Chapter 2

Concept Lesson Questions

1. B analyze the problem
2. B output
3. A input
4. B output
5. B IPO charts
6. A input
7. B entering the input items into the computer
8. C Processing
9. C both what is to be calculated and how to calculate it
10. C entering the input items, then processing the input items, and then displaying, printing, or storing the output items
11. D pseudocode
12. A Flowcharts
13. C process
14. A input/output
15. D

16. C

17. B

18. C desk-check the algorithm
19. D all of the above

Concept Lesson Exercises
1.

Input	Processing	Output
original number	Processing items: none	squared value
	Algorithm: 1. enter original number 2. calculate the squared value by multiplying the	
	original number by itself 3. display the squared value	

original number	squared value
4	16
6	36

2.

Input	Processing	Output
state1 sales state2 sales commission rate	Algorithm: 1. enter state1 sales, state2 sales, and commission rate	commission
	2. calculate the total commission by adding the state1 sales to the state2 sales, and then multiplying the result by the commission rate	
3. display the total commission		

state1 sales	state 2 sales	commission rate	commission
1000	2000	.05	150
3000	2500	.06	330

3.

sales	commission rate	commission
2000	.4	200
5000	.06	300

4.

Input	Processing	Output
region1 sales region2 sales region3 sales region1 increase region2 increase region3 increase	Processing items: none Algorithm:enter the region1 sales, region2 sales, region3 sales, region1 increase, region2 increase, and region3 increase calculate the region1 projected sales by multiplying the region1 sales by the region1 increase calculate the region2 projected sales by multiplying the region2 sales by the region2 increase 4.calculate the region3 projected sales by multiplying the region3 sales by the region3 increase display the region1 projected sales, region2 projected sales, and region3 projected salesregion1 projected sales region2 projected sales region3 projected sales	

region1 sales	region2 sales	region3 sales	region1 increase	region2 increase	region3 increase	region1 projected sales	region2 projected sales	region3 projected sales
10000	3000	6000	.4	.09	.1	11000	3270	6600
5000	2000	1000	.02	.03	.02	5100	2060	1020

5.

Input	Processing	Output
original number	Processing items: none Algorithm: 1. enter original number 2. if the original number is less than or equal to zero display an error message otherwise calculate the squared value by multiplying the original number by itself display the squared value	squared value

original number	squared value
10	100
-3	

6. Results of desk-checking the incorrect algorithm.

beginning inventory	amount sold	amount returned	ending inventory
50	10	2	58

Changes made to the original algorithm are shaded in the IPO chart.

Input	Processing	Output
beginning inventory amount sold amount returned	Processing items: none Algorithm: 1. enter the beginning inventory, amount sold, and amount returned	ending inventory
	2. calculate the ending inventory by subtracting the amount sold from the beginning inventory, then adding the amount returned to the result	
3. display the ending inventory		

Results of desk-checking the correct algorithm.

beginning inventory	amount sold	amount returned	ending inventory
50	10	2	42

7. Changes made to the original algorithm are shaded in the IPO chart.

Input	Processing	Output
hours worked rate of pay	Processing items: none	gross pay
	Algorithm: 1. enter the hours worked and rate of pay 2. calculate the gross pay by multiplying the hours worked by the rate of pay	
	3. display the gross pay	

Application Lesson Exercises

 1.| Input | Processing | Output |
| :---: | :---: | :---: |
| room length room width ceiling height single roll coverage | Processing items: room perimeter wall area
 Algorithm: | number of single rolls |

2.

Input	Processing	Output		
beginning balance monthly deposits monthly withdrawals	Processing items: none Algorithm: 1. enter the beginning balance, monthly deposits, and monthly withdrawals	ending balance		
2. calculate the ending balance by				
adding the monthly deposits to the				
beginning balance, and then				
subtracting the monthly withdrawals				
from the result			\quad	3. display the ending balance
:---				

beginning balance	monthly deposits	monthly withdrawals	ending balance
2000	775	1200	1575
500	100	610	-10

3.

Input	Processing	Output
first number second number third number	Processing items: none Algorithm: 1. enter the first number, second number, and third number 2. calculate the average by adding together the first number, second number, and third number, and then dividing the sum by 3 3. display the average	average

first number	second number	third number	average
25	76	33	44.6666
10	15	20	15

4.

Input	Processing	Output
original price discount rate	Processing items: none	Algorithm: new price
	1. enter original price and discount rate 2. calculate the sales discount by multiplying the original price by the discount rate	3. calculate the new price by subtracting the sales discount from the original price
4. display the sales discount and the new price		

original price	discount rate	sales discount	new price
100	.25	25	75
50	.1	5	45

5.

Input number of envelopes number of pages charge per envelope charge per page	Processing Processing items: total envelope charge total page charge	Output		
	Algorithm: 1.enter the number of envelopes, number of pages, charge per envelope, and charge per page 2. calculate the total envelope charge by multiplying the number of envelopes by the charge per envelope	total due		
3. calculate the total page charge by multiplying the				
number of pages by the charge per page			\quad	4. calculate the total due by adding the total
:---				
envelope charge to the total page charge				
5. display the total due				

number of envelopes	number of pages	charge per envelope	charge per page	total envelope charge	total page charge	total due
100	100	.10	.25	10	25	35
10	15	.20	.30	2	4.50	6.50

6.

