Chapter 2

1. $P\{X=0\}=\begin{array}{cc}{\left[{ }_{7} M_{10}\right.} & { }_{2} \\ 2\end{array}{ }_{2}=\frac{14}{30}$

Visit TestBankDeal.com to get complete for all chapters
2. $-n,-n+2,-n+4, \ldots, n-2, n$
3. $P\{X=-2\}=\frac{1}{4}=P\{X=2\}$

$$
P\{X=0\}=\frac{1}{2}
$$

4. (a) $1,2,3,4,5,6$
(b) $1,2,3,4,5,6$
(c) $2,3, \ldots, 11,12$
(d) $-5,-4, \ldots, 4,5$

11
5. $P\{\max =6\}=\overline{36}=P\{\min =1\}$

$$
\begin{aligned}
& P\{\max =5\}=\frac{1}{4}=P\{\min =2\} \\
& P\{\max =4\}=\frac{7}{36}=P\{\min =3\} \\
& P\{\max =3\}=\frac{5}{36}=P\{\min =4\} \\
& P\{\max =2\}=\frac{1}{12}=P\{\min =5\} \\
& P\{\max =1\}=\frac{1}{36}=P\{\min =6\}
\end{aligned}
$$

6. $(H, H, H, H, H), p^{5}$ if $p=P$ \{heads $\}$
7. $p(0)=(.3)^{3}=.027$
$p(1)=3(.3)^{2}(.7)=.189$
$p(2)=3(.3)(.7)^{2}=.441$
$p(3)=(.7)^{3}=.343$
8. $p(0)=\frac{1}{2}, p(1)=2$
9. $p(0)=-\frac{-}{2}, p(1)=-1 \mathrm{q}^{\prime}, p(2)=\overline{5}$,
$p(3)=10, p(3.5)=\overline{10}$

10. $\frac{3}{8}$
11. ${ }_{5}^{\left[{ }_{5}\right][}{ }_{4}^{1_{4}} \frac{]_{4}}{3}\left[\underline{2}^{]}+{ }_{5}^{\left[{ }_{5}\right]\left[\begin{array}{c}1 \\ 5\end{array}\right]_{5}}=\frac{10+1}{243}=\frac{11}{243}\right.$

$\sum_{40}(10)[1] 10$

13.
14. $\stackrel{i=7}{P}\{X=0\}=P\{X=6\}=\begin{aligned} & \left.{ }_{1}\right]_{6} \\ & \overline{2} \\ & {\left[{ }_{1}\right]_{6}}\end{aligned}=\frac{1}{64}$
$P\{X=1\}=P\{X=5\}=6{ }_{-}^{1}=\frac{6}{64}$
$P\{X=2\}=P\{X=4\}=\begin{gathered}\left.\left[{ }_{6}\right]^{2} 1\right]_{6}{ }^{64} \\ 2 \quad 2\end{gathered}{ }^{2}=15$
$\left.P\{X=3\}={ }_{6}^{[}\right]\left[{ }_{3}{ }_{2}{ }_{2}{ }^{6}=\frac{20}{64}\right.$
15. $\begin{aligned} & \frac{P\{X=k\}}{P\{X=k-1\}}=\frac{\begin{array}{c}n! \\ (n-k)!!!\end{array} p^{k}(1-p)^{n-k}}{n!} \\ &=\frac{n-k+1}{k}(1-p)^{n-k+1} \\ &(n-k+1)!(k-1)!p\end{aligned}$

Hence,

$$
\begin{aligned}
\frac{P\{X=k\}}{P\{X=k-1\}} \geq 1 & \leftrightarrow(n-k+1) p>k(1-p) \\
& \leftrightarrow(n+1) p \geq k
\end{aligned}
$$

The result follows.
16. $1-(.95)^{52}-52(.95)^{51}(.05)$
17. Follows since there are ${ }^{n!}{ }_{x 1}!\cdots x_{r}!\mathrm{p}^{\text {ermutationsof } n o b j e c t s o f w h i c h} x_{1}$ a ${ }^{\text {realike, } x_{2}}$ are alike, \ldots, x_{r} are alike.
18. (a) $P\left(X_{i}=x_{i}, i=1, \ldots, r-1 \mid X_{r}=j\right)$

$$
\begin{aligned}
& =P^{\left(X_{i}\right.}=\frac{\left.x_{i}, i=1, \ldots, r-1, X_{r}=j\right)}{P\left(X_{r}=j\right)}
\end{aligned}
$$

$$
\begin{aligned}
& ={\frac{(n-j)!}{x_{1}!\ldots x_{r}-1!}}_{i=1}^{1-p_{r}}{\frac{p_{i}}{x_{i}}}^{1}
\end{aligned}
$$

