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C H A P T E R  

2 
Optimum Design Problem Formulation  

 
 
2.1___________________________________________________________________________ 
 A 100 ×100 m lot is available to construct a multistory office building. At least 20,000 m2  total floor 

space is needed.  According to a zoning ordinance, the maximum height of the building can be only 
21 m, and the area for parking outside the building must be at least 25 percent of the total floor area 
of all the stories. It has been decided to fix the height of each story at 3.5 m. The cost of the building 
in millions of dollars is estimated at 0.6h +0.001A, where A is the cross-sectional area of the building 
per floor and h is the height of the building. Formulate the minimum cost design problem. 

  
 Solution 

 
Given: The lot size, building floor space and parking area requirements, and the data given in the 

problem statement.  
Required: It is desired to find the building cross-sectional area and its height to meet all the 

requirements and minimize cost of the building.  
Procedure: We follow the five step process to formulate the problem as an optimization problem. 
 
Step 1: Project/Problem Statement 

Shown above 
 
Step 2: Data and Information Collection 

Area of the lot =100×100 = 10,000 m2 
Area available for parking = (10,000 – A), m2 
Total floor area = (number of floors)×A = ℎ

3.5
𝐴𝐴, m2 

 
Step 3: Definition of Design Variables   

A = cross-sectional area of the building for each floor, m2 
h = height of the building, m 

 
 Step 4: Optimization Criterion 

Optimization criterion is to minimize $ cost, and the cost function is defined as 
Cost = (0.6h + 0.001A), million dollars (1) 

 
 Step 5: Formulation of Constraints   

Floor Space Constraint:  
hA/3.5 ≥  20,000, m2   (2) 

Parking Constraint:  
(10,000 A− ) ≥  0.25hA/3.5, m2 (3) 
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Explicit Design Variable Constraints:   
h ≥  3.5, m   (4) 
h ≤  21, m   (5) 
A ≥  0, m2 (6) 
𝐴𝐴 ≤ 10000, m2  (7) 

 
Final Formulation: 
Find h and A to minimize the cost function of Eq. (1) subject to the constraints in Eqs. (2) to (7). 
Note that for a meaningful design, h must be a multiple of 3.5. 
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2.2_________________________________________________________________________________ 
 A refinery has two crude oils: 
 

1. Crude A costs $120/barrel (bbl) and 20,000 bbl are available. 
2. Crude B costs $150/bbl and 30,000 bbl are available. 
 
The company manufactures gasoline and lube oil from the crudes. Yield and sale price barrel of the 
product and markets are shown in Table E2.2. How much crude oils should the company use to 
maximize its profit? Formulate the optimum design problem. 
 
Table E2.2 Data for Refinery Operation 

 
Product 

Yield/bbl Sale Price 
per bbl ($) 

 
Market (bbl) Crude A Crude B 

Gasoline 0.6 0.8 200 20,000 
Lube oil 0.4 0.2 450 10,000 

 
 Solution 

 
Given: The cost of two crude oils per barrel, the amount of barrels available for each type, and all 

information shown in Table E2.2.  
Required: It is desired to find the amount of each crude oil which should be used, subject to the 

above constraints, to maximize profit. 
Procedure: We follow the five step process to formulate the problem as an optimization problem. 
 
Step 1: Problem Statement 

Shown above 
 
Step 2: Data and Information Collection 

Shown above 
 

Step 3: Definition of Design Variables   
A = Crude A used in barrels  
B = Crude B used in barrels  

 
 Step 4: Optimization Criterion 

Optimization criterion is to maximize profit, and the cost function is defined as  
Profit = 200(0.6A + 0.8B) + 450(0.4A + 0.2B) – 120A – 150B = 180A + 100B 

 
 Step 5: Formulation of Constraints   

Gasoline Market Constraint:  
(0.6A + 0.8B) ≤  20,000, bbl 

 
Lube Oil Market Constraint:  

(0.4A + 0.2B) ≤  10,000, bbl 
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Explicit Design Variable Constraints:  
A ≤  20,000, bbl 
B ≤  30,000, bbl 
A ≥  0;  B ≥  0 
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2.3_________________________________________________________________________________  
 Design a beer bug, shown in Fig. E2.3, to hold as much beer as possible. The height and radius of 

the mug should be not more than 20 cm. The mug must be at least 5 cm in radius. The surface area 
of the sides must not be greater than 900 cm2 (ignore the area of the bottom of the mug and ignore 
the mug handle – see figure). Formulate the optimum design problem. 

  

 

FIGURE E2.3 Beer mug.  
  
 Solution 

  
Given: The maximum and minimum radius of the mug, the maximum height of the mug, and the 

maximum surface area of the mug. The area of the bottom of the mug is ignored.  
Required: It is desired to find the dimensions of the beer mug which will maximize the amount of 

beer it can hold. 
Procedure: We follow the five step process to formulate the problem as an optimization problem. 
 
Step 1: Problem Statement 

Shown above 
 
Step 2: Data and Information Collection 

Shown above 
 

Step 3: Definition of Design Variables   
R = radius of the mug in cm  
H = height of the mug in cm   

 
 Step 4: Optimization Criterion 

Optimization criterion is to maximize volume of the mug, and the cost function is defined as 
Volume = π R2H, cm3 

 
 Step 5: Formulation of Constraints   

Surface Area Constraint: 2 π RH ≤  900, cm2 
  Explicit Design Variable Constraints:  

R ≥  5 cm,  R ≤  20 cm;  H ≥  0 cm, H ≤  20 cm 
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2.4_________________________________________________________________________________  
 A company is redesigning its parallel flow heat exchanger of length l to increase its heat transfer. An 

end view of the units is shown in Fig. E2.4. There are certain limitations on the design problem. The 
smallest available conducting tube has a radius of 0.5 cm and all tubes must be of the same size. 
Further, the total cross sectional area of all the tubes cannot exceed 2000 cm2 to ensure adequate 
space inside the outer shell. Formulate the problem to determine the number of tubes and the radius 
of each tube to maximize the surface area of the tubes in the exchanger. 

 

FIGURE E2.4 Cross section of heat exchanger. 
  
 Solution 

  
Given: The minimum radius of each tube, the similarity between each tube, and the maximum 

surface area of all tubes combined.  
Required: It is desired to find the number of tubes and the radius of each tube which will maximize 

the surface area of the tubes in the heat exchanger. 
Procedure: We follow the five step process to formulate the problem as an optimization problem. 
 
Step 1: Problem Statement 

Shown above 
 
Step 2: Data and Information Collection 

Shown above 
 

Step 3: Definition of Design Variables   
N = number of tubes  

 R = radius of the tubes, cm 
 

 Step 4: Optimization Criterion 
Optimization criterion is to maximize surface area of tubes, and the cost function is defined as 
Surface area = N(2 π R)l = 2 π RlN, cm2 

 
 Step 5: Formulation of Constraints   

Cross-sectional Area Constraint: N( π R²) ≤  2000, cm2 
  Explicit Design Variable Constraints:  

R ≥  0.5, cm;   N ≥  0 
 
 Note that for a meaningful solution, N should assume an integer value. 
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2.5_________________________________________________________________________________  
 Proposals for a parking ramp have been defeated, so we plan to build parking lot in the downtown 

urban renewal section. The cost of land is 200W + 100D, where W is the width along the street and D 
the depth of the lot in meters. The available width along the street is 100 m, while the maximum 
depth available is 200 m. We want to have at least 10,000 m2 in the lot. To avoid unsightliness, the 
city requires that the longer dimension of any lot be no more than twice the shorter dimension. 
Formulate the minimum-cost design problem. 

 
 Solution 

  
Given: The cost of land in the downtown urban renewal section, the maximum width and depth 

available, and the minimum area available in the lot. In addition, the longer dimension can be no 
more than twice the shorter dimension. 

Required: Minimize the cost required to build such a parking lot, subject to the given constraints. 
Procedure: We follow the five step process to formulate the problem as an optimization problem. 
 
Step 1: Problem Statement 

Shown above 
 
Step 2: Data and Information Collection 

Shown above 
 

Step 3: Definition of Design Variables   
W = width of lot in m  

 D = depth of lot in m 
 

 Step 4: Optimization Criterion 
Optimization criterion is to minimize $ cost, and the cost function is defined as  
Cost = 200W + 100D, $ 

 
 Step 5: Formulation of Constraints   

Width Limitation Constraint: W ≤ 100, m 
Depth Limitation Constraint: D ≤ 200, m 
Area Constraint: WD ≥ 10000 

  Explicit Design Variable Constraints:  
D ≤  2W, m 
W ≤  2D, m 
W ≥  0, m 
D ≥  0, m 
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2.6_________________________________________________________________________________ 
 A manufacturer sells products A and B. Profit from A is $10/kg and is $8/kg from B. Available raw 

materials for the products are 100 kg of C and 80 kg of D. To produce 1 kg of A, we need 0.4 kg of 
C and 0.6kg of D. To produce 1 kg of B, we need 0.5 kg of C and 0.5 kg of D. The markets for the 
products are 70 kg for A and 110 kg for B. How much A and B should be produced to maximize 
profit? Formulate the design optimization problem. 

 
 Solution 

  
Given: The profits from selling products A and B, the amount of raw material available of products 

C and D, the amount of products C and D required to produce products A and B, and the market 
for products A and B. 

