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Chapter 1
Certain Classes of Sets, Measurability, Pointwise Approximation
1. (i) x ∈ limn→∞ An if and only if x ∈ ∪n≥1∩ j≥n A j , so that x ∈ ∩ j≥n0 A j

for some n0 ≥ 1, and then x ∈ A j for all j ≥ n0, or x ∈ ∪ j≥n A j for all
n ≥ 1, so that x ∈ ∩n≥1∪ j≥1 A j limn→∞ An .

(ii)
(
limn→∞ An

)c = (∪n≥1∩ j≥n A j
)c = ∩n≥1∪ j≥n Ac

j = limn→∞ Ac
n ,(

limn→∞ An
)c = (∩n≥1∪ j≥n A j

)c = ∪n≥1∩ j≥n Ac
j = limn→∞ Ac

n .

Let limn→∞ An = A. Then limn→∞ Ac
n = (

limn→∞ An
)c =(

limn→∞ An
)c = Ac, and limn→∞ An = (

limn→∞ An
)c =(

limn→∞ An
)c = Ac, so that limn→∞ Ac

n exists and is Ac.
(iii) To show that limn→∞(An ∩ Bn) = (limn→∞ An) ∩ (limn→∞Bn).

Equivalently,

∞∪
n=1

∞∩
j=n

(A j ∩ B j ) =
( ∞∪

n=1

∞∩
j=n

A j

)
∩
( ∞∪

n=1

∞∩
j=n

B j

)
.

Indeed, let x belong to the left-hand side. Then x ∈ ∩∞
j=n0

(A j ∩ B j ) for
some n0 ≥ 1, hence x ∈ (A j ∩ B j ) for all j ≥ n0, and then x ∈ A j and
x ∈ B j for all j ≥ n0. Hence x ∈ ∩∞

j=n0
A j and x ∈ ∩∞

j=n0
B j , so that x ∈

∪∞
n=1∩∞

j=n A j and x ∈ ∪∞
n=1∩∞

j=n B j ; i.e., x belongs to the right-hand side.
Next, let x belong to the right-hand side. Then x ∈ ∪∞

n=1∩∞
j=n A j and x ∈

∪∞
n=1∩∞

j=n B j , so that x ∈ ∩∞
j=n1

A j and x ∈ ∩∞
j=n2

B j for some n1, n2 ≥ 1.
Then x ∈ ∩∞

j=n0
A j and x ∈ ∩∞

j=n0
B j where n0 = max(n1, n2), and hence

x ∈ A j and x ∈ B j for all j ≥ n0. Thus, x ∈ (A j ∩ B j ) for all j ≥ n0,
so that x ∈ ∩∞

j=n0
(A j ∩ B j ) and hence x ∈ ∪∞

n=1∩∞
j=n(A j ∩ B j ); i.e., x

belongs to the left-hand side.
Next, limn→∞(An ∪ Bn) = limn→∞(Ac

n ∩ Bc
n)c = [limn→∞(Ac

n ∩
Bc

n)]c (by part (ii)), and this equals to [(limn→∞ Ac
n) ∩ (limn→∞Bc

n)]c (by
what we just proved), and this equals [(limn→∞ An)c ∩ (limn→∞Bn)c]c =
(limn→∞ An) ∪ (limn→∞Bn), as was to be seen.
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(iv) To show that: limn→∞(An ∩ Bn) ⊆ (limn→∞ An) ∩ (limn→∞Bn) and
limn→∞(An ∪ Bn) ⊇ (limn→∞ An) ∪ (limn→∞Bn).
Suffices to show: ∩∞

n=1∪∞
j=n(A j ∩ B j ) ⊆

(
∩∞

n=1∪∞
j=n A j

)
∩(

∩∞
n=1∪∞

j=n B j

)
.

Indeed, let x belong to the left-hand side. Then x ∈ ∪∞
j=n(A j ∩ B j ) for

all n ≥ 1, so that x ∈ (A j ∩ B j ) for some j ≥ n and all n ≥ 1. Then
x ∈ A j and x ∈ B j for some j ≥ n and all n ≥ 1, hence x ∈ ∪∞

j=n A j and
x ∈ ∪∞

j=n B j for all n ≥ 1, so that x ∈ ∩∞
n=1∪∞

j=n A j and x ∈ ∩∞
n=1∪∞

j=n B j ,

and hence x ∈
(
∩∞

n=1∪∞
j=n A j

)
∩
(
∩∞

n=1∪∞
j=n B j

)
; i.e., x belongs to the

right-hand side. So, the above inclusion is correct.
Also, to show that :

(
∪∞

n=1∩∞
j=n A j

)
∪
(
∪∞

n=1∩∞
j=n B j

)
⊆ ∪∞

n=1∩∞
j=n

(A j ∪ B j ).
Indeed, let x belong to the left-hand side. Then x ∈ ∪∞

n=1∩∞
j=n A j or

x ∈ ∪∞
n=1∩∞

j=n B j or to both. Let x ∈ ∪∞
n=1∩∞

j=n A j . Then x ∈ ∩∞
j=n0

A j

for some n0 ≥ 1, hence x ∈ A j for all j ≥ n0, and then x ∈ (A j ∪ B j )

for all j ≥ n0, so that x ∈ ∪∞
n=1∩∞

j=n(A j ∪ B j ); i.e., x belongs to the
right-hand side. Similarly if x ∈ ∪∞

n=1∩∞
j=n B j .

An alternative proof of the second part is as follows:

lim(An ∪ Bn) =
∞⋃

n=1

∞⋂
k=n

(Ak ∪ Bk) =
[ ∞⋂

n=1

∞⋃
k=n

(Ac
k ∩ Bc

k )

]c

= [
lim(Ac

k ∩ Bc
k )
]c ⊇ [( lim Ac

k

) ∩ ( limBc
k

)]c
(by the previous part)

=
( ∞⋂

n=1

∞⋃
k=n

)c

∪
( ∞⋂

n=1

∞⋃
k=n

Bc
k

)c

=
( ∞⋃

n=1

∞⋂
k=n

Ak

)
∪
( ∞⋃

n=1

∞⋂
k=n

Bk

)
= (lim An) ∪ (limBn).

(v) That the inverse inclusions in part (iv) need not hold is demonstrated by
the following
Counterexample:
Let A2 j−1 = A, A2 j = A0 and B2 j−1 = B, B2 j = B0, j ≥ 1, for some
events A, A0, B and B0. Then: limn→∞ An = A ∩ A0, limn→∞ An =
A ∪ A0, limn→∞Bn = B ∩ B0, limn→∞Bn = B ∪ B0, limn→∞
(An∩Bn) = (A∩B)∪(A0∩B0), limn→∞(An∪Bn) = (A∪B)∩(A0∪B0).
Therefore (A ∪ B)∩ (A0 ∪ B0) need not contain (A ∪ A0)∩ (B ∪ B0), and
(A ∩ A0) ∪ (B ∩ B0) need not contain (A ∪ B) ∩ (A0 ∪ B0).
As a concrete example, take � = 
, A = (0, 1], A0 = [2, 3],
B = [1, 2], B0 = [3, 4]. Then: (A ∪ B) ∩ (A0 ∪ B0) = (0, 2], (A ∪ A0) ∩
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(B ∪ B0) = ((0, 1] ∪ [2, 3]) ∩ ([1, 2] ∪ [3, 4]) = {1} ∪ {3} = {1, 3} �
(0, 2], and (A ∩ A0) ∪ (B ∩ B0) = � ∪ � = �, (A ∪ B) ∩ (A0 ∪ B0) =
(0, 2] ∩ [2, 4] = {2} not contained in �.

(vi) If limn→∞ An = A and limn→∞Bn = B, then by parts (iii) and (iv):
limn→∞(An ∩ Bn) ⊆ A ∩ B and limn→∞(An ∩ Bn) = A ∩ B. Thus,
A ∩ B = limn→∞(An ∩ Bn) ⊆ limn→∞(An ∩ Bn) ⊆ A ∩ B, so that
limn→∞(An ∩ Bn) = A ∩ B. Likewise: A ∪ B ⊆ limn→∞(An ∪ Bn) ⊆
limn→∞(An ∪ Bn) = A ∪ B, so that limn→∞(An ∪ Bn) = A ∪ B.

(vii) Since An�B = (An − B) + (B − An) = (An ∩ Bc) + (B ∩ Ac
n), we

have limn→∞(An ∩ Bc) = (limn→∞ An) ∩ Bc = A ∩ Bc by part (vi), and
limn→∞(B ∩ Ac

n) = B ∩ (limn→∞ Ac
n) = B ∩ Ac by parts (vi) and (ii).

