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Chapter 2: Probability
Section 2.2: Sample Spaces and the Algebra of Sets

2.2.1

2.2.2

2.2.3

224

2.2.5

2.2.6

2.2.7

2.2.8

2.2.9

2.2.10

2.2.11

2.2.12

2.2.13

S={(5,5,9), (5,8, 1), (5, £+8), (f+8:8), (5, £ /) (f 55, )5 (F 5 [55), (s £}
A={ (5,19, (f.5.9)}: B={(f./,.1)}

Let (x, y, z) denote a red x, a blue y, and a green z.
Then 4 = {(2,2,1),(2,1,2), (1,2,2), (1,1,3), (1,3,1), (3,1, )}

(1,3,4), (1,3,5), (1,3,6), (2,3.4), (2,3,5), (2,3,6)

There are 16 ways to get an ace and a 7, 16 ways to geta 2 and a 6, 16 ways to geta 3 and a
5, and 6 ways to get two 4’s, giving 54 total.

The outcome sought is (4, 4). It is “harder” to obtain than the set {(5, 3), (3, 5), (6, 2), (2, 6)}
of other outcomes making a total of 8.

The set N of five card hands in hearts that are not flushes are called straight flushes. These are
five cards whose denominations are consecutive. Each one is characterized by the lowest
value in the hand. The choices for the lowest value are A, 2, 3, ..., 10. (Notice that an ace can
be high or low). Thus, N has 10 elements.

P = {right triangles with sides (5, a, b): a* + b* = 25}

A= {SSBBBB, SBSBBB, SBBSBB, SBBBSB, BSSBBB, BSBSBB, BSBBSB, BBSSBB, BBSBSB,
BBBSSB}

(a) S=1{(0,0,0,0)(0,0,0,1),(0,0,1,0),(0,0,1, 1), (0, 1,0,0), (0, 1,0, 1), (0, 1, 1, 0),
0,1, 1,1),(1,0,0,0),(1,0,0,1),(1,0,1,0), (1,0, 1, 1,), (1, 1,0, 0), (1, 1,0, 1),
(1,1,1,0), (1, 1,1, 1,)}

(b) A=1{(0,0, 1,1), (0, 1,0, 1), (0, 1, 1,0), (1,0,0, 1), (1,0, 1,0), (1, 1,0, 0, )}

() 1+k

(@) S={1,1),(1,2),(1,4),(2,1),(2,2), (2,4, (4, 1),(4,2), (4 4)}
(b) {2,3,4,5,6,8}

Let p; and p» denote the two perpetrators and i1, i>, and i3, the three in the lineup who are
innocent.

Then S = {(p17i1)7 (P155), (P155), (D250), (Py515), (D25 5), (Py5 o), (i 505), (G5 E3), (izai3)} .
The event 4 contains every outcome in S except (p1, p2).

The quadratic equation will have complex roots—that is, the event 4 will occur—if
b* - 4ac < 0.

In order for the shooter to win with a point of 9, one of the following (countably infinite)

sequences of sums must be rolled: (9,9), (9, no 7 or no 9,9), (9, no 7 or no 9, no 7 or no 9,9),

Copyright © 2018 Pearson Education, Inc.
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2 Chapter 2: Probability

2.2.14

2.2.15

2.2.16

2.2.17

2.2.18

2.2.19

2.2.20

2.2.21

2.2.22

2.2.23

Let (x, y) denote the strategy of putting x white chips and y red chips in the first urn (which
results in 10 — x white chips and 10 — y red chips being in the second urn). Then

S= {(x, y):x=0,1..,10, y=0,1,...,10, and 1< x+ y < 19} . Intuitively, the optimal strategies
are (1, 0) and (9, 10).

Let A4y be the set of chips put in the urn at 1/2¥ minute until midnight. For example,
Ar=1{11,12,13, 14, 15, 16, 17, 18, 19, 20}. Then the set of chips in the urn at midnight is

O(Ak—{k+1})=®.

move arrow on first figure raise B by 1

B /AUB B ANB

y }/ //

I I I ) I I I )

If x>+ 2x <8, then (x +4)(x —2)<0and 4 = {x: -4 <x<2}. Similarly, if x> + x < 6, then
(x+3)(x—2)<0and B= {x: -3 <x<2). Therefore, A " B={x: -3<x<2} and
AUB={x: 4<x<2}.