Required: It is desired to find the amount of A and B which should be produced to maximize profit. 
Procedure: We follow the five step process to formulate the problem as an optimization problem. 
 
Step 1: Problem Statement 

Shown above 
 
Step 2: Data and Information Collection 

Shown above 
 

Step 3: Definition of Design Variables   
A = product A produced in kg   
B = product B produced in kg   

 
 Step 4: Optimization Criterion 

Optimization criterion is to maximize profit, and the cost function is defined as  
Profit = 10A + 8B, $ (1) 

 
 Step 5: Formulation of Constraints   

Limits on Products Constraints:  
A ≤  70 kg,   B ≤  110 kg (2) 

Raw Material Constraints:  
Amount of C used to produce A and B:  C = 0.4A + 0.5B  (3) 
Amount of D used to produce A and B:  D = 0.6A + 0.5B  (4) 
 
Constraint on C used: 0.4A + 0.5B ≤  100 kg  (5) 
Constraint on D used: 0.6A + 0.5B ≤  80 kg  (6) 

  Explicit Design Variable Constraints:  
A ≥  0, B ≥  0 (7) 

 Final formulation: Find A and B to maximize the profit function in Eq. (1), subject to 
constraints in Eqs (5) – (7). 
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Alternate Formulation 
 
If C (amount of C used in kg) and D (amount of D used in kg) are also treated as design variables, then 
the formulation of the problem will become: 
 
Formulation: Find A, B, C, and D to maximize the profit in Eq. (1) subject to the constraints: 
 

Limits on variables:  
A ≤  70 kg,   B ≤  110 kg,   C ≤  100 kg,   D ≤  80 kg  (8) 

Raw Material Constraints:  
Amount of C used to produce A and B:  C = 0.4A + 0.5B  (9) 
Amount of D used to produce A and B:  D = 0.6A + 0.5B  (10) 
 

  Non-negativity of Design Variable:  
A ≥  0, B ≥  0, C ≥  0, D ≥  0 (11) 
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2.7_________________________________________________________________________________  
 Design a diet of bread and milk to get at least 5 units of vitamin A and 4 units of vitamin B each day. 

The amount of vitamins A and B in 1 kg of each food and the cost per kilogram of food are given in 
Table E2.7. Formulate the design optimization problem so that we get at least the basic requirements 
of vitamins at the minimum cost.  

  
 Table E2.7 Data for the Diet Problem 

Vitamin Bread Milk 
A 1 2 
B 3 2 

Cost/kg 2 1 
  
 Solution 

  
Given: The minimum amount of vitamins A and B required each day, the amount of vitamins A and 

B present in one kilogram of bread and milk, and the cost per kilogram of food. 
Required: It is desired to find the amount of each food which should be consumed to provide the 

basic vitamin requirements at the minimum cost. 
Procedure: We follow the five step process to formulate the problem as an optimization problem. 
 
Step 1: Problem Statement 

Shown above 
 
Step 2: Data and Information Collection 

Shown above 
 

Step 3: Definition of Design Variables   
B = bread consumed in kg   
M = milk consumed in kg   

 
 Step 4: Optimization Criterion 

Optimization criterion is to minimize the cost, and the cost function is defined as  
Cost = 2B + M, $ 

 
 Step 5: Formulation of Constraints   

Vitamin A Constraint: B + 2M ≥  5 
Vitamin B Constraint: 3B + 2M ≥  4 

  Explicit Design Variable Constraints:  
B ≥  0, kg;    M ≥  0, kg 
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2.8_________________________________________________________________________________ 
 Enterprising engineering students have set up a still in a bathtub. They can produce 225 bottles of 

pure alcohol each week. They bottle two products from alcohol: (i) wine, 20 proof, and (ii) whiskey, 
80 proof. Recall that pure alcohol is 200 proof. They have an unlimited supply of water but can only 
obtain 800 empty bottles per week because of stiff competition. The weekly supply of sugar is 
enough for either 600 bottles of wine or 1200 bottles of whiskey. They make $1.00 profit on each 
bottle of wine and $2.00 profit on each bottle of whiskey. They can sell whatever they produce. How 
many bottles of wine and whisky should they produce each week to maximize profit? Formulate the 
design optimization problem. (created by D. Levy)  

  
 Solution 

  
Given: The amount of bottles of pure alcohol which can be produced each week, the two types of 

alcohol which are produced, the amount of empty bottles available per week, the amount of each 
alcohol which can be produced based on the weekly sugar supply, and the profits for each 
alcohol type.  

Required: It is desired to find the amount of bottles of wine and whisky which should be produced, 
each week, to maximize profit. 

Procedure: We follow the five step process to formulate the problem as an optimization problem. 
 
Step 1: Problem Statement 

Shown above 
 
Step 2: Data and Information Collection 

Shown above 
 

Step 3: Definition of Design Variables   
x1 = bottles of wine produced/week   
x2 = bottles of whiskey produced/week   

 
 Step 4: Optimization Criterion 

Optimization criterion is to maximize profit, and the cost function is defined as  
Profit = x1 + 2x2 

 
 Step 5: Formulation of Constraints   

Supply of Bottles Constraint: x1 + x2 ≤  800    
Supply of Alcohol Constraint: 0.1x1 + 0.4x2 ≤  225 
Sugar Limitation Constraint: x1/600 + x2/1200 ≤  1 

  Explicit Design Variable Constraints:  
x1 ≥  0,  x2 ≥  0 
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2.9_________________________________________________________________________________   
 Design a can closed at one end using the smallest area of sheet metal for a specified interior volume 

of 600 cm3. The can is a right circular cylinder with interior height h and radius r. The ratio of height 
to diameter must not be less than 1.0 nor greater than 1.5. The height cannot be more than 20 cm.  
Formulate the design optimization problem. 

  
 Solution 

  
Given: The desired interior can volume, the minimum and maximum ratio of height to diameter, and 

the maximum height. 
Required: It is desired to find the design which minimizes the area of sheet metal for the can. 
Procedure: We follow the five step process to formulate the problem as an optimization problem. 
 
Step 1: Problem Statement 

Shown above 
 
Step 2: Data and Information Collection 

Shown above 
 

Step 3: Definition of Design Variables   
h = interior height of the can in cm   
r = interior radius of the can in cm   

 
 Step 4: Optimization Criterion 

Optimization criterion is to minimize area of sheet metal, and the cost function is defined as  
Area = πr2 + 2πrh, , cm2 

 
 Step 5: Formulation of Constraints   

Volume Constraint: π r2h = 600, , cm3   
Height/Diameter Constraints:  

h/2r ≥  1 
h/2r ≤  1.5 

  Explicit Design Variable Constraints:  
h ≤  20, cm;   h ≥  0, cm;   r ≥  0, cm  
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2.10________________________________________________________________________________ 
Design a shipping container closed at both ends with dimensions b × b × h to minimize the ratio: 
(round-trip cost of shipping the container only)/(one-way cost of shipping the contents only). 

  Use the data in the following table. Formulate the design optimization problem. 
 

Mass of the container/surface area 80 kg/ m2 
Maximum b 10 m 
Maximum h 18 m 
One-way shipping cost, full or empty $18/kg gross mass 
Mass of the contents 150 kg/ m3 

 
 Solution 

  
Given: The mass of the container per unit area, the maximum height and square base length of the 

container, the one way shipping cost, the mass of the contents, and the ratio of a round trip cost 
of shipping the container to a one way cost of shipping its contents only. 

Required: It is desired to find the design of the shipping container which minimizes the ratio given. 
Procedure: We follow the five step process to formulate the problem as an optimization problem. 
 
Step 1: Problem Statement 

Shown above 
 
Step 2: Data and Information Collection 

Shown above 
 

Step 3: Definition of Design Variables   
b = base of the container, m   
h = height of the container, m   

 
 Step 4: Optimization Criterion 

Optimization criterion is to minimize a ratio, and the cost function is defined as 

  Ratio = 
contents  theshipping ofcost way -one
container  theshipping ofcost  trip-round   

  =
( )( )( )
( )( )( )

2 2

22

2 18 80 2 + 4 32 + 2 32 1 2= = +
15 1518 150

b bh b bh
h bb hb h

     
     

     
 

  
 Step 5: Formulation of Constraints   
  Explicit Design Variable Constraints:  

b ≤  10, m 
h ≤  18, m 
b ≥  0, m 
h ≥  0, m 
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2.11________________________________________________________________________________   
 Certain mining operations require an open top rectangular container to transport materials. The data 

for the problem are as follows: 
 
 Construction costs: 

- Sides: $50/m2   
- Ends: $60/m2   
- Bottom: $90/m2  

 Minimum volume needed: 150 m3  
 
 Formulate the problem of determining the container dimensions for minimum present cost.  
 
 Solution 
 

Given: The construction costs for the sides, ends, and the bottom of the container and the minimum 
volume requirement.  

Required: It is desired to find the dimensions of the material container which minimize cost. 
Procedure: We follow the five step process to formulate the problem as an optimization problem. 

