Revised Answers Manual to an Introduction to Measure-Theoretic Probability

George G. Roussas
University of California, Davis, United States

Chapter 1

Certain Classes of Sets, Measurability, Pointwise Approximation

1. (i) $x \in \underline{\lim }_{n \rightarrow \infty} A_{n}$ if and only if $x \in \cup_{n \geq 1} \cap_{j \geq n} A_{j}$, so that $x \in \cap_{j \geq n_{0}} A_{j}$ for some $n_{0} \geq 1$, and then $x \in A_{j}$ for all $j \geq n_{0}$, or $x \in \cup_{j \geq n} A_{j}$ for all $n \geq 1$, so that $x \in \cap_{n \geq 1} \cup_{j \geq 1} A_{j} \lim _{n \rightarrow \infty} A_{n}$.
(ii) $\left(\underline{\lim }_{n \rightarrow \infty} A_{n}\right)^{c}=\left(\cup_{n \geq 1} \cap_{j \geq n} A_{j}\right)^{c}=\cap_{n \geq 1} \cup_{j \geq n} A_{j}^{c}=\overline{\lim }_{n \rightarrow \infty} A_{n}^{c}$, $\left(\overline{\lim }_{n \rightarrow \infty} A_{n}\right)^{c}=\left(\cap_{n \geq 1} \cup_{j \geq n} A_{j}\right)^{c}=\cup_{n \geq 1} \cap_{j \geq n} A_{j}^{c}=\underline{\lim }_{n \rightarrow \infty} A_{n}^{c}$.
Let $\lim _{n \rightarrow \infty} A_{n}=A$. Then $\underline{\lim }_{n \rightarrow \infty} A_{n}^{c}=\left(\overline{\lim }_{n \rightarrow \infty} A_{n}\right)^{c}=$ $\left(\lim _{n \rightarrow \infty} A_{n}\right)^{c}=A^{c}$, and $\varlimsup_{n \rightarrow \infty} A_{n}=\left(\underline{\lim }_{n \rightarrow \infty} A_{n}\right)^{c}=$ $\left(\lim _{n \rightarrow \infty} A_{n}\right)^{c}=A^{c}$, so that $\lim _{n \rightarrow \infty} A_{n}^{c}$ exists and is A^{c}.
(iii) To show that $\underline{\lim }_{n \rightarrow \infty}\left(A_{n} \cap B_{n}\right)=\left(\underline{\lim }_{n \rightarrow \infty} A_{n}\right) \cap\left(\underline{\lim }_{n \rightarrow \infty} B_{n}\right)$. Equivalently,

$$
\bigcup_{n=1}^{\infty} \bigcap_{j=n}^{\infty}\left(A_{j} \cap B_{j}\right)=\left(\bigcup_{n=1}^{\infty} \bigcap_{j=n}^{\infty} A_{j}\right) \cap\left(\bigcup_{n=1}^{\infty} \bigcap_{j=n}^{\infty} B_{j}\right)
$$

Indeed, let x belong to the left-hand side. Then $x \in \cap_{j=n_{0}}^{\infty}\left(A_{j} \cap B_{j}\right)$ for some $n_{0} \geq 1$, hence $x \in\left(A_{j} \cap B_{j}\right)$ for all $j \geq n_{0}$, and then $x \in A_{j}$ and $x \in B_{j}$ for all $j \geq n_{0}$. Hence $x \in \cap_{j=n_{0}}^{\infty} A_{j}$ and $x \in \cap_{j=n_{0}}^{\infty} B_{j}$, so that $x \in$ $\cup_{n=1}^{\infty} \cap{ }_{j=n}^{\infty} A_{j}$ and $x \in \cup_{n=1}^{\infty} \cap_{j=n}^{\infty} B_{j}$; i.e., x belongs to the right-hand side. Next, let x belong to the right-hand side. Then $x \in \cup_{n=1}^{\infty} \cap_{j=n}^{\infty} A_{j}$ and $x \in$ $\cup_{n=1}^{\infty} \cap \cap_{j=n}^{\infty} B_{j}$, so that $x \in \cap_{j=n_{1}}^{\infty} A_{j}$ and $x \in \cap_{j=n_{2}}^{\infty} B_{j}$ for some $n_{1}, n_{2} \geq 1$. Then $x \in \cap_{j=n_{0}}^{\infty} A_{j}$ and $x \in \cap_{j=n_{0}}^{\infty} B_{j}$ where $n_{0}=\max \left(n_{1}, n_{2}\right)$, and hence $x \in A_{j}$ and $x \in B_{j}$ for all $j \geq n_{0}$. Thus, $x \in\left(A_{j} \cap B_{j}\right)$ for all $j \geq n_{0}$, so that $x \in \cap_{j=n_{0}}^{\infty}\left(A_{j} \cap B_{j}\right)$ and hence $x \in \cup_{n=1}^{\infty} \cap_{j=n}^{\infty}\left(A_{j} \cap B_{j}\right)$; i.e., x belongs to the left-hand side.

Next, $\overline{\lim }_{n \rightarrow \infty}\left(A_{n} \cup B_{n}\right)=\overline{\lim }_{n \rightarrow \infty}\left(A_{n}^{c} \cap B_{n}^{c}\right)^{c}=\left[\underline{\lim }_{n \rightarrow \infty}\left(A_{n}^{c} \cap\right.\right.$ $\left.\left.B_{n}^{c}\right)\right]^{c}$ (by part (ii)), and this equals to $\left[\left({\underline{\lim _{n \rightarrow \infty}}}_{n} A_{n}^{c}\right) \cap\left({\left.\left.\underline{\lim _{n \rightarrow \infty}} B_{n}^{c}\right)\right]^{c} \text { (by }}^{\text {b }}\right.\right.$ what we just proved), and this equals $\left[\left(\overline{\lim }_{n \rightarrow \infty} A_{n}\right)^{c} \cap\left(\overline{\lim }_{n \rightarrow \infty} B_{n}\right)^{c}\right]^{c}=$ $\left(\overline{\lim }_{n \rightarrow \infty} A_{n}\right) \cup\left(\overline{\lim }_{n \rightarrow \infty} B_{n}\right)$, as was to be seen.
(iv) To show that: $\overline{\lim }_{n \rightarrow \infty}\left(A_{n} \cap B_{n}\right) \subseteq\left(\overline{\lim }_{n \rightarrow \infty} A_{n}\right) \cap\left(\overline{\lim }_{n \rightarrow \infty} B_{n}\right)$ and $\underline{\lim }_{n \rightarrow \infty}\left(A_{n} \cup B_{n}\right) \supseteq\left(\underline{\lim }_{n \rightarrow \infty} A_{n}\right) \cup\left(\underline{\lim }_{n \rightarrow \infty} B_{n}\right)$. Suffices to show: $\cap_{n=1}^{\infty} \cup \cup_{j=n}^{\infty}\left(A_{j} \cap B_{j}\right) \subseteq\left(\cap_{n=1}^{\infty} \cup_{j=n}^{\infty} A_{j}\right) \cap$ $\left(\cap_{n=1}^{\infty} \cup_{j=n}^{\infty} B_{j}\right)$.

Indeed, let x belong to the left-hand side. Then $x \in \cup_{j=n}^{\infty}\left(A_{j} \cap B_{j}\right)$ for all $n \geq 1$, so that $x \in\left(A_{j} \cap B_{j}\right)$ for some $j \geq n$ and all $n \geq 1$. Then $x \in A_{j}$ and $x \in B_{j}$ for some $j \geq n$ and all $n \geq 1$, hence $x \in \cup_{j=n}^{\infty} A_{j}$ and $x \in \cup_{j=n}^{\infty} B_{j}$ for all $n \geq 1$, so that $x \in \cap_{n=1}^{\infty} \cup_{j=n}^{\infty} A_{j}$ and $x \in \cap_{n=1}^{\infty} \cup_{j=n}^{\infty} B_{j}$, and hence $x \in\left(\cap_{n=1}^{\infty} \cup_{j=n}^{\infty} A_{j}\right) \cap\left(\cap_{n=1}^{\infty} \cup_{j=n}^{\infty} B_{j}\right)$; i.e., x belongs to the right-hand side. So, the above inclusion is correct.

Also, to show that : $\left(\cup_{n=1}^{\infty} \cap_{j=n}^{\infty} A_{j}\right) \cup\left(\cup_{n=1}^{\infty} \cap{ }_{j=n}^{\infty} B_{j}\right) \subseteq \cup_{n=1}^{\infty} \cap \cap_{j=n}^{\infty}$ $\left(A_{j} \cup B_{j}\right)$.

Indeed, let x belong to the left-hand side. Then $x \in \cup_{n=1}^{\infty} \cap \cap_{j=n}^{\infty} A_{j}$ or $x \in \cup_{n=1}^{\infty} \cap_{j=n}^{\infty} B_{j}$ or to both. Let $x \in \cup_{n=1}^{\infty} \cap_{j=n}^{\infty} A_{j}$. Then $x \in \cap_{j=n_{0}}^{\infty} A_{j}$ for some $n_{0} \geq 1$, hence $x \in A_{j}$ for all $j \geq n_{0}$, and then $x \in\left(A_{j} \cup B_{j}\right)$ for all $j \geq n_{0}$, so that $x \in \cup_{n=1}^{\infty} \cap_{j=n}^{\infty}\left(A_{j} \cup B_{j}\right)$; i.e., x belongs to the right-hand side. Similarly if $x \in \cup_{n=1}^{\infty} \cap \cap_{j=n}^{\infty} B_{j}$.

An alternative proof of the second part is as follows:

$$
\begin{aligned}
\underline{\lim }\left(A_{n} \cup B_{n}\right)= & \bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty}\left(A_{k} \cup B_{k}\right)=\left[\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty}\left(A_{k}^{c} \cap B_{k}^{c}\right)\right]^{c} \\
= & {\left[\overline{\lim }\left(A_{k}^{c} \cap B_{k}^{c}\right)\right]^{c} \supseteq\left[\left(\overline{\lim } A_{k}^{c}\right) \cap\left(\overline{\lim } B_{k}^{c}\right)\right]^{c} } \\
& \quad \text { by the previous part }) \\
= & \left(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty}\right)^{c} \cup\left(\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} B_{k}^{c}\right)^{c} \\
= & \left(\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} A_{k}\right) \cup\left(\bigcup_{n=1}^{\infty} \bigcap_{k=n}^{\infty} B_{k}\right)=\left(\underline{\left.\lim A_{n}\right) \cup\left(\underline{\lim } B_{n}\right) .}\right.
\end{aligned}
$$

(v) That the inverse inclusions in part (iv) need not hold is demonstrated by the following

Counterexample:

Let $A_{2 j-1}=A, A_{2 j}=A_{0}$ and $B_{2 j-1}=B, B_{2 j}=B_{0}, j \geq 1$, for some events A, A_{0}, B and B_{0}. Then: $\underline{\lim }_{n \rightarrow \infty} A_{n}=A \cap A_{0}, \varlimsup_{n \rightarrow \infty} A_{n}=$ $A \cup A_{0}, \underline{\lim }_{n \rightarrow \infty} B_{n}=B \cap B_{0}, \varlimsup_{\lim }^{n \rightarrow \infty} B_{n}=B \cup B_{0}, \varlimsup_{n \rightarrow \infty}$ $\left(A_{n} \cap B_{n}\right)=(A \cap B) \cup\left(A_{0} \cap B_{0}\right), \lim _{n \rightarrow \infty}\left(A_{n} \cup B_{n}\right)=(A \cup B) \cap\left(A_{0} \cup B_{0}\right)$. Therefore $(A \cup B) \cap\left(A_{0} \cup B_{0}\right)$ need not contain $\left(A \cup A_{0}\right) \cap\left(B \cup B_{0}\right)$, and $\left(A \cap A_{0}\right) \cup\left(B \cap B_{0}\right)$ need not contain $(A \cup B) \cap\left(A_{0} \cup B_{0}\right)$.
As a concrete example, take $\Omega=\mathfrak{R}, A=(0,1], A_{0}=[2,3]$, $B=[1,2], B_{0}=[3,4]$. Then: $(A \cup B) \cap\left(A_{0} \cup B_{0}\right)=(0,2],\left(A \cup A_{0}\right) \cap$
$\left(B \cup B_{0}\right)=((0,1] \cup[2,3]) \cap([1,2] \cup[3,4])=\{1\} \cup\{3\}=\{1,3\} \nsupseteq$ $(0,2]$, and $\left(A \cap A_{0}\right) \cup\left(B \cap B_{0}\right)=\oslash \cup \oslash=\oslash,(A \cup B) \cap\left(A_{0} \cup B_{0}\right)=$ $(0,2] \cap[2,4]=\{2\}$ not contained in \oslash.
(vi) If $\lim _{n \rightarrow \infty} A_{n}=A$ and $\lim _{n \rightarrow \infty} B_{n}=B$, then by parts (iii) and (iv): $\varlimsup_{n \rightarrow \infty}\left(A_{n} \cap B_{n}\right) \subseteq A \cap B$ and $\underline{\lim }_{n \rightarrow \infty}\left(A_{n} \cap B_{n}\right)=A \cap B$. Thus, $A \cap B=\underline{\lim }_{n \rightarrow \infty}\left(A_{n} \cap B_{n}\right) \subseteq \varlimsup_{n \rightarrow \infty}\left(A_{n} \cap B_{n}\right) \subseteq A \cap B$, so that $\underline{\lim }_{n \rightarrow \infty}\left(A_{n} \cap B_{n}\right)=A \cap B$. Likewise: $A \cup B \subseteq \underline{\lim }_{n \rightarrow \infty}\left(A_{n} \cup B_{n}\right) \subseteq$ $\varlimsup_{n \rightarrow \infty}\left(A_{n} \cup B_{n}\right)=A \cup B$, so that $\lim _{n \rightarrow \infty}\left(A_{n} \cup B_{n}\right)=A \cup B$.
(vii) Since $A_{n} \triangle B=\left(A_{n}-B\right)+\left(B-A_{n}\right)=\left(A_{n} \cap B^{c}\right)+\left(B \cap A_{n}^{c}\right)$, we have $\lim _{n \rightarrow \infty}\left(A_{n} \cap B^{c}\right)=\left(\lim _{n \rightarrow \infty} A_{n}\right) \cap B^{c}=A \cap B^{c}$ by part (vi), and $\lim _{n \rightarrow \infty}\left(B \cap A_{n}^{c}\right)=B \cap\left(\lim _{n \rightarrow \infty} A_{n}^{c}\right)=B \cap A^{c}$ by parts (vi) and (ii). Therefore, by part (vi) again, $\lim _{n \rightarrow \infty}\left(A_{n} \triangle B\right)=\lim _{n \rightarrow \infty}\left[\left(A_{n} \cap B^{c}\right)+\right.$ $\left.\left(B \cap A_{n}^{c}\right)\right]=\lim _{n \rightarrow \infty}\left(A_{n} \cap B^{c}\right)+\lim _{n \rightarrow \infty}\left(B \cap A_{n}^{c}\right)=\left(A \cap B^{c}\right)+$ $\left(B \cap A^{c}\right)=A \triangle B$.
(viii) $A_{2 j-1}=B, A_{2 j}=C, j \geq 1$. Then, as in part (v), $\lim _{n \rightarrow \infty} A_{n}=B \cap C$ and $\varlimsup_{n \rightarrow \infty} A_{n}=B \cup C$. The $\lim _{n \rightarrow \infty} A_{n}$ exists if and only if $B \cap C=B \cup C$, or $B \cup C=\left(B \cap C^{c}\right)+\left(B^{c} \cap C\right)+(B \cap C)=B \cap C$. Then, by the pairwise disjointness of $B \cap C^{c}, B^{c} \cap C$ and $B \cap C$, we have $B \cap C^{c}=B^{c} \cap C=\varnothing$. From $B \cap C^{c}=\oslash$, it follows that $B \subseteq C$, and from $B^{c} \cap C=\varnothing$, it follows that $C \subseteq B$. Therefore $B=C$. Thus, $\lim _{n \rightarrow \infty} A_{n}$ exists if and only if $B=C$. \#
2. (i) All three sets \underline{A}, \bar{A}, and A (if it exists) are in \mathcal{A}, because they are expressed in terms of $A_{n}, n \geq 1$, by means of countable operations.
(ii) Let $A_{n} \uparrow$. Then $\underline{\lim }_{n \rightarrow \infty} A_{n}=\cup_{n=1}^{\infty} \cap_{j=n}^{\infty} A_{j}=\cup_{n=1}^{\infty} A_{n}$, and $\overline{\lim }_{n \rightarrow \infty}$ $A_{n}=\cap_{n=1}^{\infty} \cup_{j=n}^{\infty} A_{j}=\cup_{j=n}^{\infty} A_{j}=\cup_{j=1}^{\infty} A_{j}=\cup_{n=1}^{\infty} A_{n}$, so that $\lim _{n \rightarrow \infty}$ $A_{n}=\cup_{n=1}^{\infty} A_{n}$.