Input	Processing	Output
first seminar attendees second seminar attendees seminar price	Processing items: none	Algorithm: 1. ental the first seminar attendees, second attendees seminar attendees, and seminar price
	2. cost calculate the total attendees by adding together the first seminar attendees and the second seminar attendees	
	3. calculate the cost by multiplying the total attendees by the seminar price 4. display the total attendees and the cost	

first seminar attendees	second seminar attendees	seminar price	total attendees	cost
10	10	200	20	4000
30	10	100	40	4000

7.

Input	Processing	Output
hours worked hourly pay rate FWT rate FICA rate state rate	Processing items: total taxes Algorithm: 1. enter the hours worked, hourly pay rate, FWT rate, FICA rate, and state rate 2. calculate the gross pay by multiplying the hours worked by the hourly pay rate 3. calculate the FWT by multiplying the gross pay by the FWT rate 4. calculate the FICA by multiplying the gross pay by the FICA rate 5. calculate the state tax by multiplying the gross pay by the state rate 6. calculate the total taxes by adding together the FWT, FICA, and state tax 7. calculate the net pay by subtracting the total taxes from the gross pay 8. display the gross pay, FWT, FICA, state tax, and net pay	gross pay FWT FICA state tax net pay

hours worked	hourly pay rate	FWT rate	FICA rate	state rate	total taxes	gross pay	FWT	FICA	state tax	net pay
20	6	.2	.08	.02	36	120	24	9.60	2.40	84
30	10	.2	.08	.04	96	300	60	24	12	204

8.

Input	Processing	Output
side1	Processing items: none	perimeter
side2	Algorithm:	
side3	1. enter side1, side2, side3, and side4 side4	2. calculate the perimeter by adding together side1, side2, side3, and side4 3. display the perimeter

The desk-check data may vary.

side1	side2	side3	side4	perimeter
10	6	5	8	29
20	10	15	20	65

9.

Input	Processing	Output
diameter price per foot	Processing items: none Algorithm:	circumference total price

The desk-check data may vary.

diameter	price per foot	circumference	total price
35	Z	109.90	219.80
7	3	21.98	65.94

10.

Input	Processing	Output
length in feet width in feet price per square foot of tile	Processing items: none Algorithm: 1. enter the length in feet, width in feet, and price per square foot of tile	area total price
	2. calculate the area by multiplying the length in feet by the width in feet	3. calculate the total price by multiplying the area by the price per square foot of tile
4. display the area and total price		

The desk-check data may vary.

length in feet	width in feet	price per square foot of tile	area	total price
10	6	5	60	300
20	10	3	200	600

11.

Input	Processing	Output
length in feet width in feet height in feet	Processing items: none	Algorithm: 1. enter the length in feet, width in feet, and height in feet 2. calculate the volume by multiplying the length in feet by the width in feet, and then multiplying the result by the height in feet
3. display the volume		

The desk-check data may vary.

length in feet	width in feet	height in feet	volume
100	30	3	9000
2	3	4	24

12.

Input	Processing	Output
current pay1 current pay2 current pay3 raise rate	Processing items: none Algorithm: 1. enter the current pay1, current pay2, current pay3, and raise rate	new pay1 new pay2 new pay3
	2.calculate the new pay1 by multiplying the current pay1 by the raise rate, and then adding the result to the current pay1 3.alculate the new pay2 by multiplying the current pay2 by the raise rate, and then adding the result to the current pay2	4.calculate the new pay3 by multiplying the current pay3 by the raise rate, and then adding the result to the current pay3
5. display the new pay1, new pay2, and new pay3		

current pay1	current pay2	current pay3	raise rate	new pay1	new pay2	new pay3
7.55	10.00	10.30	.02	7.70	10.20	10.54
8.00	6.50	7.25	.02	8.16	6.63	7.40

13.

semester hours	tuition per semester hour	room and board fee	total cost
20	100	3000	5000
14	100	3000	4400

14.

Input	Processing	Output
hours worked hourly pay rate	Processing items: overtime pay Algorithm: 1. enter the hours worked and hourly pay rate 2. if the hours worked is greater than 40 calculate the overtime pay as follows: first subtract 40 from the hours worked, then multiply the result by the hourly pay rate divided by 2 calculate the gross pay by multiplying the hours worked by the hourly pay rate, and then adding the overtime pay to the result	gross pay
	otherwise calculate the gross pay by multiplying the hours worked by the hourly pay rate	

hours worked	hourly pay rate	overtime pay	gross pay
20	6		120
43	10	45	445

15. Changes to the original algorithm are shaded in the figure.

Input	Processing	Output
number	Processing items: none	cube of the number
	Algorithm: 1. enter the number 2. calculate the cube of the number by multiplying the number by itself three times 3. display the cube of the number	

number	cube of the number
4	64

16.

Input	Processing	Output
original price discount rate	Processing items: none	discount sale price
	Algorithm: enter the original price and the discount rate 2. calculate the discount by multiplying the original price by the discount rate	
3. calculate the sale price by subtracting the discount		
from the original price		
4. display the discount and the sale price		

original price	discount rate	discount	sale price
100	.25	25	75