Therefore, by part (vi) again, limn→∞(An�B) = limn→∞[(An ∩ Bc) +
(B ∩ Ac

n)] = limn→∞(An ∩ Bc) + limn→∞(B ∩ Ac
n) = (A ∩ Bc) +

(B ∩ Ac) = A�B.
(viii) A2 j−1 = B, A2 j = C, j ≥ 1. Then, as in part (v), limn→∞ An = B∩C and

limn→∞ An = B ∪C . The limn→∞ An exists if and only if B ∩C = B ∪C ,
or B ∪C = (B ∩Cc)+(Bc ∩C)+(B ∩C) = B ∩C . Then, by the pairwise
disjointness of B ∩Cc, Bc ∩C and B ∩C , we have B ∩Cc = Bc ∩C = �.
From B ∩ Cc = �, it follows that B ⊆ C , and from Bc ∩ C = �, it
follows that C ⊆ B. Therefore B = C . Thus, limn→∞ An exists if and
only if B = C . #

2. (i) All three sets A, A, and A (if it exists) are in A, because they are expressed
in terms of An, n ≥ 1, by means of countable operations.

(ii) Let An ↑. Then limn→∞ An = ∪∞
n=1∩∞

j=n A j = ∪∞
n=1 An , and limn→∞

An = ∩∞
n=1∪∞

j=n A j = ∪∞
j=n A j = ∪∞

j=1 A j = ∪∞
n=1 An , so that limn→∞

An = ∪∞
n=1 An .

If An ↓, then Ac
n ↑ and hence ∩∞

n=1∪∞
j=n Ac

j = ∪∞
n=1∩∞

j=n Ac
j =

∪∞
n=1 Ac

n , so that, by taking the complements, ∪∞
n=1∩∞

j=n A j = ∩∞
n=1∪∞

j=n
A j = ∩∞

n=1 An , so that limn→∞ An = ∩∞
n=1 An . #

3. (i) ∩ j∈I F j �= � since, e.g., � ∈ F j , j ∈ I . Next, if A ∈ ∩ j∈I F j for all
j ∈ I , and hence Ac ∈ F j for all j ∈ I , so that Ac ∈ ∩ j∈I F j . Finally, if
A, B ∈ ∩ j∈I F j , then A, B ∈ F j for all j ∈ I , and hence A ∪ B ∈ F j

for all j ∈ I , so that A ∪ B ∈ ∩ j∈I F j .
(ii) If Ai ∈ ∩ j∈I A j , i = 1, 2, . . . , then Ai ∈ A j , i = 1, 2, . . . , for all j ∈ I ,

and hence ∪∞
i=1 Ai ∈ A j for all j ∈ I , so that ∪∞

i=1 Ai ∈ ∩ j∈I A j . #

4. Let � = 
,F = {A ⊆ 
; either A or Ac is finite}, and let A j = {1, 2, . . . , j},
j ≥ 1. Then F is a field and A j ∈ F , j ≥ 1, but ∪∞

j=1 A j = {1, 2, . . .} /∈ F ,
because neither this set nor its complement is finite.

Also, if B j = { j + 1, j + 2, . . .}, then B j ∈ F j since Bc
j is finite, whereas

∩∞
j=1 B j = ∩∞

j=1 Ac
j =

(
∪∞

j=1 A j

)c
/∈ F , as it has been seen already. #
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5. Clearly, C is �= �, every member of C is a countable union of members of P ,
and C is the smallest σ -field containing P , if indeed, is a σ -field. If B ∈ C,
then B = ∪i∈I Ai for some I ⊆ N = {1, 2, . . .}, and then Bc = ∪ j∈J A j , where
J = N− I , so that Bc ∈ C. Finally, if B j ∈ C, j = 1, 2, . . . , then B j = ∪i∈I j A ji ,
where I j ⊆ N and Ii ∩ I j = �. Then ∪∞

j=1 B j = ∪∞
j=1∪i∈I j A ji , the union of

members of P , so that ∪∞
j=1 B j belongs in C. #

6. Since C j and C′
j ⊆ C0, j = 1, . . . , 8, it follows that σ(C j ) and σ(C′

j ) ⊆ σ(C0) =
B, so that it suffices to show that B ⊆ σ(C j ) and B ⊆ σ(C′

j ), which are implied,
respectively, by C0 ⊆ σ(C j ) and C0 ⊆ σ(C′

j ), j = 1, . . . , 8. As an example,
consider the classes mentioned in the hint.
So, to show that C0 ⊆ σ(C1). In all that follows, all limits are taken as n → ∞.
Indeed, for yn ↓ y, we have (x, yn) ∈ C1 and ∩∞

n=1(x, yn) = (x, y] ∈ σ(C1).
Likewise, for xn ↑ x , we have (xn, y) ∈ C1 and ∩∞

n=1(xn, y) = [x, y) ∈ σ(C1).
Next, with xn and yn as above, (xn, yn) ∈ C1 and ∩∞

n=1(xn, yn) = [x, y] ∈ σ(C1).
Also, for xn ↓ −∞, we have (xn, a) ∈ C1 and ∩∞

n=1(xn, a) = (−∞, a) ∈
σ(C1), and likewise (xn, a] ∈ C1 and ∪∞

n=1(xn, a] = (−∞, a] ∈ σ(C1). Finally,
(b,∞) = (−∞, b]c ∈ σ(C1), and [b,∞) = (−∞, b)c ∈ σ(C1). It follows that
C0 ⊆ σ(C1).

That C0 ∈ σ(C′
1) is seen as follows. For (x, y), there exist xn and yn rationals

with xn ↓ x and yn ↑ y, so that (x, y) = ∪∞
n=1 ∈ σ(C′

j ). Also, for yn ↓ y,
we have (x, yn) ∈ σ(C′

1), as was just proved, and then ∩∞
n=1(x, yn) = (x, y] ∈

σ(C′
1). Likewise, with xn ↑ x , we have (xn, y) ∈ σ(C′

1) and then ∩∞
n=1(xn, y) =

[x, y) ∈ σ(C′
1). Also, with xn ↑ x and yn ↓ y, we have (xn, yn) ∈ σ(C′

1), and
∩∞

n=1(xn, yn) = [x, y] ∈ σ(C′
1). Likewise, with xn ↓ −∞, we have (xn, a) ∈

σ(C′
1) and ∪∞

n=1(xn, a) = (−∞, a) ∈ σ(C′
1), whereas (xn, a] ∈ σ(C′

1), so that
∪∞

n=1(xn, a] = (−∞, a] ∈ σ(C′
1). Finally, (b,∞) = (−∞, b]c ∈ σ(C′

1) since
(−∞, b] ∈ σ(C′

1), and [b,∞) = (−∞, b)c ∈ σ(C′
1) since (−∞, b) ∈ σ(C′

1). It
follows that C0 ⊆ σ(C′

1).
A slightly alternative version of the proof follows. We will show (a) σ(C1) = B

and (b) σ(C′
1) = B.

(a) σ(C1) = B.
That σ(C1) ⊆ B is clear; to show B ⊆ σ(C1) it suffices to show that C0 ⊆
σ(C1). To this end, we show that (x, y] ∈ σ(C1). Indeed,

(
x, y + 1

n

) ∈
C1, so that

⋂∞
n=1

(
x, y + 1

n

) = (x, y] ∈ σ(C1). Next,
(
x − 1

n , y
) ∈ C1,

so that
⋂∞

n=1

(
x − 1

n , y
) = [x, y) ∈ σ(C1). Also,

(
x − 1

n , y + 1
n

) ∈ C1,
so that

⋂∞
n=1

(
x − 1

n , y + 1
n

) = [x, y] ∈ σ(C1). Next, (−n, x) ∈ C1, so
that

⋃∞
n=1(−n, x) = (−∞, x) ∈ σ(C1). Also,

(−∞, x + 1
n

] ∈ C1, so
that

⋂∞
n=1

(−∞, x + 1
n

] = (−∞, x] ∈ σ(C1). Likewise, (x, n) ∈ C1, so
that

⋃∞
n=1(x, n) = (x,∞) ∈ σ(C1); and

(
x − 1

n ,∞) ∈ σ(C1), so that⋂∞
n=1

(
x − 1

n ,∞) = [x,∞) ∈ σ(C1). The proof is complete.
(b) σ(C′

1) = B.
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Since, clearly, σ(C′
1) ⊆ σ(C1), it suffices to show that σ(C1) ⊆ σ(C′

1).
For x, y ∈ 
 with x < y, there exist xn ↓ x and yn ↑ y with xn, yn

rational numbers and xn < yn for each n. Since (xn, yn) ∈ C′
1, it follows that⋃∞

n=1(xn, yn) = (x, y) ∈ σ(C′
1). So C1 ⊆ σ(C′

1), and hence σ(C1) ⊆ σ(C′
1).

The proof is complete. #

7. (i) Let A ∈ C. Then there are the following possible cases:

(a) A =∑m
i=1 Ii , Ii = (αi , βi ], i = 1, . . . , m.