ANBNC={x: x=2,3,4}
The system fails if either the first pair fails or the second pair fails (or both pairs fail). For

either pair to fail, though, both of its components must fail. Therefore,
A= (A11 M Az]) U (Alz ﬂAzz).

(a) € ] (b) —t
1 2 ee) 0 1 o
(c) empty set (d) +—=
—co 2 3 lee)
40
(a) {E1, E2} (b) {S1,82,T1, 72} (c) {4, 1}

(a) Ifsis a member of 4 U (B N C) then s belongs to 4 or to B N C. If it is a member of 4 or
of BN C, then it belongsto A U Band to 4 U C.
Thus, it is a member of (4 U B) N (4 U O).
Conversely, choose s in (4 U B) N (4 U C). If it belongs to A4, then it belongs to
A U (BN O). If it does not belong to 4, then it must be a member of B N C.
In that case it also is a member of 4 U (B N C).

Copyright © 2018 Pearson Education, Inc.



2.2.24

2.2.25

2.2.26

2.2.27

2.2.28

2.2.29

2.2.30

2.2.31

Section 2.2: Sample Spaces and the Algebra of Sets 3

(b) If s is a member of 4 N (B U C) then s belongs to 4 and to B U C. If it is a member of B,
then it belongs to 4 N B and, hence, (4 N B) U (4 N C). Similarly, if it belongs to C, it is
a member of (4 N B) U (4 N C). Conversely, choose s in (4 N B) U (4 N C). Then it
belongs to 4. If it is a member of 4 N B then it belongs to 4 N (B U C). Similarly, if it
belongs to A N C, then it must be a member of 4 N (B U C).

LetB=A41UAU ... Udr. Then 4° N4y N..0 AL = (41U A U ..U A)C = BC. Then the
expression is simply B U B¢ = S.

(a) Lets be a member of 4 U (B U C). Then s belongs to either 4 or B U C (or both). If s
belongs to A, it necessarily belongs to (4 U B) U C. If s belongs to B U C, it belongs to
B or C or both, so it must belong to (4 U B) U C. Now, suppose s belongs to
(4w B) U C. Then it belongs to either A U B or C or both. If it belongs to C, it must
belong to 4 U (B U C). Ifit belongs to 4 U B, it must belong to either A or B or both, so
it must belong to 4 U (B U C).

(b) Suppose s belongs to 4 N (B N C), so it is a member of 4 and also B N C. Then it is
amember of 4 and of B and C. That makes it a member of (4 N B) N C. Conversely, if s
is a member of (4 N B) N C, a similar argument shows it belongs to 4 N (B N O).

(@) A“NB°NC”

b)AnBnC

() ANB“n C*

(d) ANB N CHYUU NBNCHYUUA NB N C)
€ UNBNCHUUNB NCO)UU NBNC)

A 1s a subset of B.

(a) {0} U {x:55x<10}
(b) {x:3=x<5}
() {x:0<x<T7}
(d) {x:0<x<3}
(e) {x:3=<x<10}
() {x:7<x<10}

(a) Band C
(b) B is a subset of 4.

(a) A] M Az M A3

(b) A] U Az ) A3

The second protocol would be better if speed of approval matters. For very important issues,
the first protocol is superior.

Let A and B denote the students who saw the movie the first time and the second time,
respectively. Then N(4) = 850, N(B) = 690, and N[(4w B)“] =4700

(implying that N(4 U B) = 1300). Therefore, N(4 N B) = number who saw movie twice
=850 + 690 — 1300 = 240.

Copyright © 2018 Pearson Education, Inc.