 
Step 1: Problem Statement 

Shown above 
 
Step 2: Data and Information Collection 

Shown above 
 

Step 3: Definition of Design Variables   
dimensions of the container;   
b = width, m 
d = depth, m 
h = height, m   

 
 Step 4: Optimization Criterion 

Optimization criterion is to minimize total present cost, and the cost function is defined as 
  Cost = ( ) ( ) ( )2 50 2 60 90  dh bh bd+ +    

  Cost = ( )100 120 90dh bh bd+ +  
 
 Step 5: Formulation of Constraints   

Volume Constraint:  
bdh ≥  150, m3 

 
  Explicit Design Variable Constraints:  

b ≥  0, m;   d ≥  0, m;   h ≥  0, m 
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2.12________________________________________________________________________________ 
 Design a circular tank closed at both ends to have a volume of 250 m3. The fabrication cost is 

proportional to the surface area of the sheet metal and is $400/m2. The tank is to be housed in a shed 
with a sloping roof. Therefore, height H of the tank is limited by the relation H ≤ (10 - D/2), where D 
is the tank’s diameter. Formulate the minimum-cost design problem.  

 
 Solution 

  
Given: The required volume of the tank, the fabrication cost of the sheet metal per unit area, and the 

limiting relation between the height and the diameter.  
Required: It is desired to find a design of the tank which minimizes cost. 
Procedure: We follow the five step process to formulate the problem as an optimization problem. 
 
Step 1: Problem Statement 

Shown above 
 
Step 2: Data and Information Collection 

Shown above 
 

Step 3: Definition of Design Variables   
D = diameter of the tank in m   
H = height of the tank in m  

 
 Step 4: Optimization Criterion 

Optimization criterion is to minimize the cost, and the cost function is defined as 
Cost = 400( π D2/2 + π DH ) 

 
 Step 5: Formulation of Constraints   

Constraint: π D2H/4 = 250, m3 
Constraint: H ≤  10 D− /2, m 

  Explicit Design Variable Constraints:  
H ≥  0, m;   D ≥  0, m 
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2.13________________________________________________________________________________  
 Design the steel framework shown in Figure E2.13 at a minimum cost. The cost of a horizontal 

member in one direction is $20w and in the other direction it is $30d. The cost of a vertical column 
is $50h. The frame must enclose a total volume of at least 600 m3. Formulate the design optimization 
problem. 

 

 

FIGURE E2.13 Steel frame.  
 Solution 

  
Given: The cost of a horizontal member in two, separate directions, the cost of a vertical member, 

and the minimum volume which must be enclosed.  
Required: It is desired to find a design which minimizes the cost of the steel framework. 
Procedure: We follow the five step process to formulate the problem as an optimization problem. 
 
Step 1: Problem Statement 

Shown above 
 
Step 2: Data and Information Collection 

Shown above 
 

Step 3: Definition of Design Variables   
w = width of the frame, m   
d = depth of the frame, m   
h = height of the frame, m 

 
 Step 4: Optimization Criterion 

Optimization criterion is to minimize the cost, and the cost function is defined as 
Cost = 80w + 120d + 200h 

 
 Step 5: Formulation of Constraints   

Volume Constraint: wdh ≥  600, m3 
  Explicit Design Variable Constraints:  

w, d, h ≥  0, m 
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2.14_______________________________________________________________________________  
 Two electric generators are interconnected to provide total power to meet the load. Each generator’s 

cost is a function of the power output, as shown in Figure E2.14. All costs and power are expressed 
on a per unit basis. The total power needed is at least 60 units. Formulate a minimum-cost design 
problem to determine the power outputs P1 and P2.  

 

 FIGURE E2.14 Power generator. 
 Solution 

  
Given: The cost function of each generator, shown in Figure E2.14, and the minimum total power 

needed.  
Required: It is desired to find the power outputs, P1 and P2, which minimizes cost. 
Procedure: We follow the five step process to formulate the problem as an optimization problem. 
 
Step 1: Problem Statement 

Shown above 
 
Step 2: Data and Information Collection 

Shown above 
 

Step 3: Definition of Design Variables   
P1 = Number of power units for generator one   
P2 = Number of power units for generator two   

 
 Step 4: Optimization Criterion 

Optimization criterion is to minimize the cost, and the cost function is defined as 
Cost = C1 + C2 = ( 2

1 11 P P− + ) + ( 2
2 21 0 6. P P+ + ) 

 
 Step 5: Formulation of Constraints   

Constraint: P1 + P2 ≥ 60 
  Explicit Design Variable Constraints:  

P1 ≥  0;   P2 ≥  0  
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2.15________________________________________________________________________________ 
 Transportation Problem. A company has m manufacturing facilities. The facility at the ith location 

has capacity to produce bi units of an item. The product should be shipped to n distribution centers. 
The distribution center at the jth location requires at least aj units of the item to satisfy demand. The 
cost of shipping an item from the ith plant to the jth distribution center is cij. Formulate a minimum-
cost transportation system to meet each distribution center’s demand without exceeding the capacity 
of any manufacturing facility.  

  
 Solution 

  
Given: The number of manufacturing facilities the company owns, the capacity of the ith facility to 

produce bi units of an item, the number of distribution centers the product should be shipped too, 
the minimum number of items, aj, required by the jth distribution center, and the cost to ship an 
item from the ith plant to the jth distribution center. 

Required: It is desired to design a transportation system which minimizes costs and meets the 
constraints set by the two types of facilities. 

Procedure: We follow the five step process to formulate the problem as an optimization problem. 
 
Step 1: Problem Statement 

Shown above 
 
Step 2: Data and Information Collection 

Shown above 
 

Step 3: Definition of Design Variables   
  xij : number of items produced at the ith facility shipped to jth distribution center 

where i = 1 to m; j = 1 to n   
 

 Step 4: Optimization Criterion 
Optimization criterion is to minimize the cost, and the cost function is defined as 

Cost = ∑∑
==

n

j
ijij

m

i
xc

11

 

 
 Step 5: Formulation of Constraints   

Capacity of Manufacturing Facility Constraint: i

n

j
ij bx ≤∑

=1

for i = 1 to m 

Demand Constraint: j

m

i
ij ax ≥∑

=1
for j = 1 to n;  ≥ijx 0 for all i and  j 
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2.16________________________________________________________________________________  
 Design of a two-bar truss. Design a symmetric two-bar truss (both members have the same cross 

section), as shown in Fig. E2.16, to support a load W. The truss consists of two steel tubes pinned 
together at one end and supported on the ground at the other. The span of the truss is fixed at s. 
Formulate the minimum mass truss design problem using height and the cross-sectional dimensions 
as design variable. The design should satisfy the following constraints: 

 
1. Because of space limitations, the height of the truss must not exceed b1, and must not be less 

than b2. 
2. The ratio of the mean diameter to thickness of the tube must not exceed b3. 
3. The compressive stress in the tubes must not exceed the allowable stress, σa, for steel. 
4. The height, diameter, and thickness must be chosen to safeguard against member buckling. 
  
Use the following data: W = 10 kN; span s = 2 m; b1 = 5 m; b2 = 2 m; b3 =90; allowable stress, σa 
=250 MPa; modulus of elasticity, E = 210 GPa; mass density,ρ =7850 kg/m3; factor of safety against 
buckling; FS=2; 0.1 ≤ D ≤ 2, m) and 0.01 ≤ t ≤ 0.1, m. 
 

 

FIGURE E2.16 Two-bar structure. 
  
 Solution 

  
Given: Constraints 1-4 listed above and the factor of safety against buckling in the data section 

above. 
Required: It is desired to design a truss which minimizes mass using height and the cross sectional 

dimensions as design variables. 
Procedure: We follow the five step process to formulate the problem as an optimization problem. 
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Step 1: Problem Statement 
Shown above 

 
Step 2: Data and Information Collection 

Depending on the units used for various parameters, the final expressions for various function 
will look different. The following table give values of various parameters depending on the units 
used: 
 
Variable N & m N & mm N & cm KN & m MN & m 
Load, W 10,000 10,000 10,000 10 1 × 10−2 

𝜎𝜎𝑎𝑎 250 × 106 250 250 × 102 250 × 103 250 
Modulus, E 210 × 109 210 × 103 210 × 105 210 × 106 210 × 103 
Density, 𝜌𝜌 7850 7.85 × 10−6 7.85 × 10−3 7850 7850 
Span, s 2 2000 200 2 2 

𝑏𝑏1 5 5000 500 5 5 
𝑏𝑏2 2 2000 200 2 2 
𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 0.1 100 10 0.1 0.10 
𝐷𝐷𝑚𝑚𝑚𝑚𝑚𝑚 2 2000 200 2 2 
𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 0.01 10 1 0.01 0.01 
𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 0.1 100 10 0.1 0.1 

      
 
Other data/expressions that need to be collected are: 
 
Member length, 𝑙𝑙 = �𝐻𝐻2 + (0.5𝑠𝑠)2 
 
Member force: Draw the free-body diagram of the loaded node and sum up the forces in the 
vertical direction:  
 
−𝑊𝑊 + 2𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 = 0;    𝑜𝑜𝑜𝑜    𝑃𝑃 = 𝑊𝑊

2𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐
;     𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 = 𝐻𝐻

𝑙𝑙
  

 
Member stress:  𝜎𝜎 = 𝑃𝑃

𝐴𝐴
 

 
Cross-sectional area: The expression will depend on what variables  

are used: 
 
     𝐴𝐴 = 𝜋𝜋

4
(𝐷𝐷𝑜𝑜2 − 𝐷𝐷𝑖𝑖2) = 𝜋𝜋𝜋𝜋𝜋𝜋  

 
Moment of inertia:   𝐼𝐼 = 𝜋𝜋

64
(𝐷𝐷𝑜𝑜4 − 𝐷𝐷𝑖𝑖4) = 𝜋𝜋

8
(𝐷𝐷3𝑡𝑡 + 𝐷𝐷𝑡𝑡3)  

 
Buckling load (critical load) for pin-pin column:  𝑃𝑃𝑐𝑐𝑐𝑐 = 𝜋𝜋2𝐸𝐸𝐸𝐸

𝑙𝑙2
 

  

P 

W 

P 

θ 
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FORMULATION 1: In terms of intermediate variables 
 

Step 3: Definition of Design Variables   
H = height of the truss, m   
D = mean diameter of the tube, m   

  t = thickness of the tube, m 
 

 Step 4: Optimization Criterion 
Optimization criterion is to minimize mass, and the cost function is defined as 
 
Mass = 2 Alρ  
where ρ  is the mass density of the material. 
 