( ] ( ] ( ] ( ]
α1 β1 α2 β2 · · · αm−1 βm−1 αm βm

Then Ac = (−∞, α1]+ (β1, α2]+ . . .+ (βm−1, αm]+ (βm,∞) and
this is in C.

(b) A consists only of intervals of the form (−∞, α]. Then there can be
only one such interval; i.e., A = (−∞, α] and hence Ac = (α,∞)

which is in C.
(c) A consists only of intervals of the form (β,∞). Then there can only

be one such interval; i.e., A = (β,∞) so that Ac = (−∞, β] which
is in C.

(d) A consists only of intervals of the form (−∞, α] and (β,∞). Then
A will be as follows: A = (−∞, α] + (β,∞) (α < β), so that
Ac = (α,∞) ∩ (−∞, β] = (α, β] which is in C.

(e) Finally, let A consist of intervals of all forms. Then A is as below:

] ( ] ( ] ( ] ( ] (
−∞ α α1 β1 α2 β2 · · · αm−1 βm−1 αm βm β ∞

Then, clearly,

Ac = (α, α1] + (β1, α2] + . . . + (βm−1, αm] + (βm, β]
which is in C. So, C is closed under complementation. It is also
closed under the union of two sets A and B in C, because, clearly,
the union of two such sets is also a member of C. Thus, C is a field.
Next, let C2 = {(α, β]; α, β ∈ 
, α < β}. Then, by Exercise 6,
σ(C2) = B. Also, C2 ⊂ C, so that B = σ(C2) ⊆ σ(C). Furthermore,
C ⊆ σ(C0) = B and hence σ(C) ⊆ B. It follows that σ(C) = B.

(ii) If A ∈ C, then A = ∑m
i=1 Ii , where Ii s are of the forms: (α, β), (α, β],

[α, β), [α, β], (−∞, α), (−∞, α], (β,∞), [β,∞). But (α, β)c =
(−∞, α]+ [β,∞), (α, β]c = (−∞, α]+ (β,∞), [α, β)c = (−∞, α)+
(β,∞), [α, β]c = (−∞, α)+(β,∞), (−∞, α)c = [α,∞), (−∞, α]c =
(α,∞), (β,∞)c = (−∞, β], and [β,∞)c = (−∞, β). Then, consider-
ing all possibilities as in part (i), we conclude that Ac ∈ C in all cases.
Next, for A as above and B = ∑n

j=1 J j with J j being from among the
above intervals, it follows that A ∪ B is a finite sum of intervals as above,



e6 Revised Answers Manual to an Introduction

and hence A ∪ B ∈ C. Thus, C is a field. Finally, from C0 ⊂ C ⊂ B, it
follows that B = σ(C0) ⊆ σ(C) ⊆ B, so that σ(C) = B. #

8. Clearly, FA is �= � since, for example, A = A ∩ � and hence A ∈ FA. Next,
for B ∈ FA, it follows that B = A ∩ C, C ∈ F , and Bc

A(=complement of B with
respect to A)=A ∩ Cc ∈ FA since Cc ∈ F . Finally, for B1, B2 ∈ FA, it follows
that Bi = Ai ∩ Ci , Ci ∈ F , i = 1, 2, and then B1 ∪ B2 = A ∩ (C1 ∪ C2) ∈ FA,
since C1 ∪ C2 ∈ F . #

9. That AA �= � and that it is closed under complementation is as in Exercise 8.
For Bi ∈ AA, i = 1, 2, . . . , it follows that Bi = A ∩ Ci for some Ci ∈ A, i ≥ 1,
and ∪∞

i=1 Bi = ∪∞
i=1(A ∩ Ci ) = A ∩ (∪∞

i=1Ci
) ∈ AA since ∪∞

i=1Ci ∈ A.
Thus, AA is a σ -field. Since F ⊆ A, it follows that FA ⊆ AA and hence
σ(FA) ⊆ AA. Since for every F ⊆ Ai , i ∈ I , it follows FA ⊆ Ai,A, i ∈ I , then
σ(FA) ⊆ ∩i∈I Ai,A. Also, σ(FA) = ∩ j∈J A∗

j for all σ -fields of subsets of A with
A∗

j ⊇ FA. In order to show that σ(FA) = AA, it must be shown that for every σ -
field A∗ of subsets of A with A∗ ⊇ FA, we have A∗ ⊇ AA. That this is, indeed,
the case is seen as follows. Define the class M by : M = {C ∈ A; A∩C ∈ A∗}.
Then, clearly, F ⊆ M ⊆ A and MA(= M ∩ A) ⊆ A∗. This is so because, for
C ∈ F , it follows that C ∩ A ∈ FA and hence C ∩ A ∈ A∗ (⊇ FA). Also, with
MA = {C ⊆ A; C = M ∩ A, M ∈ M}, it follows that MA ⊆ A∗ from the
definition of M. We assert that M is a monotone class. Indeed, let Cn ∈ M with
Cn ↑ or Cn ↓. Then, for the case that Cn ↑, A∩(limn→∞Cn) = A∩(∪∞

n=1Cn
) =

∪∞
n=1

(
A ∩ Cn

) ∈ A∗ since A ∩ Cn ∈ A∗, n ≥ 1, so that limn→∞Cn ∈ M.
Likewise, for Cn ↓, A ∩ (limn→∞Cn) = A ∩ (∩∞

n=1Cn) = ∩∞
n=1(A ∩ Cn) ∈ A∗

since A ∩ Cn ∈ A∗, n ≥ 1, so that limn→∞Cn ∈ M. So M is a monotone class
⊇ F , and hence M ⊇ minimal monotone class M0, say, ⊇ F . Since F is a field,
it follows that M0 is a σ -field and indeed M0 = A (by Theorem 6). Finally,
A = M0 ⊆ M implies AA = M0,A ⊆ MA ⊆ A∗, as was to be seen. #

10. Set F = ∪∞
n=1An , and let A ∈ F . Then A ∈ An for some n, so that Ac ∈ An

and hence A ∈ F . Next, let A, B ∈ F . Then A ∈ An1, B ∈ An2 for some n1
and n2, and let n0 = max(n1, n2). Then A, B ∈ An0 , so that A ∪ B ∈ An0 and
A ∪ B ∈ F . Then, Ac ∈ F and A ∪ B ∈ F , so that F is a field.
It need not be a σ -field.
Counterexample: Let � = 
 and let An = {A ⊆ [−n, n]; either A or Ac is
countable}, n ≥ 1. Then An is a σ -field (by Example 8) and An ↑. However,
F is not a σ -field because, if An = {rationals in [−n, n]}, n ≥ 1, and if we set
A = ∪∞

n=1 An , then A /∈ F , because otherwise A ∈ An for some n, which cannot
happen. #

11. Set M∩ j∈I M j and let An ∈ M, n ≥ 1, where the Ans form a monotone
sequence. Then An ∈ M j for each j ∈ I and all n ≥ 1, so that limn→∞ An is
also in M j . Since this is true for all j ∈ I , it follows that limn→∞ An is in M,
and M is a monotone class. #

12. Let � = {1, 2, . . .}, M = {�, {1, . . . , n}, {n, n + 1, . . .}, n ≥ 1,�}. Then M
is a monotone class, but not a field, because, e.g., if A = {1, . . . , n} and B =
{n −2, n −1, . . .} (n ≥ 3), then A, B ∈ M, but A ∩ B = {n −2, n −1, n} /∈ M.
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As another example, let � = (0, 1) and M = {(0, 1 − 1
n ], n ≥ 1,�}. Then

M is a monotone class and (0, 1
2 ] ∈ M, but (0, 1

2 ]c = ( 1
2 , 1) /∈ M.

Still as a third example, let � = 
 and let M = {�, (0, n), (−n, 0), n ≥
1, (0,∞), (−∞, 0)}. Then M is a monotone class, but not a field since, for
A = (−1, 0) and B = (0, 1), we have A, B,∈ M, but A ∪ B = (−1, 1) /∈ M. #

13. (i) For ω = (ω1, ω2) ∈ Ec, we have ω /∈ E = A × B, so that either ω1 /∈ A
or ω2 /∈ B or both. Let ω1 /∈ A. Then ω1 ∈ Ac and (ω1, ω2) ∈ Ac × �2,
whether or not ω2 ∈ B. Hence Ec ⊆ (A × Bc) + (Ac × �2). If ω1 ∈ A,
then ω2 /∈ B, so that (ω1, ω2) ∈ A× Bc and Ec ⊆ (A× Bc)+(Ac ×�2).
Next, if (ω1, ω2) ∈ A×Bc, then ω1 ∈ A and ω2 /∈ B, so that (ω1, ω2) /∈ E
and hence (ω1, ω2) ∈ Ec. If (ω1, ω2) ∈ Ac ×�2, then ω1 /∈ A and hence
(ω1, ω2) /∈ A × B = E whether or not ω2 ∈ B. Thus (ω1, ω2) ∈ Ec.
In both cases, (A × Bc) + (Ac × �2) ⊇ Ec and equality follows. The
second equality is entirely symmetric.