(b) The conditional distribution of X_{1}, \ldots, X_{r-1} given that $X_{r}=j$ is multinomial with parameters $n-j_{1-p_{r}}^{\not{ }^{\neq i}}, i=1, \ldots, r-1$.
(c) The preceding is true because given that $X_{r}=j$, each of the $n-j$ trials that did not result in outcome r resulted in outcome i with probability ${ }^{P_{i}} 1-p_{r}$, $i=1, \ldots, r-1$.
19. $P\left\{X_{1}+\cdots+X_{k}=m\right\}$

$$
\left.={ }_{m}{ }^{[} p^{p_{1}}+\cdots+p_{k}\right)^{m}\left(p_{k+1}+\cdots+p_{r}\right)^{n-m}
$$

23. In order for X to equal n, the first $n-1$ flips must have $r-1$ heads, and then the nth flip must land heads. By independence the desired probability is thus

$$
\left[_{n-1}\right]^{r-1} p^{r-1}(1-p)^{n-r} x p
$$

24. It is the number of tails before heads appears for the r th time.
25. A total of 7 games will be played if the first 6 result in 3 wins and 3 losses. Thus,

$$
\left.P\{7 \text { games }\}=\begin{array}{c}
(\\
6
\end{array}\right) p^{3}\left(1-p^{3}\right)
$$

Differentiation yields

$$
\begin{aligned}
\frac{d}{d p} P\{7\} & \left.=203 p^{2}(1-p)^{3}-p^{3} 3(1-p)^{2}\right] \\
& =60 p^{2}(1-p)^{2}[1-2 p]
\end{aligned}
$$

Thus, the derivative is zero when $p=1 / 2$. Taking the second derivative shows that the maximum is attained at this value.
26. Let X denote the number of games played.
(a) $P\{X=2\}=p^{2}+(1-p)^{2}$

$$
\begin{aligned}
P\{X=3\} & =2 p(1-p) \\
E[X] & =2 \begin{array}{c}
\\
\left.p^{2}+(1-p)^{2}\right\}
\end{array}+6 p(1-p) \\
& =2+2 p(1-p)
\end{aligned}
$$

Since $p(1-p)$ is maximized when $p=1 / 2$, we see that $E[X]$ is maximized at that value of p.
(b) $P\{X=3\}=p^{3}+(1-p)^{3}$
$P\{X=4\}$
$=P\{X=4, \mathrm{I}$ has 2 wins in first 3 games $\}$
$+P\{X=4$, II has 2 wins in first3 games $\}$
$=3 p^{2}(1-p) p+3 p(1-p)^{2}(1-p)$
$P\{X=5\}$
$=P$ each player has 2 wins in the first 4 games $\}$
$=6 p^{2}(1-p)^{2}$

$$
\begin{aligned}
E[X]=3 & {\left[p^{3}+(1-p)^{3}\right]+12 p(1-p) } \\
& {\left[p^{2}+(1-p)^{2}\right]+30 p^{2}(1-p)^{2} }
\end{aligned}
$$

Differentiating and setting equal to 0 shows that the maximum is attained when $p=1 / 2$.
27. $P\{$ same number of heads $\}=\sum P\{A=i, B=i\}$

$$
\begin{aligned}
& \left.\left.=\sum_{i}{ }_{i k}{ }_{i}\right)(1 / 2)^{k}{ }^{n-k}\right)^{i}(1 / 2)^{n-k} \\
& =\underset{i}{\sum(k)(n-k)}{ }_{i}(1 / 2)^{n}
\end{aligned}
$$

Another argument is as follows:

$$
\begin{aligned}
& P\{\# \text { heads of } A=\# \text { heads of } B\} \\
& \quad=P\{\# \text { tails of } A=\# \text { heads of } B\}
\end{aligned}
$$

since coin is fair

$$
\begin{aligned}
& =P\{k-\# \text { heads of } A=\# \text { heads of } B\}= \\
& P\{k=\text { total \# heads }\}
\end{aligned}
$$

28. (a) Consider the first time that the two coins give different results. Then

$$
\begin{aligned}
P\{X=0\} & =P\{(t, h) \mid(t, h) \text { or }(h, t)\} \\
& =p_{2 p(1-p)}^{(1-p)}=\frac{1}{2}
\end{aligned}
$$