If $A_{n}^{n=1} \downarrow$, then $A_{n}^{c} \uparrow$ and hence $\cap_{n=1}^{\infty} \cup_{j=n}^{\infty} A_{j}^{c}=\cup_{n=1}^{\infty} \cap_{j=n}^{\infty} A_{j}^{c}=$ $\cup_{n=1}^{\infty} A_{n}^{c}$, so that, by taking the complements, $\cup_{n=1}^{\infty} \cap_{j=n}^{\infty} A_{j}=\cap_{n=1}^{\infty} \cup_{j=n}^{\infty}$ $A_{j}=\cap_{n=1}^{\infty} A_{n}$, so that $\lim _{n \rightarrow \infty} A_{n}=\cap_{n=1}^{\infty} A_{n}$. \#
3. (i) $\cap_{j \in I} \mathcal{F}_{j} \neq \varnothing$ since, e.g., $\Omega \in \mathcal{F}_{j}, j \in I$. Next, if $A \in \cap_{j \in I} \mathcal{F}_{j}$ for all $j \in I$, and hence $A^{c} \in \mathcal{F}_{j}$ for all $j \in I$, so that $A^{c} \in \cap_{j \in I} \mathcal{F}_{j}$. Finally, if $A, B \in \cap_{j \in I} \mathcal{F}_{j}$, then $A, B \in \mathcal{F}_{j}$ for all $j \in I$, and hence $A \cup B \in \mathcal{F}_{j}$ for all $j \in I$, so that $A \cup B \in \cap_{j \in I} \mathcal{F}_{j}$.
(ii) If $A_{i} \in \cap_{j \in I} \mathcal{A}_{j}, i=1,2, \ldots$, then $A_{i} \in \mathcal{A}_{j}, i=1,2, \ldots$, for all $j \in I$, and hence $\cup_{i=1}^{\infty} A_{i} \in \mathcal{A}_{j}$ for all $j \in I$, so that $\cup_{i=1}^{\infty} A_{i} \in \cap_{j \in I} \mathcal{A}_{j}$. \#
4. Let $\Omega=\mathfrak{R}, \mathcal{F}=\left\{A \subseteq \mathfrak{R}\right.$; either A or A^{c} is finite $\}$, and let $A_{j}=\{1,2, \ldots, j\}$, $j \geq 1$. Then \mathcal{F} is a field and $A_{j} \in \mathcal{F}, j \geq 1$, but $\cup_{j=1}^{\infty} A_{j}=\{1,2, \ldots\} \notin \mathcal{F}$, because neither this set nor its complement is finite.

Also, if $B_{j}=\{j+1, j+2, \ldots\}$, then $B_{j} \in \mathcal{F}_{j}$ since B_{j}^{c} is finite, whereas $\cap_{j=1}^{\infty} B_{j}=\cap_{j=1}^{\infty} A_{j}^{c}=\left(\cup_{j=1}^{\infty} A_{j}\right)^{c} \notin \mathcal{F}$, as it has been seen already. \#
5. Clearly, \mathcal{C} is $\neq \varnothing$, every member of \mathcal{C} is a countable union of members of \mathcal{P}, and \mathcal{C} is the smallest σ-field containing \mathcal{P}, if indeed, is a σ-field. If $B \in \mathcal{C}$, then $B=\cup_{i \in I} A_{i}$ for some $I \subseteq \mathbb{N}=\{1,2, \ldots\}$, and then $B^{c}=\cup_{j \in J} A_{j}$, where $J=\mathbb{N}-I$, so that $B^{c} \in \mathcal{C}$. Finally, if $B_{j} \in \mathcal{C}, j=1,2, \ldots$, then $B_{j}=\cup_{i \in I_{j}} A_{j i}$, where $I_{j} \subseteq \mathbb{N}$ and $I_{i} \cap I_{j}=\oslash$. Then $\cup_{j=1}^{\infty} B_{j}=\cup_{j=1}^{\infty} \cup_{i \in I_{j}} A_{j i}$, the union of members of \mathcal{P}, so that $\cup_{j=1}^{\infty} B_{j}$ belongs in \mathcal{C}. \#
6. Since \mathcal{C}_{j} and $\mathcal{C}_{j}^{\prime} \subseteq \mathcal{C}_{0}, j=1, \ldots, 8$, it follows that $\sigma\left(\mathcal{C}_{j}\right)$ and $\sigma\left(\mathcal{C}_{j}^{\prime}\right) \subseteq \sigma\left(\mathcal{C}_{0}\right)=$ \mathcal{B}, so that it suffices to show that $\mathcal{B} \subseteq \sigma\left(\mathcal{C}_{j}\right)$ and $\mathcal{B} \subseteq \sigma\left(\mathcal{C}_{j}^{\prime}\right)$, which are implied, respectively, by $\mathcal{C}_{0} \subseteq \sigma\left(\mathcal{C}_{j}\right)$ and $\mathcal{C}_{0} \subseteq \sigma\left(\mathcal{C}_{j}^{\prime}\right), j=1, \ldots, 8$. As an example, consider the classes mentioned in the hint.
So, to show that $\mathcal{C}_{0} \subseteq \sigma\left(\mathcal{C}_{1}\right)$. In all that follows, all limits are taken as $n \rightarrow \infty$. Indeed, for $y_{n} \downarrow y$, we have $\left(x, y_{n}\right) \in \mathcal{C}_{1}$ and $\cap_{n=1}^{\infty}\left(x, y_{n}\right)=(x, y] \in \sigma\left(\mathcal{C}_{1}\right)$. Likewise, for $x_{n} \uparrow x$, we have $\left(x_{n}, y\right) \in \mathcal{C}_{1}$ and $\cap_{n=1}^{\infty}\left(x_{n}, y\right)=[x, y) \in \sigma\left(\mathcal{C}_{1}\right)$. Next, with x_{n} and y_{n} as above, $\left(x_{n}, y_{n}\right) \in \mathcal{C}_{1}$ and $\cap_{n=1}^{\infty}\left(x_{n}, y_{n}\right)=[x, y] \in \sigma\left(\mathcal{C}_{1}\right)$. Also, for $x_{n} \downarrow-\infty$, we have $\left(x_{n}, a\right) \in \mathcal{C}_{1}$ and $\cap_{n=1}^{\infty}\left(x_{n}, a\right)=(-\infty, a) \in$ $\sigma\left(\mathcal{C}_{1}\right)$, and likewise $\left(x_{n}, a\right] \in \mathcal{C}_{1}$ and $\cup_{n=1}^{\infty}\left(x_{n}, a\right]=(-\infty, a] \in \sigma\left(\mathcal{C}_{1}\right)$. Finally, $(b, \infty)=(-\infty, b]^{c} \in \sigma\left(\mathcal{C}_{1}\right)$, and $[b, \infty)=(-\infty, b)^{c} \in \sigma\left(\mathcal{C}_{1}\right)$. It follows that $\mathcal{C}_{0} \subseteq \sigma\left(\mathcal{C}_{1}\right)$.

That $\mathcal{C}_{0} \in \sigma\left(\mathcal{C}_{1}^{\prime}\right)$ is seen as follows. For (x, y), there exist x_{n} and y_{n} rationals with $x_{n} \downarrow x$ and $y_{n} \uparrow y$, so that $(x, y)=\cup_{n=1}^{\infty} \in \sigma\left(\mathcal{C}_{j}^{\prime}\right)$. Also, for $y_{n} \downarrow y$, we have $\left(x, y_{n}\right) \in \sigma\left(\mathcal{C}_{1}^{\prime}\right)$, as was just proved, and then $\cap_{n=1}^{\infty}\left(x, y_{n}\right)=(x, y] \in$ $\sigma\left(\mathcal{C}_{1}^{\prime}\right)$. Likewise, with $x_{n} \uparrow x$, we have $\left(x_{n}, y\right) \in \sigma\left(\mathcal{C}_{1}^{\prime}\right)$ and then $\cap_{n=1}^{\infty}\left(x_{n}, y\right)=$ $[x, y) \in \sigma\left(\mathcal{C}_{1}^{\prime}\right)$. Also, with $x_{n} \uparrow x$ and $y_{n} \downarrow y$, we have $\left(x_{n}, y_{n}\right) \in \sigma\left(\mathcal{C}_{1}^{\prime}\right)$, and $\cap_{n=1}^{\infty}\left(x_{n}, y_{n}\right)=[x, y] \in \sigma\left(\mathcal{C}_{1}^{\prime}\right)$. Likewise, with $x_{n} \downarrow-\infty$, we have $\left(x_{n}, a\right) \in$ $\sigma\left(\mathcal{C}_{1}^{\prime}\right)$ and $\cup_{n=1}^{\infty}\left(x_{n}, a\right)=(-\infty, a) \in \sigma\left(\mathcal{C}_{1}^{\prime}\right)$, whereas $\left(x_{n}, a\right] \in \sigma\left(\mathcal{C}_{1}^{\prime}\right)$, so that $\cup_{n=1}^{\infty}\left(x_{n}, a\right]=(-\infty, a] \in \sigma\left(\mathcal{C}_{1}^{\prime}\right)$. Finally, $(b, \infty)=(-\infty, b]^{c} \in \sigma\left(\mathcal{C}_{1}^{\prime}\right)$ since $(-\infty, b] \in \sigma\left(\mathcal{C}_{1}^{\prime}\right)$, and $[b, \infty)=(-\infty, b)^{c} \in \sigma\left(\mathcal{C}_{1}^{\prime}\right)$ since $(-\infty, b) \in \sigma\left(\mathcal{C}_{1}^{\prime}\right)$. It follows that $\mathcal{C}_{0} \subseteq \sigma\left(\mathcal{C}_{1}^{\prime}\right)$.

A slightly alternative version of the proof follows. We will show (a) $\sigma\left(\mathcal{C}_{1}\right)=\mathcal{B}$ and (b) $\sigma\left(\mathcal{C}_{1}^{\prime}\right)=\mathcal{B}$.
(a) $\sigma\left(\mathcal{C}_{1}\right)=\mathcal{B}$.

