximizes f(x).

1.7.9 Part (b): ∫ m

0

3x2 dx =
1
2
;

hence, m3 = 2−1 and m = (1/2)1/3.

Copyright © 2019 Pearson Education, Inc.



6 Probability and Distributions

1.7.10 ∫ ξ0.2

0

4x3 dx = 0.2 :

hence, ξ40.2 = 0.2 and ξ0.2 = 0.21/4.

1.7.13 x = 1 is the mode because for 0 < x <∞ because

f(x) = F ′(x) = e−x − e−x + xe−x = xe−x

f ′(x) = −xe−x + e−x = 0,

and f ′(1) = 0.

1.7.16 Since Δ > 0
X > z ⇒ Y = X + Δ > z.

Hence, P (X > z) ≤ P (Y > z).

1.7.19 Since f(x) is symmetric about 0, ξ.25 < 0. So we need to solve,∫ ξ.25

−2

(
−x

4

)
dx = .25.

The solution is ξ.25 = −
√

2.

1.7.22 For 0 < y < 27,

x = y1/3,
dx

dy
=

1
3
y−2/3

g(y) = =
1

3y2/3

y2/3

9
=

1
27
.

1.7.24

f(x) =
1
π
,

−π
2

< x <
π

2
.

x = arctan y,
dx

dy
=

1
1 + y2

, −∞ < y <∞.

g(y) =
1
π

1
1 + y2

, −∞ < y <∞.

1.7.25

G(y) = P (−2 log X4 ≤ y) = P (X ≥ e−y/8) =
∫ 1

e−y/8
4x3 dx = 1 − e−y/2, 0 < y <∞

g(y) = G′(y) =
{
e−y/2 0 < y <∞
0 elsewhere.

Copyright © 2019 Pearson Education, Inc.
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1.7.26

G(y) = P (X2 ≤ y) = P (−√
y ≤ X ≤ √

y)

=

⎧⎨⎩
∫√

y

−√
y

1
3 dx = 2

√
y

3 0 ≤ y < 1∫√
y

−1
1
3 dx =

√
y

3 + 1
3 1 ≤ y < 4

g(y) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1

3
√

y 0 ≤ y < 1
1

6
√

y 1 ≤ y < 4

0 elsewhere.

1.8.5

E(1/X) =
100∑

x=51

1
x

1
50
.

The latter sum is bounded by the two integrals∫ 101

51
1
x dx and

∫ 100

50
1
x dx.

An appropriate approximation might be

1
50

∫ 101.5

50.5

1
x
dx =

1
50

(log 100.5 − log 50.5).

1.8.7

E[X(1 −X)] =
∫ 1

0

x(1 − x)3x2 dx.

1.8.9 When 1 < y <∞

G(y) = P (1/X ≤ y) = P (X ≥ 1/y) =
∫ 1

1/y

2x dx = 1 − 1
y2

g(y) =
2
y3

E(Y ) =
∫ ∞

1

y
2
y3
dy = 2, which equals

∫ 1

0
(1/x)2x dx.

1.8.11 The expectation of X does not exist because

E(|X|) =
2
π

∫ ∞

0

x

1 + x2
dx =

1
π

∫ ∞

1

1
u
du = ∞,

where the change of variable u = 1 + x2 was used.

1.8.14 Here is the pmf of G:

Copyright © 2019 Pearson Education, Inc.



8 Probability and Distributions

−p0 + 2 −p0 + 5 −p0 + 8
(3
2)

(5
2)

(3
1)(2

1)
(5
2)

(2
2)

(5
2)

It follows that E(G) = −p0 + 4.4; so for a fair game take p0 = $4.40. Here is
an R function which simulates the game.

game1814 <- function(p0,nsims){
collG = c()

for(i in 1:nsims){
p = sample(c(1,1,1,4,4),2)
collG = c(collG,-p0 + sum(p))

}
game1814 = mean(collG)
return(game1814)

}

1.9.2

M(t) =
∞∑

x=1

(
et

2

)x

=
et/2

1 − (et/2)
, et/2 < 1.

Find E(X) = M ′(0) and Var(X) = M ′′(0) − [M ′(0)]2.

1.9.4
0 ≤ var(X) = E(X2) − [E(X)]2.

1.9.6

E

[(
X − μ

σ

)2
]

=
1
σ2
σ2 = 1.

1.9.8

K(b) = E[(X − b)2] = E(X2) − 2bE(X) + b2

K ′(b) = −2E(X) + 2b = 0 ⇒ b = E(X).

1.9.11 For a continuous type random variable,

K(t) =
∫ ∞

−∞
txf(x) dx.