4 Chapter 2: Probability

2232 (a)
HH 29'::
(AnBC = ACUBC IS ]
H A3
(b)
SN HHHHH
N B§ T
(A4uB¥ = A°nBC , | N :
N
N H AHH-
N <
B

2.2.33 (a)
B
(AnB)u(AnO)
A C A o

(b)
B
(AuB)n(4AuC)
A C
2.2.34 (a)
(b) 4 B
C
AnB)nC

2.2.35 A and B are subsets of 4 U B.

Copyright © 2018 Pearson Education, Inc.



2.2.36

2.2.37

2.2.38

2.2.39

2.2.40

Section 2.2: Sample Spaces and the Algebra of Sets 5

(( (ANB ) =4“UB

(b)

N
)E
SE

( BU(AUB) =A“UB

7
v 4

(c)

AN
!

| AN(ANB) = AN B°

Let 4 be the set of those with MCAT scores > 27 and B be the set of those with GPAs > 3.5.
We are given that N(4) = 1000, N(B) = 400, and N(4 N B) = 300.

Then N(A° N BS) = N[(AUB)“]=1200 — N(4 U B) = 1200 — [(N(4) + N(B) — N(4 N B)]
= 1200 — [(1000 + 400 — 300] = 100. The requested proportion is 100/1200.

B | AuBuC

A C

N4 UBUC)=NA) +NB)+NC)=NANB) ~NANC)=NBNC) +N(ANBAC)

Let 4 be the set of those saying “yes” to the first question and B be the set of those saying
“yes” to the second question. We are given that N(4) = 600, N(B) =400, and

N(AC N B) =300. Then N(4 N B) = N(B) — N(A° N B)=400-300=100. N(AN B)
= N(4) — N(4 N B) = 600 — 100 = 500.

N[(ANB)°] =120 = N(4 U B) = 120 — [N( A° " B) + N(4 " B ) + N(4 N B)]
=120 - [50 + 15 +2] = 53

Copyright © 2018 Pearson Education, Inc.



6 Chapter 2: Probability

Section 2.3: The Probability Function

2.3.1 Let L and V denote the sets of programs with offensive language and too much violence,
respectively. Then P(L)=0.42, P(V)=0.27, and P(L N V)= 0.10.
Therefore, P(program complies) = P(L U ) =1—[P(L) + P(V) — P(L N V)] = 0.41.

2.3.2 P(A or B but not both) = P(4 U B) — P(A N B) = P(4) + P(B) — P (A N B) — P(A N B)
=044+05-0.1-0.1=0.7
2.3.3 (a) 1-PANB)
(b) P(B)—P(AN B)
2.34 P(A uUB)=P(A)+PB)-P(AnB)=0.3; P(A)—P(AnB)=0.1. Therefore, P(B) =0.2.
5 1
2.3.5 No. P(A1 U A2 U A3) =P(at least one “6” appears) = 1 — P(no 6’s appear) = 1—(gj # 5

The Ai’s are not mutually exclusive, so P(41 U A2 U A3) # P(41) + P(42) + P(43).

2.3.6
0.24 B
A 0.6
P(4 or B but not both) =0.5 - 0.2 =10.3
2.3.7
By inspection, B=(BN A1) U (BN A)U...U(BNA,).
2.3.8 (a) (b)

®

Copyright © 2018 Pearson Education, Inc.



2.3.9

2.3.10

2.3.11

2.3.12

2.3.13

2.3.14

2.3.15

2.3.16

2.3.17

2.3.18

Section 2.4: Conditional Probability 7

P(odd man out) =1 — P(no odd man out) =1 - P(HHH or TTT) =1 — %

3
4

A=1{2,4,6,...,24}; B=1{3,6,9,...,24); AnB={6,12, 18, 24}.
Therefore, P(4 U B) = P(A) + P(B) — P(A N B) = 24_&_1:&'
24 24 24 24

Let A: State wins Saturday and B: State wins next Saturday. Then P(4) =0.10, P(B) = 0.30,
and P(lose both) = 0.65 =1 — P(4 U B), which implies that P(4 U B) = 0.35. Therefore,

P(A N B)=0.10+0.30 — 0.35 = 0.05, so P(State wins exactly once) = P(4 U B) — P(4 N B)
=0.35-0.05=0.30.