That $\sigma\left(\mathcal{C}_{1}\right) \subseteq \mathcal{B}$ is clear; to show $\mathcal{B} \subseteq \sigma\left(\mathcal{C}_{1}\right)$ it suffices to show that $\mathcal{C}_{0} \subseteq$ $\sigma\left(\mathcal{C}_{1}\right)$. To this end, we show that $(x, y] \in \sigma\left(\mathcal{C}_{1}\right)$. Indeed, $\left(x, y+\frac{1}{n}\right) \in$ \mathcal{C}_{1}, so that $\bigcap_{n=1}^{\infty}\left(x, y+\frac{1}{n}\right)=(x, y] \in \sigma\left(\mathcal{C}_{1}\right)$. Next, $\left(x-\frac{1}{n}, y\right) \in \mathcal{C}_{1}$, so that $\bigcap_{n=1}^{\infty}\left(x-\frac{1}{n}, y\right)=[x, y) \in \sigma\left(\mathcal{C}_{1}\right)$. Also, $\left(x-\frac{1}{n}, y+\frac{1}{n}\right) \in \mathcal{C}_{1}$, so that $\bigcap_{n=1}^{\infty}\left(x-\frac{1}{n}, y+\frac{1}{n}\right)=[x, y] \in \sigma\left(\mathcal{C}_{1}\right)$. Next, $(-n, x) \in \mathcal{C}_{1}$, so that $\bigcup_{n=1}^{\infty}(-n, x)=(-\infty, x) \in \sigma\left(\mathcal{C}_{1}\right)$. Also, $\left(-\infty, x+\frac{1}{n}\right] \in \mathcal{C}_{1}$, so that $\bigcap_{n=1}^{\infty}\left(-\infty, x+\frac{1}{n}\right]=(-\infty, x] \in \sigma\left(\mathcal{C}_{1}\right)$. Likewise, $(x, n) \in \mathcal{C}_{1}$, so that $\bigcup_{n=1}^{\infty}(x, n)=(x, \infty) \in \sigma\left(\mathcal{C}_{1}\right)$; and $\left(x-\frac{1}{n}, \infty\right) \in \sigma\left(\mathcal{C}_{1}\right)$, so that $\bigcap_{n=1}^{\infty}\left(x-\frac{1}{n}, \infty\right)=[x, \infty) \in \sigma\left(\mathcal{C}_{1}\right)$. The proof is complete.
(b) $\sigma\left(\mathcal{C}_{1}^{\prime}\right)=\mathcal{B}$.

Since, clearly, $\sigma\left(\mathcal{C}_{1}^{\prime}\right) \subseteq \sigma\left(\mathcal{C}_{1}\right)$, it suffices to show that $\sigma\left(\mathcal{C}_{1}\right) \subseteq \sigma\left(\mathcal{C}_{1}^{\prime}\right)$. For $x, y \in \mathfrak{R}$ with $x<y$, there exist $x_{n} \downarrow x$ and $y_{n} \uparrow y$ with x_{n}, y_{n} rational numbers and $x_{n}<y_{n}$ for each n. Since $\left(x_{n}, y_{n}\right) \in \mathcal{C}_{1}^{\prime}$, it follows that $\bigcup_{n=1}^{\infty}\left(x_{n}, y_{n}\right)=(x, y) \in \sigma\left(\mathcal{C}_{1}^{\prime}\right)$. So $\mathcal{C}_{1} \subseteq \sigma\left(\mathcal{C}_{1}^{\prime}\right)$, and hence $\sigma\left(\mathcal{C}_{1}\right) \subseteq \sigma\left(\mathcal{C}_{1}^{\prime}\right)$. The proof is complete. \#
7. (i) Let $A \in \mathcal{C}$. Then there are the following possible cases:
(a) $A=\sum_{i=1}^{m} I_{i}, I_{i}=\left(\alpha_{i}, \beta_{i}\right], i=1, \ldots, m$.

Then $A^{c}=\left(-\infty, \alpha_{1}\right]+\left(\beta_{1}, \alpha_{2}\right]+\ldots+\left(\beta_{m-1}, \alpha_{m}\right]+\left(\beta_{m}, \infty\right)$ and this is in \mathcal{C}.
(b) A consists only of intervals of the form $(-\infty, \alpha]$. Then there can be only one such interval; i.e., $A=(-\infty, \alpha]$ and hence $A^{c}=(\alpha, \infty)$ which is in \mathcal{C}.
(c) A consists only of intervals of the form (β, ∞). Then there can only be one such interval; i.e., $A=(\beta, \infty)$ so that $A^{c}=(-\infty, \beta]$ which is in \mathcal{C}.
(d) A consists only of intervals of the form $(-\infty, \alpha]$ and (β, ∞). Then A will be as follows: $A=(-\infty, \alpha]+(\beta, \infty)(\alpha<\beta)$, so that $A^{c}=(\alpha, \infty) \cap(-\infty, \beta]=(\alpha, \beta]$ which is in \mathcal{C}.
(e) Finally, let A consist of intervals of all forms. Then A is as below:

Then, clearly,

$$
A^{c}=\left(\alpha, \alpha_{1}\right]+\left(\beta_{1}, \alpha_{2}\right]+\ldots+\left(\beta_{m-1}, \alpha_{m}\right]+\left(\beta_{m}, \beta\right]
$$

which is in \mathcal{C}. So, \mathcal{C} is closed under complementation. It is also closed under the union of two sets A and B in \mathcal{C}, because, clearly, the union of two such sets is also a member of \mathcal{C}. Thus, \mathcal{C} is a field. Next, let $\mathcal{C}_{2}=\{(\alpha, \beta] ; \alpha, \beta \in \Re, \alpha<\beta\}$. Then, by Exercise 6, $\sigma\left(\mathcal{C}_{2}\right)=\mathcal{B}$. Also, $\mathcal{C}_{2} \subset \mathcal{C}$, so that $\mathcal{B}=\sigma\left(\mathcal{C}_{2}\right) \subseteq \sigma(\mathcal{C})$. Furthermore, $\mathcal{C} \subseteq \sigma\left(\mathcal{C}_{0}\right)=\mathcal{B}$ and hence $\sigma(\mathcal{C}) \subseteq \mathcal{B}$. It follows that $\sigma(\mathcal{C})=\mathcal{B}$.
(ii) If $A \in \mathcal{C}$, then $A=\sum_{i=1}^{m} I_{i}$, where I_{i} s are of the forms: $(\alpha, \beta),(\alpha, \beta]$, $[\alpha, \beta),[\alpha, \beta],(-\infty, \alpha),(-\infty, \alpha],(\beta, \infty),[\beta, \infty)$. But $(\alpha, \beta)^{c}=$ $(-\infty, \alpha]+[\beta, \infty),(\alpha, \beta]^{c}=(-\infty, \alpha]+(\beta, \infty),[\alpha, \beta)^{c}=(-\infty, \alpha)+$ $(\beta, \infty),[\alpha, \beta]^{c}=(-\infty, \alpha)+(\beta, \infty),(-\infty, \alpha)^{c}=[\alpha, \infty),(-\infty, \alpha]^{c}=$ $(\alpha, \infty),(\beta, \infty)^{c}=(-\infty, \beta]$, and $[\beta, \infty)^{c}=(-\infty, \beta)$. Then, considering all possibilities as in part (i), we conclude that $A^{c} \in \mathcal{C}$ in all cases. Next, for A as above and $B=\sum_{j=1}^{n} J_{j}$ with J_{j} being from among the above intervals, it follows that $A \cup B$ is a finite sum of intervals as above,
and hence $A \cup B \in \mathcal{C}$. Thus, \mathcal{C} is a field. Finally, from $\mathcal{C}_{0} \subset \mathcal{C} \subset \mathcal{B}$, it follows that $\mathcal{B}=\sigma\left(\mathcal{C}_{0}\right) \subseteq \sigma(\mathcal{C}) \subseteq \mathcal{B}$, so that $\sigma(\mathcal{C})=\mathcal{B}$. \#
8. Clearly, \mathcal{F}_{A} is $\neq \oslash$ since, for example, $A=A \cap \Omega$ and hence $A \in \mathcal{F}_{A}$. Next, for $B \in \mathcal{F}_{A}$, it follows that $B=A \cap C, C \in \mathcal{F}$, and B_{A}^{c} (=complement of B with respect to $A)=A \cap C^{c} \in \mathcal{F}_{A}$ since $C^{c} \in \mathcal{F}$. Finally, for $B_{1}, B_{2} \in \mathcal{F}_{A}$, it follows that $B_{i}=A_{i} \cap C_{i}, C_{i} \in \mathcal{F}, i=1,2$, and then $B_{1} \cup B_{2}=A \cap\left(C_{1} \cup C_{2}\right) \in \mathcal{F}_{A}$, since $C_{1} \cup C_{2} \in \mathcal{F}$. \#
9. That $\mathcal{A}_{A} \neq \oslash$ and that it is closed under complementation is as in Exercise 8. For $B_{i} \in \mathcal{A}_{A}, i=1,2, \ldots$, it follows that $B_{i}=A \cap C_{i}$ for some $C_{i} \in \mathcal{A}, i \geq 1$, and $\cup_{i=1}^{\infty} B_{i}=\cup_{i=1}^{\infty}\left(A \cap C_{i}\right)=A \cap\left(\cup_{i=1}^{\infty} C_{i}\right) \in \mathcal{A}_{A}$ since $\cup_{i=1}^{\infty} C_{i} \in \mathcal{A}$.
Thus, \mathcal{A}_{A} is a σ-field. Since $\mathcal{F} \subseteq \mathcal{A}$, it follows that $\mathcal{F}_{A} \subseteq \mathcal{A}_{A}$ and hence $\sigma\left(\mathcal{F}_{A}\right) \subseteq \mathcal{A}_{A}$. Since for every $\mathcal{F} \subseteq \mathcal{A}_{i}, i \in I$, it follows $\mathcal{F}_{A} \subseteq \mathcal{A}_{i, A}, i \in I$, then $\sigma\left(\mathcal{F}_{A}\right) \subseteq \cap_{i \in I} \mathcal{A}_{i, A}$. Also, $\sigma\left(\mathcal{F}_{A}\right)=\cap_{j \in J} \mathcal{A}_{j}^{*}$ for all σ-fields of subsets of A with $\mathcal{A}_{j}^{*} \supseteq \mathcal{F}_{A}$. In order to show that $\sigma\left(\mathcal{F}_{A}\right)=\mathcal{A}_{A}$, it must be shown that for every σ field \mathcal{A}^{*} of subsets of A with $\mathcal{A}^{*} \supseteq \mathcal{F}_{A}$, we have $\mathcal{A}^{*} \supseteq \mathcal{A}_{A}$. That this is, indeed, the case is seen as follows. Define the class \mathcal{M} by : $\mathcal{M}=\left\{C \in \mathcal{A} ; A \cap C \in \mathcal{A}^{*}\right\}$. Then, clearly, $\mathcal{F} \subseteq \mathcal{M} \subseteq \mathcal{A}$ and $\mathcal{M}_{A}(=\mathcal{M} \cap A) \subseteq \mathcal{A}^{*}$. This is so because, for $C \in \mathcal{F}$, it follows that $C \cap A \in \mathcal{F}_{A}$ and hence $C \cap A \in \mathcal{A}^{*}\left(\supseteq \mathcal{F}_{A}\right)$. Also, with $\mathcal{M}_{A}=\{C \subseteq A ; C=M \cap A, M \in \mathcal{M}\}$, it follows that $\mathcal{M}_{A} \subseteq \mathcal{A}^{*}$ from the definition of \mathcal{M}. We assert that \mathcal{M} is a monotone class. Indeed, let $C_{n} \in \mathcal{M}$ with $C_{n} \uparrow$ or $C_{n} \downarrow$. Then, for the case that $C_{n} \uparrow, A \cap\left(\lim _{n \rightarrow \infty} C_{n}\right)=A \cap\left(\cup_{n=1}^{\infty} C_{n}\right)=$ $\cup_{n=1}^{\infty}\left(A \cap C_{n}\right) \in \mathcal{A}^{*}$ since $A \cap C_{n} \in \mathcal{A}^{*}, n \geq 1$, so that $\lim _{n \rightarrow \infty} C_{n} \in \mathcal{M}$. Likewise, for $C_{n} \downarrow, A \cap\left(\lim _{n \rightarrow \infty} C_{n}\right)=A \cap\left(\cap_{n=1}^{\infty} C_{n}\right)=\cap_{n=1}^{\infty}\left(A \cap C_{n}\right) \in \mathcal{A}^{*}$ since $A \cap C_{n} \in \mathcal{A}^{*}, n \geq 1$, so that $\lim _{n \rightarrow \infty} C_{n} \in \mathcal{M}$. So \mathcal{M} is a monotone class $\supseteq \mathcal{F}$, and hence $\mathcal{M} \supseteq$ minimal monotone class \mathcal{M}_{0}, say, $\supseteq \mathcal{F}$. Since \mathcal{F} is a field, it follows that \mathcal{M}_{0} is a σ-field and indeed $\mathcal{M}_{0}=\mathcal{A}$ (by Theorem 6). Finally, $\mathcal{A}=\mathcal{M}_{0} \subseteq \mathcal{M}$ implies $\mathcal{A}_{A}=\mathcal{M}_{0, A} \subseteq \mathcal{M}_{A} \subseteq \mathcal{A}^{*}$, as was to be seen. \#
10. Set $\mathcal{F}=\cup_{n=1}^{\infty} \mathcal{A}_{n}$, and let $A \in \mathcal{F}$. Then $A \in \mathcal{A}_{n}$ for some n, so that $A^{c} \in \mathcal{A}_{n}$ and hence $A \in \mathcal{F}$. Next, let $A, B \in \mathcal{F}$. Then $A \in \mathcal{A}_{n_{1}}, B \in \mathcal{A}_{n_{2}}$ for some n_{1} and n_{2}, and let $n_{0}=\max \left(n_{1}, n_{2}\right)$. Then $A, B \in \mathcal{A}_{n_{0}}$, so that $A \cup B \in \mathcal{A}_{n_{0}}$ and $A \cup B \in \mathcal{F}$. Then, $A^{c} \in \mathcal{F}$ and $A \cup B \in \mathcal{F}$, so that \mathcal{F} is a field. It need not be a σ-field.
Counterexample: Let $\Omega=\Re$ and let $\mathcal{A}_{n}=\left\{A \subseteq[-n, n]\right.$; either A or A^{c} is countable\}, $n \geq 1$. Then \mathcal{A}_{n} is a σ-field (by Example 8) and $\mathcal{A}_{n} \uparrow$. However, \mathcal{F} is not a σ-field because, if $A_{n}=\{$ rationals in $[-n, n]\}, n \geq 1$, and if we set $A=\cup_{n=1}^{\infty} A_{n}$, then $A \notin \mathcal{F}$, because otherwise $A \in \mathcal{A}_{n}$ for some n, which cannot happen. \#
11. Set $\mathcal{M} \cap{ }_{j \in I} \mathcal{M}_{j}$ and let $A_{n} \in \mathcal{M}, n \geq 1$, where the A_{n} s form a monotone sequence. Then $A_{n} \in \mathcal{M}_{j}$ for each $j \in I$ and all $n \geq 1$, so that $\lim _{n \rightarrow \infty} A_{n}$ is also in \mathcal{M}_{j}. Since this is true for all $j \in I$, it follows that $\lim _{n \rightarrow \infty} A_{n}$ is in \mathcal{M}, and \mathcal{M} is a monotone class. \#
12. Let $\Omega=\{1,2, \ldots\}, \mathcal{M}=\{\varnothing,\{1, \ldots, n\},\{n, n+1, \ldots\}, n \geq 1, \Omega\}$. Then \mathcal{M} is a monotone class, but not a field, because, e.g., if $A=\{1, \ldots, n\}$ and $B=$ $\{n-2, n-1, \ldots\}(n \geq 3)$, then $A, B \in \mathcal{M}$, but $A \cap B=\{n-2, n-1, n\} \notin \mathcal{M}$.