(ii) Let (ω1, ω2) ∈ E1 ∩ E2, so that (ω1, ω2) ∈ E1 and (ω1, ω2) ∈ E2
and hence ω1 ∈ A1, ω2 ∈ B1, and ω1 ∈ A2, ω2 ∈ B2. It follows that
ω1 ∈ A1∩ A2, ω2 ∈ B1∩B2 and hence (ω1, ω2) ∈ (A1∩ A2)×(B1∩B2).
Next, (ω1, ω2) ∈ (A1 ∩ A2) × (B1 ∩ B2), so that ω1 ∈ A1 ∩ A2 and
ω2 ∈ B1 ∩ B2. Thus, ω1 ∈ A1, ω1 ∈ A2 and ω2 ∈ B1, ω2 ∈ B2, so that
(ω1, ω2) ∈ A1 ∩ B1 and (ω1, ω2) ∈ A2 ∩ B2, or (ω1, ω2) ∈ E1 ∩ E2, so
that equality occurs. The second conclusion is immediate.

(iii) Indeed, E1 ∩ F1 = (A1 ∩ A′
1) × (B1 ∩ B ′

1) and E2 ∩ F2 = (A2 ∩ A′
2) ×

(B2∩B ′
2), by part (ii), and the first equality follows. Next, again by part (ii),

and replacing E1 by (A1∩A′
1)×(B1∩B ′

1) and E2 by (A2∩A′
2)×(B2∩B ′

2),
we obtain the second equality. The third equality is immediate. Finally,
the last conclusion is immediate. #

14. (i) Either by the inclusion process or as follows:

(A1 × B1) − (A2 × B2)

= (A1 × B1) ∩ (A2 × B2)
c

= (A1 × B1) ∩ [(A2 × Bc
2) + (Ac

2 × �2)] (by Lemma 2)

= (A1 × B1) ∩ (A2 × Bc
2) + (A1 × B1) ∩ (Ac

2 × �2)

= (A1 ∩ A2) × (B1 ∩ Bc
2) + (A1 ∩ Ac

2) × (B1 ∩ �2) (clearly)

= (A1 ∩ A2) × (B1 − B2) + (A1 − A2) × B1.

(ii) Let A × B = �. Then (x, y) ∈ A × B, so that x ∈ A and y ∈ B. Also,
(x, y) ∈ � and this can happen only if at least one of A or B is = �. On
the other hand, if at least one of A or B is = �, then, clearly, A × B = �.

(iii) Let A1 × B1 ⊆ A2 × B2. Then (x, y) ∈ A1 × B1, so that x ∈ A1
and y ∈ B1. Also, (x, y) ∈ A2 × B2 implies x ∈ A2 and y ∈ B2.
Thus, A1 ⊆ A2 and B1 ⊆ B2. Next, let A1 ⊆ A2 and B1 ⊆ B2. Then
A1 × B1 ⊆ A2 × B2 since (x, y) ∈ A1 × B1 if and only if x ∈ A1 and
y ∈ B1. Hence, x ∈ A2 and y ∈ B2 or (x, y) ∈ A2 × B2.



e8 Revised Answers Manual to an Introduction

(iv) A1 × B1 �= � and A2 × B2 �= �. Then A1 × B1 = A2 × B2 or A1 × B1 ⊆
A2 × B2 and then (by (iii)), A1 ⊆ A2 and B1 ⊆ B2. Also, A2 × B2 =
A1 × B1 or A2 × B2 ⊆ A1 × B1, and then (by (iii) again), A2 ⊆ A1 and
B2 ⊆ B1.

So, both A1 ⊆ A2 and A2 ⊆ A1, and therefore A1 = A2. Likewise,
B1 ⊆ B2 and B2 ⊆ B1 so that B1 = B2.

(v)

A × B = (A1 × B1) + (A2 × B2) (*)

From � = (A1 × B1)∩ (A2 × B2) = (A1 ∩ A2)× (B1 ∩ B2) and part (ii),
we have that at least one of A1 ∩ A2, B1 ∩ B2 is �. Let A1 ∩ A2 = �. Then
the claim is that A = A1 + A2. In fact, (x, y) ∈ A × B implies x ∈ A
(and y ∈ B). Also, (x, y) belonging to the right-hand side of (*) implies
(x, y) ∈ A1×B1 or (x, y) ∈ A2×B2. Let (x, y) ∈ A1×B1. Then x ∈ A1
(and y ∈ B1), so that A ⊆ A2. On the other hand, (x, y) ∈ A2×B2 implies
x ∈ A2 (and y ∈ B2), so that A ⊆ A2. Thus, A ⊆ A1 + A2. Next, let
again (x, y) belong to the right-hand side of (*). Then (x, y) ∈ A1 × B1
or (x, y) ∈ A2 × B2. Now (x, y) ∈ A1 × B1 implies that x ∈ A1
(and y ∈ B1). Also, (x, y) belonging to the left-hand side of (*) implies
(x, y) ∈ A × B, so that x ∈ A (and y ∈ B). Hence A1 ⊆ A. Likewise,
(x, y) ∈ A2 × B2 implies A2 ⊆ A, so that A1 + A2 ⊆ A, and hence
A = A1 + A2. Next, let A = A1 + A2. Then A × B = (A1 + A2) × B =
(A1 × B) + (A2 × B). Also, A × B = (A1 × B1) + (A2 × B2). Thus,
(A1 × B) + (A2 × B) = (A1 × B1) + (A2 × B2). (x, y) belonging to the
left-hand side of (*) implies (x, y) ∈ A1 × B or (x, y) ∈ A2 × B. (x, y) ∈
A1 × B yields y ∈ B (and x ∈ A1). Same if (x, y) ∈ A2 × B. Also,
(x, y) belonging to the right-hand side of (*) implies (x, y) ∈ A1 × B1 or
(x, y) ∈ A2 × B2. For (x, y) ∈ A1 × B1, we have y ∈ B1 (and x ∈ A1), so
that B ⊆ B1. For (x, y) ∈ A2 × B2, we have B ⊆ B2 likewise. Next, let
again (x, y) belong to the right-hand side of (*). Then (x, y) ∈ A1 × B1
or (x, y) ∈ A2 × B2. For (x, y) ∈ A1 × B1, we have y ∈ B1 (and x ∈ A1).
Thus B1 ⊆ B. For (x, y) ∈ A2 × B2, we have B2 ⊆ B. It follows that
B = B1 = B2.
To summarize: A1 ∩ A2 = � implies A = A1 + A2 and B = B1 = B2.
Likewise, B1 ∩ B2 = � implies B = B1 + B2 and A = A1 = A2. Fur-
thermore, A1 ∩ A2 = � and B1 ∩ B2 = � cannot happen simultaneously.
Indeed, A1 ∩ A2 = � implies A = A1 + A2, and B1 ∩ B2 = � implies
B = B1+B2. Then A×B = (A1+ A2)×(B1+B2) = (A1×B1)+(A2×
B2)+(A1×B2)+(A2×B1). Also, A×B = (A1×B1)+(A2×B2), so that :
(A1×B1)+(A2×B2)+(A1×B2)+(A2×B1) = (A1×B1)+(A2×B2).
Then (A1 × B2)+ (A2 × B1) = � implies (A1 × B2) = (A2 × B1) = �,
so that at least one of A1, A2, B1, B2 = � (by part (ii)). However, this is
not possible by the fact that A1 × B1 �= �, A2 × B2 �= �. #
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15. (i) If either A or B = �, then, clearly, A × B = �. Next, if A × B = �,
and A �= � and B �= �, then there exist ω1 ∈ A and ω2 ∈ B, so that
(ω1, ω2) ∈ A × B, a contradiction.

(ii) Both directions of the first assertion are immediate. Without the assump-
tion E1 and E2 �= �, the result need not be true. Indeed, let �1 = �2,
A1 �= �, B1 = A2 = B2 = �. Then E1 = E2 = �, but A1 � A2. #

16. (i) If at least one of A1, . . . , An is = �, then, clearly, A1 × . . . × An = �.
Next, let E = � and suppose that Ai �= �, i = 1, . . . , n. Then there
exists ωi ∈ Ai , i = 1, . . . , n, so that (ω1, . . . , ωn) ∈ E , a contradiction.