K ′(t) =
∫ ∞

−∞
xtx−1f(x) dx⇒ K ′(1) = E(X).

K ′′(t) =
∫ ∞

−∞
x(x− 1)tx−2f(x) dx⇒ K ′′(1) = E[X(X1)];

and so forth.

Copyright © 2019 Pearson Education, Inc.
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1.9.12

3 = E(X − 7) ⇒ E(X) = 10 = μ.

11 = E[(X − 7)2] = E(X2) − 14E(X) + 49 = E(X2) − 91
⇒ E(X2) = 102 and var(X) = 102 − 100 = 2.

15 = E[(X − 7)3]. Expand (X − 7)3 and continue.

1.9.16

E(X) = 0 ⇒ var(X) = E(X2) = 2p.
E(X4) = 2p⇒ kurtosis = 2p/4p2 = 1/2p.

1.9.17

ψ′(t) = M ′(t)/M(t) ⇒ ψ′(0) = M ′(0)/M(0) = E(X).

ψ′′(t) =
M(t)M ′′(t) −M ′(t)M ′(t)

[M(t)2]

⇒ ψ′′(0) =
M(0)M ′′(0) −M ′(0)M ′(0)

[M(0)2]
= M ′′(0) − [M ′(0)]2 = var(X).

1.9.19

M(t) = (1 − t)−3 = 1 + 3t+ 3 · 4 t
2

2!
+ 3 · 4 · 5 t

3

3!
+ · · ·

Considering the coefficient of tr/r!, we have

E(Xr) = 3 · 4 · 5 · · · (r + 2), r = 1, 2, 3 . . . .

1.9.21 Integrating the parts with u = 1 − F (x), dv = dx, we get

{[1 − F (x)]x}b
0 −

∫ b

0

x[−f(x)] dx =
∫ b

0

xf(x) dx = E(X).

1.9.24

E(X) =
∫ 1

0

x
1
4
dx+ 0 · 1

4
+ 1 · 1

2
=

5
8
.

E(X2) =
∫ 1

0

x2 1
4
dx+ 0 · 1

4
+ 1 · 1

2
=

7
12
.

var(X) =
7
12

−
(

5
8

)2

=
37
192

.

1.9.25

E(X) =
∫ ∞

−∞
x[c1f1(x) + · · · + ckfk(x)] dx =

k∑
i=1

ciμi = μ.

Copyright © 2019 Pearson Education, Inc.



10 Probability and Distributions

Because
∫∞
−∞(x− μ)2fi(x) dx = σ2

i + (μi − μ)2, we have

E[(X − μ)2] =
k∑

i=1

ci[σ2
i + (μi − μ)2].

1.10.2
μ =

∫ ∞

0

xf(x) dx ≥
∫ ∞

2μ

2μf(x) dx = 2μP (X > 2μ).

Thus 1
2 ≥ P (X > 2μ).

1.10.5 If, in Theorem 1.10.2, we take u(X) = exp{tX} and c = exp{ta}, we have

P (exp{tX} ≥ exp{ta}] ≤M(t) exp{−ta}.

If t > 0, the events exp{tX} ≥ exp{ta} and X ≥ a are equivalent. If t < 0,
the events exp{tX} ≥ exp{ta} and X ≤ a are equivalent.

1.10.6 We have P (X ≥ 1) ≤ [1− exp{−2t}]/2t for all 0 < t <∞, and P (X ≤ −1) ≤
[exp{2t} − 1]/2t for all −∞ < t < 0. Each of these bounds has the limit 0 as
t→ ∞ and t→ −∞, respectively.

Copyright © 2019 Pearson Education, Inc.



Chapter 2

Multivariate Distributions

2.1.2

P (A5) =
7
8
− 4

8
− 3

8
+

2
8

=
2
8
.

2.1.5 ∫ ∞

0

∫ ∞

0

[
2g(
√
x2

1 + x2
2)/π

√
x2

1 + x2
2

]
dx1dx2 =

∫ ∞

0

∫ π/2

0

[2g(ρ)/πρ]ρ dθdρ

=
∫ ∞

0

g(ρ) dρ = 1.

2.1.6 We can write the double integration as

P (a < X < b, c < Y < d) =
∫ b

a

2xe−x2
dx ·

∫ d

c

2ye−y2
dy.

Since a, c > 0, the one-to-one transformations z = x2 and w = y2, lead to the
answer.

2.1.7

G(z) = P (X + Y ≤ z) =
∫ z

0

∫ z−x

0

e−x−y dydx

=
∫ z

0

[1 − e−(z−x)]e−x dx = 1 − e−z − ze−z.

g(z) = G′(z) =
{
ze−z 0 < z <∞
0 elsewhere.