As another example, let $\Omega=(0,1)$ and $\mathcal{M}=\left\{\left(0,1-\frac{1}{n}\right], n \geq 1, \Omega\right\}$. Then \mathcal{M} is a monotone class and $\left(0, \frac{1}{2}\right] \in \mathcal{M}$, but $\left(0, \frac{1}{2}\right]^{c}=\left(\frac{1}{2}, 1\right) \notin \mathcal{M}$.

Still as a third example, let $\Omega=\Re$ and let $\mathcal{M}=\{\varnothing,(0, n),(-n, 0), n \geq$ $1,(0, \infty),(-\infty, 0)\}$. Then \mathcal{M} is a monotone class, but not a field since, for $A=(-1,0)$ and $B=(0,1)$, we have $A, B, \in \mathcal{M}$, but $A \cup B=(-1,1) \notin \mathcal{M}$. \#
13. (i) For $\omega=\left(\omega_{1}, \omega_{2}\right) \in E^{c}$, we have $\omega \notin E=A \times B$, so that either $\omega_{1} \notin A$ or $\omega_{2} \notin B$ or both. Let $\omega_{1} \notin A$. Then $\omega_{1} \in A^{c}$ and $\left(\omega_{1}, \omega_{2}\right) \in A^{c} \times \Omega_{2}$, whether or not $\omega_{2} \in B$. Hence $E^{c} \subseteq\left(A \times B^{c}\right)+\left(A^{c} \times \Omega_{2}\right)$. If $\omega_{1} \in A$, then $\omega_{2} \notin B$, so that $\left(\omega_{1}, \omega_{2}\right) \in A \times B^{c}$ and $E^{c} \subseteq\left(A \times B^{c}\right)+\left(A^{c} \times \Omega_{2}\right)$. Next, if $\left(\omega_{1}, \omega_{2}\right) \in A \times B^{c}$, then $\omega_{1} \in A$ and $\omega_{2} \notin B$, so that $\left(\omega_{1}, \omega_{2}\right) \notin E$ and hence $\left(\omega_{1}, \omega_{2}\right) \in E^{c}$. If $\left(\omega_{1}, \omega_{2}\right) \in A^{c} \times \Omega_{2}$, then $\omega_{1} \notin A$ and hence $\left(\omega_{1}, \omega_{2}\right) \notin A \times B=E$ whether or not $\omega_{2} \in B$. Thus $\left(\omega_{1}, \omega_{2}\right) \in E^{c}$. In both cases, $\left(A \times B^{c}\right)+\left(A^{c} \times \Omega_{2}\right) \supseteq E^{c}$ and equality follows. The second equality is entirely symmetric.
(ii) Let $\left(\omega_{1}, \omega_{2}\right) \in E_{1} \cap E_{2}$, so that $\left(\omega_{1}, \omega_{2}\right) \in E_{1}$ and $\left(\omega_{1}, \omega_{2}\right) \in E_{2}$ and hence $\omega_{1} \in A_{1}, \omega_{2} \in B_{1}$, and $\omega_{1} \in A_{2}, \omega_{2} \in B_{2}$. It follows that $\omega_{1} \in A_{1} \cap A_{2}, \omega_{2} \in B_{1} \cap B_{2}$ and hence $\left(\omega_{1}, \omega_{2}\right) \in\left(A_{1} \cap A_{2}\right) \times\left(B_{1} \cap B_{2}\right)$. Next, $\left(\omega_{1}, \omega_{2}\right) \in\left(A_{1} \cap A_{2}\right) \times\left(B_{1} \cap B_{2}\right)$, so that $\omega_{1} \in A_{1} \cap A_{2}$ and $\omega_{2} \in B_{1} \cap B_{2}$. Thus, $\omega_{1} \in A_{1}, \omega_{1} \in A_{2}$ and $\omega_{2} \in B_{1}, \omega_{2} \in B_{2}$, so that $\left(\omega_{1}, \omega_{2}\right) \in A_{1} \cap B_{1}$ and $\left(\omega_{1}, \omega_{2}\right) \in A_{2} \cap B_{2}$, or $\left(\omega_{1}, \omega_{2}\right) \in E_{1} \cap E_{2}$, so that equality occurs. The second conclusion is immediate.
(iii) Indeed, $E_{1} \cap F_{1}=\left(A_{1} \cap A_{1}^{\prime}\right) \times\left(B_{1} \cap B_{1}^{\prime}\right)$ and $E_{2} \cap F_{2}=\left(A_{2} \cap A_{2}^{\prime}\right) \times$ ($B_{2} \cap B_{2}^{\prime}$), by part (ii), and the first equality follows. Next, again by part (ii), and replacing E_{1} by $\left(A_{1} \cap A_{1}^{\prime}\right) \times\left(B_{1} \cap B_{1}^{\prime}\right)$ and E_{2} by $\left(A_{2} \cap A_{2}^{\prime}\right) \times\left(B_{2} \cap B_{2}^{\prime}\right)$, we obtain the second equality. The third equality is immediate. Finally, the last conclusion is immediate. \#
14. (i) Either by the inclusion process or as follows:

$$
\begin{aligned}
\left(A_{1}\right. & \left.\times B_{1}\right)-\left(A_{2} \times B_{2}\right) \\
\quad & =\left(A_{1} \times B_{1}\right) \cap\left(A_{2} \times B_{2}\right)^{c} \\
& =\left(A_{1} \times B_{1}\right) \cap\left[\left(A_{2} \times B_{2}^{c}\right)+\left(A_{2}^{c} \times \Omega_{2}\right)\right](\text { by Lemma 2) } \\
& =\left(A_{1} \times B_{1}\right) \cap\left(A_{2} \times B_{2}^{c}\right)+\left(A_{1} \times B_{1}\right) \cap\left(A_{2}^{c} \times \Omega_{2}\right) \\
& =\left(A_{1} \cap A_{2}\right) \times\left(B_{1} \cap B_{2}^{c}\right)+\left(A_{1} \cap A_{2}^{c}\right) \times\left(B_{1} \cap \Omega_{2}\right) \text { (clearly) } \\
& =\left(A_{1} \cap A_{2}\right) \times\left(B_{1}-B_{2}\right)+\left(A_{1}-A_{2}\right) \times B_{1} .
\end{aligned}
$$

(ii) Let $A \times B=\oslash$. Then $(x, y) \in A \times B$, so that $x \in A$ and $y \in B$. Also, $(x, y) \in \oslash$ and this can happen only if at least one of A or B is $=\oslash$. On the other hand, if at least one of A or B is $=\oslash$, then, clearly, $A \times B=\varnothing$.
(iii) Let $A_{1} \times B_{1} \subseteq A_{2} \times B_{2}$. Then $(x, y) \in A_{1} \times B_{1}$, so that $x \in A_{1}$ and $y \in B_{1}$. Also, $(x, y) \in A_{2} \times B_{2}$ implies $x \in A_{2}$ and $y \in B_{2}$. Thus, $A_{1} \subseteq A_{2}$ and $B_{1} \subseteq B_{2}$. Next, let $A_{1} \subseteq A_{2}$ and $B_{1} \subseteq B_{2}$. Then $A_{1} \times B_{1} \subseteq A_{2} \times B_{2}$ since $(x, y) \in A_{1} \times B_{1}$ if and only if $x \in A_{1}$ and $y \in B_{1}$. Hence, $x \in A_{2}$ and $y \in B_{2}$ or $(x, y) \in A_{2} \times B_{2}$.
(iv) $A_{1} \times B_{1} \neq \oslash$ and $A_{2} \times B_{2} \neq \oslash$. Then $A_{1} \times B_{1}=A_{2} \times B_{2}$ or $A_{1} \times B_{1} \subseteq$ $A_{2} \times B_{2}$ and then (by (iii)), $A_{1} \subseteq A_{2}$ and $B_{1} \subseteq B_{2}$. Also, $A_{2} \times B_{2}=$ $A_{1} \times B_{1}$ or $A_{2} \times B_{2} \subseteq A_{1} \times B_{1}$, and then (by (iii) again), $A_{2} \subseteq A_{1}$ and $B_{2} \subseteq B_{1}$.

So, both $A_{1} \subseteq A_{2}$ and $A_{2} \subseteq A_{1}$, and therefore $A_{1}=A_{2}$. Likewise, $B_{1} \subseteq B_{2}$ and $B_{2} \subseteq B_{1}$ so that $B_{1}=B_{2}$.
(v)

$$
\begin{equation*}
A \times B=\left(A_{1} \times B_{1}\right)+\left(A_{2} \times B_{2}\right) \tag{*}
\end{equation*}
$$

From $\oslash=\left(A_{1} \times B_{1}\right) \cap\left(A_{2} \times B_{2}\right)=\left(A_{1} \cap A_{2}\right) \times\left(B_{1} \cap B_{2}\right)$ and part (ii), we have that at least one of $A_{1} \cap A_{2}, B_{1} \cap B_{2}$ is \oslash. Let $A_{1} \cap A_{2}=\oslash$. Then the claim is that $A=A_{1}+A_{2}$. In fact, $(x, y) \in A \times B$ implies $x \in A$ (and $y \in B$). Also, (x, y) belonging to the right-hand side of (*) implies $(x, y) \in A_{1} \times B_{1}$ or $(x, y) \in A_{2} \times B_{2}$. Let $(x, y) \in A_{1} \times B_{1}$. Then $x \in A_{1}$ (and $y \in B_{1}$), so that $A \subseteq A_{2}$. On the other hand, $(x, y) \in A_{2} \times B_{2}$ implies $x \in A_{2}$ (and $y \in B_{2}$), so that $A \subseteq A_{2}$. Thus, $A \subseteq A_{1}+A_{2}$. Next, let again (x, y) belong to the right-hand side of $(*)$. Then $(x, y) \in A_{1} \times B_{1}$ or $(x, y) \in A_{2} \times B_{2}$. Now $(x, y) \in A_{1} \times B_{1}$ implies that $x \in A_{1}$ (and $y \in B_{1}$). Also, (x, y) belonging to the left-hand side of $\left({ }^{*}\right)$ implies $(x, y) \in A \times B$, so that $x \in A$ (and $y \in B$). Hence $A_{1} \subseteq A$. Likewise, $(x, y) \in A_{2} \times B_{2}$ implies $A_{2} \subseteq A$, so that $A_{1}+A_{2} \subseteq A$, and hence $A=A_{1}+A_{2}$. Next, let $A=A_{1}+A_{2}$. Then $A \times B=\left(A_{1}+A_{2}\right) \times B=$ $\left(A_{1} \times B\right)+\left(A_{2} \times B\right)$. Also, $A \times B=\left(A_{1} \times B_{1}\right)+\left(A_{2} \times B_{2}\right)$. Thus, $\left(A_{1} \times B\right)+\left(A_{2} \times B\right)=\left(A_{1} \times B_{1}\right)+\left(A_{2} \times B_{2}\right) .(x, y)$ belonging to the left-hand side of $(*)$ implies $(x, y) \in A_{1} \times B$ or $(x, y) \in A_{2} \times B .(x, y) \in$ $A_{1} \times B$ yields $y \in B$ (and $x \in A_{1}$). Same if $(x, y) \in A_{2} \times B$. Also, (x, y) belonging to the right-hand side of $(*)$ implies $(x, y) \in A_{1} \times B_{1}$ or $(x, y) \in A_{2} \times B_{2}$. For $(x, y) \in A_{1} \times B_{1}$, we have $y \in B_{1}$ (and $x \in A_{1}$), so that $B \subseteq B_{1}$. For $(x, y) \in A_{2} \times B_{2}$, we have $B \subseteq B_{2}$ likewise. Next, let again (x, y) belong to the right-hand side of (*). Then $(x, y) \in A_{1} \times B_{1}$ or $(x, y) \in A_{2} \times B_{2}$. For $(x, y) \in A_{1} \times B_{1}$, we have $y \in B_{1}$ (and $\left.x \in A_{1}\right)$. Thus $B_{1} \subseteq B$. For $(x, y) \in A_{2} \times B_{2}$, we have $B_{2} \subseteq B$. It follows that $B=B_{1}=B_{2}$.
To summarize: $A_{1} \cap A_{2}=\oslash$ implies $A=A_{1}+A_{2}$ and $B=B_{1}=B_{2}$. Likewise, $B_{1} \cap B_{2}=\oslash$ implies $B=B_{1}+B_{2}$ and $A=A_{1}=A_{2}$. Furthermore, $A_{1} \cap A_{2}=\oslash$ and $B_{1} \cap B_{2}=\oslash$ cannot happen simultaneously. Indeed, $A_{1} \cap A_{2}=\oslash$ implies $A=A_{1}+A_{2}$, and $B_{1} \cap B_{2}=\oslash$ implies $B=B_{1}+B_{2}$. Then $A \times B=\left(A_{1}+A_{2}\right) \times\left(B_{1}+B_{2}\right)=\left(A_{1} \times B_{1}\right)+\left(A_{2} \times\right.$ $\left.B_{2}\right)+\left(A_{1} \times B_{2}\right)+\left(A_{2} \times B_{1}\right)$. Also, $A \times B=\left(A_{1} \times B_{1}\right)+\left(A_{2} \times B_{2}\right)$, so that: $\left(A_{1} \times B_{1}\right)+\left(A_{2} \times B_{2}\right)+\left(A_{1} \times B_{2}\right)+\left(A_{2} \times B_{1}\right)=\left(A_{1} \times B_{1}\right)+\left(A_{2} \times B_{2}\right)$. Then $\left(A_{1} \times B_{2}\right)+\left(A_{2} \times B_{1}\right)=\oslash$ implies $\left(A_{1} \times B_{2}\right)=\left(A_{2} \times B_{1}\right)=\oslash$, so that at least one of $A_{1}, A_{2}, B_{1}, B_{2}=\oslash$ (by part (ii)). However, this is not possible by the fact that $A_{1} \times B_{1} \neq \varnothing, A_{2} \times B_{2} \neq \varnothing$. \#
15. (i) If either A or $B=\varnothing$, then, clearly, $A \times B=\oslash$. Next, if $A \times B=\oslash$, and $A \neq \oslash$ and $B \neq \varnothing$, then there exist $\omega_{1} \in A$ and $\omega_{2} \in B$, so that $\left(\omega_{1}, \omega_{2}\right) \in A \times B$, a contradiction.
(ii) Both directions of the first assertion are immediate. Without the assumption E_{1} and $E_{2} \neq \varnothing$, the result need not be true. Indeed, let $\Omega_{1}=\Omega_{2}$, $A_{1} \neq \oslash, B_{1}=A_{2}=B_{2}=\oslash$. Then $E_{1}=E_{2}=\oslash$, but $A_{1} \nsubseteq A_{2}$. \#
16. (i) If at least one of A_{1}, \ldots, A_{n} is $=\oslash$, then, clearly, $A_{1} \times \ldots \times A_{n}=\oslash$. Next, let $E=\oslash$ and suppose that $A_{i} \neq \varnothing, i=1, \ldots, n$. Then there exists $\omega_{i} \in A_{i}, i=1, \ldots, n$, so that $\left(\omega_{1}, \ldots, \omega_{n}\right) \in E$, a contradiction.
(ii) Let $\omega=\left(\omega_{1}, \ldots, \omega_{n}\right) \in E \cap F$, or $\left(\omega_{1}, \ldots, \omega_{n}\right) \in\left(A_{1} \times \ldots \times A_{n}\right) \cap$ $\left(B_{1} \times \ldots \times B_{n}\right)$. Then $\left(\omega_{1}, \ldots, \omega_{n}\right) \in A_{1} \times \ldots \times A_{n}$ and $\left(\omega_{1}, \ldots, \omega_{n}\right) \in$ $B_{1} \times \ldots \times B_{n}$. It follows that $\omega_{i} \in A_{i}$ and $\omega_{i} \in B_{i}, i=1, \ldots, n$, so that $\omega_{i} \in A_{i} \cap B_{i}, i=1, \ldots, n$, and hence $\left(\omega_{1}, \ldots, \omega_{n}\right) \in\left(A_{1} \cap B_{1}\right) \times \ldots \times$ $\left(A_{n} \cap B_{n}\right)$. Next, let $\left(\omega_{1}, \ldots, \omega_{n}\right) \in\left(A_{1} \cap B_{1}\right) \times \ldots \times\left(A_{n} \cap B_{n}\right)$. Then $\omega_{i} \in A_{i} \cap B_{i}, i=1, \ldots, n$, so that $\omega_{i} \in A_{i}$ and $\omega_{i} \in B_{i}, i=1, \ldots, n$. It follows that $\left(\omega_{1}, \ldots, \omega_{n}\right) \in A_{1} \times \ldots \times A_{n}$ and $\left(\omega_{1}, \ldots, \omega_{n}\right) \in B_{1} \times$ $\ldots \times B_{n}$, so that $\left(\omega_{1}, \ldots, \omega_{n}\right) \in\left(A_{1} \times \ldots \times A_{n}\right) \cap\left(B_{1} \times \ldots \times B_{n}\right)$. $\#$
17. We have $E=F+G$ and E, F, G are all $\neq \varnothing$. This implies that A_{i}, B_{i}, and $C_{i}, i=1, \ldots, n$ are all $\neq \varnothing$; this is so by Exercise 16(i). Furthermore, by Exercise 16(ii):