(ii) Let ω = (ω1, . . . , ωn) ∈ E ∩ F , or (ω1, . . . , ωn) ∈ (A1 × . . . × An) ∩
(B1 × . . .× Bn). Then (ω1, . . . , ωn) ∈ A1 × . . .× An and (ω1, . . . , ωn) ∈
B1 × . . . × Bn . It follows that ωi ∈ Ai and ωi ∈ Bi , i = 1, . . . , n, so that
ωi ∈ Ai ∩ Bi , i = 1, . . . , n, and hence (ω1, . . . , ωn) ∈ (A1 ∩ B1)× . . .×
(An ∩ Bn). Next, let (ω1, . . . , ωn) ∈ (A1 ∩ B1) × . . . × (An ∩ Bn). Then
ωi ∈ Ai ∩ Bi , i = 1, . . . , n, so that ωi ∈ Ai and ωi ∈ Bi , i = 1, . . . , n.
It follows that (ω1, . . . , ωn) ∈ A1 × . . . × An and (ω1, . . . , ωn) ∈ B1 ×
. . . × Bn , so that (ω1, . . . , ωn) ∈ (A1 × . . . × An) ∩ (B1 × . . . × Bn). #

17. We have E = F + G and E, F, G are all �= �. This implies that Ai , Bi , and
Ci , i = 1, . . . , n are all �= �; this is so by Exercise 16(i). Furthermore, by
Exercise 16(ii):

F ∩ G = (B1 × . . . × Bn) ∩ (C1 × . . . × Cn) = (B1 ∩ C1) × . . . × (Bn ∩ Cn),

whereas F ∩ G = �. It follows that B j ∩ C j = � for at least one j, 1 ≤ j ≤ n.
Without loss of generality, suppose that B1 ∩ C1 = �. Then we shall show that
A1 = B1 + C1 and Ai = Bi = Ci , i = 2, . . . , n. To this end, let ω j ∈ A j ,
j = 1, . . . , n. Then (ω1, . . . , ωn) ∈ A1 × . . . × An or (ω1, . . . , ωn) ∈ E or
(ω1, . . . , ωn) ∈ (F + G). Hence (ω1, . . . , ωn) ∈ F or (ω1, . . . , ωn) ∈ G. Let
(ω1, . . . , ωn) ∈ F . Then (ω1, . . . , ωn) ∈ B1 × . . . × Bn and hence ω1 ∈ B1 or
ω1 ∈ (B1 ∪ C1), so that A1 ⊆ B1 ∪ C1. Likewise if (ω1, . . . , ωn) ∈ G. Next, let
ω j ∈ B j , j = 1, . . . , n. Then (ω1, . . . , ωn) ∈ B1×. . .×Bn or (ω1, . . . , ωn) ∈ F
or (ω1, . . . , ωn) ∈ E or (ω1, . . . , ωn) ∈ (A1 × . . . × An), hence ω1 ∈ A1, which
implies that B1 ⊆ A1. By taking ω j ∈ C j , j = 1, . . . , n and arguing as before, we
conclude that C1 ⊆ A1. From B1 ⊆ A1 and C1 ⊆ A1, we obtain B1 ∪ C1 ⊆ A1.
Since also A1 ⊆ B1 ∪ C1, we get A1 = B1 ∪ C1. Since B1 ∩ C1 = �, we have
then A1 = B1 + C1.

It remains for us to show that Ai = Bi = Ci , i = 2, . . . , n. Without loss
of generality, it suffices to show that A2 = B2 = C2, the remaining cases
being treated symmetrically. As before, let ω j ∈ A j , j = 1, . . . , n. Then
(ω1, . . . , ωn) ∈ (A1×. . .×An) or (ω1, . . . , ωn) ∈ E or (ω1, . . . , ωn) ∈ (F+G).
Hence either (ω1, . . . , ωn) ∈ F or (ω1, . . . , ωn) ∈ G. Let (ω1, . . . , ωn) ∈ F .
Then (ω1, . . . , ωn) ∈ B1 × . . . × Bn and hence ω2 ∈ B2, so that A2 ⊆ B2.
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Likewise A2 ⊆ C2 if (ω1, . . . , ωn) ∈ G. Next, let (ω1, . . . , ωn) ∈ B1 × . . .× Bn

or (ω1, . . . , ωn) ∈ F or (ω1, . . . , ωn) ∈ (F + G) or (ω1, . . . , ωn) ∈ E or
(ω1, . . . , ωn) ∈ (A1 × . . . × An) and hence ω2 ∈ A2, so that B2 ⊆ A2. It
follows that A2 = B2. We arrive at the same conclusion A2 = B2 if we take
(ω1, . . . , ωn) ∈ G. So, to sum it up, A1 = B1 + C1, and A2 = B2 = C2, and by
symmetry, Ai = Bi = Ci , i = 3, . . . , n.

A variation to the above proof is as follows.
Let E = F + G or A1 × . . . × An = (B1 × . . . × Bn) + (C1 × . . . × Cn), and

let (ω1, . . . , ωn) ∈ E . Then (ω1, . . . , ωn) ∈ A1 × . . . × An , so that ωi ∈ Ai , i =
1, . . . , n. Then ωi ∈ Bi , i = 1, . . . , n or ωi ∈ Ci , i = 1, . . . , n (but not both). So,
Ai = Bi ∪Ci , i = 1, . . . , n and A j = B j +C j for at least one j . Consider the case
n = 2, and without loss of generality suppose that A1 = B1 +C1, A2 = B2 ∪C2.
Then, clearly:

A1 × A2 = (B1 + C1) × (B2 ∪ C2)

= (B1 × B2) ∪ (C1 × C2) ∪ (B1 × C2) ∪ (C1 × B2).

However, A1 × A2 = (B1 × B2) + (C1 × C2), and this implies that B1 × C2 ⊆
B1 × B2 and C1 × B2 ⊆ B1 × C2, hence C2 ⊆ B2 and B2 ⊆ C2, so that
B2 = C2(= A2). Next, assume the assertion to be true for n and consider:

A1 × . . .× An × An+1 = (B1 × . . .× Bn × Bn+1)+ (C1 × . . .× Cn × Cn+1),

or An × An+1 = (Bn × Bn+1) = (Cn × Cn+1), where An = A1 × . . . × An ,
Bn = B1 × . . . × Bn and Cn = C1 × . . . × Cn . Apply the reasoning used in the
case n = 2 by replacing A1 by An and A2 by An+1 (so that B1, B2 and C1, C2
are replaced, respectively, by Bn, Bn+1 and Cn , Cn+1) to get that:

An = Bn + Cn, An+1 = Bn+1 ∪ Cn+1.

The first union is a “+” by the induction hypothesis. The second union may or
may not be a “+” as of now. Then:

An × An+1 = (Bn ∪ Cn) × (Bn+1 ∪ Cn+1)

= (Bn × Bn+1) ∪ (Cn × Cn+1) ∪ (Bn × Cn+1) ∪ (Cn × Bn+1).

However, An × An+1 = (Bn × Bn+1) + (Cn × Cn+1). Therefore Bn × Cn+1 ⊆
Bn×Bn+1 and Cn×Bn+1 ⊆ Cn×Cn+1, so that Cn+1 ⊆ Bn+1 and Bn+1 ⊆ Cn+1,
and hence Bn+1 = Cn+1. The proof is completed. #

18. The only properties of the σ -fields A1 and A2 used in the proof of Theorem 7 is
that Ai , i = 1, 2 are closed under the intersection of two sets in them and also
closed under complementations. Since these properties hold also for the case that
Ai , i = 1, 2 are fields, Fi , i = 1, 2, the proof is completed. #

19. C as defined here need not be a σ -field. Here is a
Counterexample: �1 = �2 = [0, 1]. For n ≥ 2, let In1 = [0, 1

n ], Inj =
(

j−1
n ,

j
n ], j = 2, . . . , n, and set Enj = Inj × Inj , j = 1, . . . , n. Also, let
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Qn = ∑n
j=1 Enj , n ≥ 2. Then Qn belongs to the field of all finite sums of

rectangles. Furthermore, it is clear that ∩∞
n=2 Qn = D, where D is the main diag-

onal determined by the origin and the point (1,1). (See picture below.) However,
D is not in the class of all countable sums of rectangles, since it cannot be written
as such. D is written as D = ∪x∈[0,1](x, x), an uncountable union.

0

1

1

···
·

···
·

Note: In the picture, the first rectangle En1 = [0, 1
n ]× [0, 1

n ], and the subsequent

rectangles Enj are: Enj = (
j−1
n ,

j
n ], j = 2, 3, . . . , n. #

20. That C �= � is obvious. For A ∈ C, there exists A′ ∈ A′ such that A = X−1(A′).
Then Ac = [X−1(A′)]c = X−1[(A′)c] with (A′)c ∈ A′. Thus Ac ∈ C. Finally, if
A j ∈ C, j = 1, 2, . . . , then A j = X−1(A′

j ) with A′
j ∈ A′, and hence ∪∞

j=1 A j =
∪∞

j=1 X−1(A′
j ) = X−1

(
∪∞

j=1 A′
j

)
with ∪∞

j=1 A′
j ∈ A′, so that ∪∞

j=1 A j ∈ C, and

C is a σ -field. #
21. That C′ �= � is obvious. For A′ ∈ C′, there exists A ∈ A such that A = X−1(A′).