11
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12 Multivariate Distributions

2.1.8

G(z) = P (XY ≤ z) = 1 −
∫ 1

z

∫ 1

z/x

dydx

= 1 −
∫ 1

z

(
1 − z

x

)
dx = z − z log z

g(z) = G′(z) =
{

− log z 0 < z < 1
0 elsewhere.

Why is − log z > 0?

2.1.9

f(x, y) =

⎧⎨⎩ (13
x )(13

y )( 26
13−x−y)

(52
13)

x ≥ 0, y ≥ 0, x+ y ≤ 13, x and y integers

0 elsewhere.

2.1.11

P (X1 +X2 ≤ 1) = 15
∫ 1/2

0

x2
1

[∫ 1−x1

x1

x2 dx2

]
dx1.

2.1.15

E
[
et1X1+t2X2

]
=

∞∑
i=1

∞∑
j=1

et1i+t2j

(
1
2

)i+j

=
∞∑

i=1

(
et1

1
2

)i ∞∑
j=1

(
et1

1
2

)j

=
[

1
1 − 2−1et1

− 1
] [

1
1 − 2−1et2

− 1
]
,

provided ti < log 2, i = 1, 2.

2.2.1

p(y1, y2) =
{ (

2
3

)y2
(

1
3

)2−y2 (y1, y2) = (0, 0), (−1, 1), (1, 1), (0, 2)
0 elsewhere.

2.2.2

p(y1, y2) =
{
y1/36 y1 = y2, 2y2, 3y2; y2 = 1, 2, 3
0 elsewhere.

y1 1 2 3 4 6 9

p(y1) 1/36 4/36 6/36 4/36 12/36 9/36

2.2.4 The inverse transformation is given by x1 = y1y2 and x2 = y2 with Jacobian
J = y2. By noting what the boundaries of the space S(X1, X2) map into, it
follows that the space T (Y1, Y2) = {(y1, y2) : 0 < yi < 1, i = 1, 2}. The pdf of
(Y1, Y2) is fY1,Y2(y1, y2) = 8y1y3

2 .

Copyright © 2019 Pearson Education, Inc.



13

2.2.5 The inverse transformation is x1 = y1 − y2 and x2 = y2 with Jacobian J = 1.
The space of (Y1, Y2) is T = {(y1, y2) : −∞ < yi < ∞, i = 1, 2}. Thus the
joint pdf of (Y1, Y2) is

fY1,Y2(y1, y2) = fX1,X2(y1 − y2, y2),

which leads to formula (2.2.1).

2.3.2

(a) c1

∫ x2

0

x1/x
2
2 dx1 =

c1
2

= 1 ⇒ c1 = 2 and c2 = 5.

(b) 10x1x
2
2, 0 < x1 < x2 < 1; zero elsewhere

(c)
∫ 1/2

1/4

2x1/(5/8)2 dx =
64
25

(
1
4
− 1

16

)
=

12
25
.

(d)
∫ 1/2

1/4

∫ 1

x1

10x1x
2
2 dx2dx1 =

∫ 1/2

1/4

10
3
x1(1 − x3

1) dx1 =
135
512

.

2.3.3

f2(x2) =
∫ x2

0

21x2
1x

3
2 dx1 = 7x6

2, 0 < x2 < 1.

f1|2(x1|x2) = 21x2
1x

3
2/7x

6
2 = 3x2

1/x
3
2, 0 < x1 < x2.

E(X1|x2) =
∫ x2

0

x1(3x2
1/x

3
2) dx1 =

3
4
x2.

G(y) = P

(
3
4
X2 ≤ y

)
=
∫ 4y/3

0

7x6
2 dx2 =

(
4y
3

)7

, 0 < y <
3
4

g(y) =
{

7
(

4
3

)7
y6 0 < y < 3

4
0 elsewhere.

E(Y ) =
7
8

3
4

=
21
32
.

Var(Y ) =
7

1024
.

E(X1) =
21
32
.

Var(X1) =
553

15360
>

7
1024

.

2.3.8 The marginal pdf of X is

fX(x) = 2
∫ ∞

x

e−xe−y dy = 2e−2x, 0 < x <∞.

Hence, the conditional pdf of Y given X = x is

fY |X(y|x) =
2e−xe−y

2e−2x
= e−(y−x), 0 < x < y <∞,
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14 Multivariate Distributions

with conditional mean

E(Y |X = x) =
∫ ∞

x

ye−(y−x) dy = x+ 1, x > 0.