 Step 5: Formulation of Constraints   
 

Stress Constraint:   aσ ≤σ  

  Buckling Constraint:  𝑃𝑃 ≤ 𝑃𝑃𝑐𝑐𝑐𝑐
𝐹𝐹𝐹𝐹

 
 

 Explicit Design Variable Constraints:  
 
 1 2 3;  ;  ; H b H b D t b≤ ≥ ≤  
 0.1 2 m;     0.1 0.1 mD t≤ ≤ ≤ ≤  
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FORMULATION 2: Explicitly in terms of the design variables. 
 
Use N and m as the units, and the corresponding values for various parameters. 
 
Member Force: P = W( 2 24s H+ )

1
2 2H  

 
Step 3: Definition of Design Variables   

H = height of the truss, m   
D = mean diameter of the tube, m   

  t = thickness of the tube, m 
 

 Step 4: Optimization Criterion 
Optimization criterion is to minimize mass, and the cost function is defined as 

Mass = ( )( )
1
22 22 2 π 4 +Al Dt s H=ρ ρ ;  

where ρ is the mass density of the material. 
 
Substituting the given values, we get 
 
Mass = 2(7850)( πDt)(1 + H 2 ) 2

1

 = 49323 Dt(1 + H 2 ) 2
1

, kg 
 
 Step 5: Formulation of Constraints   

Stress Constraint: P/A a≤σ ;  W( 2s /4 + 2H )
1
2 2H ( Dtπ ) a≤σ  

  Buckling Constraint: ( )
( )

( )
2 3 3

2 2
cr cr 2 2

π π + 8
FS ;  = π

4 + 

E D t Dt
P P P EI l

s H

  ≤ =    

Or,   
( ) ( )

( )( )

1
2 2 3 32 2

2 2

84

2 FS 4

E D t DtW s H

H s H

 π π ++  ≤
+

 

 Explicit Design Variable Constraints: 1 2 3;  ;  ; H b H b D t b≤ ≥ ≤  
 0.1 2 m;     0.1 0.1 mD t≤ ≤ ≤ ≤  

   
  Substituting the given data, we obtain the final form of the constraints as 
   
  10000(1 + H 2 )

1
2 62 250 10H Dtπ ≤ ×   

  10000(1 + H 2 ) ( ) ( ) ( )1
2 9 3 3 3 22 210 10 16 1H D t Dt H≤ × π + +  

  H ≤  5, m;    
  H ≥  2, m;    
  D/t ≤  90;    
  0.1≤  D ≤ 2, m;    
  0.01 ≤  t ≤  0.1, m 
  H ≤  5, m;     
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2.17________________________________________________________________________________ 
 A beam of rectangular cross section (Fig. E2.17) is subjected to a maximum bending moment of M 

and maximum shear of V. The allowable bending and shearing stresses are σa and τa, respectively. 
The bending stress in the beam is calculated as  

𝜎𝜎 =
6𝑀𝑀
𝑏𝑏𝑑𝑑2

 
 and average shear stress in the beam is calculated as  

τ =
3𝑉𝑉

2𝑏𝑏𝑏𝑏
 

 
 where d is the depth and b is the width of the beam. It is also desired that the depth of the beam shall 

not exceed twice its width. Formulate the design problem for minimum cross-sectional area using 
this data: M=140 kN ⋅m, V=24 kN, 𝜎𝜎𝑎𝑎=165 MPa, 𝜏𝜏𝑎𝑎=50 MPa. 

 

 

FIGURE E2.17 Cross section of a rectangular beam. 
  
  Solution 

  
Given: The equations to calculate bending and average shear stress in a beam, the constraint that the 

depth of the beam will not exceed twice its width, the applied moment, the applied shear force, 
and the maximum allowable bending and shear stresses in the beam. 

Required: It is desired to design a beam which minimizes cross-sectional area without yielding due 
to shear or bending stresses. 

Procedure: We follow the five step process to formulate the problem as an optimization problem. 
 
Step 1: Problem Statement 

Shown above 
 
Step 2: Data and Information Collection 

M = 140 kN.m = 1.4 710×  N.cm;   
V = 24 kN = 2.4 410×  N;   
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aσ = 165 MPa = 1.65 410×  N/cm2;              

at = 50 MPa = 5000 N/cm2 

 
Step 3: Definition of Design Variables   

b = width of the beam, cm   
d = depth of the beam, cm 
 

 Step 4: Optimization Criterion 
Optimization criterion is to minimize the cross-sectional area, and the cost function is defined as 
Area = bd, cm2 

 
  
 Step 5: Formulation of Constraints   

 Bending Stress Constraint: 6M/bd2 a≤σ  or 6(1.4 710× )/bd2 ≤ 1.65 410×  
Shear Stress Constraint: 3V/2bd ≤ at  or 3(2.4 410× )/2bd ≤ 5000 
Constraint: d ≤  2b or d 2− b ≤  0 

  Explicit Design Variable Constraints: b, d ≥  0 
 

From the graph for the problem, we get the optimum solution as  
 b ∗ =  10.8 cm, d ∗=  21.6 cm, Area =  233 cm² where constraint numbers 1 and 3 are active. 
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2.18________________________________________________________________________________ 
 A vegetable oil processor wishes to determine how much shortening, salad oil, and margarine to 

produce to optimize the use of his current oil stock supply. At the present time, he has 250,000 kg of 
soybean oil, 110,000 kg of cottonseed oil, and 2000 kg of milk-base substances. The milk-base 
substances are required only in the production of margarine. There are certain processing losses 
associated with each product: 10 percent for shortening, 5 percent for salad oil, and no loss for 
margarine. The producer’s back orders require him to produce at least 100,000 kg of shortening, 
50,000 kg of salad oil, and 10,000 kg of margarine. In addition, sales forecasts indicate a strong 
demand for all produces in the near future. The profit per kilogram and the base stock required per 
kilogram of each product are given in Table E2.18. Formulate the problem to maximize profit over 
the next production scheduling period. (created by J. Liittschwager). 

  
 Table E2.18 Data for the Vegetable Oil Processing Problem 

  Parts per kg of base stock 
Requirements 

Product Profit per kg Soybean Cottonseed Milk base 
Shortening 1.0 2 1 0 
Salad oil 0.8 0 1 0 

Margarine 0.5 3 1 1 
 
 Solution 

  
Given: The current supply of soybean oil, cottonseed oil, and milk-base substances, milk-base 

substances are required in the production of margarine only, the amount of processing loss which 
occurs in shortening, salad oil, and margarine, the minimum production requirement of each 
product, and the data shown in Table E2.18. 

Required: It is desired to create a production schedule which will maximize profit. 
Procedure: We follow the five step process to formulate the problem as an optimization problem. 
 
Step 1: Problem Statement 

Shown above 
 
Step 2: Data and Information Collection 

Shown above 
 

Step 3: Definition of Design Variables   
x1 = shortening produced after losses, kg   
x2 = salad oil produced after losses, kg   
x3 = margarine produced, kg 

 
 Step 4: Optimization Criterion 

Optimization criterion is to maximize the profit, and the cost function is defined as 
Profit = x1 + 0.8 x2 + 0.5 x3 

 
 Step 5: Formulation of Constraints   
  The ingredients used cannot exceed current stocks 
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Soybean Constraint: ( ) ( ) ( )1 32 3 1 0.9 3 5x x+ ≤250,000 
Milk Base Constraint: ( 3 5x ) ≤ 2000 
Cottonseed Constraint: ( ) ( ) ( ) ( ) ( )1 2 33 1 0.9 1 0.95 5x x x+ + ≤ 110,000 
The demand for the needs of the products to be satisfied 

 Explicit Design Variable Constraints: 1x ≥100,000;  2x ≥50,000;  3x ≥ 10,000 
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Section 2.11    A General Mathematical Model for Optimum Design 
2.19________________________________________________________________________________  
 Answer True or False. 