(b) No, with this procedure

$$
P\{X=0\}=P\{\text { first flip is a tail }\}=1-p
$$

29. Each flip after the first will, independently, result in a changeover with probability $1 / 2$. Therefore,

$$
\left.P\{k \text { changeovers }\}=\begin{array}{c}
(n-1
\end{array}\right)(1 / 2)^{n-1}
$$

30. $\frac{P\{X=i\}}{P\{X=i-1\}}=\frac{e^{-\lambda} \lambda^{i} j^{i!}}{e^{-\lambda^{i-1} /(i-1)!}}=\lambda / i$

Hence, $P\{X=i\}$ is increasing for $\lambda \geq i$ and decreasing for $\lambda<i$.
32. (a). 394 (b) .303 (c) . 091
33. $c \quad\left(1-x^{2}\right) d x=1$
$c^{-1}\left[{ }^{x^{3}}\right]^{\cdot} \cdot{ }^{1}=1$
$\begin{array}{rr}-1 & -1 \\ & = \\ 4\end{array}$
$F(y)=\frac{3}{4} \int_{-1}^{1}\left(1-x^{2}\right) d x$
$=\frac{3}{4}\left[y-\frac{y^{3}}{3}+\frac{2^{2}}{3}\right],-1<y<1$
34. $c_{0}^{\int_{2}\left(4 x-2 x^{2}\right)} d x=1$

$$
\begin{aligned}
c\left(2 x^{2}-2 x^{3} / 3\right) & =1 \\
8 c / 3 & =1 \\
c & =\frac{3}{8} \\
\left.P^{\left\{\frac{1}{2}<\right.} X<\frac{3}{2}\right\} & =\frac{3 \int}{} \quad 3 / 2(\quad 1 / 2 \\
& =\frac{11}{16} 1 / 2 x^{2} d x
\end{aligned}
$$

35. $P\{X>20\}=\int_{20}^{\infty} \frac{10}{x^{2}} d^{x=2}$
36. $P\{D \leq x\}=\frac{\text { area of disk of radius } x}{\text { area of disk of radius } 1}$

$$
=\frac{\pi^{x^{2}}}{\pi}=x^{2}
$$

37. $P\{M \leq x\}=P\left\{\max \left(X_{1}, \ldots, X_{n}\right) \leq x\right\}$

$$
\begin{aligned}
& =P\left\{X_{1} \leq x, \ldots, X_{n} \leq x\right\} \\
& =\prod_{n} P\left\{X_{i} \leq x\right\} \\
& =x^{n} n^{n}
\end{aligned}
$$

$$
f_{M}(x)=\frac{d}{d x} p\{M \leq x\}=n x^{n-1}
$$

38. $c=2$
39. $E[X]=\frac{31}{6}$
40. Let X denote the number of games played.

$$
\begin{aligned}
P\{X=4\}= & p^{4}+(1-p)^{4} \\
P\{X=5\}= & P\{X=5, \text { I wins } 3 \text { of first } 4\} \\
& +P\{X=5, \text { II wins } 3 \text { of first } 4\} \\
= & 4 p^{3}(1-p) p+4(1-p)^{3} p(1-p) \\
P\{X=6\}= & P\{X=6, \text { I wins } 3 \text { of first } 5\} \\
& +P\{X=6, \text { II wins } 3 \text { of first } 5\} \\
= & 10 p^{3}(1-p)^{2} p+10 p^{2}(1-p)^{3}(1-p) \\
P\{X=7\}= & P\{\text { first } 6 \text { games are split }\} \\
= & 20 p^{3}(1-p)^{3} \\
E[X]= & \sum_{4} i P\{X=i\} \\
& i=4
\end{aligned}
$$

When $p=1 / 2, E[\mathrm{X}]=93 / 16=5.8125$
41. Let X_{i} equal 1 if a changeover results from the i th flip and let it be 0 otherwise. Then

$$
\text { number of changeovers }=\sum_{i=2}^{\sum_{i}} X_{i}
$$

As,

$$
\begin{aligned}
E\left[X_{i}\right] & =P\left\{X_{i}=1\right\}=P\{\text { flip } i-1=\text { flip } i\} \\
& =2 p(1-p)
\end{aligned}
$$

we see that

$$
\begin{aligned}
E \text { [number of changeovers }] & =\sum_{i=2} E\left[X_{i}\right] \\
& =2(n-1) p(1-p)
\end{aligned}
$$