Since A; and 4, are mutually exclusive and cover the entire sample space, p; + p> = 1.
1 5
But3p,—p,=—,sop,=—.
p1— D2 > D2 2

Let F: female is hired and 7% minority is hired. Then P(F) = 0.60, P(T) = 0.30, and
P(FCNT9=025=1-P(F U T). Since P((FUT)=0.75, P(F N T)
=0.60 +0.30 - 0.75=0.15.

The smallest value of P[(4 U BU C)°] occurs when P(4 U B U C) is as large as possible.
This, in turn, occurs when 4, B, and C are mutually disjoint. The largest value for
PAUBUCQO)is P(4)+ P(B)+ P(C)=0.2+0.1 +0.3=0.6. Thus, the smallest value for
Pl[(AUBUC)is 0.4.

(@) XN Y={H,T,T H),(T H H T} soPX NY)=2/16
b) XN Y={H T,T,1),(T,T,T, H), (T, H H, H), (H, H,H, T)} so P(X N Y)=4/16

4=1{(1,5),(2,4),(3,3),(4,2), (5, 1)}
AN B ={(1,5),3,3), 5 1)}, s0 P(4 N B°)=3/36=1/12.

ANB,ANB)UMANC),A,AUB,S

Let A be the event of getting arrested for the first scam; B, for the second. We are given
P(4)=1/10, P(B) = 1/30, and P(4 n B) = 0.0025. Her chances of not getting arrested are
P[(AUB)]=1-PAUB)=1-[P(A)+PB)-PANB)]=1-[1/10+1/30 — 0.0025]
=0.869

Section 2.4: Conditional Probability

24.1

P(sum =10 and sum exceeds 8)

P(sum = 10|sum exceeds 8) =
P(sum exceeds 8)

P(sum =10) _ 3/36 _3
P(sum =9,10,11,0r12) 4/36 +3/36+2/36+1/36 10

Copyright © 2018 Pearson Education, Inc.



8 Chapter 2: Probability

P(ANB)  P(ANB) _10P(4NB)
P(B) P(4) 4

2.4.2 P(A|B) + P(B|A) = 0.75 = +5P(AN B), which implies

that P(4 N B)=0.1.

243 If P(4|B) = @ < P(A), then P(4 N B) <P(A) - P(B).
It follows that P(B|4) = LACB) (P(A)-PB) _ by
P(4) P(A)
2.4.4 P(EA U B) = P(EN(AUB)) _ P(E) _P(AVUB)-P(AnB)_04-0.1 =§.
P(AUB) P(AUB) P(AUB) 0.4 4
2.4.5 The answer would remain the same. Distinguishing only three family types does not make

them equally likely; (girl, boy) families will occur twice as often as either (boy, boy) or (girl,
girl) families.

2.4.6 P(AuUB)=0.8and P(4 U B)—P(A N B)=0.6,s0 P(A " B)=0.2.

Also, PUIB) =06 = ZACB) pgy= 02 L ana pay=08+02- 122

P(B) 0.6 3 3 3

24.7 Let R; be the event that a red chip is selected on the ith draw, i =1, 2.

Then P(both are red) = P(R1 N R2) = P(R2 | R1)P(R)) = %% = %
2.4.8 P(4|B) = P(ANB) _P(A)+P(B)-P(AUB) _a+b-P(4VB) '

P(B) P(B) b
a+b-1

But P(4 U B)< 1, s0 P(4]B) = P

249 Let W, be the event that a white chip is selected on the ith draw, i = 1,2 .
Then P(W,|W)) = M If both chips in the urn are white, P(W)) = 1;
PW)

if one is white and one is black, P(W)) = % .

. e . 1 11 3
Since each chip distribution is equally likely, P(W1)=1 - 5 + 35 = 7

- 1 11
Similarly, PIW1 N W) =1 - —+—~—=§, so P(W,|Wh) = S/8 =§.