$$
F \cap G=\left(B_{1} \times \ldots \times B_{n}\right) \cap\left(C_{1} \times \ldots \times C_{n}\right)=\left(B_{1} \cap C_{1}\right) \times \ldots \times\left(B_{n} \cap C_{n}\right),
$$

whereas $F \cap G=\oslash$. It follows that $B_{j} \cap C_{j}=\oslash$ for at least one $j, 1 \leq j \leq n$. Without loss of generality, suppose that $B_{1} \cap C_{1}=\oslash$. Then we shall show that $A_{1}=B_{1}+C_{1}$ and $A_{i}=B_{i}=C_{i}, i=2, \ldots, n$. To this end, let $\omega_{j} \in A_{j}$, $j=1, \ldots, n$. Then $\left(\omega_{1}, \ldots, \omega_{n}\right) \in A_{1} \times \ldots \times A_{n}$ or $\left(\omega_{1}, \ldots, \omega_{n}\right) \in E$ or $\left(\omega_{1}, \ldots, \omega_{n}\right) \in(F+G)$. Hence $\left(\omega_{1}, \ldots, \omega_{n}\right) \in F$ or $\left(\omega_{1}, \ldots, \omega_{n}\right) \in G$. Let $\left(\omega_{1}, \ldots, \omega_{n}\right) \in F$. Then $\left(\omega_{1}, \ldots, \omega_{n}\right) \in B_{1} \times \ldots \times B_{n}$ and hence $\omega_{1} \in B_{1}$ or $\omega_{1} \in\left(B_{1} \cup C_{1}\right)$, so that $A_{1} \subseteq B_{1} \cup C_{1}$. Likewise if $\left(\omega_{1}, \ldots, \omega_{n}\right) \in G$. Next, let $\omega_{j} \in B_{j}, j=1, \ldots, n$. Then $\left(\omega_{1}, \ldots, \omega_{n}\right) \in B_{1} \times \ldots \times B_{n}$ or $\left(\omega_{1}, \ldots, \omega_{n}\right) \in F$ or $\left(\omega_{1}, \ldots, \omega_{n}\right) \in E$ or $\left(\omega_{1}, \ldots, \omega_{n}\right) \in\left(A_{1} \times \ldots \times A_{n}\right)$, hence $\omega_{1} \in A_{1}$, which implies that $B_{1} \subseteq A_{1}$. By taking $\omega_{j} \in C_{j}, j=1, \ldots, n$ and arguing as before, we conclude that $C_{1} \subseteq A_{1}$. From $B_{1} \subseteq A_{1}$ and $C_{1} \subseteq A_{1}$, we obtain $B_{1} \cup C_{1} \subseteq A_{1}$. Since also $A_{1} \subseteq B_{1} \cup C_{1}$, we get $A_{1}=B_{1} \cup C_{1}$. Since $B_{1} \cap C_{1}=\oslash$, we have then $A_{1}=B_{1}+C_{1}$.

It remains for us to show that $A_{i}=B_{i}=C_{i}, i=2, \ldots, n$. Without loss of generality, it suffices to show that $A_{2}=B_{2}=C_{2}$, the remaining cases being treated symmetrically. As before, let $\omega_{j} \in A_{j}, j=1, \ldots, n$. Then $\left(\omega_{1}, \ldots, \omega_{n}\right) \in\left(A_{1} \times \ldots \times A_{n}\right)$ or $\left(\omega_{1}, \ldots, \omega_{n}\right) \in E$ or $\left(\omega_{1}, \ldots, \omega_{n}\right) \in(F+G)$. Hence either $\left(\omega_{1}, \ldots, \omega_{n}\right) \in F$ or $\left(\omega_{1}, \ldots, \omega_{n}\right) \in G$. Let $\left(\omega_{1}, \ldots, \omega_{n}\right) \in F$. Then $\left(\omega_{1}, \ldots, \omega_{n}\right) \in B_{1} \times \ldots \times B_{n}$ and hence $\omega_{2} \in B_{2}$, so that $A_{2} \subseteq B_{2}$.

Likewise $A_{2} \subseteq C_{2}$ if $\left(\omega_{1}, \ldots, \omega_{n}\right) \in G$. Next, let $\left(\omega_{1}, \ldots, \omega_{n}\right) \in B_{1} \times \ldots \times B_{n}$ or $\left(\omega_{1}, \ldots, \omega_{n}\right) \in F$ or $\left(\omega_{1}, \ldots, \omega_{n}\right) \in(F+G)$ or $\left(\omega_{1}, \ldots, \omega_{n}\right) \in E$ or $\left(\omega_{1}, \ldots, \omega_{n}\right) \in\left(A_{1} \times \ldots \times A_{n}\right)$ and hence $\omega_{2} \in A_{2}$, so that $B_{2} \subseteq A_{2}$. It follows that $A_{2}=B_{2}$. We arrive at the same conclusion $A_{2}=B_{2}$ if we take $\left(\omega_{1}, \ldots, \omega_{n}\right) \in G$. So, to sum it up, $A_{1}=B_{1}+C_{1}$, and $A_{2}=B_{2}=C_{2}$, and by symmetry, $A_{i}=B_{i}=C_{i}, i=3, \ldots, n$.

A variation to the above proof is as follows.
Let $E=F+G$ or $A_{1} \times \ldots \times A_{n}=\left(B_{1} \times \ldots \times B_{n}\right)+\left(C_{1} \times \ldots \times C_{n}\right)$, and let $\left(\omega_{1}, \ldots, \omega_{n}\right) \in E$. Then $\left(\omega_{1}, \ldots, \omega_{n}\right) \in A_{1} \times \ldots \times A_{n}$, so that $\omega_{i} \in A_{i}, i=$ $1, \ldots, n$. Then $\omega_{i} \in B_{i}, i=1, \ldots, n$ or $\omega_{i} \in C_{i}, i=1, \ldots, n$ (but not both). So, $A_{i}=B_{i} \cup C_{i}, i=1, \ldots, n$ and $A_{j}=B_{j}+C_{j}$ for at least one j. Consider the case $n=2$, and without loss of generality suppose that $A_{1}=B_{1}+C_{1}, A_{2}=B_{2} \cup C_{2}$. Then, clearly:

$$
\begin{aligned}
A_{1} \times A_{2} & =\left(B_{1}+C_{1}\right) \times\left(B_{2} \cup C_{2}\right) \\
& =\left(B_{1} \times B_{2}\right) \cup\left(C_{1} \times C_{2}\right) \cup\left(B_{1} \times C_{2}\right) \cup\left(C_{1} \times B_{2}\right) .
\end{aligned}
$$

However, $A_{1} \times A_{2}=\left(B_{1} \times B_{2}\right)+\left(C_{1} \times C_{2}\right)$, and this implies that $B_{1} \times C_{2} \subseteq$ $B_{1} \times B_{2}$ and $C_{1} \times B_{2} \subseteq B_{1} \times C_{2}$, hence $C_{2} \subseteq B_{2}$ and $B_{2} \subseteq C_{2}$, so that $B_{2}=C_{2}\left(=A_{2}\right)$. Next, assume the assertion to be true for n and consider:

$$
A_{1} \times \ldots \times A_{n} \times A_{n+1}=\left(B_{1} \times \ldots \times B_{n} \times B_{n+1}\right)+\left(C_{1} \times \ldots \times C_{n} \times C_{n+1}\right)
$$

or $A^{n} \times A_{n+1}=\left(B^{n} \times B_{n+1}\right)=\left(C^{n} \times C_{n+1}\right)$, where $A^{n}=A_{1} \times \ldots \times A_{n}$, $B^{n}=B_{1} \times \ldots \times B_{n}$ and $C^{n}=C_{1} \times \ldots \times C_{n}$. Apply the reasoning used in the case $n=2$ by replacing A_{1} by A^{n} and A_{2} by A_{n+1} (so that B_{1}, B_{2} and C_{1}, C_{2} are replaced, respectively, by B^{n}, B_{n+1} and C^{n}, C_{n+1}) to get that:

$$
A^{n}=B^{n}+C^{n}, A_{n+1}=B_{n+1} \cup C_{n+1}
$$

The first union is a " + " by the induction hypothesis. The second union may or may not be a " + " as of now. Then:

$$
\begin{aligned}
A^{n} \times A_{n+1} & =\left(B^{n} \cup C^{n}\right) \times\left(B_{n+1} \cup C_{n+1}\right) \\
& =\left(B^{n} \times B_{n+1}\right) \cup\left(C^{n} \times C_{n+1}\right) \cup\left(B^{n} \times C_{n+1}\right) \cup\left(C^{n} \times B_{n+1}\right)
\end{aligned}
$$

However, $A^{n} \times A_{n+1}=\left(B^{n} \times B_{n+1}\right)+\left(C^{n} \times C_{n+1}\right)$. Therefore $B^{n} \times C_{n+1} \subseteq$ $B^{n} \times B_{n+1}$ and $C^{n} \times B_{n+1} \subseteq C^{n} \times C_{n+1}$, so that $C_{n+1} \subseteq B_{n+1}$ and $B_{n+1} \subseteq C_{n+1}$, and hence $B_{n+1}=C_{n+1}$. The proof is completed. \#
18. The only properties of the σ-fields \mathcal{A}_{1} and \mathcal{A}_{2} used in the proof of Theorem 7 is that $\mathcal{A}_{i}, i=1,2$ are closed under the intersection of two sets in them and also closed under complementations. Since these properties hold also for the case that $\mathcal{A}_{i}, i=1,2$ are fields, $\mathcal{F}_{i}, i=1,2$, the proof is completed. \#
19. \mathcal{C} as defined here need not be a σ-field. Here is a

Counterexample: $\Omega_{1}=\Omega_{2}=[0,1]$. For $n \geq 2$, let $I_{n 1}=\left[0, \frac{1}{n}\right], I_{n j}=$ $\left(\frac{j-1}{n}, \frac{j}{n}\right], j=2, \ldots, n$, and set $E_{n j}=I_{n j} \times I_{n j}, j=1, \ldots, n$. Also, let
$Q_{n}=\sum_{j=1}^{n} E_{n j}, n \geq 2$. Then Q_{n} belongs to the field of all finite sums of rectangles. Furthermore, it is clear that $\cap_{n=2}^{\infty} Q_{n}=D$, where D is the main diagonal determined by the origin and the point $(1,1)$. (See picture below.) However, D is not in the class of all countable sums of rectangles, since it cannot be written as such. D is written as $D=\cup_{x \in[0,1]}(x, x)$, an uncountable union.

