INTRODUCTION TO PROBABILITY AND STATISTICS FOR ENGINEERS AND SCIENTISTS

Fifth Edition

Sheldon M. Ross
Department of Industrial Engineering and Operations Research
University of California, Berkeley

AMSTERDAM • BOSTON • HEIDELBERG • LONDON NEW YORK • OXFORD • PARIS • SAN DIEGO SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Academic Press is an imprint of Elsevier
32 Jamestown Road, London NW1 7BY, UK
525 B Street, Suite 1800, San Diego, CA 92101-4495, USA
225 Wyman Street, Waltham, MA 02451, USA
The Boulevard, Langford Lane, Kidlington, Oxford OX5 1GB, UK
Fifth Edition 2014
Copyright © 2014, 2009, 2004, 1999 Elsevier Inc. All rights reserved.
No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying, recording, or any information storage and retrieval system, without permission in writing from the publisher. Details on how to seek permission, further information about the Publisher's permissions policies and our arrangements with organizations such as the Copyright Clearance Center and the Copyright Licensing Agency, can be found at our website: www.elsevier.com/permissions.
This book and the individual contributions contained in it are protected under copyright by the Publisher (other than as may be noted herein).

Notices

Knowledge and best practice in this field are constantly changing. As new research and experience broaden our understanding, changes in research methods or professional practices, may become necessary.
Practitioners and researchers must always rely on their own experience and knowledge in evaluating and using any information or methods described here in. In using such information or methods they should be mindful of their own safety and the safety of others, including parties for whom they have a professional responsibility.
To the fullest extent of the law, neither the Publisher nor the authors, contributors, or editors, assume any liability for any injury and/or damage to persons or property as a matter of products liability, negligence or otherwise, or from any use or operation of any methods, products, instructions, or ideas contained in the material herein.

Library of Congress Cataloging-in-Publication Data

Application submitted
ISBN 13: 978-0-12-802046-3

For all information on all Elsevier Academic Press publications visit our Web site at www.elsevierdirect.com

Working together to grow libraries in Book Aid International developing countries

www.elsevier.com • www.bookaid.org

Table of Contents

Chapter 1 1
Chapter 2 2
Chapter 3 5
Chapter 4 11
Chapter 5 18
Chapter 6 23
Chapter 7 26
Chapter 8 32
Chapter 9 38
Chapter 10 42
Chapter 11 45
Chapter 12 46
Chapter 13 48
Chapter 14 50
Chapter 15 53

Chapter 1

1. Method (c) is probably best, with (e) being the second best.
2. In 1936 only upper middle class and rich people had telephones. Almost all voters have telephones today.
3. No, these people must have been prominent to have their obituaries in the Times; as a result they were probably less likely to have died young than a randomly chosen person.
4. Locations (i) and (ii) are clearly inappropriate; location (iii) is probably best.
5. No, unless it believed that whether a person returned the survey was independent of that person's salary; probably a dubious assumption.
6. No, not without additional information as to the percentages of pedestrians that wear light and that wear dark clothing at night.
7. He is assuming that the death rates observed in the parishes mirror that of the entire country.
8. $12,246 / .02=612,300$
9. Use them to estimate, for each present age x, the quantity $A(x)$, equal to the average additional lifetime of an individual presently aged x. Use this to calculate the average amount that will be paid out in annuities to such a person and then charge that person $1+a$ times that latter amount as a premium for the annuity. This will yield an average profit rate of a per annuity.
10. 64 percent, 10 percent, and 48 percent.

Chapter 2

2. $360 / r$ degrees.
3. (d) 3.18
(e) 3
(f) 2
(g) $\sqrt{5.39}$
4. (c) 119.14
(d) 44.5
(e) 144.785
5. Not necessarily. Suppose a town consists of n men and m women, and that a is the average of the weights of the men and b is the average of the weights of the women. Then $n a$ and $m b$ are, respectively, the sums of the weights of the men and of the women. Hence, the average weight of all members of the town is

$$
\frac{n a+m b}{n+m}=a p+b(1-p)
$$

where $p=n /(n+m)$ is the fraction of the town members that are men. Thus, in comparing two towns the result would depend not only on the average of the weights of the men and women in the towns but also their sex proportions. For instance, if town A had 10 men with an average weight of 200 and 20 women with an average weight of 120 , while town B had 20 men with an average weight of 180 and 10 women with an average weight of 100 , then the average weight of an adult in town A is $200 \frac{1}{3}+120 \frac{2}{3}=\frac{440}{3}$ whereas the average for town B is $180 \frac{2}{3}+100 \frac{1}{3}=\frac{460}{3}$.
10. It implies nothing about the median salaries but it does imply that the average of the salaries at company A is greater than the average of the salaries at company B .
11. The sample mean is 110 . The sample median is between 100 and 120 . Nothing can be said about the sample mode.
12. (a) 40.904
(d) $8,48,64$
13. (a) 15.808
(b) 4.395
14. Since $\sum x_{i}=n \bar{x}$ and $(n-1) s^{2}=\sum x_{i}^{2}-n \bar{x}^{2}$, we see that if x and y are the unknown values, then $x+y=213$ and

$$
x^{2}+y^{2}=5(104)^{2}+64-102^{2}-100^{2}-105^{2}=22,715
$$

Therefore,

$$
x^{2}+(213-x)^{2}=22,715
$$

Solve this equation for x and then let $y=213-x$.
15. No, since the average value for the whole country is a weighted average where the average wage per state should be weighted by the proportion of all workers who reside in that state.
19. (a) 44.8
(b) 70.45
20. $74,85,92$
21. (a) 84.9167
(b) 928.6288
(c) $57.5,95.5,113.5$
25. (a) . 3496
(b) .35
(c) . 1175
(d) no
(e) $3700 / 55=67.3$ percent
26. (b) 3.72067
(c) .14567
28. Not if both sexes are represented. The weights of the women should be approximately normal as should be the weights of the men, but combined data is probably bimodal.
30. Sample correlation coefficient is . 4838
31. No, the association of good posture and back pain incidence does not by itself imply that good posture causes back pain. Indeed, although it does not establish the reverse (that back pain results in good posture) this seems a more likely possibility.
32. One possibility is that new immigrants are attracted to higher paying states because of the higher pay.
33. Sample correlation coefficient is. 7429
34. If $y_{i}=a+b x_{i}$ then $y_{i}-\bar{y}=b\left(x_{i}-\bar{x}\right)$, implying that

$$
\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sqrt{\sum\left(x_{i}-\bar{x}\right)^{2} \sum\left(y_{i}-\bar{y}\right)^{2}}}=\frac{b}{\sqrt{b^{2}}}=\frac{b}{|b|}
$$

35. If $u_{i}=a+b x_{i}, v_{i}=c+d y_{i}$ then

$$
\sum\left(u_{i}-\bar{u}\right)\left(v_{i}-\bar{v}\right)=b d \sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)
$$

and

$$
\sum\left(u_{i}-\bar{u}\right)^{2}=b^{2} \sum\left(x_{i}-\bar{x}\right)^{2}, \quad \sum\left(v_{i}-\bar{v}\right)^{2}=d^{2} \sum\left(y_{i}-\bar{y}\right)^{2}
$$

Hence,

$$
r_{u, v}=\frac{b d}{|b d|} r_{x, y}
$$

36. More likely, taller children tend to be older and that is why they had higher reading scores.
37. Because there is a positive correlation does not mean that one is a cause of the other. There are many other potential factors. For instance, mothers that breast feed might be more likely to be members of higher income families than mothers that do not breast feed.