42. Suppose the coupon collector has i different types. Let X_{i} denote the number of additional coupons collected until the collector has $i+1$ types. It is easy to see that the X_{i} are independent geometric random variables with respective parameters $(n-i) / n, i=0,1, \ldots, n-1$. Therefore,

$$
\sum_{i=0}^{\left[\sum_{i=0}^{1} X_{i}^{-1}=\sum_{i=0}\left[X_{i}^{-1}=\right.\right.} \sum_{n /(n-i)}=\sum_{j=0}^{\sum_{n}} 1 / j
$$

43. (a) $X=\sum_{i=1}^{\sum_{i t}} X_{i}$
(b) $E\left[X_{i}\right]=P\left\{X_{i}=1\right\}$
$=P\{$ red ball i is chosen before all n black balls $\}$
$=1 /(n+1)$ since each of these $n+1$ balls is equally
likely to be the one chosen earliest
Therefore,

$$
E[X]=\sum_{i=1}^{\sum_{i=1}} E\left[X_{i}\right]=n /(n+1)
$$

44. (a) Let Y_{i} equal 1 if red ball i is chosen after the first but before the second black ball, $i=1, \ldots, n$. Then

$$
Y=\sum_{i=1}^{\sum_{i n}} Y_{i}
$$

(b) $E\left[Y_{i}\right]=P\left\{Y_{i}=1\right\}$ $=P\{$ red ball i is the second chosen from a set of $n+1$ balls $\}=$ $1 /(n+1)$ since each of the $n+1$ is equally likely to be the second one chosen.

Therefore,

$$
E[Y]=n /(n+1)
$$

(c) Answer is the same as in Problem 41.
(d) We can let the outcome of this experiment be the vector $\left(R_{1}, R_{2}, \ldots, R_{n}\right)$ where R_{i} is the number of red balls chosen after the $(i-1)$ st but before the i th black ball. Since all orderings of the $n+m$ balls are equally likely it follows that all different orderings of R_{1}, \ldots, R_{n} will have the same probability distribution. For instance,

$$
P\left\{R_{1}=a, R_{2}=b\right\}=P\left\{R_{2}=a, R_{1}=b\right\}
$$

From this it follows that all the R_{i} have the same distribution and thus the same mean.
45. Let N_{i} denote the number of keys in box $i, i=1, \ldots, k$. Then, with X equal to the number of collisions we have that $X={ }^{\sum k_{i}}=1\left(N_{i}-1\right)_{+}=\sum_{i=1}^{i}\left(N_{i}-1+I\right.$ $\left\{N_{i}=0\right\}$)where $I\left\{N_{i}=0\right\}$ isequalto1 if $N_{i}=0$ andisequalto0otherwise.

Hence,

$$
\begin{aligned}
E[X]= & \sum_{i=1}^{\sum_{i=1}}\left(r p_{i}-1+\left(1-p_{i}\right)^{r}\right)=r-k \\
& +\sum_{i=1}^{\sum_{k}}\left(1-p_{i}\right)^{r}
\end{aligned}
$$

Another way to solve this problem is to let Y denote the number of boxes having at least one key, and then use the identity $X=r-Y$, which is true since only the first $\sum k$ key put in each box does not result in a collision. Writing $Y=\quad i=1 I^{\left\{N_{i}>0\right\}^{k}}$ and taking expectations yields

$$
\begin{aligned}
E[X] & =r-E[Y]=r-\sum_{i=1}^{\sum}\left[1-\left(1-p_{i}\right)^{r}\right] \\
& =r-k+\sum_{i=1}^{\sum_{i}}\left(1-p_{i}\right)^{r}
\end{aligned}
$$

46. Using that $X=\sum_{n=1}^{\infty} I_{n}$, weobtain

Making the change of variables $m=n-1$ gives

$$
E[X]=\sum_{m=0}^{\sum_{\infty}} P\{X \geq m+1\}=\sum_{m=0}^{\sum_{\infty}} P\{X>m\}
$$

(b) Let

$$
\begin{gathered}
I_{n}=\begin{array}{r}
\{1, \text { if } n \leq X \\
0, \text { if } n>X
\end{array} \\
J_{m}=\begin{array}{l}
1, \text { if } m \leq Y \\
0,
\end{array} \text { if } m>Y
\end{gathered}
$$

Then

$$
X Y=\sum_{n=1}^{\infty} \sum_{m=1}^{\infty} J_{m} \sum_{n=1 m=1} \sum_{I_{n}} J_{m}
$$

Taking expectations now yields the result

$$
\begin{aligned}
E[X Y] & =\sum_{\infty} \sum_{\infty=1}^{m=1} E\left[I_{n} J_{m}\right] \\
& =\sum_{n=1 m=1}^{\sum_{m}} P(X \geq n, Y \geq m)
\end{aligned}
$$