1. Design of a system implies specification for the design variable values. True 
2. All design problems have only linear inequality constraints. False 
3. All design variables should be independent of each other as far as possible. True 
4. If there is an equality constraint in the design problem, the optimum solution must satisfy it. True 
5. Each optimization problem must have certain parameters called the design variables. True 
6. A feasible design may violate equality constraints. False 
7. A feasible design may violate “≥type’ constraints. False 
8. A “≤ type” constraint expressed in the standard form is active at a design point if it has zero 

value there. True 
9. The constraint set for a design problem consists of all the feasible points. True 
10. The number of independent equality constraints can be larger than the number of design 

variables for the problem. True 
11. The number of “≤ type” constraints must be less than the number of design variables for a valid 

problem formulation. False 
12. The feasible region for an equality constraint is a subset of that for the same constraint expressed 

as an inequality. True 
13. Maximization of 𝑓𝑓(𝑥𝑥) is equivalent to minimization of 1 𝑓𝑓(𝑥𝑥)⁄ . False 
14. A lower minimum value for the cost function is obtained if more constraints are added to the 

problem formulation. False 
15. Let 𝑓𝑓𝑛𝑛 be the minimum value for the cost function with n design variables for a problem. If the 

number of design variables for the same problem is increased to, say m = 2n, then 𝑓𝑓𝑚𝑚 > 𝑓𝑓𝑛𝑛  
where 𝑓𝑓𝑚𝑚is the minimum value for the cost function with m design variables. False 
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2.20*_______________________________________________________________________________ 
 A trucking company wants to purchase several new trucks. It has $2 million to spend. The 

investment should yield a maximum of trucking capacity for each day in tonnes×kilometers. Data 
for the three available truck models are given in Table E2.20: i.e., truck load capacity speed, crew 
required/shift, hours of operations for three shifts, and the cost of each truck. There are some 
limitations on the operations that need to be considered. The labor market is such that the company 
can hire at most 150 truck drivers. Garage and maintenance facilities can handle at the most 25 
trucks. How many trucks of each type should the company purchase? Formulate the design 
optimization problem. 

 
 Table E2.20 Data for Available Trucks 
   

Truck 
model 

Truck load 
Capacity 
(tones) 

Average truck 
speed 
(km/h) 

Crew required 
per shift 

No. of hours 
of operations 

per day 
(3 shifts) 

Cost of each 
truck($) 

A 10 66 1 19 40,000 
B 20 50 2 18 60,000 
C 18 50 2 21 70,000 

 
 

 Solution 
  
Given: The maximum amount of money the company can spend, the data given in Table E2.20, the 

maximum number of truck drivers which can be hired, and the maximum number of trucks 
which can be purchased. 

Required: It is desired to purchase the appropriate number of each truck which will satisfy the 
constraints and maximize yield of trucking capacity each day in tonnes×kilometers. 

Procedure: We follow the five step process to formulate the problem as an optimization problem. 
 
Step 1: Problem Statement 

Shown above 
 
Step 2: Data and Information Collection 

Shown above 
 

Step 3: Definition of Design Variables   
  A, B and C are the number of trucks to be purchased of the type A, B and C, respectively.  

 
 Step 4: Optimization Criterion 

Optimization criterion is to maximize the capacity (tonnes×kilometers), and the cost function is 
defined as: 
Capacity = A(10×55×18) + B(20×50×18) + C(18×50×21) = 9900A + 18000B + 18900C 
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  Transcribing into the standard form, we get: 
 
  minimize f  = – 9900A – 18000B – 18900C 
 
 Step 5: Formulation of Constraints   

Available Capital Constraint: A(40,000) + B(60,000) + C(70,000) ≤  2,000,000 
Limit on Available Drivers Constraint: 3A + 6B + 6C ≤  150 
Limitation on Maintenance Facility Constraint: A + B + C ≤  30 

  Explicit Design Variable Constraints: A, B, C ≥  0 
 
  Transcribing into the standard form, we get: 
 
  g1 = (40000A + 60000B + 70000C) 2000000− ≤  0:   
  g2 = (3A + 6B + 6C) ≤−150 0;   

      g3 = (A + B + C) 030 ≤− ; 
A− ≤ 0 

 B− ≤ 0 
 C− ≤ 0 
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2.21*_______________________________________________________________________________ 
A large steel corporation has two iron ore reduction plants. Each plant processes iron ore into two 
different ingot stocks. They are shipped to any of the three fabricating plants where they are made 
into either of the two finished products. In total, there are two reduction plants, two ingot stocks, 
three fabricating plants, and two finished products. 

  For the coming season, the company wants to minimize total tonnage of iron ore processed in its 
reduction plants, subject to production and demand constraints. Formulate the design optimization 
problem and transcribe it into the standard model. 

 
 Nomenclature 
 𝑎𝑎(𝑟𝑟, 𝑠𝑠)=tonnage yield of ingot stock s from 1 ton of iron ore processed at reduction plant r 
    𝑏𝑏(𝑠𝑠,𝑓𝑓,𝑝𝑝)= total yield from 1 ton of ingot stock s shipped to fabricating plant f and manufactured  
   into product p 
 𝑐𝑐(𝑟𝑟)=iron ore processing capacity in tonnage at reduction plant r 
 𝑘𝑘(𝑓𝑓)=capacity of the fabricating plant f in tonnage for all stocks 
 𝐷𝐷(𝑝𝑝)=tonnage demand requirement for product p 
 
 Production and demand constraints 
  

1. The total tonnage of iron ore processed by both reduction plants must equal the total tonnage 
processed into ingot stocks for shipment to the fabricating plants. 

2. The total tonnage of iron ore processed by each reduction plant cannot exceed its capacity. 
3. The total tonnage of ingot stock manufactured into products at each fabricating plant must equal 

the tonnage of ingot stock shipped to it by the reduction plants. 
4. The total tonnage of ingot stock manufactured into products at each fabrication plant cannot 

exceed its available capacity. 
5. The total tonnage of each product must equal its demand. 
 
Constants for the problem 
 

a(1,1)=0.39 c(1)=1,200,000 k(1)=190,000 D(1)=330,000 
a(1,2)=0.46 c(2)=1,000,0 00 k(2)=240,000 D(2)=125,000 
a(2,1)=0.44  k(3)=290,000  
a(2,2)=0.48    
  b(1,1,1)=0.79 b(1,1,2)=0.84 
  b(2,1,1)=0.68 b(2,1,2)=0.81 
  b(1,2,1)=0.73 b(1,2,2)=0.85 
  b(2,2,1)=0.67 b(2,2,2)=0.77 
  b(1,3,1)=0.74 b(1,3,2)=0.72 
  b(2,3,1)=0.62 b(2,3,2)=0.78 
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 Solution 
 

Given: The maximum number of reduction plants, ingot stocks, fabricating plants, and finished 
products available, the constraints 1-5 shown above, and the constants shown in the table above. 

Required: It is desired to minimize the total tonnage of iron ore that is processed in reduction plants. 
Procedure: We follow the five step process to formulate the problem as an optimization problem. 

 
 Several formulations for the design problem are possible.  For each formulation proper design 

variables are identified.  Expressions for the cost and constraint functions are derived.  
  
Formulation 1: 

  
Step 1: Problem Statement 

Shown above 
 
Step 2: Data and Information Collection 

Shown above 
 

Step 3: Definition of Design Variables   
 For this formulation, twenty-four design variables are chosen which designate the twenty-four 

different paths of processing the iron ore, i.e., R(i, j, k, l) with i=1, 2; j=1, 2; k=1, 2, 3; and l =1, 
2.  For a particular set of i, j, k, and l, R(i, j, k, l) means that the tonnage of iron ore processed at 
reduction plant i, yielding ingot stock j, shipped to the fabricating plant k and manufactured into 
product l. 

 
For simplicity of the following derivation, let 
 
x1 = R(1,1,1,1); x2 = R(1,1,1,2); x3 = R(1,2,1,1); x4 = R(1,2,1,2);  x5 = R(1,1,2,1); x6 = 
R(1,1,2,2); 
x7 = R(1,2,2,1); x8 = R(1,2,2,2); x9 = R(1,1,3,1); x10 = R(1,1,3,2); x11= R(1,2,3,1); x12= 
R(1,2,3,2); 
y1 = R(2,1,1,1); y2 = R(2,1,1,2); y3 = R(2,2,1,1); y4 = R(2,2,1,2); y5 = R(2,1,2,1); y6 = 
R(2,1,2,2); 
y7 = R(2,2,2,1); y8 = R(2,2,2,2); y9 = R(2,1,3,1); y10 = R(2,1,3,2); y11= R(2,2,3,1); y12= 
R(2,2,3,2) 

 
 Step 4: Optimization Criterion 

Optimization criterion is to minimize total tonnage of iron ore processed at the reduction plants, 
and the cost function is defined as 

  
  𝑓𝑓 = ∑ 𝑥𝑥𝑖𝑖12

𝑖𝑖=1 + ∑ 𝑦𝑦𝑖𝑖12
𝑗𝑗=1

  
  Summarizing and transcribing into the standard model, we get 
 
  f  = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + y1 + y2 + y3 + y4 + y5 + y6 + y7 

+ y8 + y9 + y10 + y11 + y12 
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 Step 5: Formulation of Constraints   
  