Then X−1[(A′)c] = [X−1(A′)]c = Ac ∈ A, so that (A′)c ∈ C′. Finally, for
A′

j ∈ C′, j = 1, 2, . . . , there exists A j ∈ A such that A j = X−1(A′
j ) and

X−1
(
∪∞

j=1 A′
j

)
= ∪∞

j=1 X−1(A′
j ) = ∪∞

j=1 A j ∈ A, so that ∪∞
j=1 A′

j ∈ C′. It

follows that C′ is a σ -field. #
22. A simple example is the following. Let � = {a, b, c, d}, A = {�, {a}, {b, c, d},

�}, X(a) = X(b) = 1, X(c) = 2, X(d) = 3. Then �′ = {1, 2, 3} and X({a}) =
{1}, X({b, c, d}) = {1, 2, 3}, so that C′ = {�, {1}, {1, 2, 3}} which is not a
σ -field. #

23. Let X = ∑n
i=1 αi IAi and suppose that Ai ∈ A, i = 1, . . . , n. Then for any

B ∈ B, X−1(B) = ∪Ai where the union is taken over those is for which αi ∈ B.



e12 Revised Answers Manual to an Introduction

Since this union is in A, it follows that X is a r.v. Next, let X be a r.v. Then, by
assuming without loss of generality that αi �= α j , i �= j , we have X−1({αi }) =
Ai ∈ A since {αi } ∈ B, i = 1, . . . , n. Clearly, the same reasoning applies when
X =∑∞

i=1 αi IAi . #
24. Let ω belong to the right-hand side. Then X(ω) < r and Y (ω) < x − r for some

r ∈ Q, so that X(ω)+Y (ω) < x and hence ω belongs to the left-hand side. Next,
let ω belong to the left-hand side, so that X(ω)+Y (ω) < x or X(ω) < x −Y (ω).
But then there exists r ∈ Q such that X(ω) < r < x −Y (ω) or X(ω) < r and r <

x−Y (ω)or X(ω) < r and Y (ω) < x−r , so thatω belongs to the right-hand side. #
25. If X is a r.v., then so is |X |, because for all x ≥ 0, we have |X |−1((−∞, x)) =

(|X | < x) = (−x < X < x) ∈ A, since X is a r.v. That the converse is not
necessarily true is seen by the following simple example. Take � = {a, b, c, d},
A = {�, {a, b}, {c, d},�}, and define X by: X(a) = −1, X(b) = 1, X(c) =
−2, X(d) = 2. Then �′ = {−2,−1, 1, 2}, and let A′ = P(�′). We have
|X |−1({1}) = {a, b}, |X |−1({2}) = {c, d}, |X |−1({−2}) = |X |−1({−1}) = �,
and all these sets are in A, so that |X | is measurable. However, X−1({−1}) = {a}
and X−1({−2}) = {c}, none of which belongs in A, so that X is not measurable.

As another example, let B be a non-Borel set in 
, and define X by: X(ω) =
1, ω ∈ B, and X(ω) = −1, ω ∈ Bc. Then X is not B-measurable as X−1({1}) =
B /∈ B, but |X |−1({1}) = 
 ∈ B. #

26. X + Y is measurable by Exercise 24. Next, (−Y ≤ y) = (Y ≥ −y) ∈ A, so that
−Y is measurable. Then X + (−Y ) = X − Y is measurable. Now, if Z is mea-
surable, then so is Z2 because, for z ≥ 0, (Z2 ≤ z) = (−√

z ≤ Z ≤ √
z) ∈ A.

Thus, if X , Y are measurable, then so are (X + Y )2 and (X − Y )2, and therefore
so is: (X + Y )2 − (X − Y )2. But (X + Y )2 − (X − Y )2 = 4XY . Thus, 4XY is
measurable, and then so is, clearly, XY .
Finally, if P(Y �= 0) = 1, then, for y �= 0, ( 1

Y ≤ y) = (Y ≥ 1
y ) ∈ A, so that 1

Y
is measurable. Thus, X and Y are measurable, and P(Y �= 0) = 1, so that X and
1
Y are measurable. Then X × 1

Y = X
Y is measurable. #

27. Since σ(Tm) = Bm , it suffices to show (by Theorem 2) that f −1(Tm) ⊆ Bm for f
to be measurable. By continuity of f , f −1(Tm) ⊆ Tn ⊆ Bn , since σ(Tn) = Bn .
Thus, f is measurable. Then, for B ∈ Bm , [ f (X)]−1 = X−1[ f −1(B)] ∈ A,
since f −1(B) ∈ Bn and X is measurable. #

28. For any r.v. Z , it holds: Z = Z+ − Z− and |Z | = Z+ + Z−. Hence Z+ =
1
2 (|Z | + Z), Z− = 1

2 (|Z | − Z).
Applying this to X , Y and X + Y , we get:

X+ = 1

2
(|X | + X), Y + = 1

2
(|Y | + Y ), (X + Y )+ = 1

2
[|X + Y | + (X + Y )].

Hence

X+ +Y + = 1

2
[(|X |+ |Y |)+ (X +Y )] ≥ 1

2
[|X +Y |+ (X +Y )] = (X +Y )+.
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Likewise,

X− = 1

2
(|X | − X), Y − = 1

2
(|Y | − Y ), (X + Y )− = 1

2
[|X + Y | − (X + Y )]

and hence

X− +Y − = 1

2
[(|X |+ |Y |)− (X +Y )] ≥ 1

2
[|X +Y |− (X +Y )] = (X +Y )−.

Alternative proof:
Let X + Y ≤ 0. Then (X + Y )+ = 0 = 0 + 0 ≤ X+ + Y +. Let X + Y > 0.
Then (X + Y )+ = X + Y ≤ X+ + Y +, because X = X+ − X− ≤ X+ and
Y = Y + − Y − ≤ Y +. Thus, (X + Y )+ ≤ X+ + Y +. Again, let X + Y < 0.
Then (X + Y )− = −(X + Y ) = −X − Y ≤ X− + Y −, because X = X+ − X−
or −X = X− − X+ ≤ X− and Y = Y + − Y − or −Y = Y − − Y + ≤ Y −. Next,
let X + Y ≥ 0. Then (X + Y )− = 0 = 0 + 0 ≤ X− + Y −, so that (X + Y )− ≤
X− + Y −. So, again: (X + Y )+ ≤ X+ + Y + and (X + Y )− ≤ X− + Y −. #

29. (i) From the definition of Bm , we have: B1 = A1, and for m ≥ 2, Bm =
Ac

1 ∩ . . . ∩ Ac
m−1 ∩ Am .

(ii) For i �= j (e.g., i < j), Bi is either A1 (for i = 1) or Bi = Ac
1 ∩ . . . ∩

Ac
i−1 ∩ Ai , whereas B j = Ac

1 ∩ . . . ∩ Ac
j−1 ∩ A j , and Bi ∩ B j = �,

because Bi contains Ai and B j contains Ac
i (since i ≤ j − 1).

(iii) Let ω = ∑∞
m=1 Bm . Then either ω ∈ B1 = A1, and hence ω ∈ ∪∞

n=1 An ,
or ω /∈ Ai , i = 1, . . . , n − 1 and ω ∈ An , so that ω ∈ ∪∞

n=1 An . Thus,∑∞
m=1 Bm ⊆ ∪∞

n=1 An . Next, let ω ∈ ∪∞
n=1 An . Then either ω ∈ A1 = B1,

so that ω ∈ ∑∞
m=1 Bm , or ω /∈ Ai , i = 1, . . . , n − 1 and ω ∈ An . Then

ω ∈ Bn , so that ω ∈∑∞
m=1 Bm . #

30. (i) We have limn→∞ An = ∪∞
n=1∩∞

k=n Ak , so that ω ∈ (limn→∞ An) or
ω ∈ ∪∞

n=1∩∞
k=n Ak , therefore ω ∈ ∩∞

k=n0
Ak for some n0, and hence

ω ∈ Ak for all k ≥ n0. Next, let ω ∈ An for all but finitely many ns; i.e.,
ω ∈ An for all n ≥ n0. Then ω ∈ ∩∞