2 42 8 3/4 6

P(ANB)N(AUB)] _ P(D)

2.4.10 P[(ANB) (4 B)]= Pl(AUB)] T P(AUB)]

2.4.11 (@) PA“NBY=1-PAUB)=1-[P(A)+PB)—P(ANB)=
1 -[0.65+0.55 - 0.25]=0.05
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2.4.12

2.4.13

2.4.14

2.4.15

2.4.16

2.4.17

2.4.18

2.4.19

2.4.20

Section 2.4: Conditional Probability 9

(b) P[(A° " B) U (4 N B)]=PUA N B)+ PN B =
[P(4) — P(A N B)] + [P(B) — P(4 N B)] =[0.65 — 0.25] + [0.55 - 0.25] = 0.70
(c) P(4UB)=0.95
(d) P[ANB)X]=1-PANB)=1-0.25=0.75
P[(A° "B)U (AN B°)]
P(AUB)
(f) P(4 N B)| AU B)=PA N B)P(4 U B)=0.25/0.95=25/95
(g) P(B|AS) = P(A° N B)/P(4°) ] = [P(B) — P(4 N B)]/[1 — P(4)] = [0.55 — 0.25]/[1 - 0.65]
=30/35

(e) P{[(A°"B)yU(ANBY)|AUB}= =0.70/0.95 = 70/95

P(No. of heads = 2| No. of heads < 2)
= P(No. of heads > 2 and No. of heads < 2)/P(No. of heads < 2)
= P(No. of heads = 2)/P(No. of heads < 2) = (3/8)/(7/8) = 3/7

P(first die = 4|sum = 8) = P(first die > 4 and sum = 8)/P(sum = 8)
=P({(4,4), (5,3), (6, 2)}/P({(2, 6), 3,5), (4, 4), (5, 3), (6, 2)}) = 3/5

There are 4 ways to choose three aces (count which one is left out). There are 48 ways to
choose the card that is not an ace, so there are 4 X 48 = 192 sets of cards where exactly three
are aces. That gives 193 sets where there are at least three aces. The conditional probability is
(1/270,725)/(193/270,725) = 1/193.

First note that P4 U B)=1-P[(AU B)]=1-02=0.8.
Then P(B)=P(A U B) - P(A " B°)-=P(ANB)=08-03-0.1=0.5.
Finally P(A|B) = P(An B)/P(B) = 0.1/0.5=1/5

P(4]B) = 0.5 implies P(4 N B) = 0.5P(B). P(B|4) = 0.4 implies P(4 N B) = (0.4)P(4).
Thus, 0.5P(B) = 0.4P(4) or P(B) = 0.8P(4).
Then, 0.9 = P(4) + P(B) = P(4) + 0.8P(4) or P(4) = 0.9/1.8 = 0.5.

Pl[(ANB)]1=P[(AUB)]+PANB)Y+PA "B)=02+0.1+03=0.6
P(4 U B|(A N B)) = P[(4 N BY) U (4° N B)J/P((A N B))=[0.1 + 0.3]/0.6 = 2/3

P(sum = 8|at least one die shows 5)

= P(sum = 8 and at least one die shows 5)/P(at least one die shows 5)
=P({(5, 3), (5,4), (5, 6), (3, 5), (4, 5), (6, 5), (5, 5)})/(11/36) = 7/11

P(Outandout wins|Australian Doll and Dusty Stake don’t win)
= P(Outandout wins and Australian Doll and Dusty Stake don’t win)/P(Australian Doll and
Dusty Stake don’t win) = 0.20/0.55 = 20/55

Suppose the guard will randomly choose to name Bob or Charley if they are the two to go
free. Then the probability the guard will name Bob, for example, is

P(Andy, Bob) + (1/2)P(Bob, Charley) = 1/3 + (1/2)(1/3) = 1/2.

The probability Andy will go free given the guard names Bob is P(Andy, Bob)/P(Guard
names Bob) = (1/3)/(1/2) = 2/3. A similar argument holds for the guard naming Charley.
Andy’s concern is not justified.
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