2.3.9 For Part (c):(
13
x2

)(
13
x3

)(
13

2 − x2 − x3

)
/

(
39
2

)
, where integers x2, x3 ≥ 0 and x2 + x3 ≤ 2.

2.3.11

(a) f1(x1)f2|1(x2|x1) = 1 · 1
x1
, 0 < x2 < x1 < 1.

(b)
∫ 1

1/2

∫ x1

1−x1

1
x1

dx2dx1 =
∫ 1

1/2

2x1 − 1
x1

dx1 = 2(1/2) + log (1/2) = 1 − log 2.

2.3.12

(b)
∫ ∞

2

e−x dx/

∫ ∞

1

e−x dx = e−2/e−1 = e−1.

2.4.2 X1 and X2 are dependent because 0 < x1 < x2 <∞ is not a product space.

2.4.4 Because X1 and X2 are independent, the probability equals[∫ 1/3

0

2x1 dx1

][∫ 1/3

0

2(1 − x2) dx2

]
= (1/3)2[1 − (2/3)2] = 5/81.

2.4.7 The marginal pdf of X1 is given by

fX1(x1) =
∫ −2+

√
1−(x1−1)2

−2−
√

1−(x1−1)2

1
π
dx2 =

2
π

√
1 − (x1 − 1)2, 0 < x < 2.

The random variables X1 and X2 are not independent.

2.4.8 X and Y are dependent because 0 < y < x < 1 is not a product space.

E(X|y) =
∫ 1

y

x[2x/(1 − y2)] dx =
2(1 − y2)
3(1 − y2)

.

2.4.9

P (X + Y ≤ 60) = P (X ≤ 10) +
∫ 20

10

∫ 60−x

40

1
300

dy dx

=
1
3

+
∫ 20

10

(20 − x)/300 dx =
1
3

+
1
6

=
1
2
.
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2.4.12

P (|X1 −X2| = 1) = P (X1 = 0, X2 = 1) + P (X1 = 1, X2 = 0)

= P (X1 = 0)P (X2 = 1) + P (X1 = 1)P (X2 = 0) =
1
3
.

2.5.1 For Part (c):

cov = (0)(0)(1/3) + (1)(1)(1/3) + (2)(0)(1/3) − (1)(1/3) = 0.

Thus ρ = 0 and yet X and Y are dependent.

2.5.3
ρ2 = (1/2)(1/2) = 1/4 ⇒ ρ = 1/2.

2.5.11 Let Y = (X1 − μ1) + (X2 − μ2). Then the mean of Y is 0 and its variance is

Var(Y ) = Var(X1 +X2) = σ2 + σ2 + 2ρσ2 = 2σ2(1 − ρ).

Use Chebyshev’s inequality to obtain the result.

2.6.1 For Part (g):

E(X|y, z) =
∫ 1

0

x
3(x+ y + z)/2

3((1/2) + y + z)/2
dx =

(1/3) + (y/2) + (z/2)
(1/2) + y + z

.

2.6.3

G(y) = 1 − P (y < Xi, i = 1, 2, 3, 4) = 1 − [(1 − y)3]4 = 1 − (1 − y)12

g(y) = G′(y) =
{

12(1 − y)11 0 < y < 1
0 elsewhere.

2.6.6 Multiply both members of E[X1 − μ1|x2, x3] = b2(x2 − μ2) + b3(x3 − μ3)
by the joint pdf of X2 and X3 and denote the result by (1). Multiply both
members of (1) by (x2 − μ2) and integrate (or sum) on x2 and x3. This gives
(2), ρ12σ1σ2 = b2σ

2
2 + 3ρ23σ1σ2. Return to (1) and multiply each member by

(x3 − μ3) and integrate (or sum) on x2 and x3. This yields (3) ρ13σ1σ3 =
b2ρ23σ2σ3 + b3σ

2
3 . Solve (2) and (3) for b2 and b3.

2.6.9

(a)
∫ ∞

0

∫ ∞

x1

e−x1−x2 dx2 dx1 /
∫ ∞

0

∫ ∞

x1/2

e−x1−x2 dx2 dx1

+
∫ ∞

0

e−2x1 dx1 /
∫ ∞

0

e−3x1/2 dx1 =
1
2

2
3

=
3
4
.

2.7.1
x1 = y1y2y3, x2 = y2y3 − y1y2y3, x3 = y3 − y2y3.

with J = y2y
2
3 , and 0 < y1 < 1, 0 < y2 < 1, 0 < y3 <∞. This yields

g(y1, y2, y3) = y2y
2
3e

−y3 = (1)(2y2)(y2
3e

−y3/2) = g1(y1)g2(y2)g3(y3).
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