k=n0
Ak and hence ω ∈ ∪∞

n=1∩∞
k=n Ak ,

which completes the proof.
(ii) Here limn→∞ An = ∩∞

n=1∪∞
k=n Ak , and hence ω ∈ (limn→∞ An) or ω ∈

∩∞
n=1∪∞

k=n Ak implies that ω ∈ ∪∞
k=n Ak for n ≥ 1. From ω ∈ ∪∞

k=1 Ak ,
let k1 be the first k for which ω ∈ Ak1 . Next, consider ∪∞

k=k1+1 Ak , and
from ω ∈ ∪∞

k=k1+1 Ak , let k2 be the first k (≥ k1 + 1) for which ω ∈ Ak2 .
Continuing like this, we get that ω belongs to infinitely many Ans. In the
other way around, if ω belongs to infinitely many Ans, that means that
there exist 1 < k1 < k2 < . . . such that ω ∈ Ak j , j = 1, 2, . . . Then
ω ∈ ∪∞

k=k j
Ak, j ≥ 1, and hence ω ∈ ∪∞

k=n Ak for 1 ≤ n ≤ k1 and
k j < n < k j+1, j ≥ 1. Thus, ω ∈ ∩∞

n=1∪∞
k=n Ak and the result follows. #

31. From Ak ⊆ Bk, k ≥ 1, we have ∪∞
k=n Ak ⊆ ∪∞

k=n Bk, n ≥ 1, and hence
∩∞

n=1∪∞
k=n Ak ⊆ ∩∞

n=1∪∞
k=n Bk or limn→∞ An ⊆ limn→∞Bn or (An i.o.) ⊆

(Bn i.o.) (by Exercise 2). #
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32. We have limn→∞ An = ∪∞
n=1 ∩∞

k=n Ak and ∩∞
k=n Ak = ∩∞

k=n{r ∈ (1 − 1
k+1 , 1 +

1
k ); r ∈ Q} = {1} for all n, so that ∪∞

n=1∩∞
k=n Ak = {1}; i.e., limn→∞ An = {1}.

Next, limn→∞ An = ∩∞
n=1 ∪∞

k=n Ak and ∪∞
k=n Ak = ∪∞

k=n{r ∈ (1 − 1
k+1 , 1 + 1

k );
r ∈ Q} = {r ∈ (1 − 1

n+1 , 1 + 1
n ); r ∈ Q}, so that ∩∞

n=1 ∪∞
k=n Ak = ∩∞

n=1{r ∈
(1 − 1

n+1 , 1 + 1
n ); r ∈ Q} = {1}. Thus, limn→∞ An = limn→∞ An = {1} =

limn→∞ An . #
33. Here limn→∞ An = ∪∞

n=1 ∩∞
k=n Ak , and consider the ∩∞

k=n Ak for n odd or even.
Then

∞∩
k=2n−1

Ak = ( ∩
k odd

≥ 2n − 1

Ak) ∩ ( ∩
k even
≥ 2n

Ak),

and
A2n−1 ∩ A2n+1 ∩ . . . = [−1, 1

2n−1 ]∩[−1, 1
2n+1 ]∩ . . . = [−1, 0], A2n ∩ A2n+2 ∩

. . . = [0, 1
2n )∩ [0, 1

2n+2 )∩ . . . = {0}, so that ∩∞
k=2n−1 Ak = [−1, 0] ∩ {0} = {0}.

Next,
∞∩

k=2n
Ak = ( ∩

k even
≥ 2n

Ak) ∩ ( ∩
k odd

≥ 2n + 1

Ak),

and
A2n ∩ A2n+2 ∩ . . . = [0, 1

2n ) ∩ [0, 1
2n+2 ) ∩ . . . = {0}, A2n+1 ∩ A2n+3 ∩ . . . =

[−1, 1
2n+1 ]∩[−1, 1

2n+3 ]∩. . . = [−1, 0], so that ∩∞
k=2n Ak = {0}∩[−1, 0] = {0}.

It follows that ∪∞
n=1 ∩∞

k=n An = {0} = limn→∞ An .
Next, limn→∞ An = ∩∞

n=1 ∪∞
k=n Ak , and consider the ∪∞

k=n Ak for odd and even
values of n. We have

∞∪
k=2n−1

Ak = ( ∪
k odd

≥ 2n − 1

Ak) ∪ ( ∪
k even
≥ 2n

Ak),

and
A2n−1 ∪ A2n+1 ∪ . . . = [−1, 1

2n−1 ] ∪ [−1, 1
2n+1 ] ∪ . . . = [−1, 1

2n−1 ], A2n ∪
A2n+2 ∪ . . . = [0, 1

2n ) ∪ [0, 1
2n+2 ) ∪ . . . = [0, 1

2n ), so that ∪∞
k=2n−1 Ak =

[−1, 1
2n−1 ] ∪ [0, 1

2n ) = [−1, 1
2n−1 ]. Next,

∞∪
k=2n

Ak = ( ∪
k even
≥ 2n

Ak) ∪ ( ∪
k odd

≥ 2n + 1

Ak),

and
A2n ∪ A2n+2 ∪ . . . = [0, 1

2n )∪[0, 1
2n+2 )∪ . . . = [0, 1

2n ), A2n+1 ∪ A2n+3 ∪ . . . =
[−1, 1

2n+1 ] ∪ [−1, 1
2n+3 ] ∪ . . . = [−1, 1

2n+1 ], so that ∪∞
k=2n Ak = [0, 1

2n ) ∪
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[−1, 1
2n+1 ] = [−1, 1

2n ). It follows that

∞∩
n=1

∞∪
k=n

Ak = [−1, 1] ∩ [−1, 1
2 ) ∩ [−1, 1

3 ] ∩ [−1, 1
4 ) ∩ . . .

= [−1, 0] = lim
n→∞An .

So, limn→∞ An = {0} and limn→∞ An = [−1, 0], so that the limn→∞ An does
not exist. #

34. (i) We have:

{[0, 1), [1, 2), . . . , [n−1, n)} ⊂ {[0, 1), [1, 2), . . . , [n−1, n), [n, n+1)}
and hence An ⊆ An+1. That An ⊂ An+1 follows by the fact that, e.g.,
[n, n + 1) cannot belong in An since all members of An are ⊆ [0, n).

(ii) Let A1 ∈ A1, A2 ∈ A2 but not in A1, . . . , An ∈ An but not in An−1, . . . ,

and set A = ∪∞
i=1 Ai . Then A /∈ ∪∞

n=1An , because otherwise, A ∈ An for
some n. However, this is not possible since ∪∞

i=n+1 Ai /∈ An .
(iii) A1 = {�, [0, 1), [0, 1)c = (−∞, 0) ∪ [1,∞),
}, A2 = {�, [0, 1),

[1, 2), (−∞, 0) ∪ [1,∞), (−∞, 1) ∪ [2,∞), [0, 2), (−∞, 0)

∪ [2,∞),
}. #

35. (i) First, observe that all intersections A′
1 ∩ . . . ∩ A′

n are pairwise disjoint,
so that their unions are, actually, sums. Next, if A and B are in C, it is
clear that A ∪ B is a sum of intersections A′

1 ∩ . . .∩ A′
n (the sum of those

intersections in A and those intersections in B), so that A ∪ B is in C.
Now, if A ∈ C, then Ac is the sum of all those intersections A′

1 ∩ . . .∩ A′
n

which are not part of A. Hence Ac is also in C, and C is a field.
(ii) In forming A′

1 ∩ . . . ∩ A′
n , we have 2 choices at each one of the n steps.

Thus, there are 2n sets of the form A′
1 ∩ . . . ∩ A′

n . Next, in forming their
sums, we select k of those members at a time, where k = 0, 1, . . . , 2n .
Therefore the total number of sums is:

(2n

0

)+ (2n

1

)+ . . . + (2n

2n

) = 22n
. #

36. (i) If ω ∈ A, then f (ω) ∈ f (A) and ω ∈ f −1[ f (A)]. For a concrete exam-
ple, take f : 
 → [0, 1) where f (x) = x2, and let A = [0, 1). Then
f (A) = f ([0, 1]) = [0, 1), and f −1([0, 1)) = (−1, 1). It follows that
f −1[ f (A)] = f −1([0, 1)) = (−1, 1) ⊃ [0, 1) = A.

(ii) Let ω′ ∈ f [ f −1(B)] which implies that there exists ω ∈ f −1(B) such
that f (ω) = ω′. Also, ω ∈ f −1(B) implies that f (ω) ∈ B. Since also
f (ω) = ω′, it follows that ω′ ∈ B. Thus f [ f −1(B)] ⊆ B.