47. Let X_{i} be 1 if trial i is a success and 0 otherwise.
(a) The largest value is .6. If $X_{1}=X_{2}=X_{3}$, then $1.8=E[X]=3 E\left[X_{1}\right]=$ $3 P\left\{X_{1}=1\right\}$ and so

$$
P\{X=3\}=P\{X 1=1\}=.6
$$

That this is the largest value is seen by Markov's inequality, which yields

$$
P\{X \geq 3\} \leq E[X] / 3=.6
$$

(b) The smallest value is 0 . To construct a probability scenario for which $P\{X=$ $3\}=0$ let U be a uniform random variable on (0,1), and define

$$
\begin{aligned}
& X_{1}=\begin{array}{ll}
1 & \text { if } U \leq .6 \\
0 & \text { otherwise }
\end{array} \\
& X_{2}=\begin{array}{ll}
1 & \text { if } U \geq .4 \\
0 & \text { otherwise }
\end{array} \\
& X_{3}=\begin{array}{ll}
1 & \text { if either } U \leq .3 \text { or } U \geq .7 \\
0 & \text { otherwise }
\end{array}
\end{aligned}
$$

It is easy to see that

$$
P\left\{X_{1}=X_{2}=X_{3}=1\right\}=0
$$

49. $E\left[X^{2}\right]-(E[X])^{2}=\operatorname{Var}(X)=E(X-E[X])^{2} \geq 0$. Equality when $\operatorname{Var}(X)=0$, that is, when X is constant.
50. $\operatorname{Var}(c X)=E\left[(c X-E[c X])^{2}\right]$

$$
\begin{aligned}
& =E\left[c^{2}(X-E(X))^{2}\right] \\
& =c^{2} \operatorname{Var}(X) \\
\operatorname{Var}(c+X) & =E\left[(c+X-E[c+X])^{2}\right] \\
& =E\left[(X-E[X])^{2}\right] \\
& =\operatorname{Var}(X)
\end{aligned}
$$

51. Heñce, $\sum_{\overline{\bar{X}} 1 . X_{i} \mathrm{w}}$ here X_{i} sthenumberofflipsbetweenthe $(i-1)$ stand i thhead.

$$
E[N]=\sum_{i=1}^{\sum_{i=1}} E\left[X_{i}\right]=\frac{r}{p}
$$

52. (a) $\frac{n}{n+1}$
(b) 0
(c) 1

53. $\frac{1}{n+1}, \frac{1}{2 n+1}-\frac{1}{n+1}$
54. (a) Using the fact that $E[X+Y]=0$ we see that $0=2 p(1,1)-2 p(-1,-1)$, which gives the result.
(b) This follows since

$$
0=E[X-Y]=2 p(1,-1)-2 p(-1,1)
$$

(c) $\operatorname{Var}(X)=E\left[X^{2}\right]=1$
(d) $\operatorname{Var}(Y)=E\left[Y^{2}\right]=1$
(e) Since

$$
\begin{aligned}
1 & =p(1,1)+p(-1,1)+p(1,-1)+p(-1,1) \\
& =2 p(1,1)+2 p(1,-1)
\end{aligned}
$$

we see that if $p=2 p(1,1)$ then $1-p=2 p(1,-1)$ Now,

$$
\begin{aligned}
\operatorname{Cov}(X, Y)= & E[X Y] \\
= & p(1,1)+p(-1,-1) \\
& -p(1,-1)-p(-1,1) \\
= & p-(1-p)=2 p-1
\end{aligned}
$$

55. (a) $P(Y=j)=\sum_{i=0}(j) \quad e^{-3 \lambda} \lambda^{j} / j$!

$$
\begin{aligned}
& =e^{-2 \lambda}{ }_{j!}^{j \sum_{i=0}^{j}}{ }_{i}{ }^{j} i_{i} 1^{j-1} \\
& =e^{-2 \lambda} f^{2 \lambda)^{j}}
\end{aligned}
$$

(b) $P(X=i) \xlongequal{\sum_{\infty}(j)}$

$$
\begin{aligned}
& i)={ }^{j=i} e^{-2 \lambda} \lambda^{j} / j! \\
& =\frac{1}{i!}^{j} \sum^{-2 \lambda} \sum_{j=i}^{(j-i)!} \lambda_{j} \\
& =A_{i!}^{i} e^{-2 \lambda} \sum_{k=0}^{\lambda^{k} / k!} \\
& =e^{-\lambda} \lambda{ }_{i}^{i!}
\end{aligned}
$$