  (1) The total tonnage of iron ore processed by each reduction plant cannot exceed its capacity,  
  i.e.,  RP1≤ c(1);   RP2≤ c(2) where RP1 and RP2 represent the total tonnage of iron ore 

processed at the two reduction plants separately. In terms of design variables and the given data, 
these two constraints are: 
 

  g1: 
12

1=
≤∑ i

i
x 1,200,000;     g2: 

12

1=
≤∑ j

j
y 1,000,000 

 
    (2) The total tonnage of ingot stocks manufactured into products at each fabricating plant cannot 

exceed its available capacity, i.e., F1 ≤ k(1);     F2 ≤ k(2);     F3 ≤ k(3) where F1, F2 and F3 
represent the total tonnage of ingot stocks processed at three fabricating plants separately. In 
terms of design variables and the given data, these constraints can be written as:   

   
g3: a(1,1)(x1 + x2) + a(1,2)(x3 + x4) + a(2,1)(y1 + y2) + a(2,2)(y3 + y4) ≤  190,000; or 
   :  0.39(x1 + x2) + 0.46(x3 + x4) + 0.44(y1 + y2) + 0.48(y3 + y4) ≤  190,000 
g4: 0.39(x5 + x6) + 0.46(x7 + x8) + 0.44(y5 + y6) + 0.48(y7 + y8) ≤  240,000 
g5: 0.39(x9 + x10) + 0.46(x11 + x12) + 0.44(y9 + y10) + 0.48(y11 + y12) ≤  290,000 

 
   (3) The total tonnage of each product p1 and p2 respectively, must be equal to its demand, i.e., 

p1 = D(1);     p2 = D(2) In terms of the design variables and the given data, the two constraints 
are written as: 

 
1h : ( ) 330,000;

=

+ =∑ i i i i
i 1,3,5,7,9,11

e x f y                      2h : ( ) 125,000
=

+ =∑ i i i i
i 2,4,6,8,10,12

e x f y       

 
 where ie 's and if 's are coefficients transferring tonnage of iron ore into products. These 

coefficients are given as:  
 

e1 = a(1,1) b(1,1,1) = 0.39(0.79) = 0.3081;  e2   = a(1,1) b(1,1,2) = 0.39(0.84) = 0.3276 
e3   = a(1,2) b(2,1,1) = 0.46(0.68) = 0.3128;  e4   = a(1,2) b(2,1,2) = 0.46(0.81) = 0.3726 
e5   = a(1,1) b(1,2,1) = 0.39(0.73) = 0.2847;  e6   = a(1,1) b(1,2,2) = 0.39(0.85) = 0.3315 
e7   = a(1,2) b(2,2,1) = 0.46(0.67) = 0.3082;  e8   = a(1,2) b(2,2,2) = 0.46(0.77) = 0.3542 
e9  = a(1,1) b(1,3,1) = 0.39(0.74) = 0.2886;  e10  = a(1,1) b(1,3,2) = 0.39(0.72) = 0.2808 
e11  = a(1,2) b(2,3,1) = 0.46(0.62) = 0.2852;  e12  = a(1,2) b(2,3,2) = 0.46(0.78) = 0.3588 
f1    = a(2,1) b(1,1,1) = 0.44(0.79) = 0.3476;  f2    = a(2,1) b(1,1,2) = 0.44(0.84) = 0.3696 
f3    = a(2,2) b(2,1,1) = 0.48(0.68) = 0.3264;  f4    = a(2,2) b(2,1,2) = 0.48(0.81) = 0.3888 
f5    = a(2,1) b(1,2,1) = 0.44(0.73) = 0.3212;  f6    = a(2,1) b(1,2,2) = 0.44(0.85) = 0.3740 
f7    = a(2,2) b(2,2,1) = 0.48(0.67) = 0.3216;  f8    = a(2,2) b(2,2,2) = 0.48(0.77) = 0.3696 
f9    = a(2,1) b(1,3,1) = 0.44(0.74) = 0.3256;  f10  = a(2,1) b(1,3,2) = 0.44(0.72) = 0.3168                        
f11 = a(2,2) b(2,3,1) = 0.48(0.62) = 0.2976;  f12  = a(2,2) b(2,3,2) = 0.48(0.78) = 0.3744 
  
 (4) There are constraints requiring that both the reduction plants and fabricating plants do not 

have any inventory of their own.  These constraints have been satisfied automatically since the 
twenty-four design variables (paths) are chosen which satisfy these conditions. 
 

  Summarizing and transcribing into the standard model, we get 
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 h1 = 0.3081 x1 + 0.3128 x3 + 0.2847 x5 + 0.3082 x7 + 0.2886 x9 + 0.2852 x11 + 0.3476 y1 + 0.3264 

y3 + 0.3212 y5 + 0.3216 y7 + 0.3256 y9 + 0.2976 y11 – 330,000 = 0 
h2 = 0.3276 x2 + 0.3726 x4 + 0.3315 x6 + 0.3542 x8 + 0.2808 x10 + 0.3588 x12 + 0.3696 y2 + 0.3888 
y4 + 0.3740 y6 + 0.3696 y8 + 0.3168 y10 + 0.3744 y12 – 125,000 = 0 
g1 = x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 – 1,200,000≤ 0 

 g2 = y1 + y2 + y3 + y4 + y5 + y6 + y7 + y8 + y9 + y10 + y11 + y12 – 1,000,000≤ 0 
g3 = 0.39 x1 + 0.39 x2 + 0.46 x3 + 0.46 x4 + 0.44 y1 + 0.44 y2 + 0.48 y3 + 0.48 y4 – 190,000≤ 0 
g4 = 0.39 x5 + 0.39 x6 + 0.46 x7 + 0.46 x8 + 0.44 y5 + 0.44 y6 + 0.48 y7 + 0.48 y8 – 240,000≤ 0 
g5 = 0.39 x9 + 0.39 x10 + 0.46 x11 + 0.46 x12 + 0.44 y9 + 0.44 y10 + 0.48 y11 + 0.48 y12 – 290,000≤ 0 

≤− ix 0,  ≤− iy 0,  i = 1 to 12 
 
Formulation 2: 

  
Step 1: Problem Statement 

Shown above 
 
Step 2: Data and Information Collection 

Shown above 
 

Step 3: Definition of Design Variables   
  The design variables are chosen as follows: 

 
x1  :  total tonnage of iron ore processed by plant 1;            

  x2  :  total tonnage of iron ore processed by plant 2 
x3  :  tonnage of ore processed by plant 1 for ingot stock 1;  

  x4  :  tonnage of ore processed by plant 1 for ingot stock 2 
x5  :  tonnage of ore processed by plant 2 for ingot stock 1;  

 x6  :  tonnage of ore processed by plant 2 for ingot stock 2 
x7  :  total tonnage yield of ingot stock 1;                          

 x8  :  total tonnage yield of ingot stock 2 
x9  :  tonnage of ingot stock 1 shipped to fabricating plant 1 to yield product 1 
x10 :  tonnage of ingot stock 1 shipped to fabricating plant 1 to yield product 2 
x11 :  tonnage of ingot stock 1 shipped to fabricating plant 2 to yield product 1 
x12 :  tonnage of ingot stock 1 shipped to fabricating plant 2 to yield product 2 
x13 :  tonnage of ingot stock 1 shipped to fabricating plant 3 to yield product 1 
x14 :  tonnage of ingot stock 1 shipped to fabricating plant 3 to yield product 2 
x15 :  tonnage of ingot stock 2 shipped to fabricating plant 1 to yield product 1 
x16 :  tonnage of ingot stock 2 shipped to fabricating plant 1 to yield product 2 
x17 :  tonnage of ingot stock 2 shipped to fabricating plant 2 to yield product 1 
x18 :  tonnage of ingot stock 2 shipped to fabricating plant 2 to yield product 2 
x19 :  tonnage of ingot stock 2 shipped to fabricating plant 3 to yield product 1 

  x20 :  tonnage of ingot stock 2 shipped to fabricating plant 3 to yield product 2 
 
 Step 4: Optimization Criterion 

The cost function is defined as 
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  minimize  f  = x1 + x2 

 
 which is already in the standard form 

 
 Step 5: Formulation of Constraints   

 
(1) The first constraint, total tonnage into each reduction plant must be equal to the tonnage 
processed into ingot stocks for shipment, implies that there will be no stock piling at the 
reduction plants: 
x1 = x3 + x4;     

 x2 = x5 + x6 
 

(2) The second constraint requires that the iron ore processed by each reduction plant should not 
exceed its maximum capacity: 
x3 + x4 ≤  1,200,000;      

 x5 + x6 ≤  1,000,000 
 

(3) The third constraint states that there is no stock piling at the fabricating plants.  By the 
definition of design variables, these are: 
x7 = 0.39 x3 + 0.44 x5;       

 x8 = 0.46 x4 + 0.48 x6;    
     x7 = x9 + x10 + x11 + x12 + x13 + x14; 

x8 = x15 + x16 + x17 + x18 + x19+ x20 
 

(4) The fourth constraint is on the maximum capacity of ingot stocks at each fabricating plant: 
x9 + x10 + x15 + x16 ≤  190,000;      

 x11 + x12 + x17 + x18 ≤  240,000;       
       x13 + x14 + x19 + x20 ≤  290,000 

 
(5) The fifth constraint states that the total tonnage of each product must be equal to its demand: 
0.79 x9 + 0.73 x11 + 0.74 x13 + 0.68 x15 + 0.67 x17 + 0.62 x19 = 330,000; 
0.84 x10 + 0.85 x12 + 0.72 x14 + 0.81 x16 + 0.77 x18 + 0.78 x20 = 125,000 