For a concrete example, let f : 
 → 
 with f (x) = c. Take
B = (c − 1, c + 1), so that f −1[(c − 1, c + 1)] = 
 and f (
) =
{c} ⊂ (c − 1, c + 1). That is, f [ f −1(B)] = {c} ⊂ (c − 1, c + 1) = B. #

37. (i) Since X−1({−1}) = A1, X−1({1}) = Ac
1 ∩ A2, and X−1({0}) = Ac

1 ∩ Ac
2,

and A1, Ac
1 ∩ A2, Ac

1 ∩ Ac
2 are in A, X is a r.v.
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(ii) We have X−1({−1}) = {a, b}, X−1({1}) = {c}, X−1({2}) = {d}, and
neither {c} nor {d} are in A. Then X is not A-measurable.

(iii) We have X−1({−2}) = {−2}, X−1({−1}) = {−1}, X−1({0}) = {0},
X−1({1}) = {1}, X−1({2}) = {2}, so that X−1(B) is the field induced in
� by the partition: {{−2}, {−1}, {0}, {1}, {2}}.
The values taken on by X2 are 0, 1, 4, and (X2)−1({0}) = {0}, (X2)−1

({1}) = {−1, 1}, (X2)−1({4}) = {−2, 2}, so that the field induced by X2

is the one generated by the sets {0}, {−1, 1}, {−2, 2}, and it is, clearly,
strictly contained in the one induced by X . #

38. For a fixed k, let Ak,n = (Xk, . . . , Xk+n−1)
−1(B). Then the σ -fields Ak,n, n ≥ 1,

form a nondecreasing sequence and therefore Fk = ∪∞
n=1Ak,n is a field (but it

may fail to be a σ -field; see Exercise 10 in this chapter) and Bk = σ(Fk). Like-
wise, Bl = σ(Fl) where Fl = ∪∞

n=1Al,n .
However, ∪∞

n=k An ⊇ ∪∞
n=lAn , so that Bk = σ(∪∞

n=kAn) ⊇ σ(∪∞
n=lAn) =

Bl . This is so by the way the σ -fields Bk and Bl are generated (see Theorem 2(ii)
in this chapter). #

39. Since Sk is a function of the X j s, j = 1, . . . , k, k = 1, . . . , n it follows that
σ(Sk) ⊆ σ(X1, . . . , Xn), k = 1, . . . , n. Hence ∪n

k=1σ(Sk) ⊆ σ(X1, . . . , Xn)

and then σ(∪n
k=1σ(Sk)) ⊆ σ(X1, . . . , Xn) or σ(S1, . . . , Sn) ⊆ σ(X1, . . . , Xn).

Next, Xk = Sk − Sk−1, k = 1, . . . , n (S0 = 0), so that Xk is a function of
the S j s, k = 1, . . . , n. Then, as above, σ(X1, . . . , Xn) ⊆ σ(S1, . . . , Sn), and
equality follows. #

40. Consider the function f : 
 → 
 defined by y = f (x) = x + c. Then, clearly,
f (B) = Bc. The existing inverse of f , f −1, is given by: x = f −1(y) = x − c,
and it is clear that ( f −1)(Bc) = B. By setting g = f −1, so that g−1 = f , we
have that g−1(B)(= f (B)) = Bc. So, g−1 is continuous and hence measurable,
and g−1(B) = Bc. Since B is measurable then so is Bc. #

41. (i) Clearly, F �= �. Next, to show that F is closed under complementation.
Indeed, if A ∈ F , then

A = n∪
i=1

Ai = n∪
i=1

mi∩
j=1

A j
i

= (A1
1 ∩ . . . ∩ Am1

1 ) ∪ . . . ∪ (A1
n ∩ . . . ∩ Amn

n )

with all A1
1, . . . , Am1

1 , . . . , A1
n, . . . , Amn

n in F1, so that

Ac = [A1
1 ∩ . . . ∩ Am1

1 ) ∪ . . . ∪ (A1
n ∩ . . . ∩ Amn

n )]c

= [(A1
1)

c ∪ . . . ∪ (Am1
1 )c] ∩ . . . ∩ [(A1

n)c ∪ . . . ∪ (Amn
n )c]

= m1∪
i1=1

. . .
mn∪

in=1
[(Ai1

1 )c ∩ . . . ∩ (Ain
n )c].

The fact that Ai1
1 , . . . , Ain

n are in F1 implies that (Ai1
1 )c, . . . , (Ain

n )c are
also in F1, as follows from the definition of F1. So, Ac is a finite union
of a finite intersection of members of F1, and hence Ac ∈ F3(= F),
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by the definition of F3. Next, let A, B ∈ F . To show that A ∪ B ∈ F .
Indeed, A, B ∈ F implies that A = A1 ∪ . . . ∪ Am = (A1

1 ∩ . . . ∩
Ak1

1 ) ∪ . . . ∪ (A1
m ∩ . . . ∩ Akm

m ) with A1
i , . . . , Aki

i in F1, i = 1, . . . , m,

B = B1 ∪ . . . ∪ Bn = (B1
1 ∩ . . . ∩ Bl1

1 ) ∪ . . . ∪ (B1
n ∩ . . . ∩ Bln

n ) with

B1
j , . . . , B

l j
j in F1, j = 1, . . . , n,

so that

A ∪ B = [(A1
1 ∩ . . . ∩ Ak1

1 ) ∪ . . . ∪ (A1
m ∩ . . . ∩ Akm

m )] ∪
[(B1

1 ∩ . . . ∩ Bl1
1 ) ∪ . . . ∪ (B1

n ∩ . . . ∩ Bln
n )]

= (A1
1 ∩ . . . ∩ Ak1

1 ) ∪ . . . ∪ (A1
m ∩ . . . ∩ Akm

m ) ∪
(B1

1 ∩ . . . ∩ Bl1
1 ) ∪ . . . ∪ (B1

n ∩ . . . ∩ Bln
n ),

which is a finite union of finite intersections of members of F1. It follows
that A ∪ B is in F3(= F), so that F is a field.

(ii) Trivially, C ⊆ F , so that F(C) ⊆ F . To show that F ⊆ F(C). Let A ∈ F .
Then, by part (i), A = (A1

1 ∩ . . . ∩ Am1
1 ) ∪ . . . ∪ (A1

n ∩ . . . ∩ Amn
n ) with

all A1
1, . . . , Am1

1 , . . . , A1
n, . . . , Amn

n in F1.
Clearly, F1 ⊆ F(C) by the definition of F1. Thus, A1

i , . . . , Ami
i are in

F(C), for i = 1, . . . , n, and then the intersections A1
i ∩ . . . ∩ Ami

i , i =
1, . . . , n are in F(C), and therefore so is their union (A1

1 ∩ . . . ∩ Am1
1 ) ∪

. . . ∪ (A1
n ∩ . . . ∩ Amn

n ). Since this union is A, it follows that A ∈ F(C).
Thus, F ⊆ F(C), and the proof is completed. #
Remark: In Exercise 41, in the proof that A ∈ F implies Ac ∈ F , the
following property was used (in a slightly different notation for sim-
plification); namely, (C1

1 ∪ . . . ∪ Cm1
1 ) ∩ . . . ∩ (C1

n ∪ . . . ∪ Cmn
n ) =

∪m1
i1=1 . . . ∪mn

in=1(C
i1
1 ∩ . . . ∩ Cin

n ).
This is justified as follows: Let ω belong to the right-hand side. Then ω

belongs to at leats one of the m1 × . . . × mn members of the union, for

example, ω ∈ (C
i ′1
1 ∩ . . . ∩ C

i ′n
n ) for some 1 ≤ i ′1 ≤ m1, . . . , 1 ≤ i ′n

≤ mn . But then ω ∈ (C1
1 ∪ . . . ∪ Cm1

1 ), . . . , ω ∈ (C1
n ∪ . . . ∪ Cmn

n ), and
therefore ω ∈ [C1

1 ∪ . . . ∪ Cm1
1 ) ∩ . . . ∩ (C1

n ∪ . . . ∪ Cmn
n )], or ω belongs

to the left-hand side. Next, let ω belong to the left-hand side. Then ω ∈
(C1

1 ∪. . .∪Cm1
1 ), . . . , ω ∈ (C1

n ∪. . .∪Cmn
n ), so that ω ∈ C

i ′1
1 , . . . , ω ∈ C

i ′n
n

for some 1 ≤ i ′1 ≤ m1, . . . , 1 ≤ i ′n ≤ mn . But then ω ∈ (C
i ′1
1 ∩ . . .∩C

i ′n
n ),

and C
i ′1
1 ∩ . . . ∩ C

i ′n
n is one of the m1 × . . . × mn members of the union on

the right-hand side. It follows that ω belongs to the right-hand side, and
the justification is completed. #

42. Let A ∈ A. Then A = ∪∞
i=1 Ai , Ai = A1

i ∩ A2
i ∩ . . . with A1

i , A2
i , . . . in A1, i ≥ 1.

Then

Ac = (
∞∪

i=1
Ai )

c = ∞∩
i=1

Ac
i = ∞∩

i=1
(A1

i ∩ A2
i ∩ . . .)c
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