Note: In the picture, the first rectangle $E_{n 1}=\left[0, \frac{1}{n}\right] \times\left[0, \frac{1}{n}\right]$, and the subsequent rectangles $E_{n j}$ are: $E_{n j}=\left(\frac{j-1}{n}, \frac{j}{n}\right], j=2,3, \ldots, n$. \#
20. That $\mathcal{C} \neq \oslash$ is obvious. For $A \in \mathcal{C}$, there exists $A^{\prime} \in \mathcal{A}^{\prime}$ such that $A=X^{-1}\left(A^{\prime}\right)$. Then $A^{c}=\left[X^{-1}\left(A^{\prime}\right)\right]^{c}=X^{-1}\left[\left(A^{\prime}\right)^{c}\right]$ with $\left(A^{\prime}\right)^{c} \in \mathcal{A}^{\prime}$. Thus $A^{c} \in \mathcal{C}$. Finally, if $A_{j} \in \mathcal{C}, j=1,2, \ldots$, then $A_{j}=X^{-1}\left(A_{j}^{\prime}\right)$ with $A_{j}^{\prime} \in \mathcal{A}^{\prime}$, and hence $\cup_{j=1}^{\infty} A_{j}=$ $\cup_{j=1}^{\infty} X^{-1}\left(A_{j}^{\prime}\right)=X^{-1}\left(\cup_{j=1}^{\infty} A_{j}^{\prime}\right)$ with $\cup_{j=1}^{\infty} A_{j}^{\prime} \in \mathcal{A}^{\prime}$, so that $\cup_{j=1}^{\infty} A_{j} \in \mathcal{C}$, and \mathcal{C} is a σ-field. \#
21. That $\mathcal{C}^{\prime} \neq \oslash$ is obvious. For $A^{\prime} \in \mathcal{C}^{\prime}$, there exists $A \in \mathcal{A}$ such that $A=X^{-1}\left(A^{\prime}\right)$. Then $X^{-1}\left[\left(A^{\prime}\right)^{c}\right]=\left[X^{-1}\left(A^{\prime}\right)\right]^{c}=A^{c} \in \mathcal{A}$, so that $\left(A^{\prime}\right)^{c} \in \mathcal{C}^{\prime}$. Finally, for $A_{j}^{\prime} \in \mathcal{C}^{\prime}, j=1,2, \ldots$, there exists $A_{j} \in \mathcal{A}$ such that $A_{j}=X^{-1}\left(A_{j}^{\prime}\right)$ and $X^{-1}\left(\cup_{j=1}^{\infty} A_{j}^{\prime}\right)=\cup_{j=1}^{\infty} X^{-1}\left(A_{j}^{\prime}\right)=\cup_{j=1}^{\infty} A_{j} \in \mathcal{A}$, so that $\cup_{j=1}^{\infty} A_{j}^{\prime} \in \mathcal{C}^{\prime}$. It follows that \mathcal{C}^{\prime} is a σ-field. \#
22. A simple example is the following. Let $\Omega=\{a, b, c, d\}, \mathcal{A}=\{\oslash,\{a\},\{b, c, d\}$, $\Omega\}, X(a)=X(b)=1, X(c)=2, X(d)=3$. Then $\Omega^{\prime}=\{1,2,3\}$ and $X(\{a\})=$ $\{1\}, X(\{b, c, d\})=\{1,2,3\}$, so that $\mathcal{C}^{\prime}=\{\oslash,\{1\},\{1,2,3\}\}$ which is not a σ-field. \#
23. Let $X=\sum_{i=1}^{n} \alpha_{i} I_{A_{i}}$ and suppose that $A_{i} \in \mathcal{A}, i=1, \ldots, n$. Then for any $B \in \mathcal{B}, X^{-1}(B)=\cup A_{i}$ where the union is taken over those i s for which $\alpha_{i} \in B$.

Since this union is in \mathcal{A}, it follows that X is a r.v. Next, let X be a r.v. Then, by assuming without loss of generality that $\alpha_{i} \neq \alpha_{j}, i \neq j$, we have $X^{-1}\left(\left\{\alpha_{i}\right\}\right)=$ $A_{i} \in \mathcal{A}$ since $\left\{\alpha_{i}\right\} \in \mathcal{B}, i=1, \ldots, n$. Clearly, the same reasoning applies when $X=\sum_{i=1}^{\infty} \alpha_{i} I_{A_{i}}$. \#
24. Let ω belong to the right-hand side. Then $X(\omega)<r$ and $Y(\omega)<x-r$ for some $r \in Q$, so that $X(\omega)+Y(\omega)<x$ and hence ω belongs to the left-hand side. Next, let ω belong to the left-hand side, so that $X(\omega)+Y(\omega)<x$ or $X(\omega)<x-Y(\omega)$. But then there exists $r \in Q$ such that $X(\omega)<r<x-Y(\omega)$ or $X(\omega)<r$ and $r<$ $x-Y(\omega)$ or $X(\omega)<r$ and $Y(\omega)<x-r$, so that ω belongs to the right-hand side. \#
25. If X is a r.v., then so is $|X|$, because for all $x \geq 0$, we have $|X|^{-1}((-\infty, x))=$ $(|X|<x)=(-x<X<x) \in \mathcal{A}$, since X is a r.v. That the converse is not necessarily true is seen by the following simple example. Take $\Omega=\{a, b, c, d\}$, $\mathcal{A}=\{\varnothing,\{a, b\},\{c, d\}, \Omega\}$, and define X by: $X(a)=-1, X(b)=1, X(c)=$ $-2, X(d)=2$. Then $\Omega^{\prime}=\{-2,-1,1,2\}$, and let $\mathcal{A}^{\prime}=\mathcal{P}\left(\Omega^{\prime}\right)$. We have $|X|^{-1}(\{1\})=\{a, b\},|X|^{-1}(\{2\})=\{c, d\},|X|^{-1}(\{-2\})=|X|^{-1}(\{-1\})=\varnothing$, and all these sets are in \mathcal{A}, so that $|X|$ is measurable. However, $X^{-1}(\{-1\})=\{a\}$ and $X^{-1}(\{-2\})=\{c\}$, none of which belongs in \mathcal{A}, so that X is not measurable.

As another example, let B be a non-Borel set in \Re, and define X by: $X(\omega)=$ $1, \omega \in B$, and $X(\omega)=-1, \omega \in B^{c}$. Then X is not \mathcal{B}-measurable as $X^{-1}(\{1\})=$ $B \notin \mathcal{B}$, but $|X|^{-1}(\{1\})=\mathfrak{R} \in \mathcal{B}$. $\#$
26. $X+Y$ is measurable by Exercise 24 . Next, $(-Y \leq y)=(Y \geq-y) \in \mathcal{A}$, so that $-Y$ is measurable. Then $X+(-Y)=X-Y$ is measurable. Now, if Z is measurable, then so is Z^{2} because, for $z \geq 0,\left(Z^{2} \leq z\right)=(-\sqrt{z} \leq Z \leq \sqrt{z}) \in \mathcal{A}$. Thus, if X, Y are measurable, then so are $(X+Y)^{2}$ and $(X-Y)^{2}$, and therefore so is: $(X+Y)^{2}-(X-Y)^{2}$. But $(X+Y)^{2}-(X-Y)^{2}=4 X Y$. Thus, $4 X Y$ is measurable, and then so is, clearly, $X Y$.
Finally, if $P(Y \neq 0)=1$, then, for $y \neq 0,\left(\frac{1}{Y} \leq y\right)=\left(Y \geq \frac{1}{y}\right) \in \mathcal{A}$, so that $\frac{1}{Y}$ is measurable. Thus, X and Y are measurable, and $P(Y \neq 0)=1$, so that X and $\frac{1}{Y}$ are measurable. Then $X \times \frac{1}{Y}=\frac{X}{Y}$ is measurable. \#
27. Since $\sigma\left(\mathcal{T}_{m}\right)=\mathcal{B}^{m}$, it suffices to show (by Theorem 2) that $f^{-1}\left(\mathcal{T}_{m}\right) \subseteq \mathcal{B}^{m}$ for f to be measurable. By continuity of $f, f^{-1}\left(\mathcal{T}_{m}\right) \subseteq \mathcal{T}_{n} \subseteq \mathcal{B}^{n}$, since $\sigma\left(\mathcal{T}_{n}\right)=\mathcal{B}^{n}$. Thus, f is measurable. Then, for $B \in \mathcal{B}^{m},[f(X)]^{-1}=X^{-1}\left[f^{-1}(B)\right] \in \mathcal{A}$, since $f^{-1}(B) \in \mathcal{B}^{n}$ and X is measurable. \#
28. For any r.v. Z, it holds: $Z=Z^{+}-Z^{-}$and $|Z|=Z^{+}+Z^{-}$. Hence $Z^{+}=$ $\frac{1}{2}(|Z|+Z), Z^{-}=\frac{1}{2}(|Z|-Z)$.
Applying this to X, Y and $X+Y$, we get:

$$
X^{+}=\frac{1}{2}(|X|+X), Y^{+}=\frac{1}{2}(|Y|+Y),(X+Y)^{+}=\frac{1}{2}[|X+Y|+(X+Y)] .
$$

Hence

$$
X^{+}+Y^{+}=\frac{1}{2}[(|X|+|Y|)+(X+Y)] \geq \frac{1}{2}[|X+Y|+(X+Y)]=(X+Y)^{+} .
$$

Likewise,

$$
X^{-}=\frac{1}{2}(|X|-X), Y^{-}=\frac{1}{2}(|Y|-Y),(X+Y)^{-}=\frac{1}{2}[|X+Y|-(X+Y)]
$$

and hence

$$
X^{-}+Y^{-}=\frac{1}{2}[(|X|+|Y|)-(X+Y)] \geq \frac{1}{2}[|X+Y|-(X+Y)]=(X+Y)^{-} .
$$

Alternative proof:

Let $X+Y \leq 0$. Then $(X+Y)^{+}=0=0+0 \leq X^{+}+Y^{+}$. Let $X+Y>0$. Then $(X+Y)^{+}=X+Y \leq X^{+}+Y^{+}$, because $X=X^{+}-X^{-} \leq X^{+}$and $Y=Y^{+}-Y^{-} \leq Y^{+}$. Thus, $(X+Y)^{+} \leq X^{+}+Y^{+}$. Again, let $X+Y<0$. Then $(X+Y)^{-}=-(X+Y)=-X-Y \leq X^{-}+Y^{-}$, because $X=X^{+}-X^{-}$ or $-X=X^{-}-X^{+} \leq X^{-}$and $Y=Y^{+}-Y^{-}$or $-Y=Y^{-}-Y^{+} \leq Y^{-}$. Next, let $X+Y \geq 0$. Then $(X+Y)^{-}=0=0+0 \leq X^{-}+Y^{-}$, so that $(X+Y)^{-} \leq$ $X^{-}+Y^{-}$. So, again: $(X+Y)^{+} \leq X^{+}+Y^{+}$and $(X+Y)^{-} \leq X^{-}+Y^{-}$. \#
29. (i) From the definition of B_{m}, we have: $B_{1}=A_{1}$, and for $m \geq 2, B_{m}=$ $A_{1}^{c} \cap \ldots \cap A_{m-1}^{c} \cap A_{m}$.
(ii) For $i \neq j$ (e.g., $i<j$), B_{i} is either $A_{1}\left(\right.$ for $i=1$) or $B_{i}=A_{1}^{c} \cap \ldots \cap$ $A_{i-1}^{c} \cap A_{i}$, whereas $B_{j}=A_{1}^{c} \cap \ldots \cap A_{j-1}^{c} \cap A_{j}$, and $B_{i} \cap B_{j}=\varnothing$, because B_{i} contains A_{i} and B_{j} contains A_{i}^{c} (since $i \leq j-1$).
(iii) Let $\omega=\sum_{m=1}^{\infty} B_{m}$. Then either $\omega \in B_{1}=A_{1}$, and hence $\omega \in \cup_{n=1}^{\infty} A_{n}$, or $\omega \notin A_{i}, i=1, \ldots, n-1$ and $\omega \in A_{n}$, so that $\omega \in \cup_{n=1}^{\infty} A_{n}$. Thus, $\sum_{m=1}^{\infty} B_{m} \subseteq \cup_{n=1}^{\infty} A_{n}$. Next, let $\omega \in \cup_{n=1}^{\infty} A_{n}$. Then either $\omega \in A_{1}=B_{1}$, so that $\omega \in \sum_{m=1}^{\infty} B_{m}$, or $\omega \notin A_{i}, i=1, \ldots, n-1$ and $\omega \in A_{n}$. Then $\omega \in B_{n}$, so that $\omega \in \sum_{m=1}^{\infty} B_{m}$. \#
30. (i) We have $\underline{\lim }_{n \rightarrow \infty} A_{n}=\cup_{n=1}^{\infty} \cap_{k=n}^{\infty} A_{k}$, so that $\omega \in\left(\lim _{n \rightarrow \infty} A_{n}\right)$ or $\omega \in \cup_{n=1}^{\infty} \cap{ }_{k=n}^{\infty} A_{k}$, therefore $\omega \in \cap_{k=n_{0}}^{\infty} A_{k}$ for some n_{0}, and hence $\omega \in A_{k}$ for all $k \geq n_{0}$. Next, let $\omega \in A_{n}$ for all but finitely many $n \mathrm{~s}$; i.e., $\omega \in A_{n}$ for all $n \geq n_{0}$. Then $\omega \in \cap_{k=n_{0}}^{\infty} A_{k}$ and hence $\omega \in \cup_{n=1}^{\infty} \cap_{k=n}^{\infty} A_{k}$, which completes the proof.
(ii) Here $\varlimsup_{n \rightarrow \infty} A_{n}=\cap_{n=1}^{\infty} \cup_{k=n}^{\infty} A_{k}$, and hence $\omega \in\left(\overline{\lim }_{n \rightarrow \infty} A_{n}\right)$ or $\omega \in$ $\cap_{n=1}^{\infty} \cup_{k=n}^{\infty} A_{k}$ implies that $\omega \in \cup_{k=n}^{\infty} A_{k}$ for $n \geq 1$. From $\omega \in \cup_{k=1}^{\infty} A_{k}$, let k_{1} be the first k for which $\omega \in A_{k_{1}}$. Next, consider $\cup_{k=k_{1}+1}^{\infty} A_{k}$, and from $\omega \in \cup_{k=k_{1}+1}^{\infty} A_{k}$, let k_{2} be the first $k\left(\geq k_{1}+1\right)$ for which $\omega \in A_{k_{2}}$. Continuing like this, we get that ω belongs to infinitely many $A_{n} \mathrm{~s}$. In the other way around, if ω belongs to infinitely many $A_{n} \mathrm{~s}$, that means that there exist $1<k_{1}<k_{2}<\ldots$ such that $\omega \in A_{k_{j}}, j=1,2, \ldots$ Then $\omega \in \cup_{k=k_{j}}^{\infty} A_{k}, j \geq 1$, and hence $\omega \in \cup_{k=n}^{\infty} A_{k}$ for $1 \leq n \leq k_{1}$ and $k_{j}<n<k_{j+1}, j \geq 1$. Thus, $\omega \in \cap_{n=1}^{\infty} \cup_{k=n}^{\infty} A_{k}$ and the result follows. \#
31. From $A_{k} \subseteq B_{k}, k \geq 1$, we have $\cup_{k=n}^{\infty} A_{k} \subseteq \cup_{k=n}^{\infty} B_{k}, n \geq 1$, and hence $\cap_{n=1}^{\infty} \cup_{k=n}^{\infty} A_{k} \subseteq \cap_{n=1}^{\infty} \cup_{k=n}^{\infty} B_{k}$ or $\overline{\lim }_{n \rightarrow \infty} A_{n} \subseteq \overline{\lim }_{n \rightarrow \infty} B_{n}$ or (A_{n} i.o.) \subseteq (B_{n} i.o.) (by Exercise 2). \#
32. We have $\underline{\lim }_{n \rightarrow \infty} A_{n}=\cup_{n=1}^{\infty} \cap_{k=n}^{\infty} A_{k}$ and $\cap_{k=n}^{\infty} A_{k}=\cap_{k=n}^{\infty}\left\{r \in\left(1-\frac{1}{k+1}, 1+\right.\right.$ $\left.\left.\frac{1}{k}\right) ; r \in Q\right\}=\{1\}$ for all n, so that $\cup_{n=1}^{\infty} \cap_{k=n}^{\infty} A_{k}=\{1\} ;$ i.e., $\underline{\lim }_{n \rightarrow \infty} A_{n}=\{1\}$. Next, $\varlimsup_{n \rightarrow \infty} A_{n}=\cap_{n=1}^{\infty} \cup_{k=n}^{\infty} A_{k}$ and $\cup_{k=n}^{\infty} A_{k}=\cup_{k=n}^{\infty}\left\{r \in\left(1-\frac{1}{k+1}, 1+\frac{1}{k}\right)\right.$; $r \in Q\}=\left\{r \in\left(1-\frac{1}{n+1}, 1+\frac{1}{n}\right) ; r \in Q\right\}$, so that $\cap_{n=1}^{\infty} \cup_{k=n}^{\infty} A_{k}=\cap_{n=1}^{\infty}\{r \in$ $\left.\left(1-\frac{1}{n+1}, 1+\frac{1}{n}\right) ; r \in Q\right\}=\{1\}$. Thus, $\underline{\lim }_{n \rightarrow \infty} A_{n}=\varlimsup_{\lim }^{n \rightarrow \infty} 1 A_{n}=\{1\}=$ $\lim _{n \rightarrow \infty} A_{n}$. \#
33. Here $\underline{\lim }_{n \rightarrow \infty} A_{n}=\cup_{n=1}^{\infty} \cap_{k=n}^{\infty} A_{k}$, and consider the $\cap_{k=n}^{\infty} A_{k}$ for n odd or even. Then

$$
\bigcap_{k=2 n-1}^{\infty} A_{k}=\left(\underset{\substack{\text { odd } \\ \geq 2 n-1}}{\cap} A_{k}\right) \cap\left(\underset{k \text { even }}{\cap} A_{k}\right),
$$

and
$A_{2 n-1} \cap A_{2 n+1} \cap \ldots=\left[-1, \frac{1}{2 n-1}\right] \cap\left[-1, \frac{1}{2 n+1}\right] \cap \ldots=[-1,0], A_{2 n} \cap A_{2 n+2} \cap$
$\ldots=\left[0, \frac{1}{2 n}\right) \cap\left[0, \frac{1}{2 n+2}\right) \cap \ldots=\{0\}$, so that $\cap{ }_{k=2 n-1}^{\infty} A_{k}=[-1,0] \cap\{0\}=\{0\}$.
Next,

$$
\begin{gathered}
\bigcap_{k=2 n}^{\infty} A_{k}=\left(\underset{\substack{\text { even } \\
\geq 2 n}}{\cap} A_{k}\right) \cap\left(\underset{k \text { odd }}{\cap} A_{k}\right), \\
\geq 2 n+1
\end{gathered}
$$

and

$$
A_{2 n} \cap A_{2 n+2} \cap \ldots=\left[0, \frac{1}{2 n}\right) \cap\left[0, \frac{1}{2 n+2}\right) \cap \ldots=\{0\}, A_{2 n+1} \cap A_{2 n+3} \cap \ldots=
$$

$$
\left[-1, \frac{1}{2 n+1}\right] \cap\left[-1, \frac{1}{2 n+3}\right] \cap \ldots=[-1,0], \text { so that } \cap_{k=2 n}^{\infty} A_{k}=\{0\} \cap[-1,0]=\{0\}
$$

$$
\text { It follows that } \cup_{n=1}^{\infty} \cap_{k=n}^{\infty} A_{n}=\{0\}=\underline{\lim }_{n \rightarrow \infty} A_{n} \text {. }
$$

Next, $\varlimsup_{n \rightarrow \infty} A_{n}=\cap_{n=1}^{\infty} \cup_{k=n}^{\infty} A_{k}$, and consider the $\cup_{k=n}^{\infty} A_{k}$ for odd and even values of n. We have

$$
\begin{aligned}
& \bigcup_{k=2 n-1}^{\infty} A_{k}=\left(\underset{k \text { odd }}{\cup} A_{k}\right) \cup\left(\underset{k \text { even }}{\cup} A_{k}\right), \\
& \geq 2 n-1 \geq 2 n
\end{aligned}
$$

and
$A_{2 n-1} \cup A_{2 n+1} \cup \ldots=\left[-1, \frac{1}{2 n-1}\right] \cup\left[-1, \frac{1}{2 n+1}\right] \cup \ldots=\left[-1, \frac{1}{2 n-1}\right], A_{2 n} \cup$ $A_{2 n+2} \cup \ldots=\left[0, \frac{1}{2 n}\right) \cup\left[0, \frac{1}{2 n+2}\right) \cup \ldots=\left[0, \frac{1}{2 n}\right)$, so that $\cup_{k=2 n-1}^{\infty} A_{k}=$ $\left[-1, \frac{1}{2 n-1}\right] \cup\left[0, \frac{1}{2 n}\right)=\left[-1, \frac{1}{2 n-1}\right]$. Next,

$$
\begin{gathered}
\bigcup_{k=2 n}^{\infty} A_{k}=\left(\underset{k \text { even }}{\cup} A_{k}\right) \cup\left(\underset{k \text { odd }}{\geq 2 n} A_{k}\right), \\
\geq 2 n+1
\end{gathered}
$$

and

$$
\begin{aligned}
& A_{2 n} \cup A_{2 n+2} \cup \ldots=\left[0, \frac{1}{2 n}\right) \cup\left[0, \frac{1}{2 n+2}\right) \cup \ldots=\left[0, \frac{1}{2 n}\right), A_{2 n+1} \cup A_{2 n+3} \cup \ldots= \\
& {\left[-1, \frac{1}{2 n+1}\right] \cup\left[-1, \frac{1}{2 n+3}\right] \cup \ldots=\left[-1, \frac{1}{2 n+1}\right], \text { so that } \cup_{k=2 n}^{\infty} A_{k}=\left[0, \frac{1}{2 n}\right) \cup}
\end{aligned}
$$

$\left[-1, \frac{1}{2 n+1}\right]=\left[-1, \frac{1}{2 n}\right)$. It follows that

$$
\begin{aligned}
\bigcap_{n=1}^{\infty} \bigcup_{k=n}^{\infty} A_{k} & =[-1,1] \cap\left[-1, \frac{1}{2}\right) \cap\left[-1, \frac{1}{3}\right] \cap\left[-1, \frac{1}{4}\right) \cap \ldots \\
& =[-1,0]=\overline{\lim }_{n \rightarrow \infty} A_{n} .
\end{aligned}
$$

So, $\lim _{n \rightarrow \infty} A_{n}=\{0\}$ and $\varlimsup_{n \rightarrow \infty} A_{n}=[-1,0]$, so that the $\lim _{n \rightarrow \infty} A_{n}$ does not exist. \#
34. (i) We have:

$$
\{[0,1),[1,2), \ldots,[n-1, n)\} \subset\{[0,1),[1,2), \ldots,[n-1, n),[n, n+1)\}
$$

and hence $\mathcal{A}_{n} \subseteq \mathcal{A}_{n+1}$. That $\mathcal{A}_{n} \subset \mathcal{A}_{n+1}$ follows by the fact that, e.g., [$n, n+1$) cannot belong in \mathcal{A}_{n} since all members of \mathcal{A}_{n} are $\subseteq[0, n)$.
(ii) Let $A_{1} \in \mathcal{A}_{1}, A_{2} \in \mathcal{A}_{2}$ but not in $\mathcal{A}_{1}, \ldots, A_{n} \in \mathcal{A}_{n}$ but not in $\mathcal{A}_{n-1}, \ldots$, and set $A=\cup_{i=1}^{\infty} A_{i}$. Then $A \notin \cup_{n=1}^{\infty} \mathcal{A}_{n}$, because otherwise, $A \in \mathcal{A}_{n}$ for some n. However, this is not possible since $\cup_{i=n+1}^{\infty} A_{i} \notin \mathcal{A}_{n}$.
(iii) $\mathcal{A}_{1}=\left\{\oslash,[0,1),[0,1)^{c}=(-\infty, 0) \cup[1, \infty), \mathfrak{R}\right\}, \mathcal{A}_{2}=\{\oslash,[0,1)$, $[1,2),(-\infty, 0) \cup[1, \infty),(-\infty, 1) \cup[2, \infty),[0,2),(-\infty, 0)$ $\cup[2, \infty), \mathfrak{R}\}$. \#
35. (i) First, observe that all intersections $A_{1}^{\prime} \cap \ldots \cap A_{n}^{\prime}$ are pairwise disjoint, so that their unions are, actually, sums. Next, if A and B are in \mathcal{C}, it is clear that $A \cup B$ is a sum of intersections $A_{1}^{\prime} \cap \ldots \cap A_{n}^{\prime}$ (the sum of those intersections in A and those intersections in B), so that $A \cup B$ is in \mathcal{C}. Now, if $A \in \mathcal{C}$, then A^{c} is the sum of all those intersections $A_{1}^{\prime} \cap \ldots \cap A_{n}^{\prime}$ which are not part of A. Hence A^{c} is also in \mathcal{C}, and \mathcal{C} is a field.
(ii) In forming $A_{1}^{\prime} \cap \ldots \cap A_{n}^{\prime}$, we have 2 choices at each one of the n steps. Thus, there are 2^{n} sets of the form $A_{1}^{\prime} \cap \ldots \cap A_{n}^{\prime}$. Next, in forming their sums, we select k of those members at a time, where $k=0,1, \ldots, 2^{n}$. Therefore the total number of sums is: $\binom{2^{n}}{0}+\binom{2^{n}}{1}+\ldots+\binom{2^{n}}{2^{n}}=2^{2^{n}}$. \#
36. (i) If $\omega \in A$, then $f(\omega) \in f(A)$ and $\omega \in f^{-1}[f(A)]$. For a concrete example, take $f: \mathfrak{R} \rightarrow[0,1)$ where $f(x)=x^{2}$, and let $A=[0,1)$. Then $f(A)=f([0,1])=[0,1)$, and $f^{-1}([0,1))=(-1,1)$. It follows that $f^{-1}[f(A)]=f^{-1}([0,1))=(-1,1) \supset[0,1)=A$.
(ii) Let $\omega^{\prime} \in f\left[f^{-1}(B)\right]$ which implies that there exists $\omega \in f^{-1}(B)$ such that $f(\omega)=\omega^{\prime}$. Also, $\omega \in f^{-1}(B)$ implies that $f(\omega) \in B$. Since also $f(\omega)=\omega^{\prime}$, it follows that $\omega^{\prime} \in B$. Thus $f\left[f^{-1}(B)\right] \subseteq B$.