 
  In the standard form, the constraints become 
 

  h1 = x1 – x3 – x4 = 0;   
  h2 = x2 – x5 – x6 = 0;   
  h3 = x7 – 0.39 x3 – 0.44 x5 = 0;   
  h4 = x8 – 0.46 x4 – 0.48 x6 = 0;   
  h5 = x7 – x9 – x10 – x11 – x12 – x13 – x14 = 0;   

 h6 = x8 – x15 – x16 – x17 – x18 – x19 – x20 = 0;  
h7 = 0.79 x9 + 0.73 x11 + 0.74 x13 + 0.68 x15 + 0.67 x17 + 0.62 x19 – 330,000 = 0 
h8 = 0.84 x10 + 0.85 x12 + 0.72 x14 + 0.81 x16 + 0.77 x18 + 0.78 x20 – 125,000 = 0 
g1 = x3 + x4 – 1,200,000 ≤  0;   

 g2 = x5 + x6 – 1,000,000 ≤  0;   
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 g3 = x9 + x10 + x15 + x16 – 190,000 ≤  0 
g4 = x11 + x12 + x17 + x18 – 240,000 ≤  0;   

 g5 = x13 + x14 + x19 + x20 – 290,000 ≤  0;   
  – xi ≤  0,   i = 1 to 20  
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2.22_____________________________________________________________________________  
 Optimization of water canal. Design a water canal having a cross-sectional area of 150 m2. Least 

construction costs occur when the volume of the excavated material equals the amount of material 
required for the dykes, i.e., 𝐴𝐴1 = 𝐴𝐴2 (see Figure E2.22). Formulate the problem to minimize the dug-
out material A1. Transcribe the problem into the standard design optimization model (created by 
V.K.Goel). 

 
 

 
 
 
 
 
 
 
 
 

 
FIGURE E2.22 Cross section of a canal. 

 
 Solution 

  
Given: The specific, required cross-sectional area of the canal, least construction costs occur when 

the volume of the excavated material is equivalent to the amount of material required for the two 
dykes, and the dimensions as shown in Figure E2.22. 

Required: It is desired to minimize the dug-out material A1. 
Procedure: We follow the five step process to formulate the problem as an optimization problem. 
 
Formulation 1: 
 
Step 1: Problem Statement 

Shown above 
 
Step 2: Data and Information Collection 

Shown above 
 

Step 3: Definition of Design Variables   
w, w1, w2, w3, H1 and H2 (m) are chosen as design variables which are defined as shown in 
Figure E2.22.  

 
 Step 4: Optimization Criterion 

Optimization criterion is to minimize the volume of excavation, and the cost function is defined 
as  
f  = (w1 + w)(H1/2) 
 

 Step 5: Formulation of Constraints   

2m 
1m 

A1 

A2/2 A2/2 

Dyke 

Ground Level 

w2 

w 

w1 

w3 

H2 

H1 
θ 
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Cross-Sectional Area Constraint: (w1 + w3)(H1 + H2 + 1)/2 = 150 or  
h1 = (w1 + w3)(H1 + H2 + 1)/2 – 150 = 0; 
Excavated Material Constraint: (w1 + w)(H1/2) = (2)(w2 + 2)(H2 + 1)/2 or 
h2 = (w1 + w)(H1/2) – (w2 + 2)(H2 + 1) = 0 

  The design variables are not independent; they are related as follows: 
 

  tanθ  = 
( ) ( ) ( )

1 2 1 2

1 2 3 1

1 1
2 2 2 2

H H H H
w w w w w

+ + +
= =

− − −
 

 
  So we get two more constraints from these relationships, as 

 

h3
1 2

1 2

1
2

H H
w w w

+
= −

− −
 = 0;   

 h4 1 1 2

1 3 1

1H H H
w w w w

+ +
= −

− −
= 0 

 
All the design variables must also be nonnegative: 

  w− ≤0;   1w− ≤ 0;   2w− ≤ 0;   3w− ≤0;   1H− ≤ 0;   2H− ≤ 0 
 

Formulation 2: 
 
Step 1: Problem Statement 

Shown above 
 
Step 2: Data and Information Collection 

Shown above 
 

Step 3: Definition of Design Variables   
w1, H1, H2  (m), and s (unitless) are chosen as design variables which are defined below in 
relation to Figure E2.22: 

 

 

1
1

1 2
3 1

2
2

tan
2

2 ( 1)

2 ( 1)
2

s
H

w w
s

H H
w w

s
H

w
s

θ=

= +

+ +
= +

+
= +

  

 
 Step 4: Optimization Criterion 

Optimization criterion is to minimize the volume of excavation, and the cost function is defined 
as: 
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1
1 1

1 1

2
( 2 )( )

2 2

H
H wH w w sf

++
= =   

 
 
 

 Step 5: Formulation of Constraints   
Cross-Sectional Area Constraint:  

1 3
1 2

1 2
1

1 1 2

1 2

1
1 1

2 2
2

1 1 2

( )
( 1) 150

2
2 ( 1)

[2 ]
h * ( 1) 150 0

2

2
(2 ) 2 (H 1)(2 2 2 ( 1)

h 0
2 2

All design variables must be non-negative :
, , , 0

w w
H H

H H
w

s H H

A A
H

H w Hs

w H H s

+
+ + =

+ +
+

= + + − =

=

+ + + + +
= − =

≥

  

Formulation 3: 
 
Step 1: Problem Statement 

Shown above 
 
Step 2: Data and Information Collection 

Shown above 
 

Step 3: Definition of Design Variables   
A1, A2, w, w1, w2, w3, H1, H2 (m), and s (unitless) are chosen as design variables which are 
defined above in Figure E2.22 and below: 
 

tans θ=   
 

 Step 4: Optimization Criterion 
Optimization criterion is to minimize the volume of excavation, and the cost function is defined 
as: 

 1f A=   
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 Step 5: Formulation of Constraints   
Cross-Sectional Area Constraint: 
 

1 3
1 2

1 3
1 1 2

1 2

1 2
1

2 2
2

1 2 2 2
2

1 2 1 2

1 2 3 1

1 2
3

1 2

1 1
4

1

( )
( 1) 150

2
( )

h ( 1) 150 0
2

( ) H
2

2 (2 ) (H 1)
2

( ) H 2 (2 ) (H 1)
h 0

2 2
2 2 (H 1) 2 ( 1)

( ) ( 2) ( )
2 2 (H 1)

h 0
( ) ( 2)

2 2 (
h

( )

w w
H H

w w
H H

A A
w w

A

w
A

w w w

H H H
s

w w w w w
H

w w w
H H H

w w

+
+ + =

+
= + + − =

=
+

=

+ +
=

+ + +
= − =

+ + +
= = =

− − −
+

= − =
− −

+
= −

−
2

3 1

2 1 2
5

2 3 1

1)
0

( )
2 (H 1) 2 ( 1)

h 0
( 2) ( )

All design variables 0

w w
H H

w w w

+
=

−
+ + +

= − =
− −

≥
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2.23________________________________________________________________________________  
 A cantilever beam is subjected to the point load P (kN), as shown in Fig. E2.23. The maximum 

bending moment in the beam is PL (kN ⋅m) and the maximum shear is P (kN). Formulate the 
minimum mass design problem using a hollow circular cross section. The material should not fail 
under bending stress or shear stress. The maximum bending stress is calculated as 

𝜎𝜎 =
𝑃𝑃𝑃𝑃
𝐼𝐼
𝑅𝑅0 

 where I = moment of inertia of the cross section. The maximum shearing stress is calculated as 

𝜏𝜏 =
𝑃𝑃
3𝐼𝐼

(𝑅𝑅𝑜𝑜2 + 𝑅𝑅0𝑅𝑅𝑖𝑖 + 𝑅𝑅𝑖𝑖2) 
 
 Transcribe the problem into the standard design optimization model (also use 𝑅𝑅0 ≤ 40.0 cm,  

𝑅𝑅𝑖𝑖 ≤40.0 cm). Use the following data: P = 14 kN ;  L = 10 m; mass density, ρ=7850 kg/m3, 
allowable bending stress, σa= 165 MPa, Allowable shear stress, τa =50 MPa. 

 

 
FIGURE E2.23 Cantilever beam. 

  
 Solution 

  
Given: The equations to calculate maximum bending and shearing stress in the beam, the force 

applied to the beam, the length of the beam, the density of the beam, the maximum values of Ro 
and Ri, and the allowable bending and shear stress for the beam. 

Required: It is desired to create a beam design, as shown in Figure E2.23, which will minimize the 
mass of the beam. The beam should not fail due to bending or shear at any point. 

Procedure: We follow the five step process to formulate the problem as an optimization problem. 
 
Step 1: Problem Statement 

Shown above 
 
Step 2: Data and Information Collection 

Using kg, N and cm as units  
  Given Data:  (this data will change if different units are used) 
  P = 14 kN = 1.4 410×  N   
  L = 10 m = 1000 cm 
  bσ = 165 MPa = 1.65 410×  N/cm2;  
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  aτ = 50 MPa = 5000 N/cm 

  ρ = 7850 kg/m3 = 7.85 310−×  kg/cm3;  
  Cross-sectional area of hollow tubes:  𝐴𝐴 = 𝜋𝜋(𝑅𝑅𝑜𝑜2 − 𝑅𝑅𝑖𝑖2) 
  Moment of inertia of a hollow tube is I = ( )4 4

o iπ 4R R−   

  Maximum bending stress: 

𝜎𝜎 =
𝑃𝑃𝑃𝑃
𝐼𝐼
𝑅𝑅0 

  Maximum shearing stress: 

𝜏𝜏 =
𝑃𝑃
3𝐼𝐼

(𝑅𝑅𝑜𝑜2 + 𝑅𝑅0𝑅𝑅𝑖𝑖 + 𝑅𝑅𝑖𝑖2) 
  In addition, it must be ensured that 𝑅𝑅𝑜𝑜 > 𝑅𝑅𝑖𝑖 which can be imposed as a constraint on the wall 
thickness as 𝑡𝑡 ≥ 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 with 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 as, say 0.5 cm. 
 
  Thickness:  𝑡𝑡 = 𝑅𝑅𝑜𝑜 − 𝑅𝑅𝑖𝑖 

 
Step 3: Definition of Design Variables   

Ro = outer radius of hollow tube, cm   
Ri = inner radius of hollow tube, cm   

 
FORMULATION 1: Using Intermediate Variables 
 
 Step 4: Optimization Criterion 

Optimization criterion is to minimize mass of hollow tube, and the cost function is defined as 
  f  = πALρ  
 
 Step 5: Formulation of Constraints   
 g1 : bending stress should be smaller than the allowable bending stress; 𝜎𝜎 ≤ 𝜎𝜎𝑎𝑎 
 
  𝑔𝑔1 = 𝜎𝜎 − 𝜎𝜎𝑎𝑎 ≤ 0 

 
 g2 : shear stress smaller than allowable shear stress: 𝜏𝜏 ≤ 𝜏𝜏𝑎𝑎 

  
  𝑔𝑔2 = 𝜏𝜏 − 𝜏𝜏𝑎𝑎 ≤ 0 

 

 

3 o

4 i

5 o

6 i

g 40 0  
g 40 0   
g 0   
g 0

R
R

R
R

= − ≤
= − ≤
= − ≤
= − ≤

 

  
 𝑔𝑔7 = 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑡𝑡 ≤ 0  
 
 
FORMULATION 2: Using only Design Variables 
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 Step 4: Optimization Criterion 
Optimization criterion is to minimize mass of hollow tube, and the cost function is defined as 

  f  = ( )2 2
o iπ R R Lρ −

 
or 

  f  = ( ) ( ) ( ) ( ) ( )2 2 3 2 2 2 2
o i o i o iπ 7.85 10 π 1000 24.66L R R R R R Rρ − = × − = − , kg 

 
 Step 5: Formulation of Constraints   
  g1 : bending stress should be smaller than the allowable bending stress 

 g2 : shear stress smaller than allowable shear stress 
  

  Using the standard form, we get 
  
 g1 : ( )4 4

o o i4 Pl R R Rπ − ≤ bσ ;  or ( ) ( ) ( )4 3 4 4 4
o o i4 1.4 10 10 1.65 10 0;R R R× π − − × ≤ or 

g1 = 1.7825 710× ( )4 4 4
o o i 1.65 10R R R− − × ≤ 0 

  g2 : ( ) ( )2 2 4 4
o o i i o i4 + + 3 aP R R R R R Rπ − ≤ τ ; or  

  ( )( ) ( )4 2 2 4 4
o o i i o i4 1.4 10 + + 3π 5000 0R R R R R R× − − ≤ ; or   

      2g = 5941.78 ( ) ( )2 2 4 4
o o i i o i+ + 5000R R R R R R− − ≤ 0 

 

3 o

4 i

5 o

6 i

g 40 0;  
g 40 0;  
g 0;  
g 0

R
R

R
R

= − ≤
= − ≤
= − ≤
= − ≤

 

 
 𝑔𝑔7 = 𝑡𝑡𝑚𝑚𝑚𝑚𝑚𝑚 − (𝑅𝑅𝑜𝑜 − 𝑅𝑅𝑖𝑖) ≤ 0  
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2.24________________________________________________________________________________ 
 Design a hollow circular beam-column, shown in Figure E2.24, for two conditions: When the axial 

tensile load P=50 (kN), the axial stress σ must not exceed an allowable value σa, and when P=0, 
deflection δ due to self-weight should satisfy the limit δ ≤ 0.001L. The limits for dimensions are: 
thickness t=0.10 to 1.0 cm, mean radius R=2.0 to 20.0 cm, and R/t ≤ 20 (AISC, 2005). Formulate the 
minimum-weight design problem and transcribe it into the standard form. Use the following data: 
deflection δ=5wL4/384EI; w=self-weight force/length (N/m); σa=250 MPa; modulus of elasticity 
E=210 GPa; mass density of beam material ρ=7800 kg/m3; axial stress under load P, σ=P/A; 
gravitational constant g=9.80 m/s2; cross-sectional area A = 2πRt (m2); moment of inertia of beam 
cross-section I=πR3t (m4). Use Newton (N) and millimeters (mm) as units in the formulation. 

 

 
 
 Solution 

 
Given: The maximum and minimum dimensions of t and R and the maximum ratio for R/t, the 

equations to calculate displacement, δ, axial stress, σ, cross-sectional area, moment of inertia, 
and the distributed force, w, the allowable axial stress, the modulus of elasticity, the mass density 
of the beam material, the gravitational constant, and the data shown in Figure E2.24. In addition, 
when P=50 kN, the stress must not exceed σa and when P=0 kN, deflection due to self-weight 
must satisfy δ ≤ 0.001L. 

Required: It is desired to create a beam design, as shown in Figure E2.24, which will minimize the 
mass of the beam, under the two conditions described above. 

Procedure: We follow the five step process to formulate the problem as an optimization problem. 
 
Step 1: Problem Statement 

Shown above 
 
Step 2: Data and Information Collection 

Assuming that the wall is thin (R >> t), the cross-sectional area and moment of inertia are:  
A = 2 Rtπ ; I = 3R tπ  

  Use millimeter and Newton as the unit for length and force respectively, and the following data  
 𝜎𝜎𝑎𝑎= 250 MPa = 250 N/mm2;  E = 210 GPa = 2.1 510×  N/mm2;  g = 9.8 m/sec2 (Note that g must 

have units of m/s2 for correct evaluation of self-weight); 𝜌𝜌 = 7800 kg/m3 = 7.8 610−×  kg/mm3;   
L = 3 m = 3000 mm;  P = 50 kN = 5 410×  N; 
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Step 3: Definition of Design Variables   

R = mean radius of the section, mm   
t = wall thickness, mm   

 
 Step 4: Optimization Criterion 

Optimization criterion is to minimize total weight of the beam-column, and the cost function is 
defined as 
f =𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 (𝑖𝑖𝑖𝑖 𝑘𝑘𝑘𝑘) × 𝑔𝑔(𝑚𝑚/𝑠𝑠2) = (𝜌𝜌𝜌𝜌𝜌𝜌)𝑔𝑔 = (2𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌𝜌)𝑔𝑔, N or  

   f = 2(7.8 610−× ) (3000) π Rt (9.8) = 1.44086Rt, N  
  which is in the standard form. 
 
 Step 5: Formulation of Constraints   
  Axial stress (P/A) should not exceed the allowable stress ( aσ ), i.e., 𝑃𝑃/𝐴𝐴 ≤ 𝜎𝜎𝑎𝑎: 
  ( )1g = 2π 0a aP A P Rt− σ = − σ ≤   
  The deflection 𝛿𝛿 due to self-weight should be less than 0.001L, i.e.,  
  4

2g  0.001 5 384 0.001 0L wL EI L= δ − = − ≤ ;    
  where w = self-weight per unit length = 2gA g Rtρ = ρ π , N/mm  

  
( )

( )
4 4

2 23

5 2 10g 0.001 0,     or     0.001
384384

g Rt L gLL L
ERE R t

ρ π ρ
= − ≤ ≤

π
 

  Other constraints are: 
      3g 20 0R t= − ≤ ;  4g 20 0R= − + ≤ ;  5g 200 0R= − ≤ ;  6g 1 0t= − + ≤ ;  7g 10 0t= − ≤  
 
  or  
     
  g1 : 2 aP Rtπ ≤ σ ;  or 5.0 410 2 250 0Rt× π − ≤ ,  or 1g 7957.75 250 0Rt= − ≤  

  g2 : 
( )( ) ( )

( ) ( )
464

2 5 2

10 7.8 10 9.8 300010 0.001 ,  or 0.001 3000
384 384 2.1 10

gL L
ER R

−×ρ
≤ ≤

×
 

 
 Summarizing the constraints and rewriting in standard form, we get  
 

 1g 7957.7 250 0Rt= − ≤    

 
2

2g 767.8 3 0R= − ≤  

3g 20 0R t= − ≤  

 4g 20 0R= − ≤  

 5g 200 0R= − ≤  

 6g 1 0;t= − ≤  
 7g 10 0t= − ≤  
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