For a concrete example, let $f: \Re \rightarrow \Re$ with $f(x)=c$. Take $B=(c-1, c+1)$, so that $f^{-1}[(c-1, c+1)]=\Re$ and $f(\mathfrak{R})=$ $\{c\} \subset(c-1, c+1)$. That is, $f\left[f^{-1}(B)\right]=\{c\} \subset(c-1, c+1)=B . \#$
37. (i) Since $X^{-1}(\{-1\})=A_{1}, X^{-1}(\{1\})=A_{1}^{c} \cap A_{2}$, and $X^{-1}(\{0\})=A_{1}^{c} \cap A_{2}^{c}$, and $A_{1}, A_{1}^{c} \cap A_{2}, A_{1}^{c} \cap A_{2}^{c}$ are in \mathcal{A}, X is a r.v.
(ii) We have $X^{-1}(\{-1\})=\{a, b\}, X^{-1}(\{1\})=\{c\}, X^{-1}(\{2\})=\{d\}$, and neither $\{c\}$ nor $\{d\}$ are in \mathcal{A}. Then X is not \mathcal{A}-measurable.
(iii) We have $X^{-1}(\{-2\})=\{-2\}, X^{-1}(\{-1\})=\{-1\}, X^{-1}(\{0\})=\{0\}$, $X^{-1}(\{1\})=\{1\}, X^{-1}(\{2\})=\{2\}$, so that $X^{-1}(\mathcal{B})$ is the field induced in Ω by the partition: $\{\{-2\},\{-1\},\{0\},\{1\},\{2\}\}$.
The values taken on by X^{2} are $0,1,4$, and $\left(X^{2}\right)^{-1}(\{0\})=\{0\},\left(X^{2}\right)^{-1}$ $(\{1\})=\{-1,1\},\left(X^{2}\right)^{-1}(\{4\})=\{-2,2\}$, so that the field induced by X^{2} is the one generated by the sets $\{0\},\{-1,1\},\{-2,2\}$, and it is, clearly, strictly contained in the one induced by X. \#
38. For a fixed k, let $\mathcal{A}_{k, n}=\left(X_{k}, \ldots, X_{k+n-1}\right)^{-1}(\mathcal{B})$. Then the σ-fields $\mathcal{A}_{k, n}, n \geq 1$, form a nondecreasing sequence and therefore $\mathcal{F}_{k}=\cup_{n=1}^{\infty} \mathcal{A}_{k, n}$ is a field (but it may fail to be a σ-field; see Exercise 10 in this chapter) and $\mathcal{B}_{k}=\sigma\left(\mathcal{F}_{k}\right)$. Likewise, $\mathcal{B}_{l}=\sigma\left(\mathcal{F}_{l}\right)$ where $\mathcal{F}_{l}=\cup_{n=1}^{\infty} \mathcal{A}_{l, n}$.

However, $\cup_{n=k}^{\infty} \mathcal{A}_{n} \supseteq \cup_{n=l}^{\infty} \mathcal{A}_{n}$, so that $\mathcal{B}_{k}=\sigma\left(\cup_{n=k}^{\infty} \mathcal{A}_{n}\right) \supseteq \sigma\left(\cup_{n=l}^{\infty} \mathcal{A}_{n}\right)=$ \mathcal{B}_{l}. This is so by the way the σ-fields \mathcal{B}_{k} and \mathcal{B}_{l} are generated (see Theorem 2(ii) in this chapter). \#
39. Since S_{k} is a function of the $X_{j} \mathrm{~s}, j=1, \ldots, k, k=1, \ldots, n$ it follows that $\sigma\left(S_{k}\right) \subseteq \sigma\left(X_{1}, \ldots, X_{n}\right), k=1, \ldots, n$. Hence $\cup_{k=1}^{n} \sigma\left(S_{k}\right) \subseteq \sigma\left(X_{1}, \ldots, X_{n}\right)$ and then $\sigma\left(\cup_{k=1}^{n} \sigma\left(S_{k}\right)\right) \subseteq \sigma\left(X_{1}, \ldots, X_{n}\right)$ or $\sigma\left(S_{1}, \ldots, S_{n}\right) \subseteq \sigma\left(X_{1}, \ldots, X_{n}\right)$. Next, $X_{k}=S_{k}-S_{k-1}, k=1, \ldots, n\left(S_{0}=0\right)$, so that X_{k} is a function of the $S_{j} \mathrm{~s}, k=1, \ldots, n$. Then, as above, $\sigma\left(X_{1}, \ldots, X_{n}\right) \subseteq \sigma\left(S_{1}, \ldots, S_{n}\right)$, and equality follows. \#
40. Consider the function $f: \mathfrak{R} \rightarrow \mathfrak{R}$ defined by $y=f(x)=x+c$. Then, clearly, $f(B)=B_{c}$. The existing inverse of f, f^{-1}, is given by: $x=f^{-1}(y)=x-c$, and it is clear that $\left(f^{-1}\right)\left(B_{c}\right)=B$. By setting $g=f^{-1}$, so that $g^{-1}=f$, we have that $g^{-1}(B)(=f(B))=B_{c}$. So, g^{-1} is continuous and hence measurable, and $g^{-1}(B)=B_{c}$. Since B is measurable then so is B_{c}. \#
41. (i) Clearly, $\mathcal{F} \neq \oslash$. Next, to show that \mathcal{F} is closed under complementation. Indeed, if $A \in \mathcal{F}$, then

$$
\begin{aligned}
A & =\bigcup_{i=1}^{n} A_{i}=\bigcup_{i=1}^{n} \bigcap_{j=1}^{m_{i}} A_{i}^{j} \\
& =\left(A_{1}^{1} \cap \ldots \cap A_{1}^{m_{1}}\right) \cup \ldots \cup\left(A_{n}^{1} \cap \ldots \cap A_{n}^{m_{n}}\right)
\end{aligned}
$$

with all $A_{1}^{1}, \ldots, A_{1}^{m_{1}}, \ldots, A_{n}^{1}, \ldots, A_{n}^{m_{n}}$ in \mathcal{F}_{1}, so that

$$
\begin{aligned}
A^{c} & \left.=\left[A_{1}^{1} \cap \ldots \cap A_{1}^{m_{1}}\right) \cup \ldots \cup\left(A_{n}^{1} \cap \ldots \cap A_{n}^{m_{n}}\right)\right]^{c} \\
& =\left[\left(A_{1}^{1}\right)^{c} \cup \ldots \cup\left(A_{1}^{m_{1}}\right)^{c}\right] \cap \ldots \cap\left[\left(A_{n}^{1}\right)^{c} \cup \ldots \cup\left(A_{n}^{m_{n}}\right)^{c}\right] \\
& =\bigcup_{i_{1}=1}^{m_{1}} \ldots \bigcup_{i_{n}=1}^{m_{n}}\left[\left(A_{1}^{i_{1}}\right)^{c} \cap \ldots \cap\left(A_{n}^{i_{n}}\right)^{c}\right] .
\end{aligned}
$$

The fact that $A_{1}^{i_{1}}, \ldots, A_{n}^{i_{n}}$ are in \mathcal{F}_{1} implies that $\left(A_{1}^{i_{1}}\right)^{c}, \ldots,\left(A_{n}^{i_{n}}\right)^{c}$ are also in \mathcal{F}_{1}, as follows from the definition of \mathcal{F}_{1}. So, A^{c} is a finite union of a finite intersection of members of \mathcal{F}_{1}, and hence $A^{c} \in \mathcal{F}_{3}(=\mathcal{F})$,
by the definition of \mathcal{F}_{3}. Next, let $A, B \in \mathcal{F}$. To show that $A \cup B \in \mathcal{F}$. Indeed, $A, B \in \mathcal{F}$ implies that $A=A_{1} \cup \ldots \cup A_{m}=\left(A_{1}^{1} \cap \ldots \cap\right.$ $\left.A_{1}^{k_{1}}\right) \cup \ldots \cup\left(A_{m}^{1} \cap \ldots \cap A_{m}^{k_{m}}\right)$ with $A_{i}^{1}, \ldots, A_{i}^{k_{i}}$ in $\mathcal{F}_{1}, i=1, \ldots, m$, $B=B_{1} \cup \ldots \cup B_{n}=\left(B_{1}^{1} \cap \ldots \cap B_{1}^{l_{1}}\right) \cup \ldots \cup\left(B_{n}^{1} \cap \ldots \cap B_{n}^{l_{n}}\right)$ with $B_{j}^{1}, \ldots, B_{j}^{l_{j}}$ in $\mathcal{F}_{1}, j=1, \ldots, n$, so that

$$
\begin{aligned}
A \cup B= & {\left[\left(A_{1}^{1} \cap \ldots \cap A_{1}^{k_{1}}\right) \cup \ldots \cup\left(A_{m}^{1} \cap \ldots \cap A_{m}^{k_{m}}\right)\right] \cup } \\
& {\left[\left(B_{1}^{1} \cap \ldots \cap B_{1}^{l_{1}}\right) \cup \ldots \cup\left(B_{n}^{1} \cap \ldots \cap B_{n}^{l_{n}}\right)\right] } \\
= & \left(A_{1}^{1} \cap \ldots \cap A_{1}^{k_{1}}\right) \cup \ldots \cup\left(A_{m}^{1} \cap \ldots \cap A_{m}^{k_{m}}\right) \cup \\
& \left(B_{1}^{1} \cap \ldots \cap B_{1}^{l_{1}}\right) \cup \ldots \cup\left(B_{n}^{1} \cap \ldots \cap B_{n}^{l_{n}}\right),
\end{aligned}
$$

which is a finite union of finite intersections of members of \mathcal{F}_{1}. It follows that $A \cup B$ is in $\mathcal{F}_{3}(=\mathcal{F})$, so that \mathcal{F} is a field.
(ii) Trivially, $\mathcal{C} \subseteq \mathcal{F}$, so that $\mathcal{F}(\mathcal{C}) \subseteq \mathcal{F}$. To show that $\mathcal{F} \subseteq \mathcal{F}(\mathcal{C})$. Let $A \in \mathcal{F}$. Then, by part (i), $A=\left(A_{1}^{1} \cap \ldots \cap A_{1}^{m_{1}}\right) \cup \ldots \cup\left(A_{n}^{1} \cap \ldots \cap A_{n}^{m_{n}}\right)$ with all $A_{1}^{1}, \ldots, A_{1}^{m_{1}}, \ldots, A_{n}^{1}, \ldots, A_{n}^{m_{n}}$ in \mathcal{F}_{1}.
Clearly, $\mathcal{F}_{1} \subseteq \mathcal{F}(\mathcal{C})$ by the definition of \mathcal{F}_{1}. Thus, $A_{i}^{1}, \ldots, A_{i}^{m_{i}}$ are in $\mathcal{F}(\mathcal{C})$, for $i=1, \ldots, n$, and then the intersections $A_{i}^{1} \cap \ldots \cap A_{i}^{m_{i}}, i=$ $1, \ldots, n$ are in $\mathcal{F}(\mathcal{C})$, and therefore so is their union $\left(A_{1}^{1} \cap \ldots \cap A_{1}^{m_{1}}\right) \cup$ $\ldots \cup\left(A_{n}^{1} \cap \ldots \cap A_{n}^{m_{n}}\right)$. Since this union is A, it follows that $A \in \mathcal{F}(\mathcal{C})$. Thus, $\mathcal{F} \subseteq \mathcal{F}(\mathcal{C})$, and the proof is completed. \#
Remark: In Exercise 41, in the proof that $A \in \mathcal{F}$ implies $A^{c} \in \mathcal{F}$, the following property was used (in a slightly different notation for simplification); namely, $\left(C_{1}^{1} \cup \ldots \cup C_{1}^{m_{1}}\right) \cap \ldots \cap\left(C_{n}^{1} \cup \ldots \cup C_{n}^{m_{n}}\right)=$ $\cup_{i_{1}=1}^{m_{1}} \ldots \cup_{i_{n}=1}^{m_{n}}\left(C_{1}^{i_{1}} \cap \ldots \cap C_{n}^{i_{n}}\right)$.
This is justified as follows: Let ω belong to the right-hand side. Then ω belongs to at leats one of the $m_{1} \times \ldots \times m_{n}$ members of the union, for example, $\omega \in\left(C_{1}^{i_{1}^{\prime}} \cap \ldots \cap C_{n}^{i_{n}^{\prime}}\right)$ for some $1 \leq i_{1}^{\prime} \leq m_{1}, \ldots, 1 \leq i_{n}^{\prime}$ $\leq m_{n}$. But then $\omega \in\left(C_{1}^{1} \cup \ldots \cup C_{1}^{m_{1}}\right), \ldots, \omega \in\left(C_{n}^{1} \cup \ldots \cup C_{n}^{m_{n}}\right)$, and therefore $\left.\omega \in\left[C_{1}^{1} \cup \ldots \cup C_{1}^{m_{1}}\right) \cap \ldots \cap\left(C_{n}^{1} \cup \ldots \cup C_{n}^{m_{n}}\right)\right]$, or ω belongs to the left-hand side. Next, let ω belong to the left-hand side. Then $\omega \in$ $\left(C_{1}^{1} \cup \ldots \cup C_{1}^{m_{1}}\right), \ldots, \omega \in\left(C_{n}^{1} \cup \ldots \cup C_{n}^{m_{n}}\right)$, so that $\omega \in C_{1}^{i_{1}^{\prime}}, \ldots, \omega \in C_{n}^{i_{n}^{\prime}}$ for some $1 \leq i_{1}^{\prime} \leq m_{1}, \ldots, 1 \leq i_{n}^{\prime} \leq m_{n}$. But then $\omega \in\left(C_{1}^{i_{1}^{\prime}} \cap \ldots \cap C_{n}^{i_{n}^{\prime}}\right)$, and $C_{1}^{i_{1}^{\prime}} \cap \ldots \cap C_{n}^{i_{n}^{\prime}}$ is one of the $m_{1} \times \ldots \times m_{n}$ members of the union on the right-hand side. It follows that ω belongs to the right-hand side, and the justification is completed. \#
42. Let $A \in \mathcal{A}$. Then $A=\cup_{i=1}^{\infty} A_{i}, A_{i}=A_{i}^{1} \cap A_{i}^{2} \cap \ldots$ with $A_{i}^{1}, A_{i}^{2}, \ldots$ in $\mathcal{A}_{1}, i \geq 1$. Then

$$
A^{c}=\left(\bigcup_{i=1}^{\infty} A_{i}\right)^{c}=\bigcap_{i=1}^{\infty} A_{i}^{c}=\bigcap_{i=1}^{\infty}\left(A_{i}^{1} \cap A_{i}^{2} \cap \ldots\right)^{c}